
THE UNIVERSITY OF
NEW SOUTH WALES

COMP4121 Advanced Algorithms

Aleks Ignjatović

School of Computer Science and Engineering
University of New South Wales

Clustering algorithms

COMP4121 1 / 45



What is clustering?

Fundamentally important for data science

Making sense of data on its own

Data preprocessing for other algorithms

It is a type of unsupervised learning.
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How many clusters are there?
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What are clusters?

Two kinds of clusters:

1 center - based clusters
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A good clustering algorithm should be able to handle both kinds.
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Data representation
We have to make sure that the data is adequately represented.
In general, there are two most common representations:

1 as vectors in Rd

This is suitable when you have several numerical measurements of
each object, such as the red blood cell count, white blood cell count,
haemoglobin content, etc for each patient in a group of patients.
Another example might be the relative frequencies of the key words
in each document from a collection.
Note that d can be extremely large, corresponding to thousands or
more of possible keywords.
This can be a problem due to complexities of storing and handling
such high dimensional data. (this is where Johnson - Lindenstrauss
Theorem come to play)

2 as a weighted graph
Data points are represented as vertices of the graph;
The weights of the edges reflect the degree of similarity (or
dissimilarity) of the data points.
Data represented as vectors in R

d can be represented as a weighted
graph where the weights of edges reflect dissimilarity of the end
points as measured by some form of distance between the end
points.
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Data representation

The distance between two data points x, y ∈ Rd can be defined as either

d(x, y) =

d∑
i=1

|xi − yi| or as d(x, y) =

√√√√ d∑
i=1

(xi − yi)2

Such a distance d(x, y) is then taken as a measure of dissimilarity of x
and y.
If the scales of the ith and jth coordinates xi and xj differ significantly,
or if they are not of equal importance, we might consider instead

d(x, y)2 =

d∑
i=1

wi(xi − yi)2

The weights wi are chosen to normalise different variances of xi and xj
or to encode their relative significances.
Graph representation of data is often much a more compact
representation than as vectors in Rd, which does not suffer from
problems of high dimensionality.
Note that in the graph representation of data the geometry of the data
points is lost, so the clustering is based only on mutual distances of pairs
of points, which is good when clustering is not center based.

COMP4121 7 / 45



Data representation

The distance between two data points x, y ∈ Rd can be defined as either

d(x, y) =

d∑
i=1

|xi − yi| or as d(x, y) =

√√√√ d∑
i=1

(xi − yi)2

Such a distance d(x, y) is then taken as a measure of dissimilarity of x
and y.
If the scales of the ith and jth coordinates xi and xj differ significantly,
or if they are not of equal importance, we might consider instead

d(x, y)2 =

d∑
i=1

wi(xi − yi)2

The weights wi are chosen to normalise different variances of xi and xj
or to encode their relative significances.
Graph representation of data is often much a more compact
representation than as vectors in Rd, which does not suffer from
problems of high dimensionality.
Note that in the graph representation of data the geometry of the data
points is lost, so the clustering is based only on mutual distances of pairs
of points, which is good when clustering is not center based.

COMP4121 7 / 45



Data representation

The distance between two data points x, y ∈ Rd can be defined as either

d(x, y) =

d∑
i=1

|xi − yi| or as d(x, y) =

√√√√ d∑
i=1

(xi − yi)2

Such a distance d(x, y) is then taken as a measure of dissimilarity of x
and y.
If the scales of the ith and jth coordinates xi and xj differ significantly,
or if they are not of equal importance, we might consider instead

d(x, y)2 =

d∑
i=1

wi(xi − yi)2

The weights wi are chosen to normalise different variances of xi and xj
or to encode their relative significances.
Graph representation of data is often much a more compact
representation than as vectors in Rd, which does not suffer from
problems of high dimensionality.
Note that in the graph representation of data the geometry of the data
points is lost, so the clustering is based only on mutual distances of pairs
of points, which is good when clustering is not center based.

COMP4121 7 / 45



Data representation

The distance between two data points x, y ∈ Rd can be defined as either

d(x, y) =

d∑
i=1

|xi − yi| or as d(x, y) =

√√√√ d∑
i=1

(xi − yi)2

Such a distance d(x, y) is then taken as a measure of dissimilarity of x
and y.
If the scales of the ith and jth coordinates xi and xj differ significantly,
or if they are not of equal importance, we might consider instead

d(x, y)2 =

d∑
i=1

wi(xi − yi)2

The weights wi are chosen to normalise different variances of xi and xj
or to encode their relative significances.
Graph representation of data is often much a more compact
representation than as vectors in Rd, which does not suffer from
problems of high dimensionality.
Note that in the graph representation of data the geometry of the data
points is lost, so the clustering is based only on mutual distances of pairs
of points, which is good when clustering is not center based.

COMP4121 7 / 45



Data representation

The distance between two data points x, y ∈ Rd can be defined as either

d(x, y) =

d∑
i=1

|xi − yi| or as d(x, y) =

√√√√ d∑
i=1

(xi − yi)2

Such a distance d(x, y) is then taken as a measure of dissimilarity of x
and y.
If the scales of the ith and jth coordinates xi and xj differ significantly,
or if they are not of equal importance, we might consider instead

d(x, y)2 =

d∑
i=1

wi(xi − yi)2

The weights wi are chosen to normalise different variances of xi and xj
or to encode their relative significances.
Graph representation of data is often much a more compact
representation than as vectors in Rd, which does not suffer from
problems of high dimensionality.
Note that in the graph representation of data the geometry of the data
points is lost, so the clustering is based only on mutual distances of pairs
of points, which is good when clustering is not center based.

COMP4121 7 / 45



Data representation

The distance between two data points x, y ∈ Rd can be defined as either

d(x, y) =

d∑
i=1

|xi − yi| or as d(x, y) =

√√√√ d∑
i=1

(xi − yi)2

Such a distance d(x, y) is then taken as a measure of dissimilarity of x
and y.
If the scales of the ith and jth coordinates xi and xj differ significantly,
or if they are not of equal importance, we might consider instead

d(x, y)2 =

d∑
i=1

wi(xi − yi)2

The weights wi are chosen to normalise different variances of xi and xj
or to encode their relative significances.
Graph representation of data is often much a more compact
representation than as vectors in Rd, which does not suffer from
problems of high dimensionality.
Note that in the graph representation of data the geometry of the data
points is lost, so the clustering is based only on mutual distances of pairs
of points, which is good when clustering is not center based.

COMP4121 7 / 45



Center-based clustering algorithms

We assume data points are represented as vectors in Rd.

1 k-center clustering: Find a partition C = {C1, . . . Ck} of a set of data
points A = {a1, . . . ,an} into k clusters, with the corresponding centers
c1, . . . , ck, which minimize the maximum distance between any data
point and the center of its cluster.

That is, we want to minimize

Φ(C) =
k

max
j=1

max
a∈Cj

d(a, cj)

This is the “fire-station location problem” since one can think of it
as the problem of building k fire-stations in a city so as to minimise
the maximum distance a fire-truck needs to travel to put out a fire.
The radius of a clustering A =

⋃k
m=1Am is the largest distance of a

point from A to its associated cluster centre.
Thus, center-based clustering algorithms try to minimise the radius
of the resulting clustering.
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Center-based clustering

1 k-median clustering: Find a partition C = {C1, . . . Ck} of a set of data
points A = {a1, . . . ,an} into k clusters, with the corresponding centers
c1, . . . , ck, which minimizes the sum of distances between data points
and their corresponding cluster centres.

That is, we want to minimise

Φ(C) =

k∑
j=1

∑
a∈Cj

d(a, cj)

Note that d(a, cj) can be any distance metric, such as `1 metric

d1(a, cj) =
∑d

k=1 |(a)k − (cj)k| or `2 metric

d2(a, cj) =
√∑d

k=1((a)k − (cj)k)2.

If the distance is the `1 distance, one can show that the coordinates
of the optimal centers are the coordinate-wise medians of points in
each cluster.
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Center-based clustering algorithms

The most frequently used center-based clustering algorithm is the k-means
algorithm.

1 k-means clustering problem: Find a partition C = {C1, . . . Ck} of a
set of data points A = {a1, . . . ,an} into k clusters, with the
corresponding centers c1, . . . , ck, which minimize the sum of the squares
of distances between data points and their corresponding cluster centers.

That is, we want to minimize

Φ(C) =

k∑
i=1

∑
a∈Cj

d(a, cj)
2

k-means clustering penalises more for larger distances than the
k-median clustering.
k-means clustering has other nice properties; for example, if
d(a, cj)

2 =
∑d

j=1(ai − cji)2 then cj must be the centroids of the
points in their cluster.
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corresponding centers c1, . . . , ck, which minimize the sum of the squares
of distances between data points and their corresponding cluster centers.

That is, we want to minimize

Φ(C) =
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Center-based clustering algorithms

What is the centroid of a set of points {a1, . . . ,an}?
Keep in mind that each ai is a vector in Rd, so

ai = (ai1, . . . , aid).

Let c = (c1, . . . , cd) with for all 1 ≤ k ≤ d,

ck = (a1k + . . .+ ank)/n

i.e., ck is the arithmetic mean of the kth coordinates of all of the points
a1, . . . ,an.

Then c is called the centroid of the set of points {a1, . . . ,an}.
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Center-based clustering algorithms

We denote by x · y the scalar product of vectors x and y and by ‖x‖ the
norm of a vector x, i.e.

x · y =

d∑
i=1

xiyi and ‖x‖ =

√√√√ d∑
i=1

x2i =
√
x · x

Note that ‖x− y‖ is the Euclidean distance of points x and y:

‖x− y‖ =

√√√√ d∑
i=1

(xi − yi)2

Note also that

‖x + y‖2 = (x + y) · (x + y) = ‖x‖2 + 2 x · y + ‖y‖2
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Center-based clustering algorithms

Theorem: Let A = {a1, . . . ,an} be a set of points and x another point,
all in Rd. Let also c be the centroid of A. Then

n∑
i=1

‖ai − x‖2 =

n∑
i=1

‖ai − c‖2 + n‖c− x‖2

Proof: Using ‖x + y‖2 = (x + y) · (x + y) = ‖x‖2 + 2 x · y + ‖y‖2

n∑
i=1

‖ai − x‖2 =

n∑
i=1

‖(ai − c) + (c− x)‖2

=

n∑
i=1

‖ai − c‖2 + 2(c− x) ·
n∑

i=1

(ai − c) + n‖c− x‖2

Since c is the centroid, c = (
∑n

i=1 ai) /n, we have

n∑
i=1

(ai − c) =

n∑
i=1

ai − nc = 0

and we have proved the claim.
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Center-based clustering algorithms

Corollary: Let A = {a1, . . . ,an} be a set of points in Rd. Then

D(x) =

n∑
i=1

‖ai − x‖2

is minimised when x is the centroid c = 1
n

∑n
i=1 xi.

Proof: By the previous theorem,

n∑
i=1

‖ai − x‖2 =

n∑
i=1

‖ai − c‖2 + n‖c− x‖2

The first summand does not depend on x and the second is zero when
x = c. Thus x = c minimises D(x).
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Center-based clustering algorithms

Thus, if we are given a set of points A = {a1, . . . ,an} in Rd and the
problem is to find a partition of A into k disjoint components

A =
⋃k

i=1Ai and k points x1, . . . ,xk such that the sum

k∑
j=1

∑
ai∈Aj

‖ai − xj‖2

is as small as possible, then, whatever such an optimal partition
{Aj : 1 ≤ j ≤ k} might be, the points xj must be the centroids cj of
sets Aj .

Let A = {a1, . . . ,an} be a set of points in Rd and let c be the centroid of
A. Then

1

2n

n∑
i,j=1

‖ai − aj‖2 =

n∑
m=1

‖am − c‖2

This is easy to see just by replacing c by its definition plus doing some
obvious algebra.
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Center-based clustering algorithms

Thus, finding disjoint components A =
⋃k

m=1Am which minimises

k∑
m=1

∑
aj∈Am

‖aj − cm‖2

is equivalent to minimising

k∑
m=1

1

2|Am|
∑

ai,aj∈Am

‖ai − aj‖2
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Lloyd’s Algorithm

Finding the optimal k-means clustering is an NP hard problem which
cannot be solved in polynomial time, so we have to look at approximate
solutions.

The best known approximate k-means clustering algorithm is Lloyd’s
algorithm.

Lloyd’s Clustering Algorithm:

1 Start with an initial set of cluster centres {c(0)m : 1 ≤ m ≤ k} (we
will later explain how to obtain such an initial set).

2 Cluster all points a ∈ A into clusters Am by associating each a ∈ A
with the nearest cluster centre.

3 Replace cluster centres with the centroids of thus obtained clusters.
4 Repeat 2 and 3 until cluster centres (and thus also clusters) stop

changing.

COMP4121 17 / 45



Lloyd’s Algorithm

Finding the optimal k-means clustering is an NP hard problem which
cannot be solved in polynomial time, so we have to look at approximate
solutions.

The best known approximate k-means clustering algorithm is Lloyd’s
algorithm.

Lloyd’s Clustering Algorithm:

1 Start with an initial set of cluster centres {c(0)m : 1 ≤ m ≤ k} (we
will later explain how to obtain such an initial set).

2 Cluster all points a ∈ A into clusters Am by associating each a ∈ A
with the nearest cluster centre.

3 Replace cluster centres with the centroids of thus obtained clusters.
4 Repeat 2 and 3 until cluster centres (and thus also clusters) stop

changing.

COMP4121 17 / 45



Lloyd’s Algorithm

Finding the optimal k-means clustering is an NP hard problem which
cannot be solved in polynomial time, so we have to look at approximate
solutions.

The best known approximate k-means clustering algorithm is Lloyd’s
algorithm.

Lloyd’s Clustering Algorithm:

1 Start with an initial set of cluster centres {c(0)m : 1 ≤ m ≤ k} (we
will later explain how to obtain such an initial set).

2 Cluster all points a ∈ A into clusters Am by associating each a ∈ A
with the nearest cluster centre.

3 Replace cluster centres with the centroids of thus obtained clusters.
4 Repeat 2 and 3 until cluster centres (and thus also clusters) stop

changing.

COMP4121 17 / 45



Lloyd’s Algorithm

Finding the optimal k-means clustering is an NP hard problem which
cannot be solved in polynomial time, so we have to look at approximate
solutions.

The best known approximate k-means clustering algorithm is Lloyd’s
algorithm.

Lloyd’s Clustering Algorithm:

1 Start with an initial set of cluster centres {c(0)m : 1 ≤ m ≤ k} (we
will later explain how to obtain such an initial set).

2 Cluster all points a ∈ A into clusters Am by associating each a ∈ A
with the nearest cluster centre.

3 Replace cluster centres with the centroids of thus obtained clusters.
4 Repeat 2 and 3 until cluster centres (and thus also clusters) stop

changing.

COMP4121 17 / 45



Lloyd’s Algorithm

Finding the optimal k-means clustering is an NP hard problem which
cannot be solved in polynomial time, so we have to look at approximate
solutions.

The best known approximate k-means clustering algorithm is Lloyd’s
algorithm.

Lloyd’s Clustering Algorithm:

1 Start with an initial set of cluster centres {c(0)m : 1 ≤ m ≤ k} (we
will later explain how to obtain such an initial set).

2 Cluster all points a ∈ A into clusters Am by associating each a ∈ A
with the nearest cluster centre.

3 Replace cluster centres with the centroids of thus obtained clusters.
4 Repeat 2 and 3 until cluster centres (and thus also clusters) stop

changing.

COMP4121 17 / 45



Lloyd’s Algorithm

Finding the optimal k-means clustering is an NP hard problem which
cannot be solved in polynomial time, so we have to look at approximate
solutions.

The best known approximate k-means clustering algorithm is Lloyd’s
algorithm.

Lloyd’s Clustering Algorithm:

1 Start with an initial set of cluster centres {c(0)m : 1 ≤ m ≤ k} (we
will later explain how to obtain such an initial set).

2 Cluster all points a ∈ A into clusters Am by associating each a ∈ A
with the nearest cluster centre.

3 Replace cluster centres with the centroids of thus obtained clusters.
4 Repeat 2 and 3 until cluster centres (and thus also clusters) stop

changing.

COMP4121 17 / 45



Lloyd’s Algorithm

Claim: At every round p of its loop, Lloyd’s algorithm reduces the size
of

k∑
m=1

∑
aj∈A(p)

m

‖aj − c(p)m ‖2

where A
(p)
m are the “temporary” clusters and c

(p)
m is the “temporary”

centre of cluster A
(p)
m at round p of the loop.

This is obvious, because both steps of the loop have this property:
replacing the cluster centres with the centroid of the cluster recuses

every summand
∑

aj∈A(p)
m
‖aj − c

(p)
m ‖2 and so does associating every

point with the nearest cluster centre.

However, the algorithm might stop at a local minimum, not the globally
optimal minimum.
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Lloyd’s Algorithm

In lots of applications this local minimum provides a good clustering.

However, sometimes better results are obtained by running the algorithm
several times with different initial set of cluster centres and picking the
solution from the run for which the sum

k∑
m=1

∑
aj∈A(p)

m

‖aj − c(p)m ‖2

is the smallest.

How can we obtain good starting centres of clusters for the algorithm?

One good option is to pick a random point aq from A as the first centre

c
(0)
1 = aq.

For the second centre pick another point from A which is the farthest
away from aq.

Continue in this manner to get all k cluster centres, always picking as
the next centre a point from A which has the largest minimal distance to
all previously picked centres.

COMP4121 19 / 45



Lloyd’s Algorithm

In lots of applications this local minimum provides a good clustering.

However, sometimes better results are obtained by running the algorithm
several times with different initial set of cluster centres and picking the
solution from the run for which the sum

k∑
m=1

∑
aj∈A(p)

m

‖aj − c(p)m ‖2

is the smallest.

How can we obtain good starting centres of clusters for the algorithm?

One good option is to pick a random point aq from A as the first centre

c
(0)
1 = aq.

For the second centre pick another point from A which is the farthest
away from aq.

Continue in this manner to get all k cluster centres, always picking as
the next centre a point from A which has the largest minimal distance to
all previously picked centres.

COMP4121 19 / 45



Lloyd’s Algorithm

In lots of applications this local minimum provides a good clustering.

However, sometimes better results are obtained by running the algorithm
several times with different initial set of cluster centres and picking the
solution from the run for which the sum

k∑
m=1

∑
aj∈A(p)

m

‖aj − c(p)m ‖2

is the smallest.

How can we obtain good starting centres of clusters for the algorithm?

One good option is to pick a random point aq from A as the first centre

c
(0)
1 = aq.

For the second centre pick another point from A which is the farthest
away from aq.

Continue in this manner to get all k cluster centres, always picking as
the next centre a point from A which has the largest minimal distance to
all previously picked centres.

COMP4121 19 / 45



Lloyd’s Algorithm

In lots of applications this local minimum provides a good clustering.

However, sometimes better results are obtained by running the algorithm
several times with different initial set of cluster centres and picking the
solution from the run for which the sum

k∑
m=1

∑
aj∈A(p)

m

‖aj − c(p)m ‖2

is the smallest.

How can we obtain good starting centres of clusters for the algorithm?

One good option is to pick a random point aq from A as the first centre

c
(0)
1 = aq.

For the second centre pick another point from A which is the farthest
away from aq.

Continue in this manner to get all k cluster centres, always picking as
the next centre a point from A which has the largest minimal distance to
all previously picked centres.

COMP4121 19 / 45



Lloyd’s Algorithm

In lots of applications this local minimum provides a good clustering.

However, sometimes better results are obtained by running the algorithm
several times with different initial set of cluster centres and picking the
solution from the run for which the sum

k∑
m=1

∑
aj∈A(p)

m

‖aj − c(p)m ‖2

is the smallest.

How can we obtain good starting centres of clusters for the algorithm?

One good option is to pick a random point aq from A as the first centre

c
(0)
1 = aq.

For the second centre pick another point from A which is the farthest
away from aq.

Continue in this manner to get all k cluster centres, always picking as
the next centre a point from A which has the largest minimal distance to
all previously picked centres.

COMP4121 19 / 45



Lloyd’s Algorithm

In lots of applications this local minimum provides a good clustering.

However, sometimes better results are obtained by running the algorithm
several times with different initial set of cluster centres and picking the
solution from the run for which the sum

k∑
m=1

∑
aj∈A(p)

m

‖aj − c(p)m ‖2

is the smallest.

How can we obtain good starting centres of clusters for the algorithm?

One good option is to pick a random point aq from A as the first centre

c
(0)
1 = aq.
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the next centre a point from A which has the largest minimal distance to
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Lloyd’s Algorithm

In fact, such a procedure for finding the initial centres c
(0)
m of initial

clusters is used as a simple clustering algorithm in itself. You first choose
cluster centers as described and then simply clustering points from A

according to which is the closest centre c
(0)
m to that point.

This algorithm is usually called The Farthest Traversal k-clustering
algorithm.

The Farthest Traversal k-clustering algorithm, despite its simplicity,
provides a reasonably good approximate clustering in the following sense.

(Remember that the radius of a clustering A =
⋃k

m=1Am is the largest
distance of a point from A to its associated cluster centre. )
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Lloyd’s Algorithm

Theorem: If A has a k-clustering of radius r, then the Farthest
Traversal k-clustering algorithm produces a clustering of radius at most
2r.

Proof: Suppose opposite, that there is a ∈ A at a distance to its cluster
larger that 2r. This would mean that the distance of a to all cluster
centres is larger than 2r.

But this implies that also the distances between all pairs of cluster
centres must also be larger than 2r because otherwise a would have been
chosen as one of the cluster centres.

Thus, we would have at least k + 1 points (a plus the k cluster centres)
which are all on pairwise distances larger than 2r.

Since we have k + 1 points in k clusters, two such points must be in the
same cluster.

But no such two points can be in the same cluster of radius r, because
their distance would be at most the diameter of the circle which is 2r.

Thus there cannot be a k clustering of radius r, which is a contradiction.
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Ward’s Algorithm

Loyd’s algorithm has been recently randomized by instead of picking
always the furthest point, by picking a point with probability
proportional to the shortest distance to one of already picked points.

Let Am be a cluster with its centroid cm as its centre; let us set

cost(Am) =
∑

ai∈Am

‖ai − cm‖2

The k-means clustering algorithms are trying to minimise the sum∑k
m=1 cost(Am).

Note that if we have two clusters Am and Al and take their union
B = Am ∪Al and the centroid of B as the cluster centre of B, then

cost(B) ≥ cost(Am) + cost(Al),

because two centres can get closer to the points in B = Am ∪Al then
just one point.
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Ward’s Algorithm

Ward’s algorithm is a greedy k-means algorithm:
1 Start with every point ai in its own cluster.
2 While the number of clusters is larger than k repeat:

find two clusters C and C ′ such that

cost(C ∪ C ′)− cost(C)− cost(C ′)

is as small as possible and replace them with a single merged cluster
C ∪ C ′ with its centroid as its centre.

How do we cluster data when clusters are not centre based??
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This done using the spectral clustering.
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Similarity Graphs

We represent a set of data points A = {a1, . . . ,an} as the set of vertices
{v1, . . . , vn} of an undirected weighted graph G = (V,E).
The weight wij ≥ 0 of an edge e = (vi, vj) is equal to some form of
similarity measure of the data points ai,aj which correspond to vertices
vi, vj .
If wij = 0 this means that vertices vi and vj correspond to completely
dissimilar data points ai,aj and in this case the graph does not include
an edge of the form e = (vi, vj).
The similarity of vertices vi and vj can depend, for example, on a
decreasing function of the Euclidean distance ‖ai − aj‖ between the

corresponding data points ai and aj , such as e−
‖ai−aj‖

2

2 .
Since the graph is undirected, wij = wji.
We put all the weights wij into a symmetric adjacency matrix
W = (wij)

n
i,j=1.

Recall that wij = 0 means that there is no edge between vertices vi and
vj .
Since the graph is weighted, the degree di of a vertex vi is defined as

di =

n∑
j=1

wij
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Similarity Graphs

The degree matrix D is defined as a diagonal matrix with degree di of
vertex vi on the ith entry of the diagonal of D and zeros everywhere off
diagonal.

So graph G is a compact summary of the set of data points
A = {a1, . . . ,an}.
The geometry of A is completely lost, and only pairwise similarities
between the data points are preserved.

This is actually good because it will allow us to handle clustering of
points which is not centre based, but is based on “local similarity” of
data points, as we will see later.

Given a subset S ⊂ V of vertices, we denote by S the complement V \ S
of S in V .

Given a subset S ⊂ V of vertices, we denote by 1S the indicator vector
1S = (f1, . . . , fn) ∈ Rn where

fi =

{
1 if vi ∈ S
0 if vi 6∈ S

For simplicity, we abbreviate vi ∈ S as i ∈ S.
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Given a subset S ⊂ V of vertices, we denote by 1S the indicator vector
1S = (f1, . . . , fn) ∈ Rn where

fi =

{
1 if vi ∈ S
0 if vi 6∈ S

For simplicity, we abbreviate vi ∈ S as i ∈ S.
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Similarity Graphs

For any two subsets S,B ⊂ V we define

W (S,B) =
∑

i∈S,j∈B
wij

and for any set S we define two types of measurements of the “size” of S:

1 |S| is the number of elements in S;
2 vol(S) =

∑
i∈S di

Recall that di =
∑n

j=1 wij is the degree of vertex vi.

A natural partition of vertices of a graph G = (V,E) is into its connected
components.
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Similarity Graphs

Given a set of data points A = {a1, . . . ,an} we associate vertices
{v1, . . . , vn} of a similarity graph G, but there are many ways how we
can associate weights wij which measure the similarity of data points ai
and aj that correspond to vertices vi and vj .

(1) The ε-neighbourhood graph:

We connect all pairs of vertices vi, vj such that the distances
between the associated data points ai,aj are smaller than ε.
The distance is usually the Euclidean distance

‖ai − aj‖ =
√∑d

p=1(aip − ajp)2,

where ai = (ai1, . . . , aid) ∈ Rd.
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Similarity Graphs

(2) The k-nearest neighbour graphs:

There are two flavours of k-nearest neighbour graphs:

1 Unidirectional k-nearest neighbour graph. We connect vi with vj if
either vj is among k nearest neighbours of vi or vice versa, vi is
among k nearest neighbours of vj .

2 Mutual k-nearest neighbour graph. We connect vi with vj if both vj
is among k nearest neighbours of vi and vi is also among k closest
neighbours of vj .

In both cases the edge is then weighted with the degree of similarity
of the vertices vi and vj .
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Similarity Graphs

(3) The fully connected graphs:

We simply connect all pairs of vertices vi and vj for which the
corresponding data points ai and aj have a strictly positive
similarity, or similarity higher than some prescribed threshold ε.
To ensure that such a graph represents local neighbourhood
relationships, the similarity measure must be chosen to respect such
localisation condition.
Often we take weights which reflect such local similarities by the
following formula:

wij = e−
‖ai−aj‖

2

2σ2

Here σ is a parameter which determines “the size” of the
neighbourhood, namely how fast the similarity decreases as distance
increases.

I Unfortunately, there is not a simple way how to choose a similarity graph.
I The best is just to try several and pick the one which eventually produces
the most informative clustering.
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Spectral Graph Theory

Recall that the n× n diagonal matrix D has the degrees di of vertices vi
on its diagonal, where di =

∑n
j=1 wij .

The (unnormalised) graph Laplacian matrix L is defined as

L = D −W

where W = (wij)
n
i,j=1.

Clearly, L is symmetric and it does not depend on wii, 1 ≤ i ≤ n.

Graph Laplacians are crucial for spectral clustering.

A matrix M of size n× n is positive semi-definite if for all vectors
f ∈ Rn we have

fTMf ≥ 0

From linear algebra we know that a symmetric matrix is positive
semi-definite iff all of its eigenvalues are real and non-negative.

The next theorem summarises their main properties important for
spectral clustering.
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Spectral Graph Theory

Theorem: The matrix L = D −W has the following properties:
(1) For every vector f ∈ Rn,

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2

(2) L is a symmetric positive semi-definite matrix.
(3) The smallest eigenvalue of L is 0 and its corresponding eigenvector

is 1 = (1, 1, . . . , 1).
Proof:

(1) fTLf = fTDf − fTWf =

n∑
i=1

dif
2
i −

n∑
i,j=1

wijfifj

=
1

2

 n∑
i=1

 n∑
j=1

wij

 f2i − 2

n∑
i,j=1

wijfifj +

n∑
j=1

(
n∑

i=1

wij

)
f2j


=

1

2

n∑
i,j=1

wij(fi − fj)2.
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Spectral Graph Theory

(2) Since we have shown that fTLf = 1
2

∑n
i,j=1 wij(fi − fj)2 and since

wij ≥ 0, L satisfies fTLf ≥ 0 for all vectors f and is thus positive
semi-definite.

(3) Note that L1 = D1−W1. However, it is easy to see that both D1 and
W1 produce the same vector with the ith coordinate equal to the degree
di of vertex vi. Thus, L1 = D1−W1 = 0 = 0 · 1. So, since L1 = 0 · 1,
0 is the smallest eigenvalue of L (because all eigenvalues are
non-negative) and 1 is the corresponding eigenvector.

Let M be an n× n matrix. Then an eigenvalue λ of this matrix has:

1 An algebraic multiplicity k if the characteristic polynomial Pn(x)
has a form Pn(x) = (x− λ)kQ(x) where Q(x) is a polynomial of
degree n− k.

2 A geometric multiplicity k if λ has k linearly independent
eigenvectors.
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Spectral Graph Theory

Theorem: Let G be an undirected weighted graph with n vertices and
non-negative weights which has exactly k connected components
A1, . . . , Ak. Then the algebraic and geometric multiplicities of the
eigenvalue 0 of L are both equal to k and the eigenspace of eigenvalue 0
is spanned by the indicator vectors 1A1 , . . . ,1Ak of those components.

Proof: Assume first that the graph is connected, i.e., that it has exactly
one connected component and let f ∈ Rn be an eigenvector with
eigenvalue 0. Then, Lf = 0 · f = 0 and thus also fTLf = 0.
Consequently, by the previous theorem we have

0 = fTLf =

n∑
i,j=1

wij(fi − fj)2

Thus, if two vertices vi and vj are connected by an edge, then wij > 0
and consequently fi = fj . Going along any path we get that the
coordinates of f must be constant at all vertices along that path. Since
G is connected, obviously all coordinates of f must be constant. Thus,
1V = (1, 1, . . . , 1) is an eigenvector. (Note that we do not normalise
eigenvectors).
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Spectral Graph Theory

Proof (continued): Assume now that G has k connected components.
We can assume that the vertices of the connected components are listed
in order of the component they belong to. Thus, matrix W is a block
matrix of the form

W =


W1 0

W2

. . .
0 Wk


where the block Wi corresponds to the connected component Ai and
with 0’s outside the blocks Wi.

But then L = D −W also has the same structure:

L =


L1 0

L2

. . .
0 Lk


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Spectral Graph Theory

Proof (continued): The eigenvalues of block matrices are the union of
the eigenvalues of each block as a separate matrix, and the eigenvectors
of a block matrix are the eigenvectors of the blocks with zeros appended
outside each block.

Thus, since each Li corresponds to a single connected component, it has
0 as the smallest eigenvalue with an eigenvector 1Ai .

Consequently, the matrix L has as many eigenvalues 0 as there are
connected components, and the corresponding eigenvectors are the
indicator vectors of the connected components.
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Spectral Graph Theory

Assume now that a graph G has k connected components which we
would like to find.

After forming the Laplacian matrix L we would use a standard software
to find its eigenvalues.

Such a software would output that 0 is an eigenvalue of L with
multiplicity k and it would output k eigenvectors corresponding to
eigenvalue 0.

However, generally, these vectors would not be the indicators 1Ai of the
connected components but k (mutually orthogonal) linear combinations
of these indicator vectors, because any k orthogonal vectors in the
eigensubspace corresponding to the eigenvalue 0 are equally good
candidates.

Thus, we will obtain k vectors from Rn which look like this:

e1 = α1
11A1 + α1

21A2 + . . .+ α1
k1Ak

. . . . . . . . .

ek = αk
11A1

+ αk
21A2

+ . . .+ αk
k1Ak
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Spectral Graph Theory

We can now form a matrix E of size n× k whose k columns are the
eigenvectors ei ∈ Rn. We now consider n vectors yj ∈ Rk which are the
rows of E.

Note that for every two vertices vi, vj which belongs to the same
connected component Am the corresponding vectors yi and yj are
identical and equal (α1

m, α
2
m, . . . , α

k
m) because only 1Am has 1’s at

positions i and j; all other 1Al for l 6= m have zeros at these positions,
given that vi, vj belong to the connected component Am and that the
components are disjoint.

This allows us to easily identify the connected components, by selecting
points i with identical corresponding vectors vi.
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Spectral Clustering

When we cluster points into disjoint clusters we want any two vertices
vi, vj with high similarity (i.e., with high weight wij of the corresponding
edge (vi, vj)) to be in the same cluster, and any two vertices from
different clusters either not to be connected with an edge (i.e., wij = 0)
to be connected with an edge with a weight wij as small as possible.
Thus, the clusters should be, in a sense, “approximate connected
components” of tightly connected vertices with weak edges between such
“approximate components”.
We can take k eigenvectors e1, . . . , ek corresponding to the k smallest
eigenvalues (in place of eigenvalue 0 of multiplicity k) and form the
corresponding matrix E with these eigenvectors as columns.
We again consider the row vectors y1,y2, . . . ,yn. If the graph G had k
connected components, then for every two points vi and vj from the
same components we saw that the corresponding vectors yi and yj
would be identical.
For clustering this is no longer the case, but since within each optimal
cluster the weights of edges are high and the weights of edges between
different clusters are low, we can hope that the points vi and vj from the
same optimal cluster will have similar vectors yi and yj and points vi
and vj from different optimal clusters will have substantially different
vectors yi and yj .
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Spectral Clustering

The previous heuristic analysis suggests the following clustering
algorithm which can produce clusters of similar points that are not
centre based.
Spectral Clustering Algorithm.

Input: a set of data points A = {a1, . . . ,an}, number k of clusters to
construct.

1 Construct a similarity graph G by one of the ways described; let
W = {wij : 1 ≤ i, j ≤ n} be its weighted adjacency matrix.

2 Compute the Laplacian L = D −W .
3 Compute the k eigenvectors e1, . . . , ek of L which correspond to k

smallest eigenvalues.
4 Let E be the matrix of size n× k containing the eigenvectors

e1, . . . , ek as columns.
5 For i = 1, . . . , n, let yi be the vector corresponding to the ith row of
E.

6 Cluster points {y1, . . . ,yn} using the k-means algorithm into
clusters C1, . . . , Ck.

Output: Clusters A1, . . . , Ak with Ai defined as Ai = {vj : yj ∈ Ci}.
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Spectral Clustering as graph partitioning

For a given number k of subsets, the MinCut approach to graph
partitioning simply consists in choosing a partition A1, . . . , Ak which
minimises

cut(A1, . . . , Ak) =
1

2

n∑
i=1

W (Ai, Ai) (1)

(Note that if k = 2 this is just the standard MinCut problem like we had
fot Karger’s algorithm).

Recall that for any two sets A and B, we have W (A,B) =
∑

i∈A,j∈B wij ,

and that A denotes the complement of set A.

Note that the factor 1
2 in (2) is present because every edge is counted

twice.

Unfortunately, minimising (2) is not a good idea.

The reason is that minimising (2) often produces clusters some of which
contain only a single vertex or just a few vertices.
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Spectral Clustering as graph partitioning

A better idea is to find a partition A1, . . . , Ak which minimises

RatioCut(A1, . . . , Ak) =
1

2

n∑
i=1

W (Ai, Ai)

|Ai|
(2)

Having |Ai|′s in the denominator encourages the algorithm to find
clusters Ai which all have reasonably large number of points, rather than
just a few.
For every partition A1, . . . , Ak we can define the corresponding set of
orthonormal indicator vectors hj = (h1j , h2j , . . . , hnj)

T by setting
hj = 1/|Aj | · 1Aj , i.e., by letting

hij =

{
1√
|Aj |

if vi ∈ Aj

0 if vi 6∈ Aj

Note that

‖hj‖2 =
∑

vi∈Aj

(
1√
|Aj |

)2

= |Aj |
1

|Aj |
= 1

and, since A′js are pairwise disjoint, hm · hl = 0 if m 6= l.
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Spectral Clustering as graph partitioning

Also, note that we have shown that

hT
j Lhj =

1

2

n∑
m,l=1

wml(hmj − hlj)2

=
1

2

 ∑
m∈Aj ;l 6∈Aj

wml(hmj − hlj)2 +
∑

l∈Aj ;m6∈Aj

wml(hmj − hlj)2


=
1

2

 ∑
m∈Aj ;l 6∈Aj

wml
1

|Aj |
+

∑
l∈Aj ;m6∈Aj

wml
1

|Aj |


=

cut(Aj , Aj)

|Aj |
Let H be the matrix of size n× k with vectors hj , 1 ≤ j ≤ k as columns.
Then the above equality implies that the sum of the diagonal elements of
HTLH, i.e. the trace of HTLH satisfies

Tr(HTLH) =
k∑

j=1

cut(Aj , Aj)

|Aj |
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Since we have proved that

RatioCut(A1, . . . Ak) =

k∑
j=1

cut(Aj , Aj)

|Aj |
= Tr(HTLH)

we can conclude that to minimise RatioCut(A1, . . . Ak) we have to find
disjoint sets A1, . . . Ak which minimise Tr(HTLH) where the columns hj

of H are of the form hj = 1/|Aj | · 1Aj .

This is an NP hard problem, so we find only an approximate solution by
solving the following relaxation of it:

Find H ∈ Rn×k which minimises Tr(HTLH)

subject to the constraint HTH = I

The Rayleigh-Ritz theorem from linear algebra tells us that such an
H ∈ Rn×k is obtained as the matrix with k eigenvectors corresponding
to the k smallest eigenvalues of L as the k columns of H.
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Just as before, these eigenvectors might be approximations of linear
combinations of the indicator functions 1Aj , so we again cluster the n
rows of H into k clusters C1, . . . Ck to obtain the partition A1, . . . Ak
defined by

vj ∈ Am if an only if the jth row of H belongs to Cm

But notice that this is precisely what our spectral clustering algorithm
does.

Thus, besides the original heuristics with the connected components, we
now see that the spectral clustering algorithm finds an approximate
solution to the problem of finding A1, . . . , Ak which minimise the ratio
cut

RatioCut(A1, . . . Ak) =

k∑
j=1

cut(Aj , Aj)

|Aj |
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It is possible to normalise the Laplacian so that the solution
approximately minimises the so called Ncut defined as

Ncut(A1, . . . Ak) =

k∑
j=1

cut(Aj , Aj)

vol(Aj)

where vol(A) is the sum of the degrees of all vertices in A:

vol(A) =
∑
vi∈A

di =
∑
vi∈A

 n∑
j=1

wij


This sometimes produces better clustering, which also has a nice
interpretation via random walk on graphs (a random walk seldom
switches between different clusters).
You can find all the details in a wonderfully written tutorial by Ulrike
von Luxburg from the Max Planck Institute for Biological Cybernetics,
available at http://www.tml.cs.uni-tuebingen.de/team/luxburg/
publications/Luxburg07_tutorial.pdf, which we have followed
closely in a part of our presentation.
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