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bogdan.aman@gmail.com

Gabriel Ciobanu
Institute of Computer Science, Romanian Academy

and ”A.I. Cuza” University of Iaşi, Romania
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Timing aspects in formalisms with explicit resources and parallelism are investigated, and it is pre-
sented a formal link between timed membrane systems and timed Petri nets with localities. For both
formalisms, timing does not increase the expressive power;however both timed membrane systems
and timed Petri nets are more flexible in describing molecular phenomena where time is a critical
resource. We establish a link between timed membrane systems and timed Petri nets with localities,
and prove an operational correspondence between them.

1 Introduction

The evolution of complex real systems frequently involves various interactions among components.
Some mathematical models of such systems combine both discrete and continuous evolutions on multi-
ple time scales with many orders of magnitude. For example, the molecular operations of a living cell
can be thought of as such a dynamical system. The molecular operations happen on time scales rang-
ing from 10−15 to 104 seconds, and proceed in ways which are dependent on populations of molecules
ranging in size from as few as approximately 10 to approximately as many as 1020. Molecular biologists
have used formalisms developed in computer science (e.g. hybrid Petri nets) to get simplified models
of some molecular phenomena like transcription and gene regulation processes. According to molecular
cell biology [13]: (i) “the life span of intracellular proteins varies from as short as a few minutes for
mitotic cycles, which help regulate passage through mitosis, to as long as the age of an organism for
proteins in the lens of the eye”, and (ii) “Most cells in multicellular organisms. . . carry out a specific
set of functions over periods of days to months or even the lifetime of the organism (nerve cells, for
example)”. Lifetimes play an important role in the biological evolution; we mention an example from
the immune system.

Example 1. According to [13], T-cell precursors arriving in the thymusfrom the bone marrow spend up
to a week differentiating there before they enter a phase of intense proliferation. In a young adult mouse
the thymus contains around108 to 2×108 thymocytes. About5×107 new cells are generated each day;
however, only about106 to 2×106 (roughly2−4%) of these will leave the thymus each day as mature T
cells. Despite the disparity between the numbers of T cells generated daily in the thymus and the number
leaving, the thymus does not continue to grow in size or cell number. This is because approximately98%
of the thymocytes which develop in the thymus also die withinthe thymus.

Among the formalisms able to model these systems by using explicit resources, parallelism and
timing, we refer to membrane systems [15] and Petri nets [10,16]. Membrane systems were extended
with timing aspects in [4, 5]. Petri Nets have two main extensions with time: Time Petri Nets [14] (a
transition can fire within a time interval) and Timed Petri Nets [19] (a transition fires as soon as possible).
In Petri nets, time can be considered relative both to placesand transitions [17, 20]. In this paper, we
define a timed extension (relative to transitions) for Petrinets with localities, and we establish a link
between timed membrane systems and timed Petri nets with localities.

http://dx.doi.org/10.4204/EPTCS.57.4
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Some connections between membrane systems and Petri nets are presented for the first time in [9, 21].
A direct structural relationship between these two formalisms is established in [11, 12] by defining a
new class of Petri nets called Petri nets with localities. Localities are used to model the regions of
membrane systems. This new class of Petri nets has been used to show how maximal evolutions from
membrane systems are faithfully reflected in the maximally concurrent step sequence semantics of their
corresponding Petri nets with localities.

Despite the fact that various timed extensions exist for both membrane systems and Petri nets, we are
not aware of any connection between these timed extensions.Thus, we relate timed membrane systems
with timed Petri nets with localities. The existing links (marked by citation or easy to prove) between
timed membrane systems and timed Petri nets are described inthe following diagram.

Membrane Systems [15] Petri Nets with Localities [12]
[12]

timed Membrane Systems [4] timed Petri Nets with Localities

Surprisingly, we prove that adding timing aspects does not lead to more powerful formalisms, and the
new links are expressed by the following diagram.

Membrane Systems [15] Petri Nets with Localities [12]
[12]

Prop. 1 Prop. 2

timed Membrane Systems [4] timed Petri Nets with Localities
Prop. 3

We prove that timing does not increase the expressive power of both membrane systems and Petri
nets with localities. However the timed formalisms are ableto describe more naturally some real systems
involving timing. Although there are few extensions with time for both membrane systems and Petri nets,
it does not exist a connection between these timed extensions. An attempt is presented in [18] by using
a software simulation (and having some decidability aims).We relate timed membrane systems to timed
Petri nets with localities following the research line of [12], and prove an operational correspondence
between them.

2 Timed Membrane Systems

Membrane systems (also called P systems) are introduced by Păun as a model of distributed, parallel and
nondeterministic systems inspired by cell biology [15]. A cell is divided in various compartments, each
compartment with a different task, with all of them working simultaneously to accomplish a more general
task for the whole system. The membranes determine regions where objects and evolution rules can be
placed. The objects evolve according to the rules associated with each region, and the regions cooperate
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in order to maintain the proper behaviour of the whole system. The application of evolution rules is
done in parallel, and is eventually regulated by priority relationships between rules. Several results and
variants of membrane systems (inspired by different aspects of living cells like symport and antiport
communication through membranes, catalytic objects, membrane charge, etc.) are presented in [15].
Various applications of membrane systems are presented in [7]. Links between membrane systems and
process calculi are presented in [6]. An updated bibliography can be found on the membrane systems
webpagehttp://ppage.psystems.eu.

The structure of a membrane system is represented by a tree (with the skin as its root), or equivalently,
by a string of correctly matching parentheses where each pair of matching parentheses corresponds to a
membrane. Graphically, a membrane structure is represented by a Venn diagram in which two sets can
be either disjoint, or one is the subset of the other. A membrane without any other membrane inside is
said to be elementary. The membranes are labelled in a one-to-one manner.

Let N be the set of positive integers, andV a finite alphabet of symbols. A multiset overV is a
mappingu : V → N. We use the string representation of multisets that is widely accepted and used in
membrane systems; a multisetw described bya2b5 means thata appears twice inw, while b appears five
times inw. We use a global clock to simulate the passage of time. The following definition of timed
membrane systems is similar to that introduced in [4], but without considering catalysts, signal-promoters
and output region.

Definition 1. A timed membrane systemΠ = (V,µ ,w1, . . . ,wn,R1, . . . ,Rn,e) is defined by

• V is an alphabet (its elements are calledobjects);

• µ describes themembrane structure, namely a structure consisting of a hierarchy of n membranes
labelled from1 to n which are either disjoint or included; we distinguish the external membrane,
usually called “skin”;

• w1, . . . ,wn are finite multisets over V ; wi represents the multiset of objects associated to membrane
i; n ≥ 1 is the initial degree of the system;

• R1, . . . ,Rn are finite sets of evolution rules over V associated with the membranes ofµ ; the rules
are of the form a→ v, where a∈V and v is a multiset from{(a,here),(a,out) | a∈V}∪{(a, in j ) |
a∈V,1≤ j ≤ n};

• e : R1∪ . . .∪Rn → N is a (computable) function indicating the execution time ofeach evolution
rule; the time evolves according to a global clock that starts from 0 and splits time in equal
intervals (units of time).

The membrane structure and the multisets inΠ determine a configuration of the system. We can pass
from a configuration to another one by using the evolution rules. The use of a ruleu→ v in a region with
a multisetw means to subtract the multiset identified byu from w, and then add the multiset represented
by v. Since the right hand sidev of a rule consists only of messages, an object introduced by arule cannot
evolve in the same step by means of another rule. If a message appears inv in the form(c,here), then it
remains in the same region. If it appears as(c, in j ), then a copy ofc is introduced in the child membrane
with the label j; if a child membrane with the labelj does not exist, then the rule cannot be applied. If it
appears as(c,out), then a copy of the objectc is introduced in the parent (surrounding) membrane. The
system may contain rules which are never applicable, and also rules which send objects out of the skin.

The evolution rules in a membrane are applied in a maximal parallel manner, and all membranes
evolves in parallel. At each tick of the (global) clock, all the rules that can be applied must be applied in
a maximal parallel manner (this means that no further rule could be applied at the same time unit). An
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evolution ruler started at thej-th tick of the clock ends its execution at thej +e(r)-th tick, meaning that
the newly created objects by ruler can be used starting from thej +e(r)+1-th tick of the clock. When
a rule starts, the objects from the left hand side of the rule become unavailable for other rules.

R2 = {r3 : a→ (b,out)(a,here)}

∪ {r4 : b→ (b,out)}

R1 = {r1 : a→ (a, in2)}

∪ {r2 : b→ (a, in2)}

2

a3 b5

1
b2 a4

As an example, we consider a membrane system
with two nested membranes (the inner membrane
labelled by 2, the outer membrane labelled by 1),
two setsR1 andR2 of evolution rules having the
execution timese(r1) = 2, e(r2) = 5, e(r3) = 3,
e(r4) = 1, a global clock and two symbols (a and
b). Initially, membrane 1 contains the multiset
b2 a4, and membrane 2 contains the multiseta3 b5.

Figure 1: A Timed Membrane System

In what follows we define the configurations of a membrane system, and the transition system given
by considering each of the transition steps defined by maximally parallel rewriting and parallel commu-
nication, as in [8]. LetV be a finite alphabet of objects over which we consider the freecommutative
monoidV∗ whose elements are multisets (the empty multiset is denotedby ε). Objects together with
a target indication are enclosed in messages of form(w,here), (w,out), and(w, inl ). For the sake of
simplicity, hereinafter we consider that the messages withthe same target indication merge into one
message:

∏
i∈I

(vi ,here) = (w,here), ∏
i∈I

(vi , inl ) = (w, inl ), ∏
i∈I

(vi ,out) = (w,out),

with w= ∏
i∈I

vi , I a non-empty set, and(vi)i∈I a family of multisets overV.

A configuration for a membrane system is a tupleC = (w1, . . . ,wn,k), namely the multisets of all
regions together with the value of the global clock. An intermediary configuration is a tuple in which the
objects have associated target indications. Each membranesystem has an initial configuration which is
characterized by the initial multiset of objects for each membrane of the initial membrane structure of
the system. For two configurationsC andC′ of Π, we say that there is a transition fromC toC′, and write
C ⇒C′, if the following stepsare executed in the given order:

1. maximal parallel rewriting step(
mpr
=⇒): each membrane evolves in a maximal parallel manner;

2. parallel communication of objects through membranes(
tar
=⇒), by sending and receiving messages.

The last step takes place only if there are messages resulting from the first step. If the first step is not
possible, then neither is the second step, and we say that thesystem has reached ahalting configuration.
According to [3], a transition step between two configurations C,C′ is given by: C ⇒ C′ iff C andC′

are related by the following relation:C
mpr
=⇒

tar
=⇒C′. Starting from a configuration without messages, we

apply the “mpr” step and get an intermediate configuration; if we have messages, then we apply the “tar”
step. If the last configuration has no messages, then we say that the transition relation⇒ is well-defined
as an evolution step between the first and last configurations.

The evolution of the systemΠ at time stepk, from a configurationC = (w1, . . . ,wn,k) to another
configurationC′ = (w′

1, . . . ,w
′
n,k+1) is made by applying a multiset of rulesR in a maximally parallel
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manner. If the multisetRof rules is empty, then only the clock is incremented (fromk to k+1). Given a
multiset of rulesR, we denote bylhsi = ∑r∈RR(r) · lhsr

i the multiset of objects in the left hand sides of
the rules inR which are associated to membranei. In a similar way, byrhsk

i, j = ∑r∈R; e(r)= j R(r) · rhsr,k
i, j

is denoted the multiset of objects in the right hand sides of the rules inR applied at timek which is
associated to membranei after j units of time. We also denote bym= maxr∈Re(r) the maximum delay

inferred by the rules ofR. C evolves toC′ by a multisetR of rules (this is denoted byC
R

=⇒C′) if for
each membranei the following conditions hold:

(i) lhsi ≤ wi;

(ii) there is no ruler 6∈ R such thatlhsr
i + lhsi ≤ wi;

(iii ) for eacha∈V, w′
i(a) = wi(a)− lhsi(a)+∑k

s=max(0,k−m) rhss
i,0(a).

According to(i), a configurationC has in each membrane labelled byi enough objects to enable the
execution of the multisetR of rules. The maximal parallelism is captured by(ii), saying that an extra
evolution rule cannot be added toR. Condition(iii ) describes the effect of the rules application by adding
all the objects havingj = 0 created in the lastmin(k,m) steps which are ready to be used in the membrane
system evolution. Before incrementing the global clock, all multisetsrhss

i, j are transformed intorhss
i, j−1

for max(0,k−m) ≤ s, j ≤ k.

Proposition 1. For every timed membrane systemΠ = (V,µ ,w0,1, . . . ,w0,n,R1, . . . ,Rn,e) there exists
an untimed membrane systemΠ′ = (V ′,µ ′,w′

0,1, . . . ,w
′
0,n,R

′
1, . . . ,R

′
n) that simulates the evolution ofΠ

(restricted to the elements of V). Formally, for all a∈V and k∈N we have wk,i(a) = w′
k,i(a), where wk,i

and w′k,i are the multisets of objects from membrane i ofΠ andΠ′ at step k.

Proof. In what follows we show how starting from a timed membrane systemΠ=(V,µ ,w0,1, . . . ,w0,n,R1,

. . . ,Rn,e) we may construct an untimed membrane systemΠ′ = (V ′,µ ′,w′
0,1, . . . ,w

′
0,n,R

′
1, . . . ,R

′
n), where

• V ′ =V ∪{a j | a∈V,0≤ j ≤ m−1}, wherem= maxr∈Re(r);

• µ ′ = µ andw′
0,i = w0,i for 1≤ i ≤ n;

• for each ruler : u→ v of Ri, 1≤ i ≤ n havinge(r) = 0, we addr to R′
i;

• for each ruler : u→ v of Ri, 1≤ i ≤ n havinge(r) > 0, we add toR′
i the following sets of rules

which simulate properly the passage ofe(r) units of time:

– u→ v′, wherev′ is derived fromv by replacing eacha∈V by ae(r)−1 ∈V ′;

– a j → a j−1, 1≤ j ≤ e(r)−1;

– a0 → a.

We show that each step of the timed membrane system can be simulated by the corresponding untimed
membrane system, using induction on the number of steps (time units) in timed membrane system.

Firstly, we consider a configurationC0 = (w0,1, . . . ,w0,n,0) of the timed membrane system and a

maximal multisetR of rules such thatC0
R

=⇒C1. The resulting configurationC1 = (w1,1, . . . ,w1,n,1) is
given byw1,i(a) = w0,i(a)− lhs(i)(a)+ rhs0

i,0(a) for all 1≤ i ≤ n anda∈V. Following the construction
above, the initial configuration of the untimed membrane system isC′

0 = (w′
0,1, . . . ,w

′
0,n) wherew′

0,i(a) =

w0,i(a) for all 1≤ i ≤ n anda∈V. R′ is the multiset of rules obtained fromR such thatC′
0

R′

=⇒C′
1. The

resulting configurationC′
1 is given byw′

1,i(a) = w′
0,i(a)− lhsi(a)+ rhsi(a) for all 1≤ i ≤ n anda∈V ′.

This configuration contains all the elements ofC1 and some additional objects fromV ′ introduced to
simulate properly the passage of time. Regarding the elements a∈V, it results thatrhs0

i,0(a) = rhsi(a),
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namelyw′
1,i(a) = w1,i(a). ThereforeC′

1 equalsC1 regarding the elements ofV (we ignore the new
elements ofV ′ because they are used only to simulate the passage of time).

Secondly, we consider a configurationCk = (wk,1, . . . ,wk,n,k) of the timed membrane system and a

maximal multisetR of rules such thatCk
R

=⇒ Ck+1. The resulting configurationCk+1 = (w(k+1),1, . . . ,

w(k+1),n,k+ 1) is given byw(k+1),i(a) = wk,i(a)− lhs(i)(a) +∑k
s=max(0,k−m) rhss

i,0(a) for all 1 ≤ i ≤ n
and a ∈ V. In the same time, the multisetsrhss

i, j are transformed intorhss
i, j−1 for max(0,k−m) ≤

s, j ≤ k. Following the construction above, the configuration of theuntimed membrane system isC′
k =

(w′
k,1, . . . ,w

′
k,n), wherew′

k,i(a) = wk,i(a) for all a∈V, andw′
k,i(a j) = ∑k

s=max(0,k−m) rhss
i, j (a) for all a j ∈

V ′\V. This means that for all 1≤ i ≤ n, the multisetw′
k,i contains all the objects fromwk,i and some

additional objects fromV ′. For eacha ∈ V from the multisetrhss
i, j , the multisetw′

k,i contains addi-
tional objectsa j . The restrictionmax(0,k−m) ≤ s≤ k used when creating the objecta j in membrane
i means that an objecta has appeared in the right hand side of a rule from timed membrane systems
in the lastmin(k,m) units of time, but has to waitj units of time until it should be added to mem-

branei in timed membrane systems.R′ is the multiset of rules obtained fromR such thatC′
k

R′

=⇒C′
k+1,

with w′
k+1,i(a) = w′

k,i(a)− lhsi(a) + rhsi(a) for all 1 ≤ i ≤ n anda ∈ V ′. Moreover, in this step some
objects ofV ′ are transformed into objects ofV by applying the generic rulea0 → a (the other objects
a j ∈ V ′ are transformed into objectsa j−1 ∈ V ′ by applying the generic rulesa j → a j−1). Finally, the
number of objectsa∈V obtained inΠ′ at this step corresponds to∑k

s=max(0,k−m) rhss
i,0(a). It results that

∑k
s=max(0,k−m) rhss

i,0(a) = rhsi(a), namelyw′
(k+1),i(a) =w(k+1),i(a). ThereforeC′

k+1 equalsCk+1 regarding
the elements ofV (we ignore the elementsa j ∈V ′ because they are used only to simulate the passage of
time).

In what follows we give an example that illustrates the statement of Proposition 1.

Example 2. We consider a timed membrane systemΠ = (V,µ ,w1,w2,R1,R2,e), where:

• V = {a,b}; µ = [[ ]2]1; w1 = ab; w2 = a2b;

• R1 = {r1 : b→ (b, in2)}; R2 = {r2 : a→ (a,out)}; e(r1) = 0, e(r2) = 2.

Since the initial configuration of the timed membrane systemΠ is (ab,a2b,0), then the evolution of the
timed membrane system in terms of configurations is:

(ab,a2b,0)
{r1+2r2}
=⇒ (a,b2,1)

/0
=⇒ (a,b2,2)

/0
=⇒ (a3,b2,3)

Graphically this can be depicted as:

1

ab {r1+2r2}
=⇒

2
a2b

t = 0
1

a /0
=⇒

2
b2

t = 1
1

a /0
=⇒

2
b2

t = 2
1

a3

2
b2

t = 3

We construct an untimed membrane systemΠ′ = (V ′,µ ′,w′
1,w

′
2,R

′
1,R

′
2), where:

• V ′ = {a,a0,a1,b,b0,b1}; µ = [[ ]2]1; w1 = ab; w2 = a2b;

• R1 = {r1 : b→ (b, in2)}; R2 = {r1
2 : a→ (a1,out); r2

2 : a1 → a0; r3
2 : a0 → a}.

Since the initial configuration of the untimed membrane systemΠ′ is the same as the initial configuration
of the timed membrane systemΠ, namely(ab,a2b,0), then the evolution of the untimed membrane system
in terms of configurations is:

(ab,a2b)
{r1+2r1

2}=⇒ (aa2
1,b

2)
{r2

2}=⇒ (aa2
0,b

2)
{r3

2}=⇒ (a3,b2)
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Graphically this can be depicted as:

1

ab {r1+2r1
2}=⇒

2
a2b

1

aa2
1

{r2
2}=⇒

2
b2

1

aa2
0

{r3
2}=⇒

2
b2

1

a3

2
b2

If we are interested only in the symbols of V in the untimed evolution, then we have:

(ab, a2b, 0)
{r1+2r2}
=⇒ (a, b2, 1)

/0
=⇒ (a, b2, 2)

/0
=⇒ (a3, b2, 3)

|| || || || || || || ||

(ab∩V,a2b∩V)
{r1+2r1

2}=⇒ (aa2
1∩V,b2∩V)

{r2
2}=⇒(aa2

0∩V,b2∩V)
{r3

2}=⇒(a3∩V,b2∩V)
and thus the statement of Proposition 1 holds.

It is easy to prove that the class of timed membrane systems includes the class of untimed membrane
systems, since we can assign 0 to all the rules by the timing functione.

3 Timed Petri Nets with Localities

An extension of Petri nets with localities is defined by adding delays to transitions (like in coloured Petri
nets [10]). The value of the global clock is kept in a variablegc.

Definition 2. A timed Petri net with localitiesN = (P,T,W,L,D,M0) is given by:

(i) finite disjoint sets P of places and T of transitions;

(ii) a weight function W: (T ×P)∪ (P×T)→N;

(iii ) a locality mapping L: T →N;

(iv) a delay mapping D: T →N;

(v) an initial marking M0 : P∪{gc} →N.

If W(x,y) ≥ 1 for some(x,y) ∈ (T ×P)∪ (P×T), then(x,y) is an arc from the place (transition)x to
the transition (place)y. The locality mappingL defines sets of transitions called localities (depending on
the number associated to each transition). The delay mapping D introduces a time delay to each object
created by a transition; the delays indicate how long the objects cannot be used in other transitions. The
initial markingM0 assigns to each place a number of tokens, and value 0 to the global clockgc.

a

• •

b

• • •

r2@3

r1@2

1
1

2
1

2

1
1

2
Places are drawn as rounded lines with tokens
placed inside. A transition is drawn as a rect-
angle containing a label, and the delay it in-
troduces for the newly created tokens. Tran-
sitions are connected to places by weighted
directed arcs.

Figure 2: A Timed Petri Net
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Markings represent global states of the timed Petri nets with localities, and they are defined as func-
tions fromP∪{gc} toN. A Petri netN evolves at a time stepk from a markingM to another mark-
ing M′ by a multiset of transitionsU : T → N (e.g.,U(tr) = 2 for tr ∈ T means thatU contains twice
the transitiontr). If the multisetU of transitions is empty, then the only action is incrementing the
global clockgc. Given a multiset of transitionsU , we denote bypre(U)(p) = ∑tr∈U U(tr) ·W(p, tr)
the multiset of tokens associated to the input arcs (P×T) of all transitionstr ∈U . In a similar way, by
postkj (p) = ∑tr∈U ; D(tr)= j U(tr) ·W(tr, p) is denoted the multiset of tokens associated to the output arcs
(T×P) which are added to their corresponding places afterj units of time (k represents the current time).
We denote bym′ = maxtr∈UD(tr) the maximum delay inferred by the transitions ofU . A marking M
leads in a max-enabled way to a markingM′ via a multisetU of transitions (denoted byM[U〉maxM′) if
M′(gc) = M(gc)+1 and for each placep∈ P the following conditions hold:

(i) pre(U)(p)≤ M(p);

(ii) there isno transitiontr ∈U such thatpre({tr})(p)+ pre(U)(p) ≤ M(p);

(iii ) M′(p) = M(p)− pre(U)(p)+∑k
s=max(0,k−m′) posts0(p).

According to(i), a markingM has in each placep enough tokens to enable the execution of the multiset
U of transitions. The maximal parallelism is captured by(ii), saying that an extra transition cannot be
added toU . Condition(iii ) describes the effect of the transitions application by adding all the tokens
having j = 0 created in the lastmin(k,m′) steps which are ready to be used in Petri nets evolution.
Before incrementing the global clock, all the multisetspostsj (p) are transformed intopostsj−1(p) for
max(0,k−m′)≤ s, j ≤ k.

Proposition 2. For every timed Petri net with localitiesN = (P,T,W,L,D,M0) there exists a Petri net
with localitiesN ′ = (P′,T ′,W′,L′,M′

0) that simulates the evolution ofN (with respect to places of P).
Formally, for all p∈ P and k∈N we have Mk(p) = M′

k(p), where Mk and M′
k are markings ofN and

N ′ at step k.

Proof. In what follows we show how starting from a timed Petri net with localitiesN = (P,T,W,L,
D,M0), we construct an untimed Petri net with localitiesN ′ = (P′,T ′,W′,L′,M′

0), where

• for everyp∈P andtr ∈ T such thatW(p, tr)> 0, we consider additional placesp, p0
tr , . . . , p

D(tr)−1
tr

in P′; if D(tr) = 0 then onlyp∈ P′;

• for every tr ∈ T and p ∈ P such thatW(tr, p) > 0, we consider additional transitionstr, tr0, . . . ,

trD(tr)−1 in T ′; if D(tr) = 0 thentr ∈ T ′;

• for everyp∈ P andtr ∈ T such thatW(p, tr) > 0, we consider the weightsW′(p, tr) in N ′:

– if D(tr) = 0 thenW′(p, tr) =W(p, tr);

– if D(tr)> 0 thenW′(p, tr) =W(p, tr), and

W′(tr, pD(tr)−1
tr ) =W′(p j

tr , tr
j) =W′(tr i , pi−1

tr ) =W(tr, p) for 0≤ j < i≤D(tr)−1;

• for everyp∈ P andtr ∈ T such thatW(tr, p) > 0, we consider the following weightsW′(tr, p) in
N ′: if D(tr) = 0 thenW′(tr, p) =W(tr, p), elseW′(tr0, p) =W(tr, p);

• for everytr ∈T, we take the same locality labell = L(tr) for the new transitionstr, tr0, . . . , trD(tr)−1;

• if p∈ P thenM′
0(p) = M0(p), and if p∈ P′\P thenM′

0(p) = 0 .
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We show that each step of the timed Petri nets with localitiescan be simulated by the corresponding
untimed Petri nets with localities; we prove this by induction on the number of steps (time units) in
timed Petri nets with localities.

Firstly, we consider a markingM0 of the timed Petri net with localities and a multiset of transitionsU
such thatM0[U〉maxM1. The resulting markingM1 is given byM1(p) = M0(p)− pre(U)(p)+ post00(p)
for all p∈P. Following the construction above, the initial marking of the untimed Petri net with localities
is M′

0, whereM′
0(p) = M0(p) for all p∈ P′. U ′ is the multiset of transitions obtained fromU such that

M′
0[U

′〉maxM′
1. The resulting markingM′

1 is given byM′
1(p

′) = M′
0(p

′)− pre(U ′)(p)+ post(U ′)(p) for
all p′ ∈ P′, wherepost(U ′)(p) = ∑tr∈U ′(U ′(tr) ·W′(tr, p)). This marking contains all the places ofM1

and some additional places fromP′. Regarding the placesp∈ P, it results thatpost00(p) = post(U ′)(p),
namelyM′

1(p) = M1(p). ThereforeM′
1 equalsM1 regarding the number of tokens from the places ofP

(we ignore the new places ofP′ because they do not play any role at this step).

Secondly, we consider a markingMk of the timed Petri net with localities and a multisetU of tran-
sitions such thatMk[U〉maxMk+1. The resulting configurationMk+1 is given byMk+1(p) = Mk(p)−
pre(U)(p) +∑k

s=max(0,k−m′) posts0(p) for all p ∈ P. In the same time, the multisets of tokenspostsj (p)
are renamed bypostsj−1(p) for all max(k−m′,0) ≤ s, j ≤ k and p ∈ P. Following the construction
above, the marking of the untimed Petri net with localities is M′

k, whereM′
k(p) = Mk(p) for all p∈ P,

andM′
k(p

j
tr) = ∑k

s=max(0,k−m′) postsj (p) for all additionalp j
tr ∈ P′\P, tr ∈ T and 0≤ j ≤ D(tr)−1. This

means that the common places of both nets have the same numberof tokens, while for the additional
places appearing only inP′ we add tokens such that for each token frompostsj (p) obtained after fir-

ing the transitiontr, the placep j
tr contains a token. The restrictionmax(0,k−m′) ≤ s≤ k (used when

creating a token in a new placep j
tr of P′) means that a token appears on an output arc of transitiontr

in timed Petri nets during the lastmin(k,m′) units of time; this token has to waitj units of time un-
til it is added to placep of P. The multiset of rulesU ′ is obtained fromU such thatM′

k[U
′〉maxM′

k+1,
with M′

k+1(p) = M′
k(p)− pre(U ′)(p) + post(U ′)(p) for all p ∈ P′. Moreover, in this step some to-

kens are transferred from places ofP′ into places ofP by firing the transitionstr0 (the other tokens
from placesp j

tr ∈ P′ are transferred into placesp j−1
tr ∈ P′ by firing the transitionstr j ). Thus, the

number of tokens obtained in placesp ∈ P at each stepk is equal to∑k
s=k−m′ posts0(p). It results that

∑k
s=k−m′ posts0(p) = post(U ′)(p), namelyM′

k+1(p) = Mk+1(p) for all p ∈ P. ThereforeM′
k+1 equals

Mk+1 regarding the number of tokens from the places ofP (we ignore the remaining placesp j
tr ∈ P′

because they are used only to simulate the passage of time).

Example 3. We consider a timed Petri net with localitiesN = (P,T,W,L,D,M0), where

• P= {(a,1),(a,2),(b,1), (b,2)}; T = {tr r1
1 , tr r2

2 };

• D(tr r1
1 ) = 0; D(tr r2

2 ) = 2; L(tr r1
1 ) = 1; L(tr r2

2 ) = 2;

• W((a,1), tr2
2 ) =W(tr r2

2 ,(a,2)) =W((b,1), tr1
1 ) =W(tr r1

1 ,(b,2)) = 1

• M0((a,1)) = M0((b,1)) = M0((b,2)) = 1; M0((a,2)) = 2; M0(gc) = 0.

Graphically the system at time unit gc= 0 can be represented as follows:
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(a,1)

•

(a,2)

• •tr r2
2 @21 1

(b,1)

•

(b,2)

•tr r1
1 @01 1

For gc= 1 and gc= 2, the timed Petri net with localities can be represented as follows:

(a,1)

•

(a,2)

tr r2
2 @21 1

(b,1) (b,2)

• •tr r1
1 @01 1

while for all gc≥ 3 we have the following representation

(a,1)

• • •

(a,2)

tr r2
2 @21 1

(b,1) (b,2)

• •tr r1
1 @01 1

We construct an untimed Petri net with localitiesN ′ = (P′,T ′,W′,L′,M′
0), where

• P= {(a,1), p, p0, p1,(b,1),(b,2)} and T= {tr r1
1 , tr, tr0, tr1}, where p= (a,2) and tr= tr r2

2 ;

• L(tr r1
1 ) = 1; L(tr) = L(tr0) = L(tr1) = 2;

• W((b,1), tr1
1 ) =W(tr r1

1 ,(b,2)) = 1

• W(p, tr) =W(tr, p1) =W(p1, tr1) =W(tr1, p0) =W(p0, tr0) =W(tr0,(a,1)) = 1

• M0((a,1)) = M0((b,1)) = M0((b,2)) = 1; M0(p) = 2; M0(p0) = M0(p1) = 0.

Graphically, the initial system can be represented as follows:

(a,1)

•

p
• •tr0

p0
tr1

p1

tr1 1 1 1 1 1

(b,1)

•

(b,2)

•tr r1
1

1 1

After one step, we obtain
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(a,1)

•

p
tr0

p0
tr1

p1

• • tr1 1 1 1 1 1

(b,1) (b,2)

• •tr r1
1

1 1

The system evolves to

(a,1)

•

p
tr0

p0

• • tr1

p1

tr1 1 1 1 1 1

(b,1) (b,2)

• •tr r1
1

1 1

The system stops its evolution after reaching the configuration

(a,1)

• • •

p
tr0

p0
tr1

p1

tr1 1 1 1 1 1

(b,1) (b,2)

• •tr r1
1

1 1

We notice that indeed, if we refer only to the markings of the places from P during the evolution of timed
and untimed Petri nets with localities, the markings are thesame.

It is easy to prove that the class of timed Petri net with localities includes the class of Petri net with
localities, since we can assign 0 to all values of the function D, namely all transitions fire instantaneously.

4 Linking Timed Membrane Systems to Timed Petri Nets

Following the approach given in [12] where membrane systemsare translated into Petri nets with local-
ities, we present a translation of timed membrane systems into timed Petri nets with localities, and then
prove an operational correspondence between them.

Definition 3. Let Π = (V,H,µ ,w1, . . . ,wn,R1, . . . ,Rn,e) be a timed membrane system. Then the cor-
responding timed Petri net with localities isNΠ = (P,T,W,L,D,M0) with its components defined as
follows:

• P=V ×{1, . . . ,n} - to each object a of membrane i there corresponds a place p= (a, i);

• T = {tr r
j | r ∈ Rj ,1≤ j ≤ n} - to each rule r of membrane j corresponds a transition trr

j ;

• for every place p= (a, i) ∈ P and every transition tr= tr r
j ∈ T

W(p, tr) =

{

lhsr
i (a) if i = j

0 otherwise
and W(tr, p) =



















rhsr,0
i,e(r)(a) if i = j

rhsr,0
i,e(r)((a,out)) if (i, j) ∈ µ

rhsr,0
i,e(r)((a, in j )) if ( j, i) ∈ µ

0 otherwise
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• for every place p= (a, i) ∈ P, we have M0(p) = wi(a);

• for every transition trrj ∈ T, we have L(t) = j;

• for every trrj ∈ T, we have D(tr) = e(r).

Example 4. We consider a timed membrane systemΠ = (V,µ ,w1,w2,R1,R2,e), where

• V = {a,b}; µ = [[ ]2]1; w1 = ab; w2 = a2b;

• R1 = {r1 : b→ (b, in2)}; R2 = {r2 : a→ (a,out)}; e(r1) = 0, e(r2) = 2.

Graphically, the initial configuration can be depicted as:

1

ab
2

a2b

t = 0

The corresponding timed Petri net with localities isN = (P,T,W,L,D,M0), where:

• P= {(a,1),(a,2),(b,1), (b,2)}; T = {tr r1
1 , tr r2

2 };

• D(tr r1
1 ) = 0; D(tr r2

2 ) = 2; L(tr r1
1 ) = 1; L(tr r2

2 ) = 2;

• W((a,1), tr2
2 ) =W(tr r2

2 ,(a,2)) =W((b,1), tr1
1 ) =W(tr r1

1 ,(b,2)) = 1

• M0((a,1)) = M0((b,1)) = M0((b,2)) = 1; M0((a,2)) = 2; M0(gc) = 0.

Graphically, the system at time unit gc= 0 can be represented as

(a,1)

•

(a,2)

• •tr r2
2 @21 1

(b,1)

•

(b,2)

•tr r1
1 @01 1

According to this translation,MC denotes the marking ofNΠ corresponding to a configurationC of
the timed membrane systemΠ. Moreover, for each multisetR of applied rules in a timed membrane
system, the corresponding multiset of transitions in timedPetri nets with localities is denoted byUR.
Using these notations, we have the following operational correspondence:

Proposition 3. C
R

=⇒C′ if and only if MC[UR〉maxMC′ .

Proof. Let us consider the membrane configurationC=(w1, . . . , wn). According to Definition 3, we have
MC(p) = wi(a) for each placep= (a, i). This is a consequence of the fact that there is a correspondence
between membranes and places, and between the multiset inside membranes and the marking of the
places. After applying the multisetR of rules inC, we obtain a configurationC′ = (w′

1, . . . ,w
′
n) where

for each membranei and each objecta we havew′
i(a) = wi(a)− lhsi(a)+∑k

s=max(0,k−m) rhss
i,0(a). In the

corresponding timed Petri net with localities, starting from the markingMC and applying the multisetUR

of transitions, we obtain a new markingM′ where for each placepwe getM′(p)=MC(p)− pre(UR)(p)+
∑k

s=max(0,k−m′) posts0(p). It is easy to note thatMC(p) = wi(a), pre(UR)(p) = lhsi(a) and

∑k
s=max(0,k−m′) posts0(p) = ∑k

s=max(0,k−m) rhss
i,0(a). Therefore, it results thatM′(p)=w′

i(a) andM′ = M′
C.
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5 Conclusion

There exist papers in the field of membrane computing in whichthe concept of time is used mainly
as timers for objects and membranes [1, 2], and as execution period for each rule [4, 5]. The idea of
adding time to Petri nets is described in [16]: “addition of timing information might provide a powerful
new feature for Petri nets, but may not be possible in a mannerconsistent with the basic philosophy of
Petri nets”. Different ways of incorporating timing information into Petri nets were proposed by many
researchers; specific application fields represent the inspiration for different proposals of modelling time.
For Petri nets with localities [12], time constrains are added in a way inspired by the coloured Petri nets.

In this paper we prove that adding timing to both membrane systems and Petri nets with localities
does not increase the expressive power of the correspondinguntimed formalisms, establish a link between
these timed formalisms by defining a relationship between timed formalisms under the assumption of
maximal firing, and prove an operational correspondence between them. This relationship allows to
use the Petri nets tools to verify certain behavioural properties (reachability, boundedness, liveness and
fairness) of membrane systems. An attempt to use Petri nets software to simulate timing aspects in
membrane systems is presented in [18].

As further work, we can mention the use of timed membrane systems to model some biological
systems, while Petri nets tools can be used to analyze and verify automatically the (timing) behavioural
properties of these models.
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