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Herewith, a fairly old concept is published for the first time and named ”Lucas Interpretation”. This
has been implemented in a prototype, which has been proved useful in educational practice and
has gained academic relevance with an emerging generation of educational mathematics assistants
(EMA) based on Computer Theorem Proving (CTP).

Automated Theorem Proving (ATP), i.e. deduction, is the most reliable technology used to
check user input. However ATP is inherently weak in automatically generating solutions for arbitrary
problems in applied mathematics. This weakness is crucial for EMAs: when ATP checks user input
as incorrect and the learner gets stuck then the system should be able to suggest possible next steps.

The key idea of Lucas Interpretation is to compute the steps of a calculation following a pro-
gram written in a novel CTP-based programming language, i.e. computation provides the next steps.
User guidance is generated by combining deduction and computation: the latter is performed by a
specific language interpreter, which works like a debugger and hands over control to the learner at
breakpoints, i.e. tactics generating the steps of calculation. The interpreter also builds up logical
contexts providing ATP with the data required for checking user input, thus combining computation
and deduction.

The paper describes the concepts underlying Lucas Interpretation so that open questions can
adequately be addressed, and prerequisites for further work are provided.

1 Introduction

Motivated by planning for a large project on building educational math assistants (EMAs) at the state-of-
the-art of computer mathematics1, Peter Lucas2 supervised the essential design decisions for a “system
that explains itself”, which covers a major part of mathematics as taught to a major target group: solving
problems in engineering and in applied sciences in academic courses and at high-schools.

Two requirements were identified that are essential but conflicting: (1) design interaction and nota-
tion as close as possible to what is written into textbooks during interactive tutoring and on blackboards
during lectures and (2) implement software mechanisms as general and (logically) reliable as possible.
The design tackled the conflict in several ways. They key idea is introduced as “Lucas-Interpretation” in
this paper. Lucas-Interpretation operates on a novel kind of programming language based on Computer
Theorem Proving (CTP). A program written in this language determines the next steps while the inter-
preter builds up logical context providing automated theorem provers (ATP) with facts required to prove
user input derivable or not.

1MacSchubert http://www.iist.unu.edu/www/docs/annualreports/1993/main 7.html under founding director Dines Bjørner
2Peter Lucas was one of the pioneers in compiler construction and in formal methods [16, 17, 18]. http://www.austria-

lexikon.at/af/Wissenssammlungen/Biographien/Lucas Peter
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http://creativecommons.org/licenses/by/3.0/
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Figure 1: A coil with a cross-shaped kernel

The design has been implemented in a prototype called ISAC3, first the mathematics engine based
on Isabelle [26], then a multi-user front-end based on Java-Swing. ISAC has been used successfully in
high-schools [22, 23, 25]. Discussion of underlying concepts has started with focusing education at
CADGME [24] and continued with focusing technology at THedu’11. The latter workshop confirmed
the relevance and (still!) novelty of ISAC’s conception. So, after ten years of implementation in ISAC,
the underlying concepts herewith are published concisely first time. All concepts described in the paper
appear appropriate in ISAC’s implementation; not (yet) implemented features are explicitly designated
as such.

The paper is structured as follows: §2 gives a detailed example which shall motivate the subsequent
definitions. §3 presents how ISAC uses deduction for checking user input, §4 describes how computation
is used to construct solutions of problems and §5 introduces Lucas-Interpretation combining deduction
and computation for automatic generation of user guidance. Open questions and related work are given
ample space in §6, and finally §7 gives a summary of Lucas-Interpretation and a conclusion for pedagogy.

2 Running Example

In order to illustrate the design principles, one example will be used throughout the paper. This ex-
ample is from a problem-class with strong traditions in German speaking countries called ’Extremwert
Aufgaben’. The example’s complexity is at an intermediate level between high school and university,
thus indicating the concepts’ usability from early introduction of variables up to mathematics applied in
studies of science and of engineering.

Example problem: Given a circle with radius r, where two rectangles with length u and width v each
are inscribed as shown in Fig.1. This figure shows the section through a coil; the induction current is
proportional to the area of the cross-shaped kernel of the coil. Determine u and v such that the kernel’s
area A is a maximum.

Traditionally the problem-class ’Extremwert Aufgaben’ is taught in calculus courses, thus specifica-
tion takes geometric considerations ’as obvious’ and immediately comes to algebraic formulas as used in
the problem’s formal specification below. The running example has at least two different specifications:

Specification no.1:
input : { r }
precond : 0 < r

3ISAC stands for ISAbelle for Calculations in Applied Mathematics, http://www.ist.tugraz.at/projects/isac
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output : { max A, u,v }
postcond : A = 2uv−u2 ∧ ( u

2 )
2 +( v

2 )
2 = r2 ∧

∀ A′ u′ v′. (A′ = 2u′v′− (u′)2∧ ( u′
2 )

2 +( v′
2 )

2 = r2)⇒ A′ ≤ A
props : { A = 2uv−u2, ( u

2 )
2 +( v

2 )
2 = r2 }

Field tests showed, that learners understand what to input in the fields ’input’, ’output’ and ’props’;
the proper postcondition in field ’postcond’, however, is out of scope for most students of the target group.
The first two fields, ’input’ and ’output’, are standard, the last one is additional: the field ’props’ contains
elements of ’postcond’, and although the “logical part” (∀,∃.⇒,∧) is dropped, ’props’ distinguishes
problems nicely; in fact, the second specification of the running example differs characteristically in
’props’, not only in ’postcond’:
Specification no.2:

input : { r }
precond : 0 < r
output : { max A, u,v }
postcond : A = 2uv−u2 ∧ ∃α. ( u

2 = r sinα ∧ v
2 = r cosα) ∧

∀A′ u′ v′.(A′ = 2u′v′− (u′)2 ∧ ∃α ′. ( u′
2 = r sinα ′ ∧ v′

2 = r cosα ′))⇒ A′ ≤ A
props : { A = 2uv−u2, u

2 = r sinα, v
2 = r cosα }

In these two examples the fields ’postcond’ have the same structure; without having this implemented
in ISAC yet, we expect that postcondition can be generated automatically from the equations in ’props’
and a pattern of the postcondition’s structure for the respective problem class. The following definition
is (almost) standard.
Definition 1 (Specification) A quintuple (I, p(I),O,q(I,O),r(I,O,A)) is called a specification where I
is a set of variables (the input variables), p(I) is a formula in which only the variables from I occur
freely (the precondition), O is a set of variables (the output variables) such that I∩O = {}, q(I,O) is a
formula in which only the variables from I∪O occur freely (the postcondition) and r(I,O,A) is a set of
elements of q(I,O) without quantifiers such that

∀I,O. p(I)⇒ (q(I,O)⇒∃A.r(I,O,A))

is called properties. A vector of terms S(I) in which only I occurs freely (the solutions) solves the
specified problem, if the following holds:

∀I. p(I)⇒∀O. O = S(I)⇒ q(I,O)

The specification’s elements I, p(I),O,q(I,O),r(I,O,A) are labeled by ’input’, ’precond’, ’output’,
’props’ respectively in the two above example specifications. A in ’props’ contains the variables which
were existentially bound in q(I,O).

Given a specification as an implicit definition of output values, a calculation is a transformation to an
explicit definition by stepwise construction of output values. For instance, give specification no.2 from
above, a calculation might be given by the steps in lines #01..#20 below. The calculation as shown below
is the result of various experiments trying to accomplish the two conflicting requirements mentioned in
the introduction, (1) traditional notation and (2) reliable mechanized treatment.

The details of the calculation below created by ISAC will be explained later together with the mecha-
nisms which create the steps and which check the steps if input by the learner. Reactions of students and
teachers to this format suggest to just explain what lists like [maximum by, calculus] or [make, diffable,
function] mean: In ISAC the question for the lists is answered interactively by following a link exactly
to the respective specification. Here on paper a link to all specifications in ISAC is given4.

4http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index pbl.html
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01 • Problem [maximum by, calculus] - - -
02 ` A = 2 ·u · v−u2 - - -
03 • Problem [make, diffable, function] - - -
04 . . . Ã(α) = 8 · r2 · sinα · cosα−4 · r2 · (sinα)2 - - -
05 • Problem [on interval, max, argument] - - -
06 ` Ã(α) = 8 · r2 · sinα · cosα−4 · r2 · (sinα)2

Subproblem [differentiate, function]
07 • Problem [differentiate, function]

Apply Method Differentiate
Take d

dα
(8 · r2 · sinα · cosα−4 · r2 · (sinα)2)

08 ` d
dα

(8 · r2 · sinα · cosα−4 · r2 · (sinα)2)

Rewrite d
dx (a ·u−b · v) = a · d

dx u−b · d
dx v

09 ≡ 8 · r2 · d
dα

(sinα · cosα)−4 · r2 · d
dα

(sinα)2

Rewrite d
dx (u · v) = u · d

dx v+ d
dx u · v

10 ≡ 8 · r2 · (sinα · d
dα

cosα +( d
dα

sinα) · cosα)−4 · r2 · d
dα

(sinα)2

Rewrite d
dx (u

n) = n ·un−1 d
dx u

11 ≡ 8 · r2 · (sinα · d
dα

cosα +( d
dα

sinα) · cosα)−4 · r2 ·2 · (sinα)2−1 d
dα

sinα

12 ≡
...

13 ≡ 8 · r2 · (−(sinα)2 +(cosα)2−2 · sinα · cosα)
Check Postcond [differentiate, function]

14 . . . Ã′(α) = 8 · r2 · (−(sinα)2)+(cosα)2−2 · sinα · cosα) - - -
15 • Problem [on interval, goniometric, equation] - - -
16 . . . α̂ = tan−1(−1+

√
2)

Check Postcond [on interval, max, argument]
17 . . . α̂ = tan−1(−1+

√
2) - - -

18 • Problem [find values, tool] - - -
19 . . . [ u = 0.23 · r, v = 0.76 · r ] - - -
20 . . . [ u = 0.23 · r, v = 0.76 · r ]

The numbers on the left margin above do not belong to the calculation, they are for reference in this
paper. The strengths of the above format come to bear on interactive worksheets, for instance, the •
paired with . . . (on the same level of indentation) indicate places where intermediate steps are collapsed
(as in lines #03..#04) or can be unfolded (as in lines #07..#14) — collapsed or unfolded on request by the
learner, whether requiring a survey (collapsing and getting the big picture) or whether requiring details
(unfolding and pushing parts out of the screen which are not relevant at the moment).

Calculations show two kinds of elements, formulas and tactics. Formulas are shifted to the left
margin, which are indented according to a tree structure. Tactics are shifted to the right margin. In the
above calculation the tactics are Subproblem, Apply Method, Take, Rewrite and Check Postcond;
the others are not shown (- - -), according to the tradition to omit on blackboards whatever is not relevant
at the moment.

So, the above calculation for the running example provides a first impression, which will motivate
rigorous treatment and formal definitions in the sequel.

3 Deduction for Checking User Input
The present prototype checks formulas input by proving equivalence modulo a specified algebraic theory,
that means by rewriting to normal forms and checking respective equality. For instance, acceptable inputs
at line #12 in the above calculation would be those at #12 (a...z) below:
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11 8 · r2 · (sinα · d
dα

cosα +( d
dα

sinα) · cosα)−4 · r2 ·2 · (sinα)2−1 · d
dα

sinα

12 (a) ≡ 8 · r2 · (sinα · (−sinα)+ cosα · cosα)−4 · r2 ·2 · (sinα)2−1 · d
dα

sinα

or (b) ≡ 8 · r2 · (sinα · d
dα

cosα +( d
dα

sinα) · cosα)−4 · r2 ·2 · (sinα)1 · cosα

or (..) ≡ . . .
or (z) ≡ 8 · r2 · (−(sinα)2)+(cosα)2−2 · sinα · cosα)

Each of the inputs (a...z) has (z) as a normal form5, so each of the inputs is equivalent modulo the
simplifier. Although relying on Isabelle [26] as much as possible, ISAC initially implemented a rewrite
engine of it’s own in order to meet the requirement of transparent single-stepping discussed in §3.1.
Since there are plans to provide Isabelle’s simplifier with appropriate features of transparency6, ISAC
has implemented Isabelle’s proof contexts [30] recently in order to re-use Isabelle’s simplifiers.

In Isabelle a proof context is created from an Isabelle theory, i.e. initially it contains all the facts
from that theory, and then it is extended dynamicall with facts encountered during interactive proof con-
struction. Isabelle’s proof language Isar [21] is block-structured and proof contexts follow this structure.
So proof contexts contain all locally generated and modified facts for calling Isabelle’s ATP tools, one
of which is the simplifier.

ISAC will re-use the mechanism of Isabelle’s proof contexts in order to not only use Isabelle’s sim-
plifier, but also Isabelle’s other ATP tools. So we claim for a judgment like

F `x f (1)

where F is the sequence of formulas already present in a calculation, f is a newly input formula and x is
a context providing all facts required to derive f via an ATP tool (`). F and f are the formulas visible in
the calculation, x are the invisible facts additionally required for mechanical proof. §5.2 shows, how x is
generated step by step for the calculation of the running example on p.85.

3.1 Steps in Derivations

Experience from educational practice indicates a specific requirement on judgments from ATP: judg-
ments shall be presented with comprehensible intermediate steps. This requirement is hard for ATP,
often relying on tools like tableau provers, SMT solvers, on sequent calculi etc., which employ abstract
representations hardly understood by novices. However, in case ATP involves simplification (which
is frequently the case) this requirement can be successfully accomplished by grouping the rules and
showing the rewrites of the groups (and postpone further details to further inquiry). The issue has been
acknowledged by CTP development7, and it seems worth the effort for educational reasons:

When novices are in the phase of acquiring confidence in an EMA, then their curiosity should be
decisively supported and questions answered; otherwise EMAs reinforce the wide spread impression
of mathematics as magic which cannot be understood. So EMAs should be “transparent” to learners’
inquiries any time and respond with comprehensible intermediate steps.

The requirement for steps coincides with the practical requirement to have some means to stepwise
construct a calculation; these means are tactics as shown (partially) in the example calculation on p.85.

5Algebraic equivalence modulo thy of these variants of f is not decidable in general, since there is no normal form for terms
containing trigonometric functions [4]; however, in the above case and in most other cases the class of terms is restricted such
that ATP reliably can reject or accept an input.

6http://isabelle.in.tum.de/gsoc-ideas.html#simptrace
7Every few weeks the Isabelle mailing list receives a request by a novice for intermediate steps. A “visual tracing facility

for the rewriting engine” is already addressed at http://isabelle.in.tum.de/gsoc-ideas.html. A related feature exists already in
“proof reconstruction”: data returned from ATP are inserted into Isar proofs in a human readable manner.
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Since formulas in a calculation do not contain all information required for mechanical treatment, and this
information is contained in contexts, tactics need to operate on contexts. So we have two kinds of tactics,
(1) those introduced in the example calculation on p.85 and (2) those explicitly operating on contexts;
there is a one-to-one correspondence between (1) and (2), so we need not distinguish between them,
except in rare cases: then (1) will be called external tactics and (2) will be called internal tactics.

Contexts contain the preconditions p(I) of a specification, the type-constraints given by the input
variables I and output variables O, assumptions generated and used by conditional rewriting etc. All
these facts decide whether a tactic is applicable or not.

Applicability need to be defined for each tactic separately. With respect to the running example on
p.85, tactic Rewrite applied at #08 requires the fact, that Ã(α) is differentiable, and also the left-hand
side of the theorem d

dx(a ·u−b ·v) = a · d
dx u−b · d

dx v must match a redex in the respective formula. Tactic
Subproblem [tool, find values] is applicable, if the input variables of the respective specification have
been generated in the calculation already, and if the precondition holds. There are also more complicated
tactics, for instance handling case-distinctions, which do not show up in the running example. The
following definition seems straight forward.

Definition 2 (Step of calculation) Given a specification s = (I, p(I),O,q(I,O),r(I,O,A)), a sequence
F of formulas, a formula f ′, contexts x and x′ and a tactic t, then a step is described by the rule

t is applicable in (x,F) x⊆ x′ F `x x′ F `x′ f ′

x,F →t x′,F⊕ f ′

where F⊕ f ′ means insertion of f ′ into F at a position according to t. The rule is applied to the initial
configuration x0,F0 with tactic to, were x0 = p(I)∪ xtypes(I,O) ∪ xthy, i.e. x0 consists of the precondition,
the type constraints xtypes(I,O) and the context xthy initialized by theory thy, F0 = /0 and t0 is either Take
or Subproblem.

Tactics are designed functional such that for all t,x,F there exists exactly one x′,F ′ such that x,F→t

x′,F ′. So we can say t applied to (x,F) = (x′,F′)

This definition does not tell whether a step is triggered by input of formula f , by input of a tac-
tic t or something else. Although steps are functional, calculations generated by these steps are non-
deterministic, because there may be many tactics applicable at one and the same configuration; this vari-
ability of calculations is the challenge for learners when deciding on the next step of calculation. §5 will
tell details about input of formulas and/or tactics after some further prerequisites have been introduced.

First follows a definition of calculation. The above approach taken via steps suggests in operational
view according to [28]:

Definition 3 (Calculation) Given a specification s = (I, p(I),O,q(I,O),r(I,O,A)), then a calculation is
a labeled terminal transition system c= 〈X ,P(F),T →,S〉, where the set of configurations is X×P(F),
X a set of contexts and P(F) a set of sequences F of formulas, the actions t ∈ T are called tactics, the
transitions in→t ⊆ (X×P(F))×T × (X×P(F)) are the steps of calculation introduced in Def.2.

The terminal configurations in set S⊂ X×P(F) are called solutions of c.

Further details on solutions are given in §3.2.

Summarizing, a calculation consists of steps each of which is derived from the steps previously
constructed; derivation of the steps relies on logical facts (in contexts x) not shown to the learner without
request. The internal machinery handling the contexts x will be introduced in the subsequent sections.
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3.2 Checking Solutions of Problems

This subsection presents the only part of the introduced concepts, which is not yet implemented in ISAC.
This part raises open questions, but is essential for “a system which explains itself”: such a system should
not only construct a calculation stepwise as described in the previous section, such a system also should
show that the result of the calculation is a solution of the specified problem. This means (in analogy to
judgment (1) on p.86) we want to have a judgment

F `x q(I,O) (2)

where F are the formulas in the (completed) calculation, x is the final context and q(I,O) is the postcon-
dition on the input I and the output O in the respective specification.

A look at the running example sheds light on the challenges for designing the details for an imple-
mentation of (2). In the example p(I,O) is

postcond : A = 2uv−u2 ∧ ∃α. ( u
2 = r sinα ∧ v

2 = r cosα) ∧
∀A′ u′ v′.(A′ = 2u′v′− (u′)2 ∧ ∃α ′. ( u′

2 = r sinα ′ ∧ v′
2 = r cosα ′))⇒ A′ ≤ A

The postcondition’s ∃ is accomplished by constructing α in the calculation’s lines #15–#16. A com-
plete proof would have to re-curse to the postcondition of (Sub-)Problem [on interval, max, argument]
at line #05 which might look like

∀α. α ∈ ]0,
π

2
[⇒ Ã(α)≤ Ã(tan−1(−1+

√
2))

A closer look suggests to have not only this postcondition in the context x, but also the function Ã(α),
the facts A = Ã(tan−1(−1+

√
2)), u = 0.23, v = 0.76 etc. — so (automatically!) proving the final

postcondition needs to rely on a well-stocked context x; building x is the main concern of §4.

Since we have introduced a calculation as “consisting of steps each of which is derived from the
previous steps” the steps need to be considered. The final step in the example calculation is in line #19,
obtaining the values [u = 0.23 · r, v = 0.76 · r] as results of (Sub-)Problem [tool, find values]. These
values are approximations of exact terms which are too large to be carried through a calculation by
hand; due to the design decision for notation “as close to what is written to traditional blackboards as
possible” the running example also uses approximate values — however, approximate values cannot
prove the postcondition given above; the postcondition would require re-formulation by using the notion
of “approximation errors”, which would make the postcondition and the proof even more complicated.

An implementation for checking solutions shall be analogous to Def.2 on stepwise construction of
calculations, i.e. there should be a final step which completes the calculation such that the postcondition
holds:
Definition 4 (Result of calculation) Given a specification s = (I, p(I),O,q(I,O),r(I,O,A)) and a cal-
culation c = 〈X ,P(F),T,→,S〉 as a labeled terminal transition system with transitions according to
Def.2 for steps of calculation with x0, /0→t0 . . .→tn xn,Fn→Check Postcond xn,Fn such that

Fn `xn q(I,O)

and for every variable o ∈ O there is an equation o = r in Fn such that all the equations can be ordered
in a sequence

o1 = r1,o2 = r2, . . . ,on = rn

where every oi does not occur in r1, . . . ,ri. Then r1, . . . ,rn is called a result of c and xn,Fn is called a
solution constructed by c. We also say that calculation ’c is completed with (xn,Fn)’.
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Figure 2: A calculation is a side-effect of a functional program

4 Computation for Constructing Solutions

Since computers exist, they are used to compute some output from some input, where the resulting output
fulfills certain expectations — i.e. they are used just for the purpose formalized in the above Def.4 for
solutions of computations. Symbolic computation allows to handle formal objects of arbitrary level of
abstraction, even real numbers like tan−1(−1+

√
2) in finite computers (

√
2 etc. not as a floating point

number, of course).

Computation envisaged in this section is used to create steps of calculations. ISAC’s design provides
a functional programming language for doing that computation; given the characteristic of functional
programs to produce a result (without intermediate states), the question arises, how intermediate steps
can be created such that interaction on these steps is possible (since this clearly requires states related
to these steps). Fig.2 on p.89 gives a preliminary answer to this question: the calculation and respective
steps are created as a side-effect of interpreting the program; the states and interaction on the steps of
calculation are handled by the interpreter of the program. The role of a dialog in such an architecture
seems natural, but details are out of scope in this paper.

4.1 CAS-like Functionality in Programming Languages

For constructing calculations we need functionality well-known from Computer Algebra Systems (CAS):
for instance, differentiation and equation solving in the running example on p.85. Indeed, CAS-based
programming languages [1, 20] are most successful in software production for engineering and science.
However, CAS-based languages do not commend themselves for educational math assistants — users of
CAS are responsible for when to apply CAS functions and for how to use their results; so learners might
be over-challenged by such responsibility: equation solvers might have lost some solutions, simplifica-
tion might imply partiality conditions without mentioning them (e.g. x2−1

x−1 = x+ 1 without mentioning
x 6= 1) etc. For education we want to have systems “which never make mistakes” [12].

Deduction is already in the game since §3, so we advocate rigor corresponding to CTP: we claim
any CAS-function to be accompanied by an explicit formal specification. Coming back to the running
example, differentiation as shown for the example calculation in lines #07..#13 on p.85 is specified by

Specification of Problem [differentiate, function]:
input : { f ,v }
precond : λv. f is differentiable
output : { f ′,range }
postcond : ∀v. v ∈ range ⇒ (λv. f ′)(v) = limh→0

(λv. f )(v+h)−(λv. f )(v)
h

and this implicit specification is transformed to an explicit specification, i.e. a calculation, by the tactic
Subproblem [differentiate, function]: in line #07 this tactic starts the Sub-Problem [differentiate, func-
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tion] and solves the problem by tactic Apply Method Differentiate. The respective program is shown on
p.92 below.

The above requirements advocate a novel kind of programming called “CTP-based”. Considerable
work is already done preparing such languages [12, 13, 14]; this is discussed under related work in §6.3.

4.2 A CTP-based Prototype Language

ISAC implements a programming language, which is appropriate for describing mathematics found in
problems of engineering and of science. The following program generates the calculation on p.85 for
the running example; at a first glance the reader sees a purely functional program with the usual key-
words LET..IN, IF..THEN..ELSE; at this point the only difference are the function calls: identified by
Subproblem, these calls are associated with a theory (e.g. Reals), a reference to a specification (e.g.
[make, diffable, function] and a reference to the function itself (e.g. make fun).

In the same way the Subproblems are accompanied by theory, specification and program, the exam-
ple program below is accompanied by a theory and a specification already introduced in two variants (for
the same program!) no.1 or no.2 on p.84. That means, the arguments of Program Max are checked by the
respective precondition and the return-value finds is related to the input by the respective postcondition
on termination of the program:

01 Program Max (givens::real list) (max::real) (finds::real list) (rels::bool list)
02 (var::real) (interval::real set) (errbound::real) =
03 LET

04 maxequ = Take ((HD o (FILTER (contains max ))) rels) ;
05 funterm = (IF 1 < LEN rels
06 THEN (Subproblem ( Reals, [make, diffable, function], make fun)
07 [ max::real, var::real, rels::bool list, interval::real set ] )
08 ELSE (HD rels )) ;
09 max = Subproblem ( Real Algebra, [on interval, max, argument],
10 maximum on interval )
11 [ funterm::real, var::real, interval::real set ] ;
12 find rels = FILTER OUT (ident maxequ) rels ;
13 finds = Subproblem ( Reals, [tool, find values], find values)
14 [ max::real, (RHS funterm)::real, var::real, max::real,
15 find rels::bool list, errbound::real ]
16 IN finds

In ISAC this program is parsed as an Isabelle term with LET..IN, IF..THEN..ELSE from Isabelle/HOL
extended by definitions for Program, for “tactics” like Take, Subproblem and for some functions
LENgth (of a list), RHS (right-hand side of an equality), FILTER OUT; some of these functions are al-
ready contained in the recent Isabelle versions. The reader may note that the notion of “tactic” is being
extended: Tactics have been introduced in Def.2 as parts of steps in calculations, in the above program
certain statements are called “tactic” — those statements which generate the steps of the respective cal-
culation. §5.1 will unify the notions of tactics formally.

The function’s arguments are worth one more remark: For instance, the Subproblem at lines #09..#11
above takes two arguments, a triple and a list; the triple addresses three kinds of knowledge as mentioned
above:

1. deductive knowledge: Real Algebra is an Isabelle theory comprising all the axioms, definitions
and theorems required for the formulas of the generated calculation and for proving the postcon-
dition of the calculation’s specification. This is where the differentiation rules come from in the
second example program on p.92.
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2. application-oriented knowledge: [on interval, max, argument] is a path into a hierarchy of speci-
fications: the element retrieved from the hierarchy specifies the calculation to be generated.
The specification is expected to be proved by ATP during interpretation: before the call the precon-
dition is proved for the function’s arguments, on return the postcondition is proved for arguments
and return value.

3. algorithmic knowledge: maximum on interval is a reference to the program describing the algo-
rithm which creates the calculation.

The second argument of the Subproblem contains some formal arguments funterm, var, interval as
known from function definitions:

[ funterm::real, var::real, interval::real set ]

The list of arguments might contain more items than the respective specification — this becomes
clear when considering the example program above which has these formal arguments:

01 Program Max (givens::real list) (max::real) (finds::real list) (rels::bool list)
02 (var::real) (interval::real set) (errbound::real) = . . .

The number of arguments is seven, although both respective specifications no.1 and no.2 on p.84
only have one input, { r } for the first argument givens — the other arguments provide the input for all
the Subproblem of the program!

This program is the first of two examples for a “CTP-based programming language” (where the
second example program is on p.92 below). A thorough introduction of such a language is out of scope
in this paper, [8] gives further details and §6.3 discusses open questions.

The reader may note, that the above programs are purely functional, thus do neither they contain
input statements nor output statements, and thus cannot be concerned with interaction8. Interaction,
however, is the key point of this paper and will be tackled subsequently.

5 Deduction and Computation for User Guidance

Now all prerequisites are prepared for introducing “Lucas-Interpretation”: specifications of problems,
calculations stepwise creating an explicit specification by applying tactics, calculations augmented by
logical contexts, contexts containing facts required to check user input and to check the postcondition
by ATP, a CTP-based programming language involving theories, specifications and programs, CAS-
functionality included in this language.

Now the idea of Lucas-Interpretation is simple:

• The interpreter works like a debugger jumping from break-point to break-point in a program.

• The breakpoints are the tactics in the program; each tactics generates exactly one step in the cal-
culation (a step which might comprise an arbitrary number of sub-steps, which are not shown to
the user — rather, the system is ready to show them on request of the user).

• Each step also generates specific logical facts; the interpreter builds up contexts with these facts
according to certain rules.

8The programmer of a CTP-based program is much concerned with theories, specifications and algorithms; so excluding
concerns of interaction, of user guidance, etc. is a helpful separation of concerns.
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• All steps are presented to the user on a “worksheet” (if not a dialog component decides for some
other kind of interaction, for instance in a written exam).

• After a step has been presented to the user, control is handed over to the user (to the dialog com-
ponent, respectively).

• Since the user is in control of the system, she or he has a variety of choices collected under four
categories:

– Inspect the calculation generated so far: ask for theorems applied at certain steps, ask for
intermediate steps for instance in Rewrite Set simplifier, etc.

– Investigate the underlying knowledge in theory, specification or program: inspection starts at
the particular knowledge item used in the current step.

– Input an own step independently, a formula or a tactic (or something else according to the
dialog component, for instance, a partial formula presented for filling in just some (crucial)
part).

– If got stuck in the calculation ask the system to do the next step. This feature enables a dialog
component to provide user guidance; dialog details are out of scope of this paper; see [15].

• User input is checked by ATP, which is called by the interpreter using facts collected in the context.
Feedback from ATP goes to the user (probably filtered by the dialog component).

• After input the interpreter resumes execution, probably at another location in the program due to
free user input.

The subsequent sections describe first how the interpreter jumps from break-point to break-point, then
how logical context are built up during interpretation and finally how user guidance is created automati-
cally.

5.1 Steps of Interpretation Create Steps of Calculation

Steps of calculation (Def.2) comprise tactics as parts which give a denotative name to the step; within
programs those statements are called (program) tactics which create a step of the respective calcula-
tion. Programs comprise further statements, which do not create steps; these are called non-generating
statements.

Since Program Max contains only one non-generating statement in line #12, we give another exam-
ple: a program calculating the derivative of a function and making the specification on p.89 explicit:

01 Program Differentiate (interval::real set) (f::real) (v::real) =
02 LET f ’ = Take ( d

d v f)
03 IN (REPEAT
04 ( Rewrite Inst [(bdv, v)] diff sum ) OR
05 ( Rewrite Inst [(bdv, v)] diff product ) OR
06 ( Rewrite Inst [(bdv, v)] diff sin ) OR
07 ( Rewrite Inst [(bdv, v)] diff cos ) OR
08 ( Rewrite Inst [(bdv, v)] . . . . . . ) OR
09 ( Rewrite Inst [(bdv, v)] diff fraction )) @@
10 ( TRY (Rewrite Set simplifier )) f’

Again, the syntax of this kind of program is discussed in detail in [8], here are the hints for reading
the program text: After constructing the formula from the program’s arguments in line #02 the body
of LET..IN forward chaines (@@) two functions, REPEAT(. . .) and TRY (Rewrite Set simplifier). The
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former models the non-deterministic behavior of term rewriting systems: the rules diff sin OR diff cos OR
. . . 9 or other rules can apply or not, and as soon none applies REPEAT terminates. The latter function
TRYs to simplify the resulting formula.

The lines #08–#13 in the example calculation on p.85 could have been generated by this program.
Let us assume this calculation has been continued as follows:

11 ≡ 8 · r2 · (sinα · d
dα

cosα +( d
dα

sinα) · cosα)−4 · r2 ·2 · sinα · d
dα

sinα

Rewrite d
dα

(sinα) = cosα #06
≡ 8 · r2 · (sinα · d

dα
cosα + cosα · cosα)−4 · r2 ·2 · sinα · d

dα
sinα

Rewrite d
dα

(cosα) =−sinα #07
≡ 8 · r2 · (sinα · (−sinα)+ cosα · cosα)−4 · r2 ·2 · sinα · d

dα
sinα

Rewrite d
dα

(sinα) = cosα ???
First line #06 of the program has been interpreted (indicated by the line number at the right margin

above), then the subsequent line #07. Finally line #06 with the rule diff sin should be interpreted again in
order to derive d

dα
sinα — how does the interpreter come back to the respective location in the program?

Starting from location #07, this is accomplished by the sequence of statements
#07→OR . . .→Rewrite diff fraction #09→REPEAT #03→Rewrite diff sum #04
#04→OR #05→Rewrite diff product #05
#05→OR #06→Rewrite diff sin

The statements OR, REPEAT (and also LET..IN, @@, Try) are concerned with controlling the sequence
of interpretation and are called tacticals; they do not change the calculation or the respective context.
ISAC’s interpreter controls such sequences by locations in the program and by environments as usual.

The above example leads to the following definition in a straight forward manner, just adding a
program-state to Def.2 for steps of calculation:
Definition 5 (Step of interpretation) Given a specification s = (I, p(I),O, , ), a program m and a re-
spective program-state γ , given non-generating statements sng and a (program)tactic tm both in m, given
an (internal)tactic tc according to Def.2, a context x and a sequence of formulas F, then a step is an
application of the rule

γ →sng . . .→s′ng γ ′→tm γ ′′ tm ≈ t t applied to (x,F) = (x′,F ′)
γ,x,F →t γ ′′,x′,F ′

where tm ≈ tc denotes equivalency induced by a bijective mapping between program tactics and tactics
in calculations – due to this equivalency the distinction is omitted in the rule’s conclusion and the tactic
named t.

The initial configuration for applying the rule is γ0,x0,F0 with γ0 = ( /0,{(i1,v1), . . . ,(in,vn)}) where
/0 is the location at the root of program m and (ii,vi) are the identifier-value pairs of the arguments of m,
and x0,F0 are as defined in Def.2. We say ’the steps are initialized by s,m’.
Interpretation stops at the first applicable tactic found after passing non-generating statements sng, which
are either tacticals or expressions containing no tactic. A subsequent step is triggered from outside
without caring about program tactics, so we introduce a judgement do next generalizing over all tactics t

γ,x,F →t γ ′,x′,F ′

γ,x,F →do next γ ′,x′,F ′
do next

A detailed description of the tacticals’ semantics is out of scope of this paper. We just note, that the
example program on p.92 would raise an error in line #10 if the tactical TRY would be omitted and the
tactic Rewrite Set simplifier would be not applicable.

9In order to come traditional notation as close as possible, the type of the function term is real and not real⇒ real; so we
need to instantiate bdv by the actual value of v in the rules before rewriting.
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5.2 Building up Logical Context during Interpretation

Contexts are required to check user input (§3) by ATP during interpretation, to check preconditions and
post-conditions of Subproblems and finally check the solution of a problem (§3.2) by ATP as well. How
contexts are used to accomplish these tasks is introduced in §5.3.

How logical contexts xi are built up during execution can be observed in the running example as
follows (the numbers on the left refer to those in program on p.90):

01..02 x0 = { 0 < r }∪ xtypes(r,A,u,v)∪ xthy
03..04 x1 = x0∪{ A = 2uv−u2 }
05..08 x2 = x1∪{ Ã(α) = 8 · r2 · sinα · cosα−4 · r2 · (sinα)2),

Ã(α) is differentiable on ]0, π

2 [ }
09..12 a x3 = x2∪{ Ã′(α) = 8 · r2 · (−(sinα)2)+(cosα)2−2 · sinα · cosα),

b α = tan−1(−1+
√

2), Ã′(α) = 0,
c ∀α ′. α ′ ∈ ]0, π

2 [ ∧ Ã′(α ′) = 0 ⇒ α ′ = (tan−1(−1+
√

2))
d ∀α ′. α ′ ∈ ]0, π

2 [⇒ Ã(α ′)≤ Ã(α) }
13..15 x4 = x3∪{u = 2 · r · sinα, u≈ 0.23 · r, v = 2 · r · cosα, u≈ 0.76 · r }

The initial values in x0 comprise the precondition and 0 < r, the type constraints for the input vari-
ables I and the output variables O of the specification as well as all required knowledge collected in
theory thy.

The facts added in lines #09..#12 to context x2 deserves explanation: the first line (a) is the result
of Sub-Problem[differentiate, function] (see calculation on p.85, specification on p.89 and program on
p.92). The second and third line (b,c) come from Problem [on interval, goniometric, equation]: the
latter is the postcondition stating that the equation has exactly one solution within the interval given.
A single solution is required for this type of problem at this place, and it is the responsibility of the
math author to prepare a specification with an appropriate interval. Line (d) is the postcondition of
Subproblem [on interval, goniometric, equation] on p.85.

The reader may note that contexts do not follow the scoping rules for program variables (which en-
close variables within subprograms): Problem ( Reals, [on interval, max, argument] exports the values
and the post-conditions of the respective sub-problems (lines (b,c)), Problem[differentiate, function] and
Problem [on interval, goniometric, equation]. The scoping rules for contexts are a consequence of the
common practice to have unique variable names within a calculation.

Although there is (still) no implementation of proofs for postconditions in ISAC, there is the convic-
tion that the final context x4 contains sufficient facts for such proofs.

5.3 Lucas-Interpretation Combines Computation and Deduction

A Lucas-Interpreter stepwise executes a CTP-based program (§4.2) and creates calculations (Def.3) step
by step (Def.2). In order to integrate these concepts, the following definition is close to Def.3, Def.2 and
Def.4; actually the only additions are a program and a program state:

Definition 6 (Lucas-Interpreter) Given a specification s, a calculation c = 〈X ,P(F),T,→,S〉 and a
program m, then a labeled terminal transition system L = 〈Ξ,Tm,→m,Sm〉 is called a Lucas-Interpreter
iff

(i) the configuration Ξ = (Γ×X ×P(F)) contains Γ the program states (Def.5) and X ×P(F) the
configurations in c (Def.3)

(ii) the actions Tm contain (program) tactics in m and Tm is bijectively mapped with T
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(iii) the transition relations→tm are steps of interpretation according to Def.5 with γ,x,F→tm γ ′,x′,F ′

and are itinitialized by s,m.

(vi) the terminal configuarions Sm ⊂ (Γm×X×P(F)) contain Γm the terminating states of m.

We say c is generated by (s,m,L ).

The bijective mapping between T and Tm continues the bijective mapping between external tactics and
internal tactics from p.87; again further distinction seems not necessary and we write t instead tm in the
sequel.

The steps of interpretation in the above definition are triggered by the user requesting do next ac-
cording to Def.5. Instead of do next the user also could have input a step of his or her own choice;
after such input do next raises the usual issue for debuggers: in which cases can execution (in our case:
interpretation) resume, and in which cases it cannot resume due to too invasive operations at the break-
point. A step can be given by two classes of input, which might be modified and combined by a dialog
component, see [15]. The first class is characterized by input of an (external) tactic, the second by input
of a formula:

Input of a tactic is done by the learner at steps where the theorem to be applied is the point (e.g. a
rewrite rule applied to a huge term too laborious for input), where some sub-term needs to be picked
out for the next step, where a sub problem has to be started, or other cases, where the learner prefers to
input a tactic instead of a formula (or the dialog component decides according to some rule in the dialog
mode). The following definition describes how Lucas-Interpretation handles the input (external) tactic
tI:

Definition 7 (Locatable tactics) Given a specification s, a program m, a Lucas-Interpreter L = 〈Ξ,Tm,
→m,Sm〉 at configuration χ = (γ,x,F) ∈ Ξ, a calculation c with c is generated by (s,m,L ) at configu-
ration x,F and finally given an (external) tactic tI input by the learner, then we have the rule

tI applied to (x,F) = (x′,F ′) γ,x,F →∗ γ ′,x,F →tm γ ′′,x′,F ′ tI ≈ tm
γ,x,F →tm γ ′′,x′,F ′

If the rule is applicable (in particular if for tI an equivalent tm in the program is found, tI ≈ tm), we say
’t is locatable at χ’ iff applicable; otherwise we say L is helpless at χ .

The definition’s rule has tI applied to (x,F) as premise: if this premise is given, we get a step of calcu-
lation leading to x′,F ′, but if no tI ≈ tm is found during interpretation, we don’t get a γ ′′, a program state
to resume interpretation form — L is helpless.

Note that the transitions→∗ . . .→t searching for tI ≈ tm only change the program state γ and not the
configuration x,F of the calculation; so x′,F ′ resulting from tI is presented to the user, before control is
handed over. This behavior is consistent with transitions being functions and not relations in both defi-
nitions, in calculations (Def.3) as well as in Lucas-Interpretation (Def.6). And the strategy implemented
by Def.7 works particularly well with programs like the example on p.92.

If a tm with tI ≈ tm cannot be found, the step of calculation can still be done (according to
tI applied to (x,F)) — but no appropriate tactic could be found in the program, thus the Lucas-Interpreter
cannot determine a next step and “is helpless”. Since this case easily can happen (for instance, if a
“creative” rewrite rule is applied which cannot be found in the program), there is a stronger feature of
Lucas-Interpretation for input of formulas.
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Input of a formula concerns the second class of input for a learner constructing a calculation. Since
user interfaces are expected to support copy-and-paste, input need not be laborious even for huge formu-
las. The following definition describes how Lucas-Interpretation handles an input formula fI:

Definition 8 (Derivable formula) Given a specification s, a program m, a Lucas-Interpreter L = 〈Ξ,Tm,
→m,Sm〉, a calculation c with c is generated by (s,m,L ) at configuration x,F and finally given a for-
mula fI input by the learner, then we have the rule

γ,x,F →∗ γ ′,x′,F ′ F `x′ fI

γ,x,F →t∗ γ ′,x′,FI

If the rule is applicable we say ’fI is derived from χ’; otherwise we say ’fI is not derivable from χ’.

In this case the interpreter executes the next tactics found in program m until a context x′ is generated,
which can justify the input fI , i.e. c `x′ fI . This justification might involve algebraic simplification as
mentioned in §3. If successful, the step is presented to the user, before control is handed over; t∗ is a
tactic called “ad-hoc derivation”; it usually comprises a sequence of tactics.

If not successful, i.e. the interpreter executes program m until termination and no step is found with
c`x′ fI , then fI is “not derivable”. This judgment can be costly in resources, since it relies on an (internal)
computation of the program, including all the subprograms, until termination.

6 Related Work and Open Questions

6.1 Proofs, Structured Derivations and Calculations

As mentioned above, educational systems shall be “systems which do not make mistakes”, so well-
designed logical foundations are indispensable.

Proof languages like Isar [21] are natural to compare with the approach taken in this paper, since the
underlying prototype is based on the CTP Isabelle [26]. Unlike the proof languages of Coq [10], Ltac 10

and SSReflect [6], Isar is self-contained and does not refer to a proof state explicitly.
The requirement to be “as close to what is written to traditional blackboards as possible” inhibited the

above calculations to follow the principle of being self-contained. Rather, calculations rely on internal
contexts employed in all definitions. This is the price for high usability for the target group. The price
is considered not too high, since contexts consist of formulas in predicate logic and thus can easily be
presented to the user, as soon as the user requests for them (and then they can be filtered by a dialog
component).

Isar specifically supports calculational proof [31] and integrates it well with other elements of the
proof language. Nevertheless, the formalisms were considered too far from “what is written on traditional
blackboards” for our target group.

Structured derivations (SD) [2] continue work on calculational proof [5, 7], provide foundations on
natural deduction, are self-contained such that they need not refer to a state separate from the SD and
also are “close to what is written on blackboards”.

So, SD meet essential requirements for mechanized calculation and call for justification of any other
choice of format. Major parts of the example calculation on p.85 exactly model SD, for instance lines

10http://coq.inria.fr/stdlib/Coq.Program.Tactics.html
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#08..#13. The sub-Problems strengthen the rigor by requiring explicit formal specification (which might
be hidden from the learner and done automatically behind the scenes). And the rigor of SD is weakened
by allowing to omit the tactics (at the right margin on p.85). The weakened rigor allows to address a
wider range of users, who need no prior introduction to the system — “next step guidance” provides per-
fect ad-hoc introduction. Another point is, that SD concerning sub-terms of formulas involve “window
inferencing” [19], which is already more complicated.

For these reasons a format more general than SD has been implemented in ISAC.

6.2 “Correctness” in Lucas-Interpretation

This subsection doesn’t address related work, only open questions on “correctness”. Correctness of cal-
culations is indispensable for an educational “system which never makes mistakes” [12]. Final correct-
ness of a calculation is given by Def.4: the solution meets the postcondition. The steps (tactic/formula)
of calculation constructing such a solution are either input by the user or determined by a program under
Lucas-Interpretation. An input tactic is checked if it is applicable in the calculation (Def.2) – this im-
plies “correctness”. An input formula is proven derivable (Def.8) or not, thus it is “correct” or not. Both
notions of “correctness”, however, cannot exclude steps which are “misleading” to somewhere and not
to a solution. But if the user relies on the system and requests do next (Def.5), the system shall guarantee
to come to a solution finally:

Definition 9 (Correctness under Lucas-Interpretation) Given a specification s, a program m, a Lucas-
Interpreter L = 〈Ξ,Tm,→m,Sm〉, a calculation c with c is generated by (s,m,L ) and a sequence of
steps of interpretation triggered by do next χ0 →do next . . .→do next χn = (γn,xn,Fn). Then c is correct
under s,m,L iff

χn ∈ Sm⇒ c is completed with (xn,Fn)

This definition says: if Lucas-Interpretation terminates, the generated calculation provides a solution
(xn,Fn). So we only have a definition of correctness, but we want to have a proof! The definition
describes the general proof obligation for the programmer of m and s. In order to actually verify m with
respect to s a rigorous formal semantics for each tactic t will be required: such a semantics just would
have to add specific properties of t to Def.2 (which then would carry over to Def.5). This theoretical work
seems most promising if combined with RTD of a development environment which integrates specific
verification tools: a CTP-based IDE for a CTP-based programming language.

ISAC already shows the advantageous consequences of the above definition: the learner, if got stuck
after some trials, always can backtrack to a step where reaching a solution is guaranteed — this feature
allows interactive learning known from chess programs: when reaching a disadvantageous chess con-
figuration just backtrack to another configuration and start a new trial (a novel kind of interaction for
EMAs). Experience with the prototype shows, that learners get used to find out the position where to
back-track very quickly.

The open questions above on correctness have already raised vague ideas, that the components in-
volved in Lucas-Interpretation are related by refinements [3]. The components are specification, calcu-
lation, problem-class and program (where problem-class has not yet been discussed):
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(1.) specification v calculation
−→

w w

(2.) problemclass v program
−→

↑ (3.) ↑ (4.)

A look at the above refinement relations (v) gives the following big picture:

1. specification v calculation seems clear to a mathematician; however, the underlying definitions
(Def.2, Def.3 and Def.4) might be not strong enough for describing this refinement.

2. problemclassv program involves a notion not introduced here because not yet clarified: “problem-
class” would be some “specification-pattern” which allows to mechanically generate a specifica-
tion of the program from the input ’props’: see example specifications no.1 and no.2 and imagine
all the other examples belonging to the problemclass “Extremwert Aufgaben” (which is claimed
to be solved by one and the same program, the example program) — how would a specification
(-pattern), as general as the program, would look like?

3. problemclassv specification is expected to help clarifying the question from the previous Pt.2.

4. programv calculation is the crucial point addressed by Def.9.

6.3 On CTP-based Programming Languages

Lucas-Interpretation takes a certain kind of “CTP-based programming language” as a prerequisite, which
only exists in ISAC under consideration. However, [8] argue for a value of their own for such languages
and identify interest for CTP-based languages: For CAS-based programming languages great demand
appears in successful application to software for engineering and science, most of which use CAS-based
languages like [1, 20] as an efficient base for development — while lacking reliability of CAS is widely
recognized, see for instance [9]; so one may expect developments meeting the demand indicated by the
success of CAS-based languages with more reliable CTP-based languages.

Significant preparatory work [13, 14] for CAS-like functionality in a CTP framework has already
been done. In the course of eventual development of CTP-based languages several further issues left
open by CAS might be tackled: Reliable handling of partiality conditions has been mentioned in §4.1.
Multivaluedness is another issue [11]. Very appealing for educational purposes would be to calculate ex-
act approximation given by floating-point numbers (see [27] for Coq) throughout all algebraic operations
involved in a calculation; already [9] has laid the grounds for tackling this issue.

Using CTP-based programs not only for implementation of applications like the running example
(p.90), but also for the CAS-functions themselves will lead to “systems that explain themselves” at an
extreme level: For instance, cancellation of multivariate polynomials like

x2− y2

x2− x · y
=

(x+ y) · (x− y)
x · (x− y)

=
x+ y

x
assuming x 6= 0∧ x− y 6= 0

is a frequent task already in early years of math education; usually it is explained “from right to left”.
But a smart student might ask, how a machine accomplishes the task from left to right (by factoriza-
tion, by Hensel lifting or the like). If factorization or Hensel lifting is programmed in a CTP-based
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language and interpreted by a Lucas-Interpreter, then such a student gets stepwise user guidance through
the comprehensive algorithms on request:

With a CTP-based language and Lucas-Interpretation “implementation of tutoring becomes a side-
effect of programming”, see Fig.2 on p.89.

With that in mind interesting questions arise when re-implementing CAS-functions: CAS-algorithms
at the state-of-the-art are high-brow in general (not only in the above case, also in integration, solving
equational systems etc.). In order to foster students’ curiosity and do not bother them upon questions
of “how is that done”, the possibility to select between high-brow algorithms and elementary algorithms
(the latter probably not able to solve a certain problem) is already implemented in ISAC.

7 Summary and Conclusions

This paper presented an innovation in base technology for educational math assistants which is mainly
motivated by pedagogical requirements. So we finish with a summary of technology and a conclusion
concerning pedagogy.

A Summary of Lucas-Interpretation states a novel base technology for automatic generation of user
guidance in stepwise solving problems in engineering and in applied science: Given a program written
in a novel kind of CTP-based programming language which solves a problem, Lucas-Interpretation gen-
erates steps (Def.2, Def.5) of a calculation (Def.3) as a side-effect (Fig.2 on p.89) of the (functional)
program. During stepwise interpretation a logical context is built up in order to provide ATP tools with
the facts required for proving derivability of user input. At each tactic in the program control is handed
over to the user (Def.6). The user is free to investigate the underlying knowledge, to freely input a step
independently (checked by ATP immediately) or to ask the system to propose a next step (Def.7, Def.8)

According to the novelty of the design essential questions have been left open and are addressed in
a separate section: In particular, the main theorems of Lucas-Interpretation are not proved due to the
lack of a formalized operational semantics: The solution of a calculation is correct if the user does not
interfere by other input than requesting the next step (Def.9) and interpretation can guarantee to resume
after user input provided certain constraints on the input.

Although still a prototype, the Lucas-Interpreter has already established a stable interface to a dialog
component, ready for experts in learning theory to start with detailed design of interaction in stepwise
problem solving — this task is rigorously separated from extending the math topics of the problems:
each problem just requires to program the algorithm solving the problem, interaction is handled by
Lucas-Interpretation.

Conclusions for pedagogy expect impact on math education: CTP-technology allows to relate formal
facts and activities in stepwise problem solving mechanically within the system. This is a considerable
advantage over CAS or DGS (Dynamic Geometry Systems), where specific steps (integration, equation
solving, etc.) are accomplished by the systems, well, but the whole process of stepwise problem solving,
the relation between input (precondition), output (postcondition) and intermediate steps are left to the
programmer media designer, who is overwhelmed by hard-coding feedback for the variants of steps.

On the other hand, CTP-based software models all mechanical parts of problem solving and thus
allows to mechanically generate feedback to the learner: ATP ensures both, the most reliable and the most
general checks of user input. This extends the scope of EMAs far beyond CAS or DGS. So upcoming
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CTP-based educational math assistants will be novel and powerful tools for patient and reliable feedback
in exercising and assessing stepwise problem solving.

If, in addition, educational math assistants want to go in line with renewed science education [29]
and decisively support inquiry-based learning and independent learning, then “next step guidance” is
required: students can explore new topics, tackle motivating problems and interactively try out solutions
passing new stuff by help of the system, students can try variants in calculations and ask for the next step
if got stuck — the latter is the unique feature Lucas-Interpretation contributes as a base technology for
educational math assistants.
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