We defined the semantics of MinHs using two different approaches:

- control flow implicit: M-machine
- control flow explicit: C-machine, E-machine

Are they equivalent?

Proof is not obvious, as evaluation methods are very different.

How can we make the connection?

Observation:

1. A single M-machine step usually corresponds to many C-machine steps.
2. The stack in C-machine corresponds to context of subexpression which is actually evaluated in M-machine.
3. Stack and current expression provide enough information to reconstruct unevaluated portion of original expression.

Reconstruction:

\[
\begin{align*}
\circ \circ_i & = e \\
(\text{plus}(\mathbb{E}, e_2) \circ s) @ e_1 & = s @ \text{plus}(e_1, e_2) \\
(\text{plus}(e_1, \mathbb{E}) \circ s) @ e_2 & = s @ \text{plus}(e_1, e_2) \\
(\text{if}(\mathbb{E}, e_1, e_2) \circ s) @ e_c & = s @ \text{if}(e, e_1, e_2) \\
\end{align*}
\]

Show that

1. If \(s @ e \rightarrow C^* \circ s < v \), then \(e @ s \rightarrow M^* v \)

Note: we show that the above is true for any stack \(s \) (as opposed to the empty stack), since the more general statement is easier to prove as the i.h. is stronger.

Here and in the remainder of the proof we write \(s @ e \rightarrow \) to mean \(\rightarrow \) or \(\leftarrow \).

2. If \(e \rightarrow M v \), then \(e @ e \rightarrow C v \) \(s @ e \leftarrow v \)

Both directions can be proven using induction over the number of evaluation steps.
- **Base case**: in the C-machine, the minimum number of steps necessary to evaluate an expression is one. Show that, if \(s \triangleright e \xrightarrow{C} o \triangleleft e \) then \(s \notin e \xrightarrow{C} v \).

 The expression has to be a value already — no evaluation step necessary in the M-machine.

- **Induction step**: \(n + 1 \) evaluation steps necessary.

 \[
 s \triangleright e \xrightarrow{C} e' \xrightarrow{C} o \triangleleft v
 \]

 Induction Hypothesis:

 \[
 e' \xrightarrow{C} e' \xrightarrow{C} v
 \]

 We need to prove the following lemma:

 Lemma 1: If \(s \triangleright e \xrightarrow{C} s' \triangleright e' \), then either \(s \notin e = s' \triangleleft e' \) or \(s \notin e \xrightarrow{M} s' \triangleleft e' \)

Slide 6

- **Base case**: Show that, if \(e \xrightarrow{M} v \) then \(o \triangleright e \xrightarrow{M} o \triangleleft v \).

- **Induction step**: \(n + 1 \) evaluation steps necessary.

 \[
 e \xrightarrow{M} e' \xrightarrow{M} v
 \]

 Induction Hypothesis:

 \[
 o \triangleright e' \xrightarrow{C} o \triangleleft v
 \]

 Again, we first need to prove a lemma:

 Lemma 2: If \(e \xrightarrow{M} e' \) and \(s \triangleright e' \xrightarrow{C} o \triangleleft v \) then \(s \triangleright e \xrightarrow{C} o \triangleleft v \).

Both lemmata can be shown by rule induction over the definition of \(\xrightarrow{C} \) and \(\xrightarrow{M} \) respectively (see textbook).