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This paper presents an on-the-fly uniformization technfgu¢he analysis of time-inhomogeneous
Markov population models. This technique is applicable mdeis with infinite state spaces and
unbounded rates, which are, for instance, encountered irettim of biochemical reaction networks.
To deal with the infinite state space, we dynamically mainédiinite subset of the states where most
of the probability mass is located. This approach yields adeg-approximation of the original,
infinite system. We present experimental results to shovapipdicability of our technique.

1 Introduction

Markov population models (MPMs) are continuous-time Markoocesses, where the state of the sys-
tem is a vector of natural numbers (i.e., the populationsichSnodels are used in various application
domains: biology, where the state variables describe thalption sizes of different organisms, queue-
ing theory, where we model a state as a vector of queue occiggachemistry, where the state variables
represent the amount of molecules of different chemicatispeetc[[11].

Besides the expectations and variances of the differentlatpns, the probabilities of certain events
occurring can be of interest when studying MPMs. It may beegssary to know the probability of the
extinction of a species, the probability that a populatieaches a certain threshold, or even the full
distribution of the MPM at a certain time-point, for instano calibrate model parameters.

Many Markov population models hawefinitely many states. In the case of biological or chemical
applications, we normally cannot provide hard upper bodadpopulation numbers and in the field of
gueueing theory it may be interesting to consider unbounpedies. The evaluation of infinite MPMs
through numericall[4] or statistical [[7] analysis has beegilastudied fortime-homogeneoumodels
where the dynamics of the system are independent of timd] thé state space of the model is generated
and truncated on-the-fly during the transient solutiont ihaduring a certain time interval only states
that are relevant at that time are considered. Thus, stedegdaled at a certain step and dropped at a
later time when they become irrelevant. A similar techniguproposed in[3] for the solution of time-
homogeneous discrete-time Markov chains. Note that thigffesrent from on-the-fly techniques for the
computation of steady-state probabilities where the eglepart of the state space is generated but states
are never dropped as time progresses [14].

Many Markov models aréme-inhomogeneoushat is, their dynamics change over time. For in-
stance, when modeling an epidemic, we may have to take ictuat that infection rates vary season-
ally. For traffic models, time-dependent arrival rates camnised to model the morning and evening rush
hours. In cellular biology we see that reaction properssitiepend on the cell volume, which waxes and
wanes as the cell grows and divides. The class of finite tithernogeneous Markov models has also
been studied in recent years[[2[ 5] 13].
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2 On-the-fly Uniformization of Time-Inhomogeneous Infinitealtov Population Models

In this paper, we develop a numerical algorithm to approxinieansient probability distributions
(i.e., the probability to be in a certain state at a certaire)ifor infinite time-inhomogeneous MPMs. We
consider MPMs with state-dependent rates and do not rethérexistence of an upper-bound for the
transition rates in the MPM.

Our algorithm is based on theniformizationtechnique, which is a well-known method to approxi-
mate the transient probability distribution of finite tirhemogeneous Markov models [10, 9]. Recently,
two adaptations of uniformization have been developed. s& faaptations respectively approximate
the transient probabilities for finite time-inhomogene({lsand infinite time-homogeneous! [4] Markov
models. Our algorithm combines and refines these two teghaiguch that infinite time-inhomogeneous
MPMs with unbounded rates can be tackled. We present twostagies to investigate the effectiveness
of our approach.

2 Markov Population Models

Markov chains with large or even infinite state spaces arallysdescribed by some high-level model-
ing formalism that allows the generation of a (possibly itéinset of states and transitions. Here, we
use transition classes to specify a Markov population madtiet is, a continuous-time Markov chain
(CTMC) {X(t),t > 0} with state spac&="7Z" ={0,1,...}", where tha-th state variable represents the
number of instances of theth species. Depending on the application area, “spectagts for types of
system components, molecules, customers, etc. The applicaeas that we have in mind are chemical
reaction networks, performance evaluation of computeesys, logistics, epidemics, efc [11].

Definition 1 (Transition Class) A transition classr is a triple (G,w,a) where GC Z is the guard
w € Z" is thechange vectgrand a : G x R>o — R>¢ is the time-dependemate function Moreover, for
any xe Z1, we have that x G implies xt-w € Z1 .

The guard is the set of states where an instanceisfpossible, and if the current statexis€ G then
x+w e Z1 is the state after an instancemiias occurred. The rate(x,t) determines the time-dependent
transition probabilities for an infinitesimal time-stdp

Pr(X(t+dt) =x+w| X(t) = x) = a(x,t) - dt+ o(dt),

whereo is a function such that(0) = 0 and lim,_,o0(h)/h = 0.

A CTMC X can be specified by a setwftransition classes, ..., Ty as follows. Forj € {1,...,m},
let 1; = (Gj,wj,aj). For eacht € R>o we define the generator matr@(t) of X such that the row that
describes the transitions of a statkas entryaj(x,t) at positionQ(t)xx+w, whenevex € Gj and zero
otherwise. Moreover, the diagonal entriesQit) are the negative sums of the off-diagonal row entries
because the row sums of a generator matrix are zero. We aghameach change vector; has at
least one non-zero entry. To simplify the presentation veeiag that all change vectors are distinct.
We remark thaKX is calledtime-homogeneoushenQ(t) is equal for allt. Otherwise X is calledtime-
inhomogeneous

Example 1 We consider a simple gene expression model for E. coli ¢&8% [It consists of the tran-
scription of a gene into messenger RNA (mMRNA) and subsemaesiation of the latter into proteins. A
state of the system is uniquely determined by the number B&naRd protein molecules, that is, a state
is a pair (xu,Xp) € Zi. We assume that initially there are no mMRNA molecules andateips in the
system, i.e., RX(0) = (0,0)) = 1. Four types of reactions occur in the system. Let{1,...,4} and
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Tj = (Gj,wj, aj) be the transition class that describes the j-th reactioretyj/e first define the guard
sets G,...,G4 and the change vectors;w. ., wa.

e Transition classr; models gene transcription. The corresponding stoichidmetuation is® —
MRNA. If at-transition occurs, the number of mMRNA molecules incredyesne. Thus, w=
(1,0). This transition class is possible in all states, i.el,ﬁzi.

e We represent the translation of mMRNA into proteinthymRNA— mMRNA+P). Ar,-transition is
only possible if there is at least one mMRNA molecule in thesysWe set &= {(xu,Xp) € Z2 |
xr > 0} and wp = (0,1). Note that in this case mRNA is a reactant that is not consumed

e Both mRNA and protein molecules can degrade, which is nemtibi 13 and 1, (MRNA— 0 and
P — 0). Hence, G = Gy, G4 = {(Xu,Xp) € Z2 | Xp > 0}, w3 = (—1,0), and w; = (0, —1).

Let k, ko, k3, ks be real-valued positive constants. We assume that trgstgami happens at rate
a1(xm,Xp,t) = k- V(t), that is, the rate is proportional to the cell volumety [L7]. The (time-
independent) translation rate depends linearly on the remobmRNA molecules. Therefooe,(xu,Xp,t)
= ko - xu. Finally, for degradation, we set3(Xu,Xp,t) = k3 - Xy and aa(Xu, Xp,t) = ks - Xp.

We now discuss the transient probability distribution of BIML LetSbe the state space ¥fand let
the transition functiorP(t,t + A) be such that the entry for the pdi,y) of states equals

Pt,t+4),,=Pr(X(t+4)=y[X({t)=x), t,A>0.

If the initial probabilitiesPr(X(0) = x) are specified for eack € S the transient state probabilities
p® (x) := Pr(X(t) = x), are given by

p(t>(y) = ZXGS p(O) (%) - P(Ovt)xy'

We assume that a transition class description uniquelyifge@ CTMC and rule out “pathological
cases” by assuming that the sample patiis) are right-continuous step functions. In this case the
transition functions are the unique solution of the Kolmmydbackward and forward equations

d

SP(to,t) = Q)-Pltot) ®

SPlto.t) = Plto.1) Q) @

where 0< tg < t. Multiplication of Eq. [2) with the row vectop(® with entriesp(®)(x) gives

40— po. Q(t). 3)

dt
If Sis finite, algorithms for the computation pft are usually based on the numerical integration of the
linear system of differential equations in Eg. (3) withiaitonditionp?). Here, we focus on another ap-
proach called uniformization that is widely used for timefogeneous Markov chairis |10]. It has been
adapted for time-inhomogeneous Markov chains by Van Dijkajsd subsequently improved [13, 2].
The main advantage of solution techniques based on unifation is that they provide an underapprox-
imation of the vectop®) and, thus, provide tight error bounds. Moreover, they araerically stable
and often superior to numerical integration methods in seofrrunning times [15].
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3 Uniformization

Uniformization is based on the idea to construct, for a CTXICa Poisson proceds(t),t >0 and a
subordinated discrete-time Markov chain (DTMXQ)),i € N such that for alk and for allt

Pr(X(t) =x) =Pr(Y(N(t)) =X). 4

Since Poisson procedsand DTMCY are independent, the equation above can be written as
Pr(Y(N(t)) =x) = ZjPr(Y(i) =X)Pr(N(t) =i). (5)
i=

For a finite time-homogeneous MPM with state sp8tke rate/\ of the Poisson proced$ (also called
the uniformization rat¢ is chosen to be greater than or equal to the maximal exdtappearing irX

m
A >maxd ai(X).
= maxd a9

For the DTMCY we find transition probabilities

aj(x)
A

PrY(i+1) =x+w; | Y(i) =x) =

WhenX is time-inhomogeneous, Arns et all [2] suggest to defineithe-tdependent uniformization rate
A(t) of theinhomogeneouRoisson process (IPR)as

Alt) > (X, 1). 6
()—maxglaj(x ) (6)

XES

For the (time-dependent) transition probabilities of tHEMIC Y we then have thaf%’;) is the proba-
bility to enter statex+w; from statex if a state-change occurs at tiheArns et al. prove that Ed.1(4)
holds if thea; are (right or left) continuous functions trand if Sis finite (see Theorem 7 inl[2]). Here,
we relax the latter condition and alloBto be infinite. If sup.sy ; aj(x,t) < e during the time interval
of interest, the proof of Eq[]4) may be expected to proceedgasimilar lines. In our case, however,
SUResY | j(Xt) = and then the Poisson processis not well-defined as its rate must be infinite
according to Eql{6). Therefore, the infinite state spacedhs truncated in an appropriate way.

3.1 State Space Truncation

We consider a time intervdt,t +A) of length A, where the transient distribution at tinte p®), of

the infinite time-inhomogeneous MPM is known. We now wish to approximate the transient distri-
bution at timet + A, p™*4). We assume thap¥) has finite supporg o. DefinePr(N(t,t+A)=i) =
Pr(N(t+A) —N(t) =i) as the probability thalN performsi steps withinjt,t + A). For a fixed positive

€ < 1, letRand the rate functio be such tha§ r is the set of states that are reachable, with probability
greater than or equal to-1¢, from the se§ o in the time-intervalt,t + A) within at mostR transitions,

ie.

iPr(N(t,tJrA):i)zl—s. (7
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Furthermore, we have that the rateNoht timet’ € [t,t +A) must satisfy

m
At') > max'y aj(x,t). (8)
xeSRJ 1
Note thatA(t’) is adaptive and depends tnt, A, S, andR as opposed to Arns et al. whefét’)
depends only otf, t, andA because they consider finite state spaces.

Finding appropriate values fdx andR is non-trivial asA(t’) determines the speed of the Poisson
processN and thereby influences the valueRfOn the other handR determines the size of the R
and thus influenced(t’). We discuss how to find appropriate choices/AoandR given the se§ g in
Sectior4.11.

Assume that we find and R with the above mentioned properties and defi{€) as in Eq. [[(8).
Then, for allx € S, we get are-approximation

Pr(X(t+4)= >ZjPr =XAN(t,t+A)=i), 9)

whereY has initial distributionp. The probabilitiePr(Y (i) = xAN(t,t +A) = i) can now be approx-
imated in the same way as for the finite cdse [2].

From Eq.[[9) we see that it is beneficiaRfis small, since this means fewer probabilities have to be
computed in the right-hand side of Egl (9). Note that thedation-pointRis small when the uniformiza-
tion rates/A(t’) are small duringt,t + A) because ilN jumps at a slower rate thePr(N(t,t +A) > i)
becomes smaller. Thus, it is beneficial to chod$g) as small as possible while still satisfying Eg. (8).

3.2 Bounding approach

Let f)(”A)(x) denote the right hand side of Ef] (9), i.e., the approximatibthe transient probability of
statex at timet +A. We compute this approximation with the uniformization huet as follows. The
processe¥ andN are independent which implies that

Pr(Y(i) =xAN(t,t+A)=i) = Pr(Y(i)=x) - Pr(N(t,t+4) =1i).
The probabilitiesPr(N(t,t +A) = i) follow a Poisson distribution with paramet&(t,t +A4)-A, where
Att+4) = 2 [FAAE)dt.

For the distributionPr(Y (i) =x), Arns et al. suggest an underapproximation that relies erfatt that
for any time-point’ € [t,t +A) we have:

J(xt! X (xt” .
“/'\(()E/>) > MiNcpeia) % = uj(xt,t+A).

Thus, fori € {1,2,...,R}, we iteratively approximat®r(Y(i)=y) as
PrY()=y)> T PrY(i—1)=x)-Uj(xtt+8) +PrY(i—1)=y) Wy tt+d).  (10)

X, Joy=X+W;j

Here,x ranges over all direct predecessors/@ind the self-loop probabilityy(y,t,t +A) of y is given

by
i T aut)
W(y,t,t+4)= min |{1- 3 555 |-
=1

teltt+a)
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Note that often we can splitj(x,t") into two factorsA;(t’) andr;(x) such thata;(x,t") = Aj(t") - rj(x)

for all t/, j,)@. Thus, the functions\; : R>o — R contain the time-dependent part (but are state-
independent) and the functions: S— R g contain the state-dependent part (but are time-indepé&nden
Then each minimum defined above can be computed for all stgitesnsidering

min
t'eft t+4]

In particular, ifA; and/\ are monotone, the above minimum is easily found analyyicall

The approximation in Eq[(10) implies that for the time in&gr]t,t + A), we compute a sequence
of substochastic vectorg? v(?,... V(R to approximate the probabilitieBr(Y (i) =y). Initially we
start the DTMCY with the approximationp® =: V(% of the previous step. Then we compu¢
from V(') based on the transition probabilitieg(x,t,t +A) for i € {0,1,...,R}. Since these transition
probabilities may sum up to less than one, the resultingove€t ™ may also sum up to less than one.
Since, for the computation g, we weight these vectors with the Poisson probabilitiesaatuithem
up the underapproximatiop'*® contains an additional approximation error. In genera, lthiger the
time-periodA, the worse the underapproximationgx,t,t +A) are and thus the underapproximation
p+2 becomes worse as well. We illustrate this effect by applyirggbounding approach to our running
example.

Example 2 In the gene expression of Example 1, the time-dependenaee itodhe volume and only
affects the rate functiom; of the first transition class. The time until an E. coli cellidies varies
widely from about 20 minutes to many hours and depends ontlgrmnditions. Here, we assume a cell
cycle time of one hour and a linear growth| [1]. Thus, if at tilne O we consider a cell immediately
after division then the cell volume doubles after 3600 sessufe that\ < 360Q Then,a;(xt') =
K- (1+ %oo) for all x € S. Assume we have a right truncation point R such that

!/
/\(t/) = Q?.F)’(k&' (1+ %O) + (ko +ks) - Xr+Ka - Xp
where x and » range over all state$xg, xp) € Sr and Eq.(7) holds. Then we find, for each time-point
t' €[0,4), the same state for which the exit-ratg(x,t') := 3, aj(x,t') is maximal, since the only time-
dependent propensity is independent of the state-vasakhlet(x}?, x5'?*) denote this state. In general
this is not the case, for instance in the realm of chemicattiea systems we have that the propensities
of bimolecular reactions (reactions of the fromiAB — ...) are dependent both on cell-volume and
the population numbers. For such a system we may find thatdtiff states have the maximal exit-rate
within the time-frame0,A). We discuss how to overcome this difficulty in SubseEtidrThe transition
probabilities of the DTMC'Y are now defined as

_ 01(XR,Xp,t")  01(x,0) K;
U1(XR,Xp,0,A) = min = =
eI O = TN T AW ADoK K
and, for je {2,3},
.0 (XR,Xp,t') ki xR Kj - Xr
Ui (Xg,Xp,0,A) = min =222 — min = :
iR Xp ) vefoa  A(t) veoa] A(D) k’l-(1+ﬁ))+(k2+k3)~x’£ax+k4-xg‘ax

INote that this decomposition is always possible for chehrigaction networks where the time-dependence stems from
fluctuations in reaction volume or temperature.
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Support at time Truncation for the first step Truncation for the second step
! ! f
X2 X2 X2
SR
X1 — X1 — X1 —

Figure 1: lllustration of the state space truncation apghd@r the two-dimensional case. Given the
distribution pfY) with support§ o, a truncation poinR and a time-stefA, we compute in the first step the
distribution p‘”A) with support§ r = S1a 0. For the next step we consider the Seta r.

Ks - Xp
K, - (14 za55) + (Ko + Kg) - X4 Ky - XX

U4(XR, Xp, 07 A) =

For the self-loop probability we find:

4 i (xR, Xp, 1) & aj(xr, Xp,t")
Uo(Xe.Xp,0.8) = min [1—§ JiVRXL)Y (4 x5 JiVRE,T)
0( R, AP, U, ) t'e[O,A]( le /\(t’) t/e[O,A)J:]_ /\(t’)

:1_§ aj(Xg,Xp,A) K- (14 3550) + (Ko +Ks) - X+ Ka - Xp

J— 0 .
=AY K (1+ 5555) + (Ko -+ Kg) - XR&X 4y - XX

We now calculate the fraction of probability lost during t@mputation of ¥+ from V), i.e

N

ki - (1+ 3560) ki
1- Z)UJ XR,Xp,0,A A 7 max max
J k’l-(l+3600) (k2 + kg) - XIDaX 4 Ky - xmax Kj + (k2 +ka) - XB&+ kg - XB
_ (ke tkg) X+ kg (k2 +ka) - Xg 2+ Kq - Xg
K+ (ke ke) R ke XE% kG- (14 g0) + (Ko +Ka) - XE™ 4 K XF™

For A = 0 we have a probability loss @f and for A > 0 we can see that the probability loss increases
with increasingA.

3.3 Time-stepping approach

Given that a large time horizon may lead to decreased agguhaas et al. [2] suggest to partition the
time period of interesf0,tmax) in steps of length\. In each step, an approximation of the transient
distribution at the current time instarp(!); is computed and used as initial condition for the next step.
The number of states that we consider, thaSs;| grows in each step. The probabilities of all remaining
states ofSare approximated as zero. Thus, each step yields a vpétd? Wwith positive entries for all
statesx € § r that approximatér(X(t+A) =x). The vectorp®2) with Support§ r = S+ap is then
used as the initial distribution to approximate the veqétr2*2). See Figur€ll for a sketch of the state
truncation approach. Note that the chosen time-pekioahy vary for different steps of the approach.
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It is easy to see that the total error is the sum of the erragadh step, where the error of a single step
equals the amount of probability mass that “got lost” duéneounderapproximation. More precisely, we
have two sources of error, namely the error due to the triowcaf the infinite sum in Eq[(5) and the
error due to the bounding approach that relies on[Eq. (10).

In [2], Arns et al. giveexactformulas for the first three terms of the sum in Ed. (9) (fer 0,1,2).
Thus, if the approximatiop® of plt) is exact, therp®™2) is an underapproximation due to the remaining
terms in Eq.[(B). This implies that the smallerbecomes, the closer the error will be to the error
bounde. On the other hand, a small truncation point means that osiyall time stef\ is possible (see
Eq. (7)), which means that many steps are necessary unfihtldime instant,ax is reached. In order
to explore the trade-off between running time and accuraeyrun experiments with different values
for the predefined truncation poiRtthat determines the step siae We report on these experiments in
Sectior{b.

4  On-the-fly Algorithm

As we can see in Figufé 1, the number of states that are coeditecompute®™™ from pt) grows in
each step, since all states within a radiufdfansitions from a state in the previous Sgi are added.
This makes the approach infeasible for Markov models wittrgd or even infinite state space because
the memory requirements are too large. Therefore, we stigmese a similar strategy as described in
previous work[[4] to keep the memory requirements low andesxehfaster running times.

The underlying principle of this approach is to dynamicatipintain a snapshot of the part of the
state space where most of the transient probability digidh is located. We achieve this by adding
and removing states in an on-the-fly fashion. The decisioichvktates to add and which states to
remove depends on a small probability threshdld- 0. After the computation of the vectafi*?
based on/!), we set all entries ivi+1) to zero that have a probability less than This significantly
reduces the computational complexity since only parts efttAnsition probability matrix of have to
be generated [4] (for instance, we explore 360000 statesatimstant = 600 for the gene expression
system of Examplel1 i = 0 but only 5700 states are stored whiea: 10~1°). Let

SO = {(x:vV9(x) >0} =S

and, fori € {1,...,R} let SV be the set of states that we consider to comptité) from v('). We remark
that this also decreases the speed of the Poisson pidaesse the set§ o andS r are smaller and thus
the maximum in Eq.[{8) is now taken over fewer states. Wetithis this effect in Figurgl2. This effect
is particularly important if during an intervét,t™®) in certain parts of the state space the dynamics of
the system is fast while it is slow in other parts where theetatontain the main part of the probability
mass. On the other hand, the threshélthtroduces another approximation error which may become
large if the time horizon of interest is long. Moreoverpifis a bound for the error introduced by the
above strategy of neglecting certain states, we can reagveetion of the probability losg - ﬁ for the
interval [t,t + A) and repeat the computation with a smaller threstdoiimore than the allowed portion
of probability was neglected.

The approximation that we suggest above is again an underapyation and since the approxima-
tions suggested in the previous sections are also underdpyations, we are still able to compute the
total error of the approximatiop®” of pt) as

-y pY(x). (11)

XEQ R
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Support at time Truncation for the first step Truncation for the second step
t t | and approx. support qf 2 t
X2 X2 X2
_ SR
7 QR L7 \
/
L GX) /
N V4 N N
~— 7 Sinao Sia0
X1 — X1 — X1 —

Figure 2: lllustration of the on-the-fly algorithm for the dvdimensional case. Given the distribution
p® with support§ o, a truncation poinR and a time-step, we compute in the first step the distribution
pt+2) with approximate suppo a0 C S . For the next step we consider the Sefa r.

Clearly,t’ >t implies that the error at timg is higher than the error at timte For our experimental
results in Sectioh]5 we choose= 10~1° and report on the total error of the approximation at ttme.

4.1 Determining the step-size

Given an error bound > 0, a time-point, for which the support op® is S 0, and a time-point,ax for
which we wish to approximate the transient probability rilisttion, we now discuss how to find a time-
stepA such that Eqs[{7) anf](8) hold. Recall that the probatsIfigN(t,t +A) = i) follow a Poisson
distribution with parametef(t,t +A) - A, which we denote byira to emphasize the dependence/on
and the right truncation poiR. Note that the latter dependence is due to the maximum ir@ighét is
defined over the s& g, the set of all states that are reachable from a stafgiby at mostR transitions.

We have
t+A

Hra = | A(t)dt. 12)

Here, we propose to first choose a desired right truncatiamt R and then find a time-stefy such
that Eqgs.[(IV) and{8) hold. We perform an iteration where ghesep we systematically choose different
values forA and compare the associated right truncation pRimiith R*. Sinceug: a iS monotone in
A this can be done in a binary search fashion as described iorifign[I(a) . We start with the two
boundsA™ = 0 andA™ = tmax—t. The function FindMaxStaté, R*) finds a state(™® such that for all
time-pointst’ € [t,t + A) we have

m

iaj(xmax,t’) > max aj(x,t). (13)
=

XeSp &
The choice ok™®* also determines the uniformization rate
/ - max 4/
At = JZlor,-(x ).
It immediately follows from Eq.[(I3) that Eql](8) holds. Inc@ien[4.2, we discuss how to find

efficiently by selecting a stat€"®, while avoiding that the uniformization ratégt’) are chosen to be
very large.
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Input | R*, t, tmax, £ Input | to, tmax, P, &, R*
Output | A, xMax Output | ph, p2, ..., pima
Global | State spach, ... Global | State spacs, ...
1 A" :=tmax—t; /lupper bound foA 1 teyr :=to;
2 R:=0; 2 (A, xM®) = Algorithm 1(R*,tcur, tmax, €);
3 xMa&:= FindMaxStat¢A ™, R); 3 thext := teur +4;
4 g o+ = ComputeParametgirt + A, x™2) 4 u := ComputeParamet@g,r, thext, X"*);
5 R" := FoxGlynn(pig: a+, €); 5 while teyr < tmax
6 if R™ < R* then 6 i=1
7 A=AT; 7 whilei <R
8 else 8 Computev!) (x); //DTMC probabilities
9 R~ :=0;A™ := 0; //lower bound forA 9 Compute IPP N probabilities;
10 whileR#R 10  Accumulatepter(x); /CTMC probabilities
11 A=40h 11 =it
12 Hr- A := ComputeParameték, R*); 12 endwhile
13 R:= FoxGlynntr- a, €); 13 teyr = thext
14 fR-<R'<R 14 (A, X" := Algorithm 1(R*, teur, tmax, €);
15 RF:=RAT:=A; 15 thext:=tleur +4;
16 elseifR< R* < R" 16 u := ComputeParamet@g,, thext, X"*);
17 R =RA =A; 17 endwhile
18 endif
19 endwhile
20 endif
(a) The step sizA is determined in a binary-search fash- (b) The complete algorithm.
ion.

Fig. 1: Algorithms

The function ComputeParametet + A,x"®) now computes the integrgir- o usingx™. If pos-
sible we compute the integral analytically, otherwise we asnumerical integration technique. The
function FoxGlynriu, ) computes the right truncation point of a homogeneous Poipsocess with
rateu for a given error bound, i.e. the valueR that is the smallest positive integer such that

R i
%Iil—le‘“ >1-—¢.
& i
For the refinement of the bounds andA™ in lines 13—17 we exploit thd is monotone im\.

4.2 Determining the maximal rates

The function FindMaxStaté, R*) in Algorithm[1(a) finds a stat&™?* such that its exit-rate is greater
or equal than the maximal exit-ratey(x,t') = 3L, aj(x,t’) over all statesx in §g-. In principal it

is enough to find a functioA(t’) with this property, for instance the function Max . 25“:1 aj(x,t'),

but this function may be hard to determine analytically and also not clear how to represent such a
function practically in an implementation. Selecting aestd® and defining/\(t) to be the exit-rate of
this state solves these problems.
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We now present two ways of implementing the function FindBlate.

a) For this approach we assume that all rate functions isere@notonically in the state variables.
This is, for instance, always the case for models from chabkioetics. We exploit that the change
vectors are constant and define for each dimerisied1,...,n}

W= max Wik
k . J
je{1....m}

wherewji is thek-th entry of the change vectaov;. For the set§ o we compute, the maximum
value for each dimensidke {1,...,n}

YR = maxyk.
YES0

We now find the stat&™® which is guaranteed to have a higher exit-rate than any ist&ex- for
all time-points in the intervak,t + A) as follows,

Xwax = yrknax+ R* . V\fl;nax.

It is obvious that the state variable®® are upper bounds for the state variables appearing in
S.r- Then, since all rates increase monotonically in the statebles, we have that the exit-
rate ofx™®™ = (xX"®, ..., x)'®) must be an upper-bound for the exit-rates appearirtg ¢ for all
time-points.

b) The first two moments of a Markov population model can beiately approximated using the
method of moments proposed by Engblarn [6]. This approximnagissumes that the expectations
and the (co-)variances change continuously and detetticadlg in time and it is accurate for
most models with rate functions that are at most quadratiberstate variables. We approximate
the meanE(t') := E[X(t')] and the variances?(t') := VARX(t')] for all k € {1,...,n}. For
eachk, we determine the time instabt [t,t +A) at whichEx(f) + ¢ - gk(f) is maximal for some
fixed £. We use this maximum to determine the spread of the disimifbut.e. we assume that
the values ofX(t’) will stay below x7® := Ey(f) + ¢ - oi(f) with high probability. Note that a
more detailed approach is to consider the multivariate abdistribution with meare[X(t")] and
covariance matriCOV[X(t")]. But since the spread of a multivariate normal distributdifficult
to derive in higher dimensions, we simply consider each dsim independently. We now have
XM= (x"® .. x1'®). If during the analysis a state is found which exceét in one dimension
then we repeat our computation with a higher value/fofo make this approach efficiernthas
to be chosen in an appropriate way. Our experimental resdisate that for two-dimensional
systems the choicé= 4 yields the best results.

4.3 Complete algorithm

Our complete algorithm now proceeds as follows (see AlgoifiL(b)). Given an initial distributiop(©
with finite supportS o, a time-bound™?*, thresholdsd ande, and a desired right truncation poiRt,
we first sett := 0. Now we compute a time-stépand the stata™?* using Algorithm I(d) with inputs
R*, t, tM ande. We then approximate the transient distributign® using an on-the-fly version of the
bounding approach [2], where the state space is dynamicelptained and states with probability less
than d are discarded as described above. For the rate funétfonwe use the exit-rate of staié?,
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When computing DTMC probabilities, we use exact formulastifie first two terms[[2] of the sum in
Eq. @) and lower bounds, given by Ef.110), for the rest. Ties us the approximatiop™? with
finite supportS 0. We now set :=t + A and repeat the above step with initial distributigrurtil we
havet =tma

5 Case Studies

We implemented the approach outlined in Sedilon 4 in C++ andkperiments on a 2.4GHz Linux ma-
chine with 4 GB of RAM. We consider a Markov population modelttdescribes a network of chemical
reactions. According to the theory of stochastic chemiaadtics [8], the form of the rate function of a
reaction depends on how many molecules of each chemicalespa® needed for one instance of the
reaction to occur. The relationship to the volume has besrudsed in detail by Wolkenhauer et al.l[17].
If no reactants are need®dhat is, the reaction is of the form- ... then aj(xt) =kj-V(t) where

kj is a positive constant and(t) is the volume of the compartment in which the reactions tdaeep

If one molecule is needed (caSe— ...) thenaj(x,t) =K - X wherex; is the number of molecules of
type S. Thus, in this caseq;(x,t) is independent of time. If two distinct molecules are neefbese
S+8§ —...) thenaj(x,t) = \%x. - Xy.

All these theoretical considerations are based on the gagmthat the chemical reactions are
elementary that is, they are not a combination of several reactionsr édample may contain non-
elementary reactions and thus a realistic biological mat} contain different volume dependencies.
But since the focus of the paper is on the numerical algorithendo not aim for an accurate biological
description here.

We conduct experiments with two reaction networks. The bret is a simple gene expression
(described in EX.]1). The second one is a gene regulatoryonietwalled the exclusive switch [12]. It
consists of two genes with a common promotor region. Eachesfwo gene productd, andP; inhibits
the expression of the other product if a molecule is boundhéopromotor region. More precisely, if
the promotor region is free, molecules of both typesndP, are produced. If a molecule of typ& is
bound to the promotor region, only molecules of typere produced. If a molecule of tyfe is bound
to the promotor region, only molecules of tyBgare produced. No other configuration of the promotor
region exists. The probability distribution of the exclesiswitch is bistable which means that after a
certain amount of time, the probability mass concentratesvo distinct regions in the state space. The
system has five chemical species of which two have an infiaitge, namely?;, andP,. We define the
transition classes; = (Gj,wj,qa;), j € {1,...,10} as follows.

e Forj € {1,2} we describe production d¥ by Gj = {x € N° | x3 > 0}, wj = g}, andaj(x,t) =
0.5-x3. Here,x3 denotes the number of unbound DNA molecules which is eithsy @ar one and
the vectore; is such that all its entries are zero except jih entry which is one.

o We describe degradation Bf by G » = {x € N° | x; > 0}, Wj;» = —ej, andaj.(X,t) = 0.005 X;.
Here,x; denotes the number & molecules.

e We model the binding oP; to the promotor a§j.4 = {Xx € N> | x3 > 0,X; > O}, Wj 4 = —€j —
e+ ej;3, andaja(xt) = (0.1— %-t) -X;j - x3 for t <3600. Herex; 3 is one if a molecule of
typeP; if bound to the promotor region and zero otherwise.

2Typically, reactions requiring no reactants are used incdse of open systems where it is assumed that the reaction is
always possible at a constant rate and the reactant papulatnot explicitly modelled.
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Case study .FlndMaxSta.te R Total Ex.time| |S | miny | Poissom,
implementation error
5 | 469-10% | 14 min 95 5
method a) 10| 1.33-102| 10 m.|n 33962 78 22
15| 2.24-10°2 5 min 64 36
Gene 20| 9.92.10°2 3 min 41 59
expression 5 |478-10% | 27 min 95 5
method b) 10| 9.63-10%| 14 m!n 33130 77 23
15| 4.08-102 | 10 min 58 42
20| 7.73-10°2 7 min 41 59
5238106 | 21min 80 20
method a) 10| 1.63-10° | 29 mfn 1740 75 25
15| 251-10° | 68 min 47 53
Exclusive 20 | 3.32.10° 2h 38 62
switch 5 | 356-10°° 17 h 89 11
method b) 10 | 1.55-10°4 3h 1750 78 22
15| 6.51-104 1.5h 59 41
20| 1.71-10°3 1h 42 58

Table 1: Results of the analysis of case studies.

e For unbinding o we defineGj.¢ = {Xx € N° | Xj4+3 > 0}, Wj.6 = €j + €3 — €} 3, andaj.e(X,t) =
0.005 X, 3.

¢ Finally, we have production d¥; if a molecule of typeP; is bound to the promotor, i.€Gj;g =
{x € N®|Xj.3 > 0}, Wj1g = €}, andajg(x,t) = 0.5-Xj 3.

Note that only the rate functionss and ag, which denote the binding of a protein to the promotor
region, are time-dependent. This is intuitively clear siifdhe cell volume grows it becomes less likely
that a protein molecule is located close to the promotomoregiVe started the system at tirhe- 0 in
state(0,0,1,0,0) with probability one and considered a time horizort ef 3600. For the simple gene
expression system (Examplé 1) we started at tire0 in state(0,0) and considered the same time
horizon. Tabld 1l contains the results of our experimentse fiist column refers to the system under
study and the second one shows the variation used to impteimemethod FindMaxState which we
suggest in Section 4.2. The third column lists the differeaities for right truncation poirR*. We
list the total error at timénax in the fourth column (see Ed._(111)). Program execution tisngiven in
the fifth column and the sixth column with headif®) contains the maximal size of the sgk- that we
considered during the analysis. The next two columns desthie percentage of the total probability loss
due to the bounding approach (mjnand due to the truncation of the infinite sum in Eq. (5) (Rmisg.
The two percentages in one row do not sum up to one since we ety states that have significant
probability (w.r.t threshold), which is the third error source. However, this lost partie negligible for
the two systems that we consider. For our implementationepetke input = 10-1° of Algorithm[I(a)
fixed.
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5.1 Discussion

We now discuss the effect of the different input parametarthe performance of our algorithm and start
with the implementation of the method to approxim&t&*. For both systems the method "b” is less
effective than method "a” (see Sectionl4.2). Method "b” givarger uniformization rates than method
"a”, which leads to slower execution times. Notice that tkecaition time grows when we use method
"a” for the exclusive switch system when we choose the lavgares forR*. This is due to the fact that
it always finds a statg™® without taking expectations and covariances into conata®er. This results
in large over-approximations for such a bi-stable systehe difect of the choice between methods "a”
and "b” on the accuracy is not completely clear, both methmdside the same order of the probability
loss for the simple gene expression system. For the seceedstady method "a” provides tighter error
bounds for larger values &".

In the Tablé1l we show results obtained with- 1015, Naturally, choosing a lower threshold results
in larger execution times but one can gain a deeper expborafi the state space. This fact can also be
used to obtain a coarse solution for certain system by geltia 10~°, for instance.

The effect of the choice dR" is most interesting. Choosing a larger value Rirmeans that more
summands on the right-hand side of EEqJ (10) have to be appat&d using the bounding approach. This
decreases the accuracy of the algorithm since the largersieps\ are conducted and one obtain coarse
approximation. However it reduces the running time siagg can be covered using fewer iterations.
Notice that the percentage of the probability loss due todation of the infinite sum in EqJ(5) grows
whenR* is chosen to be large. The reason is that we compute only fega8t terms in the sum and
remaining terms are approximations. Thus the choid& afetermines the compromise between running
time and accuracy.

6 Conclusion

We have presented an algorithm for the numerical approiamadf transient distributions for infinite
time-inhomogeneous Markov population models with unbewahcites. Our algorithm provides a strict
lower bound for this transient distribution. There is a &audf between the tightness of the bound and
the performance of the algorithm, both in terms of compatatime and required memory.

As future work, we will investigate the relationship betwdbe parameters of our approach (trun-
cation point, the significance threshadd the method by which we determine the rate of the Poisson
process), the accuracy and the running time of the algoritiore closely. For this we will consider
Markov population models with different structures and aiyics.
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