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Timing aspects in formalisms with explicit resources andafi@lism are investigated, and it is pre-
sented a formal link between timed membrane systems and fagi nets with localities. For both
formalisms, timing does not increase the expressive pdwvever both timed membrane systems
and timed Petri nets are more flexible in describing molecpiteenomena where time is a critical
resource. We establish a link between timed membrane sgstachtimed Petri nets with localities,
and prove an operational correspondence between them.

1 Introduction

The evolution of complex real systems frequently involvesious interactions among components.
Some mathematical models of such systems combine botletéisand continuous evolutions on multi-
ple time scales with many orders of magnitude. For examp&nolecular operations of a living cell
can be thought of as such a dynamical system. The molecutaatopns happen on time scales rang-
ing from 1071° to 10* seconds, and proceed in ways which are dependent on pomslati molecules
ranging in size from as few as approximately 10 to approxégais many as 8. Molecular biologists
have used formalisms developed in computer science (elgridhietri nets) to get simplified models
of some molecular phenomena like transcription and gendatgn processes. According to molecular
cell biology [13]: (i) “the life span of intracellular praigs varies from as short as a few minutes for
mitotic cycles, which help regulate passage through nsidsi as long as the age of an organism for
proteins in the lens of the eye”, and (ii) “Most cells in madtilular organisms.. carry out a specific
set of functions over periods of days to months or even tledirtile of the organism (nerve cells, for
example)”. Lifetimes play an important role in the biolaglievolution; we mention an example from
the immune system.

Example 1. According to [13], T-cell precursors arriving in the thymfrem the bone marrow spend up
to a week differentiating there before they enter a phasatehse proliferation. In a young adult mouse
the thymus contains arourid® to 2 x 108 thymocytes. Abol& x 10’ new cells are generated each day:;
however, only about(® to 2 x 10° (roughly 2 — 4%) of these will leave the thymus each day as mature T
cells. Despite the disparity between the numbers of T cefieigited daily in the thymus and the number
leaving, the thymus does not continue to grow in size or eefilver. This is because approximateB%

of the thymocytes which develop in the thymus also die witieithymus.

Among the formalisms able to model these systems by usinficéxgesources, parallelism and
timing, we refer to membrane systems|[15] and Petri nets’Iéf), Membrane systems were extended
with timing aspects in_[4,]5]. Petri Nets have two main exiems with time: Time Petri Nets [14] (a
transition can fire within a time interval) and Timed Petri®[E. 9] (a transition fires as soon as possible).
In Petri nets, time can be considered relative both to placestransitions [17, 20]. In this paper, we
define a timed extension (relative to transitions) for Pe#tis with localities, and we establish a link
between timed membrane systems and timed Petri nets wilitles.
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Some connections between membrane systems and Petrieptesented for the first time in/[9,121].

A direct structural relationship between these two forsmal is established in [11, [12] by defining a
new class of Petri nets called Petri nets with localities.cdlities are used to model the regions of
membrane systems. This new class of Petri nets has beenausbaw how maximal evolutions from
membrane systems are faithfully reflected in the maximadlycarrent step sequence semantics of their
corresponding Petri nets with localities.

Despite the fact that various timed extensions exist fan bembrane systems and Petri nets, we are
not aware of any connection between these timed extensidns, we relate timed membrane systems
with timed Petri nets with localities. The existing links §rked by citation or easy to prove) between
timed membrane systems and timed Petri nets are descriltlee following diagram.

[12]

Membrane Systems [15] Petri Nets with Localities [12]

timed Membrane Systems|[4] timed Petri Nets with Localities

Surprisingly, we prove that adding timing aspects does ead to more powerful formalisms, and the
new links are expressed by the following diagram.

12 . . .
Membrane Systems [15] [12] Petri Nets with Localities [12]
Prop.[1 Prop.[2
. " O . : .
timed Membrane Systems| [43 Prop 3 > timed Petri Nets with Localities

We prove that timing does not increase the expressive pofMeoth membrane systems and Petri
nets with localities. However the timed formalisms are abldescribe more naturally some real systems
involving timing. Although there are few extensions wittmé for both membrane systems and Petri nets,
it does not exist a connection between these timed extenisiam attempt is presented in [18] by using
a software simulation (and having some decidability aindg.relate timed membrane systems to timed
Petri nets with localities following the research line [oR[land prove an operational correspondence
between them.

2 Timed Membrane Systems

Membrane systems (also called P systems) are introducedyds a model of distributed, parallel and
nondeterministic systems inspired by cell biology![15]. &l ¢s divided in various compartments, each
compartment with a different task, with all of them workingsltaneously to accomplish a more general
task for the whole system. The membranes determine regibesanobjects and evolution rules can be
placed. The objects evolve according to the rules assdciatd each region, and the regions cooperate
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in order to maintain the proper behaviour of the whole systdrhe application of evolution rules is
done in parallel, and is eventually regulated by prioritiatienships between rules. Several results and
variants of membrane systems (inspired by different aspefctiving cells like symport and antiport
communication through membranes, catalytic objects, man&charge, etc.) are presented[inl [15].
Various applications of membrane systems are presentéf].ihihks between membrane systems and
process calculi are presented [in [6]. An updated bibliogyagan be found on the membrane systems
Webpagehttp://ppage.psystems.eu.

The structure of a membrane system is represented by a titedtferskin as its root), or equivalently,
by a string of correctly matching parentheses where eactopaiatching parentheses corresponds to a
membrane. Graphically, a membrane structure is repraségta Venn diagram in which two sets can
be either disjoint, or one is the subset of the other. A menmdrithout any other membrane inside is
said to be elementary. The membranes are labelled in a eoieetonanner.

Let IN be the set of positive integers, aWda finite alphabet of symbols. A multiset owdris a
mappingu :V — IN. We use the string representation of multisets that is widetepted and used in
membrane systems; a multisetiescribed bya?b® means thaa appears twice iwv, while b appears five
times inw. We use a global clock to simulate the passage of time. Thenfilg definition of timed
membrane systems is similar to that introduced in [4], btieuit considering catalysts, signal-promoters
and output region.

Definition 1. Atimed membrane systefh = (V, t,wi, ..., Wy, R1,...,Ry, €) is defined by

e V is an alphabet (its elements are callebjects;

U describes thenembrane structur@amely a structure consisting of a hierarchy of n membranes
labelled from1 to n which are either disjoint or included; we distinguistetbxternal membrane,
usually called “skin”;

e Wy,...,W, are finite multisets over V ;wepresents the multiset of objects associated to membrane
i; n > 1is the initial degree of the system;

e Ry,..., R, are finite sets of evolution rules over V associated with teenbranes ofi; the rules
are of the form a— v, where ac V and v is a multiset fronf(a, here), (a,out) |acV}U{(a,in;j) |
aeV,1<j<n}

e e:RiU...UR, — N is a (computable) function indicating the execution timeath evolution
rule; the time evolves according to a global clock that stairom O and splits time in equal
intervals (units of time).

The membrane structure and the multiset idetermine a configuration of the system. We can pass
from a configuration to another one by using the evolutiorsulhe use of a ruke— vin a region with
a multisetw means to subtract the multiset identifiedufrom w, and then add the multiset represented
by v. Since the right hand sideof a rule consists only of messages, an object introduced bl @annot
evolve in the same step by means of another rule. If a mespagas inv in the form(c, here), then it
remains in the same region. If it appearg@#n;), then a copy ot is introduced in the child membrane
with the labelj; if a child membrane with the labgldoes not exist, then the rule cannot be applied. If it
appears asc,out), then a copy of the objectis introduced in the parent (surrounding) membrane. The
system may contain rules which are never applicable, amdrales which send objects out of the skin.

The evolution rules in a membrane are applied in a maximallighmanner, and all membranes
evolves in parallel. At each tick of the (global) clock, &lktrules that can be applied must be applied in
a maximal parallel manner (this means that no further rutddcbe applied at the same time unit). An
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evolution ruler started at thg-th tick of the clock ends its execution at the- e(r)-th tick, meaning that
the newly created objects by rulean be used starting from ther e(r) + 1-th tick of the clock. When
a rule starts, the objects from the left hand side of the rate unavailable for other rules.

Ri={ri:a—(ain)}
U{rz:b—(ainy)} As an example, we consider a membrane system
Ry = {r3:a— (b,out)(a,here)} with two nested membranes (the inner membrane
U{ra:b— (bout)} labelled by 2, the outer membrane labelled by 1),
’ two setsR; and R, of evolution rules having the
execution times(ry) = 2, e(r2) =5, e(r3) = 3,

e(rs) = 1, a global clock and two symbola é&nd
a3 b° b). Initially, membrane 1 contains the multiset
b2 a*, and membrane 2 contains the multig&b®.

2 b2 g%

Figure 1: A Timed Membrane System

In what follows we define the configurations of a membranessysand the transition system given
by considering each of the transition steps defined by mdkirparallel rewriting and parallel commu-
nication, as in[[8]. Le¥ be a finite alphabet of objects over which we consider the dmamutative
monoidV* whose elements are multisets (the empty multiset is dertnter). Objects together with
a target indication are enclosed in messages of foarhere), (w,out), and(w,in;). For the sake of
simplicity, hereinafter we consider that the messages thighsame target indication merge into one
message:

”(vi,here) = (w, here), ”(vi,im) = (w,iny), ”(vi,out) = (w,out),
le le le
with w = ”vi, | a non-empty set, andi)ic; a family of multisets oveY .
le

A configuration for a membrane system is a tu@le- (wy,...,w,, k), namely the multisets of all
regions together with the value of the global clock. An imediary configuration is a tuple in which the
objects have associated target indications. Each membyatem has an initial configuration which is
characterized by the initial multiset of objects for eachmbeane of the initial membrane structure of
the system. For two configuratio@sandC’ of 1, we say that there is a transition frdto C’, and write
C = C/, if the following stepsare executed in the given order:

. .- mpr . .
1. maximal parallel rewriting steff—>): each membrane evolves in a maximal parallel manner;

2. parallel communication of objects through membra(xteaé), by sending and receiving messages.

The last step takes place only if there are messages rgstritim the first step. If the first step is not
possible, then neither is the second step, and we say thsystem has reachedhalting configuration
According to [3], a transition step between two configunati€,C’ is given by: C = C' iff C andC’
are related by the following relatio© ot o, Starting from a configuration without messages, we
apply the “mpr” step and get an intermediate configuratibwgi have messages, then we apply the “tar”
step. If the last configuration has no messages, then we aaththtransition relatior:> is well-defined
as an evolution step between the first and last configurations

The evolution of the systerfi at time stepk, from a configuratiorC = (wjy, ..., w,,k) to another
configurationC’ = (w},...,wy,k+ 1) is made by applying a multiset of rul&in a maximally parallel
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manner. If the multiseR of rules is empty, then only the clock is incremented (floto k+ 1). Given a
multiset of rulesR, we denote byhs = 3,.gR(r) - Ihs the multiset of objects in the left hand sides of
the rules inR which are associated to membranén a similar way, byrh#fj = Yrerer)=jR(r)" rhg':'j‘

is denoted the multiset of objects in the right hand sidesefrtles inR applied at timek which is
associated to membranafter j units of time. We also denote iy = maxcre(r) the maximum delay

inferred by the rules oR. C evolves toC’' by a multisetR of rules (this is denoted b§ N C) if for
each membraniethe following conditions hold:

(i) Ths <w;
(i) thereis no rule ¢ Rsuch thaths +lhs < w;;
(iii ) for eacha eV, wi(a) = wi(a) — Ihs () + T& maxok_m 'S0 ().

According to(i), a configuratiorC has in each membrane labelled bgnough objects to enable the
execution of the multiseR of rules. The maximal parallelism is captured (), saying that an extra
evolution rule cannot be addedmo Condition(iii ) describes the effect of the rules application by adding
all the objects having = 0 created in the lashin(k, m) steps which are ready to be used in the membrane
system evolution. Before incrementing the global clockrralltisetsrhsf j are transformed intdwgﬁ -1

for max0,k—m) <s j <k

Proposition 1. For every timed membrane systéin= (V, 4,Wo1,...,Won,R1,..., Ry, €) there exists
an untimed membrane systd = (V',u’,wy q,...,Wy,, R}, ..., Ry) that simulates the evolution &f
(restricted to the elements of V). Formally, for ala/ and ke IN we have wi(a) = w ;(a), where w;
and w,; are the multisets of objects from membrane llaind M’ at step k. 7

Proof. In what follows we show how starting from a timed membraneesy$1 = (V, 4, Wo 1, ..., Won, Ra,
.-, Rn,€) we may construct an untimed membrane system (V/, 4, W 5,...,Wo , Ry, ..., Ry), where

e V' =VU{aj|acV,0<j<m-1}, wherem= maxcge(r);

o ' =pandwy; =wp; for1<i<n;

for each ruler :u— vof R, 1<i <nhavinge(r) =0, we add to R;

for each ruler : u— vof R, 1<i < nhavinge(r) > 0, we add taR the following sets of rules
which simulate properly the passageef) units of time:

— u—V, whereV is derived fromv by replacing each € V by agyy_1 € V',
—a;—aj_,1<j<er)—1;
- a —a

We show that each step of the timed membrane system can betgdhby the corresponding untimed
membrane system, using induction on the number of stepe (iimts) in timed membrane system.
Firstly, we consider a configuratidfy = (Wo,1,...,Won,0) of the timed membrane system and a

maximal multisetR of rules such thaty R, C;. The resulting configuratioB; = (w1 1,...,Wypn,1) is
given byws ;(a) =wp;(a) —Ihs(i)(a) + rhsﬁo(a) forall 1 <i <nandae€ V. Following the construction
above, the initial configuration of the untimed membraneesyssCy = (W 4, ..., Wy ,) wherewg; (a) =

wo,(a) forall 1<i<nandacV. R is the multiset of rules obtained froRisuch thaC :R> Ci. The
resulting configuratior€; is given byw; ;(a) = wg;(a) —lhs(a) +rhsi(a) forall 1 <i <nandae V'
This configuration contains all the elémentscqfand some additional objects fro¥fi introduced to
simulate properly the passage of time. Regarding the ellsraenV, it results tharhg‘?o(a) =rhs(a),
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namelyw; ;(a) = wyj(a). ThereforeC] equalsC; regarding the elements &f (we ignore the new
elements o¥/’ because they are used only to simulate the passage of time).

Secondly, we consider a configuratiGa = (Wi 1,...,Win,K) of the timed membrane system and a
maximal multisetR of rules such tha€y LN Ck+1. The resulting configuratio@y 1 = (W), L-
Wk+1),n, K+ 1) is given byw, 1) ;(a) = Wki(a) — Ihs(i)( )+z&ma)<0k m sp(@) forall 1<i<n
anda€V. In the same time, the multisetds’; are transformed intohs’; ; for max0,k —m) <
s, ] < k. Following the construction above, the conflguratlon of tilimed membrane system@ =
(Wi gs---» W), Wherew (@) = wii(a) for alla €V, andw;(aj) = Z&ma>(0k m s (a) for all aj €
V/\V. This means that for all £ i <n, the multisetw, ; contains all the objects frorwk. and some
additional objects fronV’. For eacha € V from the multlsetrh§' the multisetw;; contains addi-
tional objectsa;. The restrictionrmax 0,k —m) < s < k used when creatlng the objestin membrane
i means that an objeet has appeared in the right hand side of a rule from timed memebssistems
in the lastmin(k, m) units of time, but has to waif units of time until it should be added to mem-

branei in timed membrane systemR is the multiset of rules obtained froR such thatC; = Cii1r

with wi, 1;(a) = w;(a) —lhs(a) +rhs(a) for all 1 <i < nandacV’. Moreover, in this step some
objects ofV’ are transformed into objects 9f by applying the generic rulag — a (the other objects

aj € V' are transformed into objects_1 € V' by applying the generic rules; — a;_1). Finally, the
number of objects € V obtained in’ at this step corresponds Eif:ma)(Qk—m) rhs’y(@). It results that
z‘;ma)(o’k_m) rhs’y(a) =rhs(a), namely\/\/(kH%i (@) =W11)(a). ThereforeCy  , equalLCy, 1 regarding

the elements o¥ (we ignore the elements € V' because they are used only to simulate the passage of
time). O

In what follows we give an example that illustrates the steet of Propositionll.
Example 2. We consider a timed membrane systém: (V, 4, wi, W, Ry, R, €), where:

o V={abl; u=[2l1 wi = ab; W, = a?b;

e Ri={r1:b—(b,iny)}; Ry ={r;:a— (aout)}; e(r1) =0, e(rp) =

Since the initial configuration of the timed membrane systeis (ab, a’b,0), then the evolution of the
timed membrane system in terms of configurations is:

(aba?h,0) "2 @1 L @p2) L (&3

Graphically this can be depicted as:
=2 ()] ¢

1 1 1
t=0 t=1 t=2 t=3

We construct an untimed membrane sysft€m: (V', u’,wy,w,, R}, R;), where:

oV = {a ap, a]_,b bo,bl} H= [[ ]2]1; Wi = ab; Wo = a2b;
e Ri={ri:b—(biny)}; Ry = {ri:a— (as,out); r3:a; — ap; r3:a — a}.

Since the initial configuration of the untimed membraneesy§t’ is the same as the initial configuration
of the timed membrane syst€mnamely(ab, a’b, 0), then the evolution of the untimed membrane system
in terms of configurations is:

1 2 3
@ah) "= @) 2 @gr) 2 @
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Graphically this can be depicted as:

1 1 1 1

If we are interested only in the symbols of V in the untimedi#ion, then we have:
@, &b, 02 @ o’ 1L @ B 2% @ v 3
| | | | | | | |

1 2 3
(@bnv,@bnv) "2 @2nv env) Lagnvenv) LZ@@nv.eav)
and thus the statement of Propositldn 1 holds.

It is easy to prove that the class of timed membrane systechglies the class of untimed membrane
systems, since we can assign 0 to all the rules by the timimctifan e.

3 Timed Petri Nets with Localities

An extension of Petri nets with localities is defined by addiielays to transitions (like in coloured Petri
nets [10]). The value of the global clock is kept in a variaipte

Definition 2. A timed Petri net with localities?” = (P, T,W,L,D,Mp) is given by:

(i
(ii
(i
(iv) adelay mapping DT — IN;

finite disjoint sets P of places and T of transitions;
a weight function W (T x P)U(Px T) — IN;
a locality mapping L' T — IN;

)
)
)
)

(v) aninitial marking My : PU {gc} — IN.

If W(x,y) > 1 for some(x,y) € (T x P)U (P x T), then(x,y) is an arc from the place (transitior)to

the transition (placey. The locality mappind. defines sets of transitions called localities (depending on
the number associated to each transition). The delay mgipintroduces a time delay to each object
created by a transition; the delays indicate how long thedatbjcannot be used in other transitions. The
initial marking Mg assigns to each place a number of tokens, and value 0 to thal glockgc.

@2 2

Places are drawn as rounded lines with tokens
2 1 placed inside. A transition is drawn as a rect-
angle containing a label, and the delay it in-

* ¢ * troduces for the newly created tokens. Tran-
a 1 2 b sitions are connected to places by weighted
1 1 directed arcs.
r2@3

Figure 2: A Timed Petri Net
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Markings represent global states of the timed Petri nets ladalities, and they are defined as func-
tions fromP U {gc} to IN. A Petri net./” evolves at a time stefpfrom a markingM to another mark-
ing M’ by a multiset of transition§) : T — N (e.g.,U (tr) = 2 for tr € T means thatl contains twice
the transitiontr). If the multisetU of transitions is empty, then the only action is incrememtihe
global clockgc. Given a multiset of transitions, we denote bypre(U)(p) = Sy U (tr) - W(p,tr)
the multiset of tokens associated to the input ares ) of all transitionstr e U. In a similar way, by
posﬁ(p) = Ytreu; p(ir)=j Y (tr) -W(tr, p) is denoted the multiset of tokens associated to the outpst ar
(T x P) which are added to their corresponding places gftarits of time k represents the current time).
We denote bym = max,cyD(tr) the maximum delay inferred by the transitionslbf A markingM
leads in a max-enabled way to a markidg via a multisetU of transitions (denoted byl [U)yaM’) if
M’(gc) = M(gc) + 1 and for each placp € P the following conditions hold:

(i) pre(U)(p) <M(p);
(i) there isno transitiontr € U such thatpre({tr})(p) + pre(U)(p) < M(p);

(iii ) M'(p) =M(p) — pre(U)(p) + S5 maxorm) POSE(P).

According to(i), a markingM has in each placp enough tokens to enable the execution of the multiset
U of transitions. The maximal parallelism is captured(by, saying that an extra transition cannot be
added taJ. Condition (iii ) describes the effect of the transitions application by ragldill the tokens
having j = 0 created in the lasnin(k,m’) steps which are ready to be used in Petri nets evolution.
Before incrementing the global clock, all the multis@ssf(p) are transformed intqnosf_l(p) for
max0,k—m') <s j <k

Proposition 2. For every timed Petri net with localitiest” = (P, T,W,L,D,Mp) there exists a Petri net
with localities.#" = (P', T/, W’',L’, M) that simulates the evolution o#” (with respect to places of P).
Formally, for all pe P and ke IN we have M(p) = M,(p), where M. and M, are markings of /" and
A" at step k.

Proof. In what follows we show how starting from a timed Petri nethwlibcalities.#” = (P, T,W,L,
D, Mo), we construct an untimed Petri net with localities’ = (P', T, W',L’, M), where

o for everyp € Pandtr € T such thai(p,tr) > 0, we consider additional placgsp?, ..., pt?(“)*l
in P’; if D(tr) = 0 then onlyp € P;
e for everytr ¢ T and p € P such thatw(tr, p) > 0, we consider additional transitionstr?, ...,
trP)=1in T’: if D(tr) = 0 thentr € T';
e for everyp € P andtr € T such thaW(p,tr) > 0, we consider the weigh®’(p,tr) in 4"
— if D(tr) = 0 thenW’(p,tr) =W(p,tr);
— if D(tr) > 0 thenW'(p,tr) =W(ptr), and
W/ (tr, po® = =W (pltrl) =W trf, pir ) = Witr, p) for 0< j < i <D(tr) — 1;
e for everyp € P andtr € T such thatV(tr, p) > 0, we consider the following weigh®/’ (tr, p) in
A2 if D(tr) = 0 thenW!(tr, p) = W(tr, p), elseW’ (tr®, p) = W(tr, p);
o foreverytr € T, we take the same locality ladek L(tr) for the new transitionr, tr©, . .. trP(r)-1;

e if pe PthenMy(p) = Mo(p), and if p e P'\P thenM{(p) =0.
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We show that each step of the timed Petri nets with localiteas be simulated by the corresponding
untimed Petri nets with localities; we prove this by indantion the number of steps (time units) in
timed Petri nets with localities.

Firstly, we consider a markiniglp of the timed Petri net with localities and a multiset of tiginas U
such thatMo[U )masM1. The resulting markind; is given byM;(p) = Mo(p) — pre(U)(p) + posf(p)
for all p € P. Following the construction above, the initial markinglo€ tuntimed Petri net with localities
is Mg, whereMy(p) = Mo(p) for all pe P’. U’ is the multiset of transitions obtained frdthsuch that
MgU" ) maxM]. The resulting markindv; is given byM;(p') = Mi(p') — pre(U’)(p) + postU’)(p) for
all p € P, wherepostU’)(p) = Syreu (U'(tr) -W'(tr, p)). This marking contains all the places df
and some additional places frdf Regarding the placgse P, it results thatposf (p) = postU’)(p),
namelyM} (p) = My(p). ThereforeM; equalsM; regarding the number of tokens from the place® of
(we ignore the new places Bf because they do not play any role at this step).

Secondly, we consider a markimdy of the timed Petri net with localities and a multiktof tran-
sitions such thaM[U)maMik+1. The resulting configuratioMy ;1 is given by My.1(p) = Mk(p) —
pre(U)(p) + Zkkmamk_m) posg(p) for all p € P. In the same time, the multisets of tokepssf(p)
are renamed b)posffl(p) for all maxk —m’,0) <s,j <k andp € P. Following the construction
above, the marking of the untimed Petri net with localitie®], whereM,(p) = My(p) for all p € P,
andMy(pl) = S& maxok_m) POSE(P) for all additionalpy € P'\P, tr € T and 0< j < D(tr) — 1. This
means that the common places of both nets have the same nofrto&ens, while for the additional
places appearing only iR" we add tokens such that for each token frpmsgs(p) obtained after fir-

ing the transitiortr, the placep, contains a token. The restrictionax 0,k — ') < s < k (used when
creating a token in a new plagg. of P’) means that a token appears on an output arc of trangition
in timed Petri nets during the lastin(k, ') units of time; this token has to wajtunits of time un-
til it is added to placep of P. The multiset of rules)’ is obtained fromJ such thatV [U’)maMy_ 4,
with My, ;(p) = My(p) — pre(U’)(p) + postU’)(p) for all p € P’. Moreover, in this step some to-
kens are transferred from places Bifinto places ofP by firing the transitiongr® (the other tokens
from placespl, € P’ are transferred into places; > € P’ by firing the transitiongri). Thus, the
number of tokens obtained in placps P at each stefx is equal tozé:kfm pos§(p). It results that
S8 «_m POSE(P) = postU’)(p), namelyM, . ;(p) = Mi;1(p) for all p € P. ThereforeM; ,, equals
M1 regarding the number of tokens from the placedfve ignore the remaining places, € P/
because they are used only to simulate the passage of time). O

Example 3. We consider a timed Petri net with localitie$” = (P, T,W,L,D,Mp), where
e P={(a1),(a2),(b1),(b2)}; T = {tr}t,triz};

o D(tr}})

0; D(try?) = 2; Ltrt) =1; L(tr) =2
e W((a,1),t2) =W(try,(a,2)) =W((b,1),t;*) =W(trit,(b,2)) = 1
* Mo((a,1)) =Mo((b,1)) =Mo((b,2)) =1 Mo((a,2)) =2  Mo(gc) =0.

Graphically the system at time unit gc0 can be represented as follows:
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(a1)
(b,1)

For gc= 1 and gc= 2, the timed Petri net with localities can be represented devis:

o ’5:
)

N
~—

CO— (O
(a,1) (a2
(b,1) (b,2)

while for all gc> 3 we have the following representation

1 tr:@2

(b,1)

We construct an untimed Petri net with localities” = (P', T,W',L’, M), where
e P={(a1),p,p%p* (b,1),(b,2)} and T= {tri,tr,tr% tr'}, where p=(a,2) and tr=try;
o L(tr}) =1, L(tr) = L(tr% = L(tr!) = 2
e W((b,1),t;) =W(trit,(b,2)) =1
o W(p,tr) =W(tr, pt) =W(p!,trt) =wW(trt, p°) = wW(p°,tr® =w(tr% (a,1)) =1
e Mo((a,2)) =Mo((b,1)) =Mo((0,2)) =1 Mo(p)=2  Mo(p°) = Mo(p) = 0.

Graphically, the initial system can be represented as wadlo

(a,1) X ' P

p

O
(b,1) (b,2)

After one step, we obtain

®
\@

[EEN
N

A~
k=2

N
S~—
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O PO O

(a,1) p° p p
O3

(b, 1) (b,2)

The system evolves to

O @ QO

(a,1) X ' P
O+

(b,1) (b,2)

The system stops its evolution after reaching the configurat

() e O e O O
@1 : 1 p

p p

O
(b,1) (b,2)

We notice that indeed, if we refer only to the markings of thegs from P during the evolution of timed
and untimed Petri nets with localities, the markings areghme.

It is easy to prove that the class of timed Petri net with litiesl includes the class of Petri net with
localities, since we can assign 0 to all values of the fundiipnamely all transitions fire instantaneously.

4 Linking Timed Membrane Systems to Timed Petri Nets

Following the approach given if [12] where membrane systamdranslated into Petri nets with local-
ities, we present a translation of timed membrane systetngimed Petri nets with localities, and then
prove an operational correspondence between them.

Definition 3. LetM = (V,H,u,wy,...,wn,Ry,...,Ry,€) be a timed membrane system. Then the cor-
responding timed Petri net with localities igr; = (P, T,W,L,D,Mp) with its components defined as
follows:

e P=V x{1,...,n} - to each object a of membrane i there corresponds a place(@i);
e T={tr} [r €Rj,;1<j <n}-toeach rule r of membrane j corresponds a transitioj tr
o for every place p= (a,i) € P and every transition te=trj € T

rhslr%r)(a) ifi— |

o ; o

W(p,tr) = {Ihq(a) =) andwitr,p) = { e ((Bou0) LD ek
0 otherwise rhs o ((aing)) if (j,1) €

0 otherwise
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o for every place p=(a,i) € P, we have M(p) = w;(a);
o for every transition tjf € T, we have [t) = j;
o foreverytf € T, we have Qtr) = e(r).

Example 4. We consider a timed membrane systérs (V, 1, wy,wW», Ry, Ry, €), where
o V={abl; u=[2l1 wi = ab; W, = a?b;
e Ri={r1:b—(bjiny)}; Ry ={r;:a— (aout)}; e(r1) =0, e(ry) =2.
Graphically, the initial configuration can be depicted as:

The corresponding timed Petri net with localitiesi6 = (P, T,W,L,D, M), where:
P={(a1l),(a2),(b1),(b2)}; T = {trit tr2};

D(try!) =0; D(tr) =2 L(trt) =1 L(try2) =2;

W((a> l)vtgz) :W(tr;2>(av 2)) :W((b> l)vt;.l) :W(tr;.1>(bv 2)) =1

Mo((a 1)) =Mo((b,1)) =Mo((b,2)) =1;  Mo((a,2))=2  Mo(gc) =0.
Graphically, the system at time unit gcO can be represented as

CO—p— )
(a,1) (a2)
O
(b,1) (b,2)

According to this translatioryic denotes the marking ofif; corresponding to a configurati@hof
the timed membrane systefh Moreover, for each multiséR of applied rules in a timed membrane
system, the corresponding multiset of transitions in tirRedri nets with localities is denoted k.
Using these notations, we have the following operationalespondence:

Proposition 3. C == C' if and only if M[Ug)maMc.

Proof. Let us consider the membrane configuratiba (wy, . .., w,). According to Definitiol B, we have
Mc(p) = wi(a) for each place = (a,i). This is a consequence of the fact that there is a correspoade
between membranes and places, and between the multis#e im&@mbranes and the marking of the
places. After applying the multis& of rules inC, we obtain a configuratio@’ = (wj,...,w}) where
for each membranieand each objea we havew/(a) = w;i(a) — Ihs(a) + kamaqu—m) rhs’o(a). In the
corresponding timed Petri net with localities, startingnfirthe markingVic and applying the multiséir
of transitions, we obtain a new markitf where for each placewe getM’(p) = Mc(p) — pre(Ur)(p) +
Zémaxo,k—m) posg(p). Itis easy to note thailc(p) = wi(a), pre(Ur)(p) = Ihs(a) and
5 & maxok_m) POSB(P) = T& rmaxok_m MSo(@). Therefore, it results thad’(p) =w/(a) andM’ = Mg,

U
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5 Conclusion

There exist papers in the field of membrane computing in wkhehconcept of time is used mainly
as timers for objects and membranes([1, 2], and as execuinadpfor each rule [4,15]. The idea of
adding time to Petri nets is described[inl[16]: “additioniafihg information might provide a powerful
new feature for Petri nets, but may not be possible in a marmesistent with the basic philosophy of
Petri nets”. Different ways of incorporating timing infoation into Petri nets were proposed by many
researchers; specific application fields represent thératgm for different proposals of modelling time.
For Petri nets with localities [12], time constrains areeith a way inspired by the coloured Petri nets.

In this paper we prove that adding timing to both membranéegys and Petri nets with localities
does not increase the expressive power of the correspondtitged formalisms, establish a link between
these timed formalisms by defining a relationship betweeredi formalisms under the assumption of
maximal firing, and prove an operational correspondencerdmri them. This relationship allows to
use the Petri nets tools to verify certain behavioural prige (reachability, boundedness, liveness and
fairness) of membrane systems. An attempt to use Petri péisage to simulate timing aspects in
membrane systems is presented in [18].

As further work, we can mention the use of timed membraneesystto model some biological
systems, while Petri nets tools can be used to analyze aifg aatomatically the (timing) behavioural
properties of these models.
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