What is an abstract machine?

- a set of legal states
 - final and initial states as subsets
- a set of instructions altering the states of the machine
 - it should be possible to emulate the operations on a real machine in a finite number of steps

Why use abstract machines at all?

- useful to exactly specify the semantics of a programming language (SOS)
What is an abstract machine?

- a set of legal states
 - final and initial states as subsets
- a set of instructions altering the states of the machine
 - it should be possible to emulate the operations on a real machine in a finite number of steps

Why use abstract machines at all?

- useful to exactly specify the semantics of a programming language (SOS)
- can be used to facilitate porting to other architectures
What is an abstract machine?

- a set of legal states
 - final and initial states as subsets
- a set of instructions altering the states of the machine
 - it should be possible to emulate the operations on a real machine in a finite number of steps

Why use abstract machines at all?

- useful to exactly specify the semantics of a programming language (SOS)
- can be used to facilitate porting to other architectures
- mobile code
 - Jave Virtual Machine
CONTROL FLOW

We defined the transition system of the single step semantics for MinHs in terms of a very high-level abstract machine\(^a\)

- substitution as “machine operations”

\(^a\)We’ll call this machine M-machine
CONTROL FLOW

We defined the transition system of the single step semantics for MinHs in terms of a very high-level abstract machine\(^a\)

- substitution as “machine operations”
- can be avoided by using environment (see TinyC)

\(^a\)We’ll call this machine M-machine
CONTROL FLOW

We defined the transition system of the single step semantics for MinHs in terms of a very high-level abstract machine\(^a\)

→ substitution as “machine operations”
→ can be avoided by using environment (see TinyC)
→ control flow not explicit
 - search rules determine next subexpression to be evaluated
 - finding the next evaluable subexpression can be expensive

\(^a\)We’ll call this machine M-machine
Implementing the single step semantics of MinHs in Haskell:

\[
\begin{align*}
\text{eval} \ (\text{Num} \ n) &= \text{Num} \ n \\
\text{eval} \ e &= \text{eval} \ (\text{evalSingle} \ e)
\end{align*}
\]

\[
\begin{align*}
\text{evalSingle} \ (\text{Plus} \ (\text{Num} \ n1, \ \text{Num} \ n2)) &= \\
&= \text{Num} \ (n1 + n2) \\
\text{evalSingle} \ (\text{Plus} \ (\text{Num} \ n1, \ e)) &= \\
&= \text{Plus} \ (\text{Num} \ n1, \ \text{evalSingle} \ e) \\
\text{evalSingle} \ (\text{Plus} \ (e1, \ e2)) &= \\
&= \text{Plus} \ (\text{evalSingle} \ e1, \ e2) \\
\text{evalSingle} \ (\text{Times} \ (\ldots \\
\end{align*}
\]

→ for each step, the expression has to be traversed
→ makes heavy use of the Haskell runtime stack
THE C-MACHINE

We define a new abstract machine with

- explicit control stack
- explicit handling of control flow

called the C-machine

Variable binding is still handled by substitution.

Note: this is a variant of the C-machine defined in the textbook
The machine state consists of
THE C-MACHINE

The machine state consists of

- the current expression

Initial states:

- stack is empty

Final states:

- current expression is a value
- stack is empty
The C-machine

The machine state consists of

- the current expression
- a control stack of subcomputations (frames) which have to be performed before the computation terminates
The C-machine

The machine state consists of

- the current expression
- a control stack of subcomputations (frames) which have to be performed before the computation terminates

Initial states:
- stack is empty

Final states:
- current expression is a value
- stack is empty
Example: Addition

① evaluate first argument
 - first argument becomes current expression
 - remember to continue with computation, result as first argument

② evaluate second argument
 - second argument becomes current expression
 - remember to continue with computation, result as second argument
Term-representation of frames:

The term

\[\text{plus}(\Box, e_2) \]

represents a suspended computation of an addition, waiting for the value of its first argument.
Syntax of Frames:

→ addition (multiplication etc similarly):

\[
\begin{align*}
\text{plus}(\square, e) & \quad \text{frame} \\
\text{plus}(v, \square) & \quad \text{frame}
\end{align*}
\]

→ if-expression:

\[
\begin{align*}
\text{if}(\square, e_1, e_2) & \quad \text{frame}
\end{align*}
\]

→ application:

\[
\begin{align*}
\text{apply}(\square, e) & \quad \text{frame}
\end{align*}
\]
Syntax of Stacks: We write $f_1 \triangleright f_2 \triangleright \circ$ to denote a stack with frame f_1 as the top-most frame, f_2 as second.

\[\begin{align*}
\circ & \text{ stack} \\
\hline
f & \text{ frame} \quad s & \text{ stack} \\
\hline
f & \triangleright s & \text{ stack}
\end{align*} \]
Syntax of Stacks: We write $f_1 \triangleright f_2 \triangleright \circ$ to denote a stack with frame f_1 as the top-most frame, f_2 as second.

\[f \text{ frame} \quad s \text{ stack} \]
\[f \triangleright s \text{ stack} \]

States of the machine:
\[S = S_1 \cup S_2, \text{ where} \]
\[S_1 = \{ s \triangleright e, s \text{ stack}, e \text{ expr} \}: \text{ evaluate } e \text{ under stack } s \]
\[S_2 = \{ s \prec v, s \text{ stack} \}: \text{ return } v \text{ to stack } s \]
\[I = \{ \circ \triangleright e \} \]
\[F = \{ \circ \prec v \} \]
TRANSITION RULES FOR MINHS

→ Values (integers, booleans, functions)

\[s \succ v \mapsto_c \]

→ Addition
TRANSITION RULES FOR MINHS

➔ Values (integers, booleans, functions)

\[s > v \rightarrow_c s < v \]

➔ Addition
Transition Rules for MinHs

- Values (integers, booleans, functions)

\[s \succ v \quad \rightarrow_c \quad s \prec v \]

- Addition

\[s \succ \text{plus}(e_1, e_2) \quad \rightarrow_c \]
TRANSITION RULES FOR MINHS

→ Values (integers, booleans, functions)

\[s > v \iff_c s < v \]

→ Addition

\[s > \text{plus}(e_1, e_2) \iff_c \text{plus}(\square, e_2) \triangleright s \succ e_1 \]

\[\text{plus}(\square, e_2) \triangleright s < v \iff_c \]
Transition Rules for MinHs

→ Values (integers, booleans, functions)

\[
\begin{align*}
\text{Values} & \rightarrow v
\end{align*}
\]

→ Addition

\[
\begin{align*}
\text{Addition} & \rightarrow \text{plus}(e_1, e_2) \\
\text{plus}(\square, e_2) & \rightarrow \text{plus}(\square, e_2) \triangleright s \succ e_1 \\
\text{plus}(\square, e_2) & \triangleright s \prec v \\
\text{plus}(v, \square) & \rightarrow \text{plus}(v, \square) \triangleright s \succ e_2
\end{align*}
\]
Transition Rules for MinHs

- **Values** (integers, booleans, functions)

 \[s > v \rightarrow_c s < v \]

- **Addition**

 \[s > \text{plus}(e_1, e_2) \rightarrow_c \text{plus}(\square, e_2) \triangleright s > e_1 \]

 \[\text{plus}(\square, e_2) \triangleright s < v \rightarrow_c \text{plus}(v, \square) \triangleright s > e_2 \]

 \[\text{plus}(\text{num}(n_1), \square) \triangleright s < \text{num}(n_2) \rightarrow_c \]
TRANSITION RULES FOR MINHS

→ Values (integers, booleans, functions)

\[s \succ v \rightarrow_\mathsf{c} s \prec v \]

→ Addition

\[s \succ \text{plus}(e_1, e_2) \rightarrow_\mathsf{c} \text{plus}(e_2, e_2) \succ s \succ e_1 \]

\[\text{plus}(e_2, e_2) \succ s \prec v \rightarrow_\mathsf{c} \text{plus}(v, e_2) \succ s \succ e_2 \]

\[\text{plus}(\text{num}(n_1), e_2) \succ s < \text{num}(n_2) \rightarrow_\mathsf{c} s < \text{num}(n_1 + n_2) \]
If-expressions

\[s \Rightarrow \text{if}(\text{e}_1, \text{e}_2, \text{e}_3) \iff_c \text{if}(\text{\square}, \text{e}_2, \text{e}_3) \Rightarrow s \Rightarrow \text{e}_1 \]

\[\text{if}(\text{\square}, \text{e}_2, \text{e}_3) \Rightarrow s < \text{true} \iff_c s \Rightarrow \text{e}_2 \]

\[\text{if}(\text{\square}, \text{e}_2, \text{e}_3) \Rightarrow s < \text{false} \iff_c s \Rightarrow \text{e}_3 \]
Function application

\[
\begin{align*}
&s \triangleright apply(e_1, e_2) \mapsto_c apply(\square, e_2) \triangleright s \triangleright e_1 \\
&apply(\square, e_2) \triangleright s < v \mapsto_c apply(v, \square) \triangleright s \triangleright e_2 \\
&apply(fun(\tau_1, \tau_2, f, x, e), \square) \triangleright s < v \mapsto_c s \triangleright \{fun(\tau_1, \tau_2, f, x, e)/f\}{v/x}e
\end{align*}
\]
Observations:

- all the inference rules are axioms!
- the definition of single step evaluation in the C-machine is not recursive
Observations:

- all the inference rules are axioms!
- the definition of single step evaluation in the C-machine is not recursive
- the full evaluator is only tail recursive
How can we extend the C-machine to use an environment instead of substitution?
How can we extend the C-machine to use an environment instead of substitution?

→ We cannot just pass it along
How can we extend the C-machine to use an environment instead of substitution?

➔ We cannot just pass it along
➔ Can we use the stack to keep track of the environment?
E-MACHINE

Frames: as before

Environment:

\[
\begin{align*}
\text{\texttt{env}} & \quad \text{\texttt{env}} \\
\ast \text{\texttt{env}} & \quad \eta \text{\texttt{env}} \\
\end{align*}
\]
\[x = v, \eta \text{\texttt{env}}\]

Stack:

\[
\begin{align*}
\text{\texttt{stack}} & \quad \text{\texttt{frame}} \\
\circ \text{\texttt{stack}} & \quad f \triangleright s \text{\texttt{stack}} \\
\eta \text{\texttt{env}} & \quad s \text{\texttt{stack}} \\
\end{align*}
\]

States:

\[
\begin{align*}
\rightarrow S & = \{ s \mid \eta \triangleright e \} \cup \{ s \mid \eta \prec v \} \\
\rightarrow \text{Initial States:} & \quad \{ \circ \mid \ast \triangleright e \} \\
\rightarrow \text{Final States:} & \quad \{ \circ \mid \ast \prec v \}
\end{align*}
\]
First Attempt:

→ Free variables:

\[s \mid \eta \succ x \mapsto_{E} s \mid \eta \prec v \]

if \(x = v \in \eta \)

→ Application:

apply(fun(\(\tau_1, \tau_2, f.x.e \), \(\square\)) \(\triangleright s \mid \eta \prec v \mapsto_{E} \eta \triangleright s \mid f = \text{fun}(\ldots), x = v, \eta \succ e \))

→ Returning values:

\(\eta \triangleright s \mid \eta' \prec v \mapsto_{E} s \mid \eta \prec v \)
Are these rules correct? Let us try and see what happens when we evaluate the following two examples.

① a simple function application:

\[\text{apply}(\text{fun}(\text{int, int, } f.x.\text{plus}(x, 1)), 3) \]

② and a nested application (corresponds to a function which accepts two arguments and returns the first one):

\[\text{apply}(\text{apply}(\text{fun}(\text{int } \rightarrow \text{ int, int, } f.x.\text{fun}(\text{int, int, } g.y.x)), 3))4 \]

Since the type information is not relevant for the evaluation, we omit it in the following. To further save some space, we abbreviate \text{apply} to \text{app}, and write \(n \) instead of \text{num}(n)
Example 1:
\[
\begin{align*}
& o \mid * \triangleright app(fun(f.x.plus(x, 1)), 3) \\
\mapsto_{E} & app(\Box, 3) \mid * \triangleright fun(f.x.plus(x, 1)) \\
\mapsto_{E} & app(\Box, 3) \triangleright o \mid * \prec fun(f.x.plus(x, 1)) \\
\mapsto_{E} & app(fun(f.x.plus(x, 1)), \Box) \triangleright o \mid * \triangleright 3 \\
\mapsto_{E} & app(fun(f.x.plus(x, 1)), \Box) \triangleright o \mid * \prec 3 \\
\mapsto_{E} & * \triangleright o \mid x = 3, f = fun(f.x.plus(x, 1)), * \triangleright plus(x, 1) \\
\mapsto_{E} & plus(\Box, 1) \triangleright * \triangleright o \mid x = 3, f = fun(f.x.plus(x, 1)), * \triangleright x \\
\mapsto_{E} & plus(\Box, 1) \triangleright * \triangleright o \mid x = 3, f = fun(f.x.plus(x, 1)), * \prec 3 \\
\mapsto_{E} & plus(3, \Box) \triangleright * \triangleright o \mid x = 3, f = fun(f.x.plus(x, 1)), * \triangleright 1 \\
\mapsto_{E} & plus(3, \Box) \triangleright * \triangleright o \mid x = 3, f = fun(f.x.plus(x, 1)), * \prec 1 \\
\mapsto_{E} & * \triangleright o \mid x = 3, f = fun(f.x.plus(x, 1)), * \prec 4 \\
\mapsto_{E} & o \mid * \prec 4
\end{align*}
\]
something went wrong here! By returning the function value and restoring the old (empty) environment, we threw away the binding for the variable x. It now occurs freely in g!
Problem: incorrect results for partially applied functions!
Problem: incorrect results for partially applied functions!

Solution: bundle functions with the current environment

We add a new type of expression which is only used in the operational semantics:

\[\langle \eta, \text{fun}(\tau_1, \tau_2, f. x.e) \rangle \]
Problem: incorrect results for partially applied functions!
Solution: bundle functions with the current environment

We add a new type of expression which is only used in the operational semantics:

\[
\langle \eta, \text{fun}(\tau_1, \tau_2, f.x.e) \rangle
\]

New rules:

- Returning function values:

\[
s \mid \eta \succ \text{fun}(\tau_1, \tau_2, f.x.e) \leftrightarrow_E s \mid \eta \prec \langle \eta, \text{fun}(\tau_1, \tau_2, f.x.e) \rangle
\]

- Application of functions:

\[
\text{apply}(\langle \eta', \text{fun}(\tau_1, \tau_2, f.x.e) \rangle, \square) \triangleright s \mid \eta \prec v \leftrightarrow_E \eta \triangleright s \mid f = \text{fun}(\ldots), x = v, \eta' \succ e
\]