The GF Mathematics Library*

Jordi Saludes Sebastian Xambd
Universitat Politecnica de Catalunya Universitat Politecnica de Catalunya
Sistemes Avangats de Control MAZ2, Edificit OMEGA, Barcelona (Spain)
jordi.saludes@upc.edu sebastia.xamboQupc.edu

This paper is devoted to present the Mathematics Grammar Library, a system for multilingual math-
ematical text processing. We explain the context in which it originated, its current design and func-
tionality and the current development goals. We also present two prototype services and comment
on possible future applications in the area of artificial mathematics assistants]|

1 Introduction

An archetypal meeting point for natural language processing and mathematics education is the realm of
word problems [4, 14, [15]], a realm in which mechanised mathematics assistants (MM A) are expected to

play an ever more prominent role in the years to come.
The following example, to which we will refer later on (last subsection of [3), is meant to illustrate in
a concrete way the idea of a word problem:

A farm has ducks and rabbits. There are 100 animals and they have 260 legs. How many ducks and rabbits
are there in the farm?

We envision the Mathematics Grammar Library (MGL) presented in this paper as an enabling tech-
nology for multilingual dialog systems capable of helping students in solving and learning how to solve
word problems. This confidence is grounded on the MGL potential capabilities for dealing effectively
with a mixture of text and mathematical expressions, capabilities that in turn depend crucially on the
formal abstract way in which the semantics is captured.

Since formal semantics is amenable to algorithmic processing, the library can manage, in addition
to parsing and rendering natural language with mathematical expressions, powerful interactions with
ancillary Computer Algebra Systems (CAS) or Computer Theorem Provers (CTP). As these are key
ingredients for advanced MM As, our working hypothesis is that MGL is a good basis on which to build
useful MM A’s for learning and teaching (cf. [17,[18]] for some general clues on e-learning technologies).

In this context, the current general aim for MGL is to provide natural language services for mathe-
matical constructs at the level of high school and college freshmen linear algebra and calculus. At the
present stage, the concrete goal is to provide rendering of simple mathematical exercises in multiple
languages (see [5]] for a demo of the expressions available and also the examples in Section [3).

For reading convenience, we include a short glossary of terms that will be used in the rest of the

paper.

GF |Grammatical Framework: A programming language for multilingual grammar applications. Based
on functional programming and type theory, the framework supports abstract grammars, which
allow to capture meaning in a formal way, and concrete grammars, which enable multilingual

* The research leading to these results has received funding from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. FP7-ICT-247914.

© 7. Saludes & S. Xamb6
This work is licensed under the
Creative Commons Attribution License.

P. Quaresma and R.-J. Back (Eds.); THedu’11
EPTCS 79, 2012, pp. 102 , doii10.4204/EPTCS.79.6

http://dx.doi.org/10.4204/EPTCS.79.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.grammaticalframework.org/

J. Saludes & S. Xambo 103

rendering. See [9} [10]]. The library MGL is programmed in GF, in a way that is comparable to
how numerical libraries are compiled from C or Fortran sources.

OPENMATH A de facto standard for mathematical semantics, and usually abbreviated as OM. It is “an
extensible standard for representing the semantics of mathematical objects, allowing them to be
exchanged between computer programs, stored in databases, or published on the worldwide web”
(see [8]]). It is structured in Content Dictionaries (CD’s), each of which defines a collection of
mathematical objects.

SAGE Aimed at “creating a viable free open source alternative to Magma, Maple, Mathematica and
Matlab”, SAGE is the result of an on-going collective endeavour led by William Stein. See [[7, [12]
for a description of the system and its functionalities.

WEBALT European digital content for the global networks project (Contract Number EDC-22253).
Developed in 2005 and 2006, WEBALT|aimed at using existing standards for representing math-
ematics on the web and existing linguistic technologies to produce language-independent mathe-
matical didactical material. See [2, [3]].

2 Background

For a closer view of MGL, let us look briefly at its origins. The idea behind MGL was born, to a good
extend, on reflecting about one of the key results of the WEBALT project. In summary, the unfolding of
this reflection went as follows.

One of the aims of WEBALT was to produce a proof-of-concept platform for the creation of a mul-
tilingual repository of simple mathematical problems with guaranteed quality of the (machine) trans-
lations, in both linguistic and mathematical terms. The languages envisioned were Catalan, English,
Finnish, French, Italian and Spanish. Of these, Finnish, with its great complexities, could not be raised
to the same level of functionality as the others.

The WebALT prototype was successful and, as far as we know, that endeavour brought about the
first application of the GF system for the multilingual translation of simple mathematical questions. The
powerful GF scheme, based on the perfect interlocking of abstract and concrete grammars, was found
to be a very sound choice, but the solution had several shortcomings that could not be addressed in that
project. For the present purposes, the following three were the most appealing:

e The grammars did not work for later versions of GF (>2.9).
e The library was not modular with respect to semantic processing, and hence not easy to maintain.
e It included too few languages, especially as seen from an European perspective.

The springboard for the present library was the need to properly solve these problems, inasmuch as
this was regarded as one of the most promising prerequisites for all further advanced developments in
machine processing of mathematical texts. Thus the main tasks were:

e To design a modular mathematics library structured according to the semantic standards (content
dictionaries) of OPENMATH.

e To code it in the much more expressive GF 3.1 for the few languages mentioned above, and

e To write new code for a few additional languages (Bulgarian, Finnish, German, Romanian and
Swedish).

http://webalt.math.helsinki.fi/content/

104 MGL

The first two points amount to a tidying of the original WEBALT programming methods. The third point
represents not merely an addition of a few more languages, but a thourough testing of the methods and
procedures enforced in the preceding steps. This testing is important in order to secure the rules for the
inclusion of further languages and for a controlled uniform extension of the available grammars.

To end this section, we include a few notions about the GF system that will ease the considerations

about MGL in the next section. For a thourough reference about GF, see [[10].

Any GF application begins by specifying its abstract syntax. This syntax contains declarations of
categories (the GF name for types) and functions (the GF name for constructor signatures) and has to
capture the semantic structure of the application domain. For example, to let Nat stand for the type of
natural numbers and Prop for propositions about natural numbers, the GF syntax is

cat Nat, Prop ;

That ‘zero is a natural number’ and that ‘the successor of any natural number is a natural number’
can be expressed as follows:

fun
Zero : Nat ;
Succ : Nat -> Nat ;

The signatures for ‘even number’ and ‘prime number’ can be captured with

fun
Even, Prime : Nat -> Prop ;

Finally, we can abstract the logical ‘not’, ‘and’ and ‘or’ as follows:
fun
Not : Prop -> Prop ;
And, Or : Prop -> Prop -> Prop ;

In practical terms, these declarations would form the body of an abstract module that would have the
form

abstract Arith = {<body>}

where Arith is the name of the module.

3 The MGL library

As in any application coded in GF, we need to specify what categories will be used. In the case of MGL,
the most relevant categories are in correspondence with all possible combinations of Variable and Value
with the mathematical types Number, Set, Tensor and Function. Thus the category VarNum denotes a
numeric variable like x, while ValSet denotes an actual set like “the domain of the natural logarithm”.
The distinction between variables and values allows us to type-check productions like lambda abstrac-
tions that require a variable as the first argument. Variables can be promoted to values when needed.

The library is organised in a matrix-like form, with an horizontal axis ranging over the targeted nat-
ural languages. At the moment these are: Bulgarian, Catalan, English, Finnish, French, German, Italian,
Polish, Romanian, Spanish, Swedish and Urdu. In addition, the mathematical typesetting system I&TEX
has also been included, and also a natural language interface to SAGE that allows to elicit results from
this sophisticated computational environment with commands expressed in any of the natural languages
currently available.

The vertical axis is for complexity and contains, from bottom to top, three layers:

Ground. 1t deals with literals, indices and variables.

J. Saludes & S. Xambo 105

OpenMath. 1t is modelled after the OM Content Dictionaries (CD’s), in the sense that in this layer
there is an MGL module for each CD.

Operations. This layer takes care of simple mathematical exercises. These appear in drilling materials
and usually begin with directives such as ‘Compute’, ‘Find’, ‘Prove’, ‘Give an example of ’,

The following tree is an example of what can be expressed in the OpenMath layer:

mkProp
(1t_num
(abs (plus (BaseValNum (Var2Num x) (Var2Num y))))
(plus (BaseValNum (abs (Var2Num x)) (abs (Var2Num y)))))

When linearized, say with the Spanish concrete grammar, it yields

El valor absoluto de la suma de x y de y es menor que la suma del valor absoluto de x y del valor
absoluto de y

Similarly, the tree

DoSelectFromN

(Var2Num y)

(domain (inverse tanh))

(mkProp
(gt_num
(At cosh (Var2Num y))
pi))

gives, when linearized with the English concrete grammar:

Select y from the domain of the inverse of the hyperbolic tangent such that the hyperbolic cosine of
y is greater than pi.

We end this section by describing two prototype services driven by MGL: the Mathbar demo and the
gfsage service.

Mathbar demo

To access this demo, see [S)]. Now consider, for example, the sentence “Gamma is greater than pi raised
to x”, which can be easily composed by choosing Eng in the From slot and repeatedly choosing the
desired word among the continuation options presented at each stage. If we further choose All in the To
slot, we get the results shown in the screenshot.

At the bottom, we can see the typesetting of I&TEX of the expression “\ gamma > \pi” x™:

y>n

Remark. There are a few details in some of the concrete grammars that have to be improved. In the
case of Polish, ‘podniesiona’ should be ‘podniesione’, because ‘pi’ is neutral in that language, and ‘wiek-
sza’ should be ‘wigksza’ (Adam Slaski, private communication). There is also a slight inconsistency in
the rendering of ‘Gamma’, since in French, Italian and Romanian it appears with ‘g’ while for all other
it goes with ‘G’. Actually it is not hard to modify the linearizations so that they produce ‘7’, ‘Y’ and ‘I”
instead of ‘pi’, ‘gamma’ and ‘Gamma’.

106

MGL

Math bar online

From: Eng ~ To: All v| e || Clear || Random |

‘Gamma| |greater| |than‘ ‘raised|

|:||and‘|raised|

Abstract: &% mkProp (gt_num nums]_gamma (power nums1_pi (Var2Num x)))

Bul:
Cat:
Eng:
Fin:
Fre:
Ger:
Ita:

LaTeX:

Pol:
Ron:
Spa:
Swe:
Urd:

=] ama e 1Mo - roIAMa OT MK [PageHo 00 X
== (Jamma €s mes gran que pi elevat a x

= (Gamma is greater than pi raised to x

o= Gamma on sunrempi kuin pii korotettuna x:sn
amgamma est plus grand que pi élevé ax

o= Gamma ist gréBer als Pi hoch x
shgamma € maggiore di pi elevato a x
o\gamma > 'pi x

== (Gamma jest wieksza niz pi podniesiona do x
s gamma este mai mare decat pi ridicat la x
«=(Gama es mayor que pi elevado a x

o= (Gamma #r stérre &n pi upphdid till x

Sl x Ul Kpi 115 —uw

y>m

| Try Google Translate |

Remark. In the Mathbar demo there is the button “Try Google Translate”. When we try for the differ-
ent languages, there are cases in which we get the same result (Catalan, Romanian, Spanish, Swedish),
but in others the result is different, and often wrong:

Bul ['ama e no-romsiMa, OTKOJIKOTO I peif3Ha A0 X
Fin Gamma on suurempi kuin PI nostetaan x
Fre Gamma est supérieure a Pi portée a x

Ger Gamma grofer als pi um x erhoht

Ita Gamma ¢ superiore a pi elevato a x

Pol Gamma jest wigksza niz pi podniesiony do x
Urd =5 X pi o) iy W&

SAGE commands in natural language

Another recently developed prototype based on MGL is gfsage. It enables to express SAGE commands
in natural language and get the results expressed likewise. The tool starts a SAGE notebook server in the
background (as described in Simple Sage Server API, [13]]), reads the pgf grammar file and translates the

J. Saludes & S. Xambo 107

queries from the chosen natural language to the concrete grammar for SAGE. This is passed to the SAGE
server for evaluation. Each computation runs in a different worksheet cell and the server replies with a
done or a computing message. In this case the program waits for completion of the computation and
then writes the answer.

From the GF side, what is send to SAGE is always in the category Command. What is returned by
SAGE is in the category Answer. There are 3 kinds of Commands:

e Asking for a computation. Compute: Kind -> Value Kind -> Command.

SAGE gives back a ReturnBlock with the cell number and the answer (a string). We could now
construct a short Answer by using:

— Simple: k € Kind -> Value k -> Answer
(“itis 57), or
— Feedback: k € Kind -> Value k -> Value k -> Answer
(“the factorial of 3 is 6”), that combines the question (the first Value k) with the SAGE answer.

e Assuming propositions. Assume: Prop -> Command.

SAGE silently accepts the command by returning an EmptyBlock (with cell number) but we want
it to be more assertive, so we reinject the Prop into Assumed: Prop -> Answer
(“T assume that x is greater than 2”)

e Binding Values to Variables.

Assign: k € Kind -> Var k -> Value k -> Command
(“assign 2 to xX”).

We expect SAGE to return an EmptyBlock followed by

Assigned: k € Kind -> Var k -> Value k -> Answer
(“2 is now assigned to x”).

Here are some illustrations:

sage> compute the sum of 1, 2, 3, 4 and 5.
[4] 15
answer: it is 15

sage> compute the summation of x when x ranges from 1 to 100.
[71 5050
answer: it is 5050

sage> compute the integral of the cosine on the open interval
from O to the quotient of pi and 2.

(8] 1

answer: it is 1

sage> compute the integral of the function mapping x
to the square root of x on the closed interval from 1 to 2.
waiting...
[4] 4/3*sqrt(2) - 2/3
answer: it is 4/3*sqrt(2) - 2/3

sage> compute the sum of x and y.
[4] x +y
answer: it is x plus y.

108 MGL

sage> compute the sum of x and 5.
(5] x +5
answer: it is x plus 5.

sage> compute the sum of 4 and 5.
(61 9
answer: it is 9.

Dealing with word problems

Let us return to our word problem example in Section [I]in order to consider the difficulties posed by a
full computer representation of its more relevant aspects, and also to point out some hints about how to
achieve it. First of all, there is the question that human readers are expected to make sense of information
that is not stated explicitely but which they usually infer from the semantic context. In our example, it
is enough to write the inferred assertions next to the assertions given in the word problem. Notice that
some of the inferences amount to making explicit the implicit references.

A farm has ducks and rabbits. 1. A farm has no animals other than
ducks and rabbits.

There are 100 animals 2. There are 100 animals in the farm.

and they have 260 legs. 3. The animals in the farm have 260 legs.

How many ducks and rabbits are there in the farm? 4. How many ducks are there in the farm?
How many rabbits are there in the farm?

Let us proceed now with a few hints about how the right-hand side statements in the table could be
elicited from the left-hand side ones.

1. The line can be parsed except for farm, ducks and rabbits, which are unknown to MGL. It can
be inferred, however (using the structure available from the GF parser), that these unknowns are
common nouns. Then a query to Wordnet [[16]] finds entries compatible with this assumption. From
the determinants used, we deduce that there is an instance f of the entity FARM (F') and that there
are entities DUCK and RABBIT (D and R, respectively). The verb has is a priori related to the IN
predicate]

feF, |[DNIN(f)|>1,* |[RNIN(f)|>1,* ANIN(f)\(DUR)=0.

2. Animals is a new common noun leading to a new entity A. Another query to Wordnet reveals that
it is, in fact, an hypernym of duck and rabbit:

|JANIN(f)| =100, D,RCA.

3. The noun legs gives rise to another entity (L) and the occurrence of have introduces a new version
of IN:
ILNIN(ANIN(f))| = 260.

4. Wordnet points out that a farm is a location, so there probably refers to f. A how many question
asks for d = [DNIN(f)| and r = |[RNIN(f)].

* It is not hard to have instances of the problem whose solution has no rabbits (or no ducks). This may come as a surprise
to the student, but it is mathematically acceptable by common practice. If we were to follow this convention, then we would
drop these inequalities.

J. Saludes & S. Xambo 109

4 Conclusions and further work

In this paper we have described a GF library, which we call MGL, for multilingual mathematical text
processing. We have also indicated how it originated in the WEBALT project, its relation to GF, and
its present functionality. After a first step in which the main concern was tidying and modularizing the
WEBALT prototype for simple mathematics exercises in five languages, we have extended it, in a second
step, with four more languages (Finnish was considered in the first step, but it had to be worked out from
scratch in the second step). We have also showed that I&IEX and SAGE can be approached with the same
methodology. In particular, gf sage allows to interact with SAGE by expressing the commands in natural
language.

Further work has three main lines:

e Addition of new languages, like Danish, Dutch, Norwegian, Portuguese, Russian, ... This is a
continuation of the first two steps referred to above and our assessment is that it can be done
reliably with the methods and procedures established so far. To some extent, the library modules
for a new language can be generated automatically up to a point in which the remaining work
corresponds to natives in that language.

e Describing a systematic procedure for the uniform and reliable extension of the grammars accord-
ing to new semantic needs. This is an important step that is being researched from several angles.
One important point is to ascertain when a piece of mathematical text requires functionalities (cat-
egories, constructors, operations) not yet covered by MGL.

e Advancing in the use of MGL for the production of ever more sophisticated artificial mathematics
assistants. This is also the focus of current research that includes a collaboration with statistical
machine translation methods, as in principle they can suggest grammatical structures out of a
corpus of mathematical sentences. One important element will be an extended version of gfsage
that will enable to harness a powerful CAS system such as SAGE by means of commands expressed
in natural languages. We also envision a similar prototype to harness the capabilities of CTPs.
After this, we hope that we will be in a position to produce a MMA that can help students in
solving and learning how to solve word problems of the kind we have been considering.

How to get MGL

The living end of the library is publicly available using subversion as:
svn co svn://molto-project.eu/mgl

A stable version can be found at:

svn co svn://molto-project.eu/tags/D6.1

Acknowledgments

The authors are much grateful to the referees for pointing out several ways in which this paper could be
improved, especially by insisting that we made more explicit the features of our work that are closer to
the conference scope. We are also thankful to Pedro Quaresma for his kind and helpful handling of the
correspondence concerning this paper.

110

MGL

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]
(8]
(9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]

[17]

[18]

K. Brodie & K. Coetzee (2010): Teaching mathematical reasoning in secondary school classrooms. Springer
Verlag, doi;10.1007/978-0-387-09742-8,

O. Caprotti (2006): WebALT! Deliver Mathematics Everywhere. In: Proceedings of SITE 2006.

0. Caprotti & M. Seppild (2006): Multilingual Delivery of Online Tests in Mathematics. In: Proceedings of
Online Educa Berlin 2006.

Barry Cooper & Tony Harries (2005): Making sense of realistic word problems: portraying working class
‘failure’ on a division with remainder problem. International Journal of Research & Method in Education
28(2), pp. 147-169, doi:10.1080/01406720500256228.

T. Hallgren & J. Saludes (2010): Math bar online. Available at http://www.grammaticalframework.
org/demos/minibar/mathbar.htmll

V. Hand (2012): Book Review: Adding depth to portraits of mathematical inquiry Karin Brodie (2010)
Teaching mathematical reasoning in secondary school classrooms. Educational Studies in Mathematics 79,
pp. 149-155.

T. Kosan (2007): SAGE for Newbies. Sagemath.org. Available at http://sage.math.washington.edu/
home/tkosan/newbies_book/|

P. Libbrecht (2010): OpenMath. Available at http://www.openmath.org/.
A. Ranta (2010): Grammatical Framework. Available athttp://www.grammaticalframework.org/.

A. Ranta (2011): Grammatical Framework: Programming with Multilingual Grammars. CSLI Publications,
Stanford.

Ch. Selter (2000): Book Review: Verschaffel, L., Greer, B., and de Corte, E., Making Sense of Word Problems.
Educational Studies in Mathematics 42, pp. 211-213.

SAGE developing team (2011): SAGE Tutorial, release 4.7.2. Sagemath.org. Available at http://www.
sagemath.org/pdf/|

SAGE developing team (Consulted Jan 15, 2012): Simple Sage Server API. Available at http://www.
sagemath.org/doc/reference/sagenb/simple/twist.html,

L. Verschaffel, B. Greer & E. De Corte (2000): Making sense of word problems. Taylor & Francis,
doi:10.1023/A:1004190927303.

D. Wayne (2001): How to solve word problems in mathematics. McGraw-Hill.

WordNet (last access Jan 10th, 2012): A lexical database for English. Available at http://wordnet.
princeton.edu/|

S. Xambo, H. Bass, G. Bolanos, R. Seiler & M. Seppild (2006): E-Learning Mathematics. In: Proceedings
of the ICM-2006 (Volume III), European Mathematical Society, pp. 1743-1768.

S. Xambo, O. Caprotti & M. Seppiléd (2008): Toward autonomous learners of mathematics. In E. M. Rocha
J. M. Borwein & J. F. Rodrigues, editors: Communicating Mathematics in the Age of Digital Libraries, A.
K. Peters, pp. 239-252.

http://dx.doi.org/10.1007/978-0-387-09742-8
http://dx.doi.org/10.1080/01406720500256228
http://www.grammaticalframework.org/demos/minibar/mathbar.html
http://www.grammaticalframework.org/demos/minibar/mathbar.html
http://sage.math.washington.edu/home/tkosan/newbies_book/
http://sage.math.washington.edu/home/tkosan/newbies_book/
http://www.openmath.org/
http://www.grammaticalframework.org/
http://www.sagemath.org/pdf/
http://www.sagemath.org/pdf/
http://www.sagemath.org/doc/reference/sagenb/simple/twist.html
http://www.sagemath.org/doc/reference/sagenb/simple/twist.html
http://dx.doi.org/10.1023/A:1004190927303
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/

	1 Introduction
	2 Background
	3 The MGL library
	4 Conclusions and further work

