AGGREGATE DATA STRUCTURES: PRODUCTS

Programming languages usually offer a way to bundle values of (possibly) different types together to a new type:

- two floating point values represent a point in a two dimensional space
- ...
Haskell:

→ n-tuples:
 • declaration (not required): `type Point = (Float, Float)`
 • construction and access: `let x = (1.75, 1.21) in fst x`

→ named fields:
 • declaration: `data Point = Point {x::Float, y::Float}`
 • construction:
 – `let p = Point 5.0 10.0 in ...`
 – `let p = Point {x=5.0 y=10.0} in ...`
 • construction:
 – access functions `x,y:: Point -> Float` automatically generated
 – `x p` returns value of x-field of p
C:

➔ declaration:

 struct point {
 float x;
 float y;
 };

➔ usage

 struct point p;
 p.x = 10.0;
Java: "Degenerate’ classes which consist only of data fields and contain no methods closest to C structs:

class Point {
 public float x;
 public float y;
}

Java: “Degenerate’ classes which consist only of data fields and contain no methods closest to C structs:

class Point {
 public float x;
 public float y;
}

→ Considered poor style by many OO-programmer
→ Alternative: protect data fields and provide methods to create, access and alter date structure
class Point {
 private float x;
 private float y;

 public Point (float x, float y) {
 this.x = x;
 this.y = y;
 }

 public float getX () {return x;}
 public float getY () {return y;}

 public void setX (float x) {this.x = x;}
 public void setY (float y) {this.y = y;}
}
Products (or tuples) in MinHs:

To keep things a simple as possible, we add

- no type declarations
- no named fields
- only pairs \((a_1, a_2)\), and
- nullary tuples \((\)\) (we will see later what they are good for)

to MinHs
Products (or tuples) in MinHs:

To keep things a simple as possible, we add

- no type declarations
- no named fields
- only pairs \((a_1, a_2)\), and
- nullary tuples \((\)\) (we will see later what they are good for)

New MinHs types:

- \text{Unit}: type of a nullary product
- \(\tau_1 \times \tau_2\): binary product with element types \(\tau_1\) and \(\tau_2\)
Concrete and abstract syntax:

- Constructors:

 $$(e_1, e_2) \quad \text{pair}(e_1, e_2)$$

 $$() \quad \text{unitel}$$

- Destructors:

 $$\text{fst}(e) \quad \text{fst}(e)$$

 $$\text{snd}(e) \quad \text{snd}(e)$$

- Types:

 $$\tau_1 \times \tau_2 \quad \text{Cross}(\tau_1, \tau_2)$$

 $$\text{Unit} \quad \text{Unit}$$
Example:

\[
\text{div} :: (\text{Int, Int}) \rightarrow \text{Int}
\]

\[
\text{letfun div (args) =}
\]
\[
\quad \text{if } (\text{fst (args)} > \text{snd (args)}) \text{ then}
\]
\[
\quad \quad 0
\]
\[
\quad \text{else div (fst(args) - snd(args), snd (args))}
\]
Static Semantics: Typing Rules

\[
\begin{align*}
\Gamma \vdash e_1 : \tau_1 & \quad \Gamma \vdash e_2 : \tau_2 \\
\Gamma \vdash \text{pair}(e_1, e_2) : \text{cross}(e_1, e_2)
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e : \text{cross}(\tau_1, \tau_2) & \quad \Gamma \vdash e : \text{cross}(\tau_1, \tau_2) \\
\Gamma \vdash \text{fst}(e) : \tau_1 & \quad \Gamma \vdash \text{snd}(e) : \tau_2 \\
\Gamma \vdash \text{unitel} : \text{Unit}
\end{align*}
\]
Dynamic Semantics: evaluation rules

\[
\begin{align*}
& e_1 \mapsto e'_1 \\
\hline
& \text{pair}(e_1, e_2) \mapsto \text{pair}(e'_1, e'_2) \\
& e \mapsto e'
\hline
& \text{fst}(e) \mapsto \text{fst}(e') \\
& \hline
& \text{fst}(\text{pair}(v_1, v_2)) \mapsto v_1 \\
\end{align*}
\]

\[
\begin{align*}
& e_2 \mapsto e'_2 \\
\hline
& \text{pair}(v_1, e_2) \mapsto \text{pair}(v_1, e'_2) \\
& e \mapsto e'
\hline
& \text{snd}(e) \mapsto \text{snd}(e') \\
& \hline
& \text{snd}(\text{pair}(v_1, v_2)) \mapsto v_2 \\
\end{align*}
\]
SUM TYPES

Model types which can contain elements of either one type or another

Haskell:

Elements of type differ only in name (enumeration types):

```haskell
data Colour = Red | Green | Blue
```

Access: pattern matching or case-statement:

```haskell
toString:: Colour -> String
toString Red = "The colour red"
toString Blue = "The colour blue"
...
toString col = case col of
    Red     -> "The colour red"
    Blue    -> "The colour blue"
    Green   -> "The colour green"
```
Different Content

```haskell
data Expr = Add Expr Expr
          | IntLit Int
          | FloatLit Float

data List a = Cons a (List a)
            | Nil

data Maybe a = Just a
              | Nothing
```
Sumtypes in C:

- Enumeration type

  ```c
  typedef enum {Red, Green, Blue} colour_t;
  ```

- “Maybe” type:
Sumtypes in C:

- Enumeration type

  ```c
  typedef enum {Red, Green, Blue} colour_t;
  ```

- “Maybe” type: just a pointer

  ```c
  int *ref;
  ```
Sumtypes in C:

- Enumeration type

  ```
  typedef enum {Red, Green, Blue} colour_t;
  ```

- “Maybe” type: just a pointer

  ```
  int *ref;
  ```

- Recursive types:

  ```
  typedef struct int_list {
      int elem;
      struct int_list *next;
  } int_list_t;
  ```
Different content

union {
 float f;
 int i;
} unsafe;

unsafe.f = 1.23421;
printf("%d ", unsafe.i);
In C, unions are often used with labels, maintained and checked only by programmer
typedef enum {AddExpr, IntLit, FloatLit} exprTag_t;

typedef struct {
 expr_t expr1;
 expr_t expr2;
} addExpr_t;

typedef struct {
 exprTag_t tag;
 union {
 int intLit;
 float floatLit;
 addExpr_t addExpr;
 }
} expr_t;
expr_t *expr;
...
switch (expr->tag) {
 case IntLit: ...
 case FloatLit: ...
 case AddExpr: ...
}
expr_t *expr;
...
switch (expr->tag) {
 case IntLit: ...
 case FloatLit: ...
 case AddExpr: ...
}

Java does not support unions or enumeration types directly

⇒ why?
⇒ how could a type like Colour or Expr be modelled in Java then?
abstract class Expr {
 abstract Value eval ();
}

class AddExpr extends Expr {
 Expr expr1;
 Expr expr2;

 AddExpr (Expr expr1, Expr expr2) { this.expr1 ...

 Value eval () { ...}
}
SUM TYPES

→ we only look at binary sums: either τ_1 or τ_2
→ n-ary sums can be expressed by nesting binary sums
Concrete and abstract syntax:

→ Types:

\[\tau_1 + \tau_2 \quad \text{sum}(\tau_1, \tau_2) \]

→ Constructors:

\[\text{inl}(e_1) \quad \text{inl}(\tau_1, \tau_2, e_1) \]
\[\text{inr}(e_2) \quad \text{inr}(\tau_1, \tau_2, e_2) \]

→ Operations:

\[
\text{case } e \text{ of } \begin{align*}
\text{inl}(x) & \rightarrow e_1 \\
\text{inr}(y) & \rightarrow e_2
\end{align*}
\]
\[\text{case}(\tau_1, \tau_2, e, x.e_1, y.e_2) \]
STATIC SEMANTICS: typing rules

\[
\frac{\Gamma \vdash e : \text{sum}(\tau_1, \tau_2) \quad \Gamma \cup \{x : \tau_1\} \vdash e_1 : \tau \quad \Gamma \cup \{y : \tau_2\} \vdash e_2 : \tau}{\Gamma \vdash \text{case}(\tau_1, \tau_2, e, x.e_1, y.e_2) : \tau}
\]

\[
\frac{\Gamma \vdash e_1 : \tau_1}{\Gamma \vdash \text{inl}(\tau_1, \tau_2, e_1) : \text{sum}(\tau_1, \tau_2)}
\]

\[
\frac{\Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \text{inr}(\tau_1, \tau_2, e_2) : \text{sum}(\tau_1, \tau_2)}
\]
Dynamic Semantics: Evaluation Rules

(we omit the type annotations here)

\[
\begin{align*}
\text{inl}(e) & \rightarrow_{M} \text{inl}(e') \\
\text{inr}(e) & \rightarrow_{M} \text{inr}(e') \\
\text{case}(e, x.e_1, y.e_2) & \rightarrow_{M} \text{case}(e', x.e_1, y.e_2) \\
\text{case}(\text{inl}(v), x.e_1, y.e_2) & \rightarrow_{M} \{v/x\} e_1 \\
\text{case}(\text{inr}(v), x.e_1, y.e_2) & \rightarrow_{M} \{v/y\} e_2
\end{align*}
\]
Which MinHs types correspond to the following Haskell types:

```haskell
data Colors = Red | Green | Blue
```
ISOMORPHIC TYPES

Which MinHs types correspond to the following Haskell types:

```haskell
data Colors = Red | Green | Blue
```

We cannot define the same type in MinHs, but we can define an isomorphic type.

A type τ_1 is isomorphic to a type τ_2 iff there is a bijection between τ_1 and τ_2.
ISOMORPHIC TYPES

Which MinHs types correspond to the following Haskell types:

```haskell
data Colors = Red | Green | Blue
```

We cannot define the same type in MinHs, but we can define an isomorphic type.

A type τ_1 is isomorphic to a type τ_2 iff there is a bijection between τ_1 and τ_2.

Is isomorphic to

- $\text{unit} + (\text{unit} + \text{unit})$
- $(\text{unit} + \text{unit}) + \text{unit}$
- all three types have exactly three elements
 - $\text{inl}()$, $\text{inr}()$, $\text{inr}()$
 - $\text{inl}()$, $\text{inr}()$, $\text{inr}()$
 - Red, Green, Blue
But there is no way to express a type isomorphic to this Haskell type in MinHs:

```haskell
data IntList = Nil | IList Int IntList
```

since we can’t express recursion so far!
We add a

- type constructor:

 \[\text{rec} \ <\text{typeName}> \ <\text{type}> \]

 where \text{typeName} may occur anywhere in \text{type}

- constructor: \text{roll}

- destructor: \text{unroll}
We add a

→ type constructor:

\[
\text{rec } \langle \text{typeName} \rangle \text{ is } \langle \text{type} \rangle
\]

where \(\text{typeName} \) may occur anywhere in \(\text{type} \)

→ constructor: \(\text{roll} \)

→ destructor: \(\text{unroll} \)

Example: Lists of integer values

→ type:

\[
\text{rec List is (Unit + (Int * List))}
\]

→ terms:

\[
\text{roll}(\text{inl}()) \quad []
\]

\[
\text{roll} \ (\text{inr} \ (1, \ \text{roll}(\text{inl}()))) \quad [1]
\]

\[
\text{roll} \ (\text{inr}(2, \ \text{roll} \ (\text{inr} \ (1, \ \text{roll}(\text{inl}()))))) \quad [2,1]
\]
Concrete and abstract syntax:

→ Types:

\[
\text{rec } t \text{ is } \tau \quad \text{rec}(t.\tau)
\]

→ Constructor:

\[
\text{roll}(e)
\]

→ Destructor:

\[
\text{unroll}(e)
\]
\[
\begin{align*}
\Gamma \vdash e : \{\text{rec}(t.\tau)/t\}\tau \\
\Gamma \vdash \text{roll}(e) : \text{rec}(t.\tau)
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e : \text{rec}(t.\tau) \\
\Gamma \vdash \text{unroll}(e) : \{\text{rec}(t.\tau)/t\}\tau
\end{align*}
\]
Dynamic Semantics: Evaluation Rules

\[
\begin{align*}
\text{unroll}(\text{roll}(e)) & \iff_m e \\
\text{unroll}(e) & \iff_m \text{unroll}(e') \\
\text{roll}(e) & \iff_m \text{roll}(e') \\
\end{align*}
\]