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c© É. André & G. Frehse
This work is licensed under the
Creative Commons Attribution License.

Preface
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This volume contains the proceedings of the 1st International Workshop on Synthesis of Continuous
Parameters (SynCoP’14). The workshop was held in Grenoble, France on April 6th, 2014, as a satellite
event of the 17th European Joint Conferences on Theory and Practice of Software (ETAPS’14).

SynCoP aims at bringing together researchers working on parameter synthesis for systems with con-
tinuous variables, where the parameters consist of a (usually dense) set of constant values. Synthesis
problems for such parameters arise for real-time, hybrid or probabilistic systems in a large variety appli-
cation domains. A parameter could be, e.g., a delay in a real-time system, or a reaction rate in a biological
cell model. The objective of the synthesis problem is to identify suitable parameters to achieve desired
behavior, or to verify the behavior for a given range of parameter values.

The scientific subject of the workshop covers (but is not limited to) the following areas:

• parameter synthesis,

• parametric model checking,

• robustness analysis,

• parametric logics, decidability and complexity issues,

• formalisms such as parametric timed and hybrid automata, parametric time(d) Petri nets, paramet-
ric probabilistic automata, parametric Markov decision processes, and

• applications to major areas of computer science and control engineering.

Program

This volume contains seven contributions: two invited talks and five regular papers. The two invited
talks are:

• Integer Parameter Synthesis for Timed Automata (Didier Lime)

• Parameter Synthesis for Signal Temporal Logic (Alexandre Donzé)

The workshop received seven submissions, five of which were accepted. Each regular paper was re-
viewed by at least three different reviewers. The five regular papers are:

• MTL-Model Checking of One-Clock Parameterized Timed Automata is Undecidable (Karin Quaas)

• Probabilistic Bisimulations for PCTL Model Checking of Interval MDPs (Vahid Hashemi, Hassan
Hatefi and Jan Krčál)
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• Setting Parameters for Biological Models with ANIMO (Stefano Schivo, Jetse Scholma, Marcel
Karperien, Janine N. Post, Jaco Van De Pol and Rom Langerak)

• Toward Parametric Timed Interfaces for Real-Time Components (Giuseppe Lipari, Youcheng Sun,
Étienne André and Laurent Fribourg)

• Worst-case Throughput Analysis for Parametric Rate and Parametric Actor Execution Time Scenario-
Aware Dataflow Graphs (Mladen Skelin, Marc Geilen, Francky Catthoor and Sverre Hendseth)

Furthermore, one informal presentation was made at the workshop:

• Parameter Synthesis using Paralleltopic Enclosure (Thao Dang, Tommaso Dreossi, Carla Piazza)
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would like to thank these various entities for their generous financial and organizational support, thanks
to which the workshop was able to sponsor two invited speakers and two students attending the workshop.

SynCoP has been organized as a satellite event of ETAPS’14. We thank the authors for their contribu-
tions, the program committee members for reviewing and selecting the papers, and the ETAPS organizing
committee Axel Legay, Ylies Falcone, Saddek Bensalem and Marius Bozga for their support. We would
also like to thank Laurent Fribourg, Laure Petrucci, and Gilles Villard.

Finally, we would like to thank the editorial board of the Electronic Proceedings in Theoretical
Computer Science, and in particular Editor-in-Chief Rob van Glabbeek for his support.

In Villetaneuse and Grenoble,
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Aleksandra Jovanović, Didier Lime and Olivier H. Roux

Parameter Synthesis for Signal Temporal Logic . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Alexandre Donzé

MTL-Model Checking of One-Clock Parametric Timed Automatais Undecidable . . . . . . . . . . . . . . . . 5
Karin Quaas

Probabilistic Bisimulations for PCTL Model Checking of Interval MDPs . . . . . . . . . . . . . . . . . . . . . . . . 19
Vahid Hashemi, Hassan Hatefi and Jan Krčál
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In this talk, we address the problem of parametric verification for real-time systems. The correct
design of such systems is certainly an important and challenging issue. Introducing parameters in the
verification process has a manifold benefit: it makes it more useful by providing the designer with more
information than the mere satisfaction of properties, it also makes it more flexible by allowing verification
at an earlier stage of the design process when not so many features are fixed. It may finally make the
verification process more robust to small changes in the specification.

The main problem encountered in this setting is that parametric verification for timed systems is very
difficult. Starting with the seminal results of Alur, Henzinger and Vardi [1], this field mostly features a
long list of undecidable problems, to which we will add some more in this talk.

Subclassing the general model of parametric timed automata (PTA) permits to retrieve some decid-
ability, like for PTA with one parametric clock [1] or L/U automata [4, 2]. The latter are tailored to the
obtain the decidability of the existence of parameter values that make reachability decidable, but will
show that the actual synthesis of those parameters is still mostly out of reach.

To overcome these difficulties, we propose a different approach, in which we consider that the pa-
rameters should take bounded integer values. We argue that this is not such a restrictive setting, since the
bound can be arbitrarily large and since real-life features like transmission times, watchdog durations,
activation periods of tasks are reasonably specified by integers, or at least rationals that can be made
integers with adequate scaling.

In this setting most problems are obviously decidable, including actual synthesis, since one need only
enumerate all possible parameter values and perform non-parametric verification for all of them. This is
however not what we want to do in practice, since it is certain to be very inefficient for large (absolute
values of the) bounds on parameters. Instead we propose, a symbolic polyhedra-based computation,
in the spirit of the classical symbolic semi-algorithms on hybrid systems [3], and making use of the
notion of integer hull. We will also discuss the extent of the underapproximation obtained through these
symbolic algorithms. These symbolic algorithms have been implemented in our tool ROMEO [5] and we
will provide some benchmarking of the proposed techniques.

Finally, we will show that the actual worst-case complexity of problems in this bounded integer
parametric setting is (theoretically) very close to that of the corresponding non-parametric versions, and
that lifting either the integer or bounded assumption on parameter values leads to undecidability.
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In the domain of model-based design using formal methods and tools, synthesis appears as the Holy
Grail. Given a set of specifications, it supposedly allows to generate automatically the design of a sys-
tem which is correct-by-construction with respect to those specifications. In order to become a reality,
synthesis requires to be casted in strict and precise framework. Early investigation have focused on fi-
nite state machines and linear temporal logics (LTL) but remained for a long time a purely theoretical
exploration due to a seemingly unavoidable astronomical complexity of the synthesis algorithm. Never-
theless, a polynomial-time algorithm was eventually developped for a subset of LTL [12] which opened
the way for practical implementations and applications in various fields: digital circuits[2], robotics [6],
supervisory control [11], etc.

Synthesis for more complex systems, in particular hybrid systems involving continuous dynamics
together with discrete components, brings yet additional challenges. For these systems, the use of a
specification language adapted to properties of dense-time real-valued signal , namely Signal Tempo-
ral Logic (STL) [9], has been recently advocated. However, synthesizing a hybrid system from STL
specifications is by large still an open problem. The difficulty of this problem can be mitigated by the
introduction of parameterizations, both of the system to be synthesized and for the input specification.
An appropriate parameteriterization of the system allows to reduce synthesis to the problem of finding a
valuation for finite set of parameters for which the system’s behaviors satisfy the specifications. In the
case of STL, recently introduced quantitative semantics [7, 5] can be leveraged to solve this problem.
Indeed, when dealing with continuous dynamics and numerical quantities, yes/no answers provide only
partial information and can be augmented with quantitative information about the satisfaction to provide
a better basis for decision making. The principle is to map parameters to some (signed) distance from
satisfying the specification. Parameter synthesis can then be reduced to an optimization problem with
such distance as a cost function.

Introducing parameters in STL specifications leads to PSTL fomulas [1]. Parameter synthesis for
PSTL is dual to the problem of STL synthesis for a parameterized system. It is especially relevant in
case the initial specification reveals to be infeasible, or more generally if the specification has to be re-
vised after a first synthesis attempt, which is very frequent in practice in synthesis. It is usually the case
indeed that the design process consists of actual co-design of a system and its specifications rather than
a waterfall process from the specification to the design, even considering that an ideal synthesis tool is
available. In [1] and later in [8], the problem of synthesizing parameter valuations for a PSTL formula
and a (set of) execution traces has been considered. It was shown to be undecidable, however a general
optimization problem formulation leveraging again quantitative semantics can be applied. Moreover,
situations where efficient algorithms apply have been characterized. More specifically, when the param-
eters to be instantiated are monotic with respect the satisfaction of the formula, then generalized binary
search can be used to find tight valuations, i.e., satisfying valuations which are close to the boundary



4 Parameter Synthesis for Signal Temporal Logic

with violation.

The tool Breach [3] provides a versatile framework to perform simulation-based parameter synthesis
for PSTL formulas and systems described as ordinary differential equations, Simulink1 or a generic
blackbox simulation function. It has been applyied in industrial contexts in the automative domain [8]
and for the analysis of complex biological systems [4, 13, 10].
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Parametric timed automata extend timed automata (Alur and Dill, 1991) in that they allow the specifi-
cation ofparametricbounds on the clock values. Since their introduction in 1993by Alur, Henzinger,
and Vardi, it is known that the emptiness problem for parametric timed automata with one clock is
decidable, whereas it is undecidable if the automaton uses three or more parametric clocks. The
problem is open for parametric timed automata with two parametric clocks. Metric temporal logic,
MTL for short, is a widely used specification language for real-time systems. MTL-model checking
of timed automata is decidable, no matter how many clocks areused in the timed automaton. In this
paper, we prove that MTL-model checking for parametric timed automata is undecidable, even if the
automaton uses only one clock and one parameter and is deterministic.

1 Introduction

An important field of algorithmic verification is the analysis of real-time systems,i.e., systems whose
behaviour depend on time-critical aspects. Since the earlynineties, numerous formalisms have been
investigated to express and verify real-time properties. Two prominent examples of such formalisms are
timed automataandmetric temporal logic. Timed automata [3] extend classical finite automata with
a finite set of real-valuedclockswhose values grow with the passage of time. The edges of a timed
automaton are labelled withclock constraintsthat compare the value of a clock with some constant. An
edge can only be taken if the current values of the clocks satisfy the clock constraint labelling the edge.
The central property of timed automata is the decidability of the emptiness problem [3].

Metric temporal logic (MTL, for short) extends classical linear temporal logic by constraining the
temporal modalities with intervals of the non-negative reals. For example, the formulaF[0,2]ϕ means
thatϕ will hold within two time units from now. Introduced by Koymans in 1990 [17], the satisfiability
problem and the model checking problem for timed automata were assumed to be undecidable for a long
time. However, more than 20 years later it was proved by Ouaknine and Worrell [19] that both problems
are decidable if MTL is interpreted in the pointwise semantics overfinite timed words. The decidability
of the MTL-model checking problem for timed automata is independent of the number of clocks that the
timed automaton uses.

A major drawback of timed automata and MTL is that they only allow the specification ofconcrete
constraints on timing properties,i.e., one has to provide the concrete values of all time-related constraints
that occur in the real-time system. However, it is often morerealistic to providesymbolic(or, parametric)
constraints, in particular, if the real-time system under construction is not known in full details in the early
stages of design. With the purpose to overcome the incapability of timed automata to express parametric
time constraints,parametric timed automatawere introduced [6]. Parametric timed automata are timed

∗The author is supported by Deutsche Forschungsgemeinschaft (DFG), project QU 316/1-1.
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automata defined over a finite set of parameters, which can be used in clock constraints labelling the
edges of the automaton. For an example, consider the parametric timed automaton shown in Fig.1 on
page 4. The clocky is concretely constrained by a constant like in ordinary timed automata. In contrast
to this, the clockx is parametrically constrained by the parameterp. The value ofp is determined by a
parameter valuation,i.e., a function mapping each parameter to a value in the non-negative reals.

A crucial verification problem for parametric timed automata is the emptiness problem: given a
parametric timed automatonA , does there exist some parameter valuation such thatA has an accepting
run? However, it turns out that this problem is undecidable already if A uses three or more parametric
clocks [6]. On the positive side, the problem is decidable ifin A at most one clock is compared to
parameters. So far nothing is known about the decidability status for parametric timed automata with
two parametric clocks; the problem is closely related to some hard and open problems of logic and
automata theory [6].

In this paper, we concern ourselves with the MTL-model checking problem for parametric timed
automata: given a parametric timed automatonA and a specification in form of an MTL formulaϕ ,
does there exist some parameter valuation such that all finite runs ofA satisfy ϕ? For parametric
timed automata with three clocks, the undecidability of this problem follows from the undecidability
of the emptiness problem. Here, we prove that the problem is undecidable even ifA uses only one
clock and one parameter and is deterministic. This negativeresult is in contrast to the decidability of
the emptiness problem for one-clock parametric timed automata, and the decidability of MTL-model
checking of timed automata. The result can be regarded as further step towards the precise decidability
border for the reachability problem for parametric timed automata with two parametric clocks, which is
open for more than 20 years.

Related work The reader might wonder why we consider model checking forparametric timed au-
tomata andstandardMTL, i.e., a non-parametric extension of MTL. It is well known that if we extend
classical LTL with formulae of the formϕ1U=pϕ2, meaning thatϕ2 has to hold in exactlyp steps from
now on for some parameterp, then the satisfiability problem (“Given a formulaϕ , is there some parame-
ter valuation such thatϕ is satisfiable?”) is undecidable: LTL with parameterizedequality modalitiesof
the formU=p can be used to encode halting computations of two-counter machines [4]. Undecidablity
of the satisfiability problem implies undecidability of themodel checking problem for all systems that
are capable to recognize the universal language over a givenalphabet (as it is the case for,eg., timed
automata). In [4] it is also noted that the undecidability proof for LTL with parameterized equality
modalities can be adapted to prove the undecidability of thesatisfiability problem for LTL extended with
parameterizedupper bound modalitiesof the formU≤p and lower bound modalitiesof the formU>p

unless we restrict every parameter to occur ineither lower bound modalitiesor upper bound modalities,
but not in both.

The restriction on the parameters of a parametric timed automaton to occur either as a lower bound
or as an upper bound also forms an important subclass of parametric timed automata, calledlower
bound/upper bound (L/U) automata[15]. For this subclass the emptiness problem is decidable in-
dependent of the number of parametric clocks, and for both finite [15] and infinite runs [8]. Model
checking L/U automata with parametric extensions of MITL [5] in the interval-basedsemantics is de-
cidable [8, 13]. Recall that constraints occurring at modalities of MITL formulae are not allowed to be
of the form= n (not even if the constraint isconcrete, i.e., n∈ N); in fact, the satisfiability and model
checking problems for (non-parametric) MTL in the interval-based semantics are undecidable [14].

A crucial aspect of our undecidability proof is the fact thatMTL formulae can be used to encode
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computations ofchannel machines with insertion errors[18]: For every channel machineC , there is
an MTL formula ϕC that is satisfiable if, and only if,C has a halting computation that may contain
insertion errors. This fact was used in [18] to prove the lower complexity bound of the satisfiability
problem for MTL over finite timed words. In our proof, we use the parameterized timed automaton to
excludeinsertion errors in the timed words encoding computations of C . We remark that the idea for
this proof is similar to the proof of the undecidability for the model checking problem for one-counter
machines and Freeze LTL with one register (LTL↓

1, for short) [12]: In [11], it is proved that LTL↓1
formulae can be used to encode halting computations ofcounter automata with incrementing errors.
Like MTL, LTL ↓

1 is not capable to exclude such errors. In [12], it is shown that this incapability can
be repaired by combining the formula with a non-deterministic one-counter machine. Let us, however,
note that there are substantial technical differences between the formalisms MTL and parametric timed
automata on the one side, and LTL↓

1 and one-counter machines on the other side.

2 Parametric Timed Automata

We useN,Q≥0, andR≥0 to denote the non-negative integers, non-negative rationals, and the non-negative
reals, respectively. In this section, we fix a finite alphabetΣ, a finite setP = {p1, . . . , pm} of parameters,
and a finite setX = {x1, . . . ,xn} of clocks.

We defineclock constraintsφ overX andP to be conjunctions of formulae of the formx∼ c, where
x∈X , c∈N∪P, and∼∈ {<,≤,=,≥,>}. We useΦ(X ,P) to denote the set of all clock constraints
overX andP. A clock valuationis a function fromX to R≥0. For δ ∈ R≥0, we defineν + δ to be
(ν +δ )(x) = ν(x)+δ for eachx∈X . Forλ ⊆X , we defineν [λ := 0] by (ν [λ := 0])(x) = 0 if x∈ λ ,
and otherwise(ν [λ := 0])(x) = ν(x).

A parameter valuation is a functionπ : P →Q≥0 assigning a non-negative rational to each parameter.
A clock valuationν and a parameter valuationπ satisfy a clock constraintφ , written (ν ,π) |= φ ,

if the expression obtained fromφ by replacing each parameterp by π(p) and each clockx by ν(x)
evaluates to true.

A parametric timed automatonis a tupleA = (Σ,L ,L0,X ,P,E,LF), where

• L is a finite set of locations,

• L0 ⊆ L is the set ofinitial locations,

• E ⊆ L ×Σ×Φ(X ,P)×2X ×L is a finite set ofedges,

• LF ⊆ L is the set offinal locations.

Each edge(l,a,φ ,λ , l′) represents a discrete transition froml to l′ on the input symbola. The clock
constraintφ specifies the bounds on the value of the clocks, and the setλ specifies the clocks to be reset
to zero.

A global stateof A is a pair(l,ν), where l ∈ L represents the current location, and the clock
valuation ν represents the current values of all clocks. The behaviour of A depends upon the cur-
rent global state and the parameter valuation. Each parameter valuationπ induces a(Σ,R≥0)-labelled
transition relationτπ over the set of all global states ofA as follows: 〈(l,ν),(a,δ ),(l′ ,ν ′)〉 ∈ τπ ,
wherea ∈ Σ and δ ∈ R≥0, if, and only if, there is an edge(l,a,φ ,λ , l′) ∈ E such that for all clocks
x ∈ X we have(ν(x) + δ ,π) |= φ , andν ′ = (ν(x) + δ )[λ := 0]. A π-run of A is a finite sequence
Π1≤i≤k〈(l i−1,νi−1),(ai ,δi),(l i ,νi)〉 such that〈(l i−1,νi−1),(ai ,δi),(l i ,νi)〉 ∈ τπ for everyi ∈ {1, . . . ,k}. A
π-run issuccessfulif l0 ∈ L0, ν0(x) = 0, andlk ∈ LF .
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1 2 3

a,x= p
x := 0 a,x= p,y= 1

x,y := 0

b,x= p
x := 0 b,x= p,y= 1

Figure 1: A parametric timed automatonA .

A timed wordis a non-empty finite sequence(a1, t1) . . . (ak, tn) ∈ (Σ×R≥0)
+ such that the sequence

t1, . . . , tn of timestamps is non-decreasing. We say that a timed word isstrictly monotonicif t1, . . . , tn is
strictly increasing. We useTΣ+ to denote the set of finite timed words overΣ. A setL ⊆ TΣ+ is called a
timed language.

Given a parametric timed automatonA and a parameter valuationπ, we associate with eachπ-
run Π1≤i≤k〈(l i−1,νi−1),(ai ,δi),(l i ,νi)〉 the timed word(a1,δ1)(a2,δ1+δ2) . . . (ak,∑1≤i≤k δk). We define
Lπ(A ) to be the set of timed wordsw for which there is a successfulπ-run ofA that is associated with
w. A parameter valuationπ is consistent withA if Lπ(A ) is not empty. We useΠ(A ) to denote the set
of parameter valuations that are consistent withA .

We say that a parametric timed automatonA is deterministicif L0 is a singleton, and whenever
(l,a,φ1,λ1, l1) and(l,a,φ2,λ2, l2) are two different edges inA , then for all parameter valuationsπ and
clock valuationsν we have(ν ,π) 6|= φ1∧φ2.

Example 2.1 Figure 1 shows a parametric timed automaton over the alphabet Σ = {a,b} using a para-
metric clock x and a clock y, and one parameter p. Assumeπ(p) = n−1 for some n∈ N. Then Lπ(A )
contains a single timed word, namely(a,π(p))(a,2π(p)) . . . (a,nπ(p))(b,(n+ 1)π(p)) . . . (b,2nπ(p)).
For all other parameter valuationsπ, Lπ(A ) = /0, i.e., they are not consistent withA . Hence we have
Π(A ) = {π | π(p) = n−1 for some n∈ N}. Note thatA is not deterministic, but it can be made deter-
ministic by adding the clock constraint y< 1 to the loops in locations1 and2.

3 Metric Temporal Logic

The set of MTL formulae is built up fromΣ by boolean connectives and a constraining version of the
until modality:

ϕ ····= a | ¬ϕ | ϕ1∧ϕ2 | ϕ1UI ϕ2

wherea∈ Σ andI ⊆ R≥0 is an open, closed, or half-open interval with endpoints inN∪{∞}. Note that
we donot allow parameters as endpoints. IfI = R≥0, then we may omit the annotationI onUI .

We interprete MTL formulae in thepointwise semantics, i.e., over finite timed words overΣ. Let
w= (a1, t1)(a2, t2) . . . (an, tn) be a timed word, and leti ∈ {1, . . . ,n}. We define thesatisfaction relation
for MTL, denoted by|=, inductively as follows:

(w, i) |= a ⇔ ai = a

(w, i) |= ¬ϕ ⇔ (w, i) 6|= ϕ ,

(w, i) |= ϕ1∧ϕ2 ⇔ (w, i) |= ϕ1 and(w, i) |= ϕ2,

(w, i) |= ϕ1UI ϕ2 ⇔ ∃ j.i < j ≤ |w| : (w, j) |= ϕ2 andt j − ti ∈ I , and∀k.i < k< j : (w,k) |= ϕ1.

We say that a timed wordw∈ TΣ+ satisfies an MTL formulaϕ , writtenw |= ϕ , if (w,1) |= ϕ . Given an
MTL formula ϕ , we defineL(ϕ) ··= {w∈ TΣ+ | w |= ϕ}. We use the following syntactical abbreviations:
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ϕ1∨ϕ2 ··= ¬(¬ϕ1∧¬ϕ2), ϕ1 → ϕ2 ··= ¬ϕ1∨ϕ2, true ··= p∨¬p, false ··= ¬true, XI ϕ ··= falseUI ϕ ,
FI ϕ ··= trueUI ϕ , GI ϕ ··= ¬FI¬ϕ . Observe that the use of thestrict semantics for the until modality is
essential to derive the next modality.

MTL-Model Checking Problem for Parametric Timed Automata

INPUT: A parametric timed automatonA , an MTL formulaϕ .
QUESTION: Is there some parameter valuationπ such that for everyw∈ Lπ(A ) we havew |= ϕ?

In general, the MTL-model checking problem is undecidable for parametric timed automata. This
follows from the undecidability of the emptiness problem for parametric timed automata with three or
more parametric clocks [6]. In the next section, we prove theundecidability of the MTL-model checking
problem for parametric timed automata using one parametricclock and one parameter.

4 Main Result

Theorem 4.1 The MTL-model checking problem for parametric timed automata is undecidable, even if
the automaton uses only one clock and one parameter and is deterministic.

The remainder of this section is devoted to the proof of Theorem 4.1. The proof is a reduction of the
control state reachability problem for channel machines, which we introduce in the following.

4.1 Channel Machines

Let Γ be a finite alphabet. We useε to denote theempty wordoverΓ. Given two finite wordsx,y∈ Γ∗,
we usex · y to denote theconcatenationof x any y. We define the order≤ over the set of finite words
overΓ by x1x2 . . .xm ≤ y1y2 . . .yn if there exists a strictly increasing functionf : {1, . . . ,m}→ {1, . . . ,n}
such thatxi = yf (i) for everyi ∈ {1, . . . ,m}.

A channel machineconsists of a finite-state automaton acting on an unbounded fifo channel. For-
mally, a channel machine is a tupleC = (S,sI ,M,∆), where

• S is a finite set ofcontrol states,

• sI ∈ S is the initial control state,

• M is a finite set ofmessages,

• ∆ ⊆ S×L×S is the transition relation over the label setL = {m!,m? | m∈ M}∪{ε}.

A configurationof C is a tuple(s,x), wheres∈ S is the control state andx∈ M∗ represents the contents
of the channel. The rules in∆ induce anL-labelled transition relation→ over the set of configurations of
C as follows:

• 〈(s,x),m!,(s′,x′)〉 ∈→ if, and only if, there exists some transition(s,m!,s′) ∈ ∆, x∈ Σ∗, andx′ =
x·m, i.e., m is added to the tail of the channel.

• 〈(s,x),m?,(s′,x′)〉 ∈→ if, and only if, there exists some transition(s,m?,s′) ∈ ∆, x′ ∈ Σ∗, and
x= m·x′, i.e., m is the head of the current channel content.

• 〈(s,x),ε ,(s′,x′)〉 ∈→ if, and only if, there exists some transition(s,ε ,s′) ∈ ∆ andx= ε , i.e., the
channel is empty, andx′ = x.
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Next, we define anotherL-labelled transition relation over the set of configurations ofC . The relation
 is a superset of→. It contains some additional transitions which result frominsertion errors. We
define〈(s,x1), l ,(s,x′1)〉 ∈ , if, and only if,〈(s,x), l ,(s′ ,x′)〉 ∈→, x1 ≤ x, andx′ ≤ x′1. A computation of
C is a finite sequenceΠ1≤i≤k〈(si−1,xi−1), l i ,(si ,xi)〉 such that〈(si−1,xi−1), l i ,(si ,xi)〉 ∈ for every i ∈
{1, . . . ,k}. We say that a computation iserror-freeif for all i ∈{1, . . . ,k}we have〈(si−1,xi−1), l i ,(si ,xi)〉 ∈→.
Otherwise, we say that the computation isfaulty.

Control State Reachability Problem for Channel Machines

INPUT: A channel machineC with control statesS, a control statesF ∈ S.
QUESTION: Is there an error-free computation ofC from (sI ,ε) to (sF ,x) for somex∈ M∗?

The control state reachability problem is undecidable for channel machines, because channel ma-
chines are Turing-powerful [9, 1].

4.2 Encoding Faulty Computations

For the remainder of this section, letC = (S,sI ,M,∆) be a channel machine and letsF ∈ S. We construct
an MTL formula ϕC that is satisfiable if, and only if, there exists somex ∈ M∗ such thatC has a
computation from(sI ,ε) to (sF ,x) that may be faulty. Later we are going to define a parametric timed
automatonAC with one clock and one parameter to exclude faulty computations fromL(ϕC ).

Let Σ = S∪M∪L∪{#,⋆}, where # and⋆ do not occur inS∪M∪L. We start with defining a timed
languageL(C ) over Σ that consists of all timed words that encode (potentially faulty) computations of
C from (sI ,ε) to (sF ,x) for somex ∈ M∗. The definition ofL(C ) follows the ideas presented in [18].
Let γ ··= Π1≤i≤k〈(si−1,xi−1), l i ,(si ,xi)〉 be a computation ofC with s0 = sI , x0 = ε , andsk = sF . Each
configuration(si ,xi) occurring inγ is encoded by a timed word of duration one starting withs0 at time
δ for some arbitraryδ ∈ R≥0. Every symbolsi is followed byl i+1 after one time unit, and bysi+1 after
two time units. The contentxi of the channel is stored in the time interval betweensi andl i+1. Note that
due to the denseness of the time domain we can indeed store thechannel content without any restriction
on its length. An important detail of the definition ofL(C ) is that for every message symbolm between
si and l i+1, there is a copy in the encoding of the next configuration exactly two time units later, unless
the label of the current transition ism?. In that case, the symbolm is simply removed from the encoding
of the configuration.

For our reduction to work, we have to change the idea in some details. First, we define a timed
languageL(C ,n) for everyn∈ N, wheren is non-deterministically chosen and is supposed to represent
the expected maximum length of the channel content during a computation. The empty channel in the
initial configuration will be represented by a timed word with n hash symbols betweens0 andl1. Second,
we put a stronger condition on the copy policy of the messages. We require that for every hash symbol
betweens0 and l1 there is a message or hash symbol withthe same fractional partbetweensi and l i+1

for every i ∈ {1, . . . ,k− 1}. In Fig. 2, we present some examples to explain the details. (a) If the
current instruction is of the formm1! for somem1 ∈ M, then in the encoding of the next configuration,
the first hash symbol between the control state symbol and thenext label symbol is replaced bym1. (b)
If in the encoding of the current configuration there is no hash symbol left,i.e., the expected maximum
length of the channel content is exceeded, then a new symbolm1 is inserted at the end of the encoding
of the next configuration. The timestamp of the newly inserted event can be any time strictly between
the timestamps of the last message symbol and the next label symbol. (c) If the current instruction is
of the formm1? and the first symbol in the encoding of the current configuration is m1, then we replace
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(a)
m1 m2 #
4.2 4.7 4.8

m1! m1 m2 m1
6.2 6.7 6.8

(b)
m1 m2 m1
6.2 6.7 6.8

m1! m1 m2 m1 m1
8.2 8.7 8.8 8.9

(c)
m1 m2 #
4.2 4.7 4.8

m1? m2 # #
6.2 6.7 6.8

(d)
m2 # #
6.2 6.7 6.8

m1? m2 # # #
8.2 8.7 8.8 8.9

Figure 2: Encoding of the channel content

m1 by a new hash symbol at the end of the encoding of the next configuration, and additionally shift the
fractional parts of the timestamps of the copies of all remaining symbols for one position to the right. (d)
If the first symbol is notm1, i.e., an insertion error is occurring, then we insert a new hash symbol at the
end of the encoding of the next configuration. Next, we give the formal definition ofL(C ,n). Let n∈N.
The timed languageL(C ,n) consists of all timed wordsw overΣ that satisfy the following conditions:

• w must be strictly monotonic.

• In w, every control state symbols different fromsF is followed by a label symboll after one time
unit, and by a control state symbols′ after two time units, provided that(s, l ,s′) ∈ ∆. The symbol
sF is followed by⋆ after one time unit. Control state symbols, label symbols and the symbol⋆
must not occur anywhere else inw.

• Symbols inM∪{#} may occur inw between a control state symbol and a label symbol. They may
not occur anywhere else inw.

• Between a control state and a label symbol, hash symbols # mayonly occur after message symbols
m∈ M.

• The (untimed) prefix ofw must be of the formsI #nls for somel ∈ L,s∈ S.

• w must containsF .

Assume thatw contains the infix(s,δ )(σ1,δ + δ1)(σ2,δ + δ2) . . . (σm,δ + δm)(l ,δ + 1) for somes∈
S\{sF}, l ∈ L, δ ∈ R≥0 and 0< δ1 < δ2 < · · ·< δm < 1.

• If l = ε , thenσi = # for all i ∈ {1, . . . ,m} (i.e., the channel is indeed empty), and for eachσi there
is a copy two time units later.

• If l = m!, then we distinguish between two cases: If there is somei ∈ {1, . . . ,m} such thatσi = #,
thenreplaceσ j by m two time units later, wherej ∈ {1, . . . ,m} is the smallest number such that
σ j = #. For eachk∈ {1, . . . ,m}\{ j}, there is a copy ofσk two time units later. Otherwise,i.e., if
for all i ∈ {1, . . . ,m} we haveσi 6= #, then for eachi ∈ {1, . . . ,m}, there is a copy ofσi two time
units later. Further, a new symbolm is added between the copy ofσm and the following symbol in
L∪{⋆}. Note that this corresponds to the case wheren has been chosen too small to capture the
maximum length of the channel content during the computation.

• If l = m?, then we distinguish between two cases: Ifσ1 = m, then for eachi ∈ {2, . . . ,m}, there is
a copy ofσi two time units after the occurrence ofσi−1. Further there is a new hash symbol two
time units after the occurrence ofσm. Otherwise,i.e., if σ1 6= m, then there is a copy ofσi two
time units later for everyi ∈ {1, . . . ,m}. Further, the encoding of the next configuration contains
an additional hash symbol between the copy ofσm and the next symbol inL∪{⋆}. Note that this
case corresponds to aninsertion error.
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Let w1 = (a1, t1) . . . (ak, tk) andw2 = (a′1, t
′
1) . . . (a

′
k′ , t

′
k′) be two timed words. Iftk ≤ t ′1, then we define the

concatenationof w1 andw2, denoted byw1 ·w2, to be the timed word(a1, t1) . . . (ak, tk)(a′1, t
′
1) . . . (a

′
k′ , t

′
k′).

Let w∈ L(C ,n). We use max(w) to denote the maximum number of symbols inM∪{#} that occur inw
between a control state symbol and a symbol inL∪{⋆}. Clearly, every timed word inL(C ,n) is of the
form

(s0,δ ) ·w1 · (l1,δ +1)(s1,δ +2) ·w2 · (l2,δ +3) . . . (sF ,δ +N) ·wN · (⋆,δ +N+1)

for someδ ∈ R≥0 andN ∈ N, wheres0 = sI and for everyi ∈ {1, . . . ,N}, wi is of the form

wi = (σ i
1,δ +2(i −1)+δ i

1)(σ i
2,δ +2(i −1)+δ i

2) . . . (σ i
ni
,δ +2(i −1)+δ i

ni
)

for someni ∈ N with n1 = n, and 0< δ i
1 < δ i

2 < · · · < δ i
ni
< 1. In the following, whenever we refer to

a timed wordw ∈ L(C ,n), we assume thatw is of this form. The next lemma states that the fractional
parts of the initial time delaysδ 1

1 , . . . ,δ 1
n1

are not lost. This will be important later.

Lemma 4.2 Let n∈N and let w∈ L(C ,n). For every i∈ {1, . . . ,N−1} there exists a strictly increasing
function fi : {1, . . . ,ni}→ {1, . . . ,ni+1} such thatδ i

j = δ i+1
fi( j) for every j∈ {1, . . . ,ni}.

Proof The proof is by induction onN. (Induction base:) Observe thatσ1
i = # for everyi ∈ {1, . . . ,n1}.

Assumel1 = ε . Then for everyj ∈ {1, . . . ,n1}, there is a copy ofσ1
j two time units later. Ifl1 = m!, then

for every j ∈ {2, . . . ,n1}, there is a copy ofσ1
j two time units later, andσ1

1 is replaced bym two time units
later. If l1 = m?, then for everyj ∈ {1, . . . ,n1}, there is a copy ofσ1

j two time units later, and there is an
additional symbol # between the copy ofσ1

n1
and l2. Whatever case, the definition ofL(C ,n) does not

exclude that new symbols inM∪{#} are inserted somewhere betweens1 andl2. Thus we haven1 ≤ n2.
Moreover, since there is a copy for each symbol two time unitslater, there exists a strictly increasing
function f : {1, . . . ,n1} → {1, . . . ,n2} such thatδ 1

j = δ 2
f ( j) for every j ∈ {1, . . . ,n1}. (Induction step)

Assume that the claim holds for alli ∈ {1, . . . ,k}. We prove it also holds fork+ 1. We only treat the
two remaining cases. First, assumelk+1 = m? andσ k+1

1 = m. By definition, for everyj ∈ {2, . . . ,nk+1},
there is a copy ofσ k+1

j two time units after the occurrence of symbolσ k+1
j−1 . Further, the first symbolm is

replaced by a new hash symbol two time units after the occurrence ofσ k+1
nk+1

. Second, assumelk+1 = m!

and we haveσ k+1
j 6= # for every j ∈ {1, . . . ,nk+1}. Then, for eachj ∈ {1, . . . ,nk+1}, there is a copy

of σ k+1
j two time units later, and a new symbolm is added after the copy ofσ i

nk+1
. Whatever case,

the definition ofL(C ,n) does not exclude that new symbols inM ∪{#} are inserted betweensk+2 and
lk+2. Hencenk+1 ≤ nk+2. Since for everyj ∈ {1, . . . ,nk+1} the symbolσ k+1

j is copied or replaced two
time units later, there exists a strictly increasing function f : {1, . . . ,nk+1} → {1, . . . ,nk+2} such that
δ k+1

j = δ k+2
fk+1( j) for every j ∈ {1, . . . ,nk+1}. �

Let γ ··= Π1≤i≤k〈(si−1,xi−1), l i ,(si ,xi)〉 be a finite computation ofC . We use max(γ) to denote the maxi-
mum length of the channel content occurring inγ , formally: max(γ) ··= max{|xi | | 0≤ xi ≤ k}.

Lemma 4.3 For each error-free computationγ of C from (sI ,ε) to (sF ,x) for some x∈ M∗, and every
δ ∈R≥0, 0< δ1 < δ2 < · · ·< δmax(γ) < 1, there exists some timed word w∈ L(C ,max(γ)) such that the
prefix of w is of the form(sI ,δ )(#,δ + δ1) . . . (#,δ + δmax(γ))(l1,δ +1) for some l1 ∈ L, andmax(w) =
max(γ).

Proof Let γ be an errror-free computation ofC of the formΠ1≤i≤k〈(si−1,xi−1), l i ,(si ,xi)〉 wheres0 = sI ,
x0 = ε andsk = sF . Further letn=max(γ). Now assumeδ ∈R≥0 and 0< δ1 < δ2 < · · ·< δn < 1. Clearly
there is somew∈ L(C ,n) whose prefix is of the formu1 = (sI ,δ )(#,δ +δ1) . . . (#,δ +δn)(l1,δ +1). We
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prove that there exists somew∈ L(C ,n) such thatu1 is the prefix ofw and max(w) = n, i.e., for every
i ∈ {1, . . . ,k}, the number of symbols inM∪{#} betweensi−1 andl i (and betweensk and⋆) is equal to
n. The proof is by induction onk.

(Induction base:) Assumel1 = ε . By definition, there must be a copy for each # exactly two time
units later. The addition of new symbols is not required. Ifl1 =m!, then by definition the first occurrence
of # is replacedby mexactly two time units later, and for each of the remaining # there is a copy two time
units later. The addition of new symbols is not required. Note that the casem? cannot occur becauseγ
is error-free. Hence, there exists some timed wordw∈ L(C ,n) whose prefix is of the formu1 ·u2, where
u2 = (s1,2+δ )(σ2

1 ,2+δ +δ1)(#,2+δ +δ2) . . . (#,2+δ +δn)(l2,2+δ +1) for someσ2
1 ∈ M∪{#}.

(Induction step:) Assume there is some timed wordw∈ L(C ,n) whose prefix is of the formu1 · · · · ·up

for somep< k, where for everyi ∈ {1, . . . , p}, ui is of the form

(si−1,2(i−1)+δ )(σ i
1,2(i−1)+δ +δ1)(σ i

2,2(i−1)+δ +δ2) . . . (σ i
n,2(i−1)+δ +δn)(l i ,2(i−1)+δ +1)

for someσ i
1, . . . ,σ i

n ∈ M∪{#}.
Assumelp = m? for somem∈ M. By the fact thatγ is error-free, we knowσ p

1 = m. By definition,
there is a copy ofσ p

i two time units after the occurrence ofσ p
i−1 for every i ∈ {2, . . . ,n}, and there is a

new hash symbol inserted two time units after the occurrenceof σ p
n . The addition of new symbols is not

required.
Assumelp = m! for somem∈ M. Recall thatn = max(γ) is the maximum length of the channel

content inγ . Hence there must be somej ∈ {1, . . . ,n} such thatσ p
j = #. By definition, the smallest

j ∈ {1, . . . ,n} with σ p
j = # is replaced bym exactly two time units later. For each of the remaining

symbols there is a copy two time units later. The addition of new symbols is not required.
Assumelp = ε . We can proceed as above, concluding that the addition of newsymbols is not

required.
Hence, there exists some timed wordw ∈ L(C ,n) whose prefix is of the formu1 ·u2 · . . .up ·up+1,

whereup+1 = (sp,2p+δ )(σ p+1
1 ,2p+δ +δ1)(σ p+1

2 ,2p+δ +δ2) . . . (σ p+1
n ,2p+δ +δn)(lp+1,2p+δ +

1) for someσ p+1
1 , . . . ,σ p+1

n ∈ M∪{#}.
We thus have proved that there exists somew∈ L(C ,n) with max(w) = n. �

Lemma 4.4 For each n∈N and w∈ L(C ,n) with max(w) = n, there exists some error-free computation
γ of C from (sI ,ε) to (sF ,x) for some x∈ M∗ with max(γ)≤ n.

Proof Let n∈ N and letw∈ L(C ,n) such that max(w) = n. Hence the number of symbols inM∪{#}
between every control state symbol and the following label symbol (or the symbol⋆ if the state symbol
is sF ) in w is constantly equal ton. This implies that (1) whenever a control state symbols is followed by
a label symbolm? one time unit later, then the next symbol aftersmust bem, which will be replaced by
a new hash symbol; (2) whenever a state symbols is followed by a label symbolm! one time unit later,
then there must exist some hash symbol in between, and the first such hash symbol will be replaced by
m; and (3)w does not contain any spontaneously inserted symbols. From (1) and (3) we can conclude
thatw encodes an error-free computation. From (2) we can concludethat the choice ofn is big enough
to capture the maximum length of the channel content. Hence there exists some error-free computation
of C from (sI ,ε) to (sF ,x) for somex∈ M∗ with max(γ)≤ n. �

4.3 Excluding Faulty Computations

Next we define a parametric timed automatonAC over ΣC such thatL(C ,n)∩ L(AC ) consists of all
timed words that encodeerror-free computations ofC from (sI ,ε) to (sF ,x) for somex ∈ M∗. The
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1 2 3

sI

x := 0

#,x= p
x := 0 L,x= p

Σ\{sF}

4 5

sF

x := 0

M,#,x= p
x := 0 ⋆,x= p

Figure 3: The parametric timed automatonAC that excludes insertion errors.

parametric timed automatonAC is shown in Fig. 3. It uses one clockx, parametrically constrained by a
single parameterp. Note thatAC is deterministic.

Theorem 4.5 C has an error-free computation from(s0,ε) to (sF ,x) for some x∈ M∗, if, and only if,
there exist n∈N and a parameter valuationπ such that L(C ,n)∩Lπ(AC ) 6= /0.

Proof For the direction from left to right, letγ ··= Π1≤i≤k〈(si−1,xi−1), l i ,(si ,xi)〉 be an error-free compu-
tation ofC such thats0 = sI , x0 = ε andsk = sF . Definen= max(γ). Let δ ∈R≥0, and defineδi =

i
(n+1)

for everyi ∈ {1, . . . ,n}. By Lemma 4.3, there existsw∈ L(C ,n) such that the prefix ofw is of the form

(sI ,δ )(#,δ +δ1) . . . (#,δ +δn)(l1,δ +1)

and max(w) = n. This together with Lemma 4.2 implies that the suffix ofw is of the form

(sF ,2k+δ )(σ1,2k+δ +δ1) . . . (σn,2k+δ +δn)(⋆,2k+δ +1)

for someσ1, . . . ,σn ∈ M ∪{#}. Note that in both the prefix and the suffix ofw the time delay between
every symbol isδ1. Defineπ(p) = δ1. It is easy to see thatw∈ Lπ(AC ). HenceL(C ,n)∩Lπ(AC ) 6= /0.

For the direction from right to left, assume there existn∈ N and a parameter valuationπ such that
L(C ,n)∩ Lπ(AC ) 6= /0. Let w ∈ L(C ,n)∩ Lπ(AC ). By definition ofL(C ,n), the prefix ofw is of the
form

(sI ,δ )(#,δ +δ1)(#,δ +δ2) . . . (#,δ +δn)(l ,δ +1)

for someδ ∈R≥0, 0< δ1 < δ2 < · · ·< δn < 1, andl ∈ L. The clock constraints at the loop in location 2
and at the edge from location 2 to 3 impliesδi =

i
(n+1) for everyi ∈ {1, . . . ,n} andπ(p) = δ1. By Lemma

4.2, the suffix ofw must be of the form

(sF ,N+δ )(σn,N+δ +δ ′
1) . . . (σm,N+δ +δ ′

m)(⋆,N+δ +1)

for someN∈N, 0< δ ′
1 < δ ′

2 < · · ·< δ ′
m< 1 such thatn≤m, and there exists a strictly increasing function

f : {1, . . . ,n} → {1, . . . ,m} such thatδi = δ ′
f (i). Note that⋆ occurs exactly one time unit aftersF . This,

together with the clock constraints at the loop in location 4and at the edge from 4 to the final location 5,
impliesm= n (andδ ′

i = δi for everyi ∈ {1, . . . ,n}). By Lemma 4.2, we further know that the number of
symbols between a control state symbol and a symbol inL∪{⋆} cannotdecrease, and hence it follows
that max(w) = n. By Lemma 4.4, there exists an error-free computation ofC from (s0,ε) to (sF ,x) for
somex∈ M∗. �

4.4 The Reduction

We defineL(C ) = ∪n∈NL(C ,n). Then we obtain

Corollary 4.6 There exists an error-free computation ofC from (sI ,ε) to (sF ,x) for some x∈M∗, if, and
only if, there exists some parameter valuationπ with Lπ(AC )∩L(C ) 6= /0.
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Next, we define the MTL formulaϕC such thatL(ϕC ) = L(C ). The formulaϕC is the conjunction of
a set of formulas, each of them expressing one of the conditions of L(C ). We start by defining some
auxiliary formulas:

∨
S··=

∨
s∈Ss,

∨
M ··=

∨
m∈M m,

∨
L ··=

∨
l∈L l , ϕcopyM ··= G(0,1)

∧
m∈M(m→ F=2m),

andϕcopy# ··= G(0,1)(#→ F=2#).

• G(X>0true∨¬Xtrue) (Strict monotonicity)

• G〈∧s∈S\{sF}(s→
∨

(s,l ,s)∈∆(F=1l ∧F=2s′))∧ (sF → F=1⋆)〉,
G〈∨S→ ((G<2¬

∨
S)∧(G(0,1)∪(1,2)¬

∨
L)〉 (Conditions on the occurrence of control state symbols

and symbols inL∪{⋆})

• G〈∨S→ (G(0,1)(
∨

M∨#)∧G[1,2)¬(
∨

M∨#))〉, G((#∧X
∨

M)→ false) (Conditions on symbols
in M∪{#})

• sI ∧
∨

(sI ,l ,s)∈∆(#U(l ∧Xs)) (Encoding of the initial configuration)

• FsF (ReachingsF )

• G
∧

(s,ε,−)∈∆
s6=sF

((s∧F=1ε)→ ((G(0,1)¬
∨

M)∧ϕcopy#))

• G
∧

δ=(s,m!,−)∈∆
s6=sF

((s∧F=1m!)→ (ϕcopyM∧ϕnext#∧ϕyes#∧ϕno#)), where

– ϕnext# = X#→ (XF=2m∧Xϕcopy#)

– ϕyes# = (F<1∧¬X#)#→ G<1((¬#∧X#)→ XF=2m∧Xϕcopy#))

– ϕno# = ¬F<1#→ G<1(Xm! → F=2(Xm∧XX
∨

L))

• G
∧

(s,m?,−)∈∆
s6=sF

((s∧F=1m?)→ (ϕyesm∧ϕnom)), where

– ϕyesm = Xm→ (ϕshiftUm?), ϕshift =
∧

m∈M(Xm→ F=2m)∧ (X#→ F=2#)∧ (Xm?→ F=2#)

– ϕnom = X¬m→ (ϕcopyM∧ϕcopy#∧G<1(Xm?→ F=2(X#∧XX
∨

L)))

Proof of Theorem 4.1 Let C = (S,s0,M,∆) be a channel machine, letsF ∈ S. Define the parametric
timed automatonAC and the MTL formulaϕC as above. By Corollary 4.6 we know that there is an
error-free computation from(sI ,ε) to (sF ,x) for somex∈M∗, if, and only if, there exists some parameter
valuationπ with Lπ(AC )∩L(ϕC ) 6= /0. The latter, however, is equivalent toLπ(AC ) 6⊆ L(¬ϕC ), i.e., there
exists some timed wordw∈ Lπ(AC ) such thatw 6|= ¬ϕC . Hence, the MTL-model checking problem for
parametric timed automata is undecidable. �

5 Discussion

For our undecidability result we construct a parametric timed automaton using a parametricequality
constraint of the formx= p. Parametric equality constraints seem to be a source of undecidability; they
occur in the undecidability proofs of,eg., the emptiness problem for parametric timed automata with
three clocks [6], and the satisfiability problem for a parametric extension of LTL [4]. A natural question
is thus to consider the MTL-model checking problem for L/U-automata [15], a subclass of parametric
timed automata in which parameters are only allowed to occureither as a lower bound or as an upper
bound, but not both, and for which the emptiness problem is decidable independent of the number of
clocks. We further remark that the proof does not work if we restrict the parameter valuation to be a
function mapping each parameter to a non-negative integer.
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[15] Thomas Hune, Judi Romijn, Mariëlle Stoelinga & Frits W. Vaandrager (2002):Linear parametric model
checking of timed automata. J. Log. Algebr. Program.52-53, pp. 183–220. Available athttp://dx.doi.
org/10.1016/S1567-8326(02)00037-1.



K. Quaas 17

[16] S. Rao Kosaraju, David S. Johnson & Alok Aggarwal, editors (1993):Proceedings of the Twenty-Fifth Annual
ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA. ACM.

[17] Ron Koymans (1990):Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems
2(4), pp. 255–299. Available athttp://dx.doi.org/10.1007/BF01995674.
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Verification of PCTL properties of MDPs with convex uncertainties has been investigated recently by
Puggelli et al. However, model checking algorithms typically suffer from state space explosion. In
this paper, we address probabilistic bisimulation to reduce the size of such an MDPs while preserving
PCTL properties it satisfies. We discuss different interpretations of uncertainty in the models which
are studied in the literature and that result in two different definitions of bisimulations. We give
algorithms to compute the quotients of these bisimulations in time polynomial in the size of the
model and exponential in the uncertain branching. Finally, we show by a case study that large models
in practice can have small branching and that a substantial state space reduction can be achieved by
our approach.

1 Introduction

Modelling formalisms like Markov decision processes (MDP) [29] or Probabilistic automata (PA) [31]
are used for representing systems that combine non-deterministic and probabilistic behaviour. They can
be viewed as transition systems where in each step an outgoing transition of the current state is chosen
non-deterministically and the successor state is chosen randomly according to a fixed probability distri-
bution assigned to this transition. Assigning fixed probability distributions to transitions is however not
realistic [18,22] in many modelling scenarios: measurement errors, statistical estimates, or mathematical
approximations all lead to intervals instead of fixed probabilities.

Interval MDPs [28] (also called Bounded-parameter MDPs [13, 37]) address this need by bound-
ing the probabilities of each successor state by an interval instead of a fixed number. In such a model,
the transition probabilities are not fully specified and this uncertainty again needs to be resolved non-
deterministically. The two sources of non-determinism have different interpretation in different applica-
tions:

1. In verification of parallel systems with uncertain transition probabilities [28] the transitions corre-
spond to unpredictable interleaving of computation of the communicating agents. Hence, both the
choice of transitions and their probability distributions is adversarial.

2. In control synthesis for systems with uncertain probabilities [36] the transitions correspond to
various control actions. We search for a choice of transitions that is optimal against an adversarial
choice of probability distributions satisfying the interval bounds.

3. In parameter synthesis for parallel systems [14] the transition probabilities are underspecified to
allow freedom in implementation of such a model. We search for a choice of probability dis-
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tributions that is optimal for adversarial choice of transitions (again stemming from the possible
interleaving).

Furthermore, the choice of probability distributions satisfying the interval constraints can be either re-
solved statically [18], i.e. at the beginning once for all, or dynamically [17, 33], i.e. independently for
each computation step. Here, we focus on the dynamic approach that is easier to work with algorithmi-
cally and can be seen as a relaxation of the static approach that is often intractable [2, 7, 11, 33].

There are several algorithms [28, 36] to check whether a given interval MDP satisfies a given speci-
fication expressed in a logic like PCTL [15] or LTL [27]. However, models often suffer from state space
explosion when obtained using some higher-level modelling formalism such as a process algebra. These
models usually contain redundancy that can be removed without changing the behaviour of the model.
One way to reason about such behavioural equivalence is bisimulation [24]. For a given huge model it al-
lows to construct the bisimulation quotient, the smallest model with equivalent behaviour – in particular
preserving all its properties expressible by a logic such as PCTL.

Our contribution In this paper, we define the first bisimulations for interval MDPs (that are also the
first bisimulations for MDPs with uncertain transitions in general). We show that different interpretation
of non-determinism yields two different bisimulations: one for models where the two non-determinisms
are resolved in a cooperative way (see point 1. above), another for models where it is resolved in a
competitive way (see points 2. and 3. above).

Furthermore, we show how to compute these bisimulations by algorithms based on comparing poly-
topes of probability distributions associated with each transition. The algorithms are fixed parameter
tractable with respect to the maximal dimension of the polytopes (i.e. maximal number of different
states that an uncertain transition can lead to); in the competitive case also with respect to the maximal
number of outgoing uncertain transitions. Note that in many applications these parameters are small.

We finally argue by a case study that, if uncertainty stems from a small number of different phenom-
ena such as node failure or loss of a message, the same shape of polytopes will repeat many times over
the states space. We demonstrate that the redundancy in this case may result in a massive state space
minimisation.

Example 1.1. We illustrate the contribution by two examples. In the first one, we explain how the com-
petitive and the cooperative resolution of non-determinism result in different behavioural equivalences.
Consider the three pair of states below.

cooperative - different: cooperative - same: competitive - same:

s

` r

a

[0.3,0.7]

b

[0
.2
,0
.6
]

[0,1] [0,
1]

s

` r

a

[0.3,0.7]

c

[0
.7
,0
.8
]

[0,1] [0,
1]

t

` r

a

[0.1,0.3]

b

[0
,1
]

[0.8,1] [0.
2,

0.6
]

t

` r

c

[0.1,1]

d

[0
,0
.8
]

[0.4,0.9] [0.
2,

0.4
]

u

` r

a

[0.1,0.6]

b

[0
,1
]

[0,1] [0,
0.6

]

u

` r

a

[0.1,0.6]

c

[0
,1
]

[0,1]

[0.
1,

0.8
]

As regards the cooperative non-determinism, s has not the same behaviour as s since s can move
to r with probability 0.8 by choosing c and (` 7→ 0.2,r 7→ 0.8), which s cannot simulate. So far the
equivalence might seem easy to check. However, note that t has the same behaviour as t even though
the interval bounds for the transitions quite differ. Indeed, the sets of distributions satisfying the interval
constraints are the same for t and t.
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As regards the competitive non-determinism, observe that u and u have also the same behaviour.
Indeed, the a transitions coincide and both b and c offer a wider choice of probability distributions
than a. If the most adversarial choice of the distribution scheduler lies in the difference [b] \ [a] of the
distributions offered by b and a, the transition scheduler then never chooses b; hence a in u can simulate
both a and b in u. In the other direction it is similar and u and u have the same behaviour although
[b] 6= [c].

Example 1.2. In the second example, we explain the redundancy of large models with a small source
of uncertainty. Consider a Wireless Sensor Network (WSN) containing N sensors S1,S2 · · ·SN and a
gateway G, all communicating over an unreliable channel. For simplicity, we assume that each sensor
continuously sends some data to the gateway which are then pushed into an external server for further
analysis. As the channel is unreliable, with some positive probability p each message with data may get
lost. The WSN can be seen as the parallel composition of gateway G and sensors Si depicted below that
synchronise over labels sendi’s and receivei’s.

rec

receivei ∀i

(a) Gateway G

succ fail

sendi
p

1− p

sendi

p
1− p

(b) Sensor Si

For instance environmental effects on radio transmission, mobility of sensor nodes or traffic burst
(see e. g. [30]) cause that the exact probability of failure is unknown. The estimation of this probability,
e.g. by empirical data analysis, usually leads to an interval p ∈ [`,u] which turns the model into an
interval MDP.

Let us stress that there is only one source of uncertainty appearing all over the state space no matter
what is the number of sensors N. This makes many states of the model behave similarly. For example
in the WSN, the parallel composition of the above model has 2N states. However one can show that the
bisimulation quotient has only N+1 states. Indeed, all states that have the same number of failed sensors
have the same behaviour. Thus, for limited source of uncertainty in a model obtained by compositional
modelling, the state space reduction may be enormous.

Related work Various probabilistic modelling formalisms with uncertain transitions are studied in the
literature. Interval Markov chains [18, 22] or Abstract Markov chains [12] extend standard discrete-time
Markov chains (MC) with interval uncertainties and thus do not feature the non-deterministic choice of
transitions. Uncertain MDPs [25, 28, 36] allow more general sets of distributions to be associated with
each transition, not only those described by intervals. Usually, they restrict to rectangular uncertainty
sets requiring that the uncertainty is linear and independent for any two transitions of any two states. Our
general algorithm working with polytopes can be easily adapted to this setting. Parametric MDPs [14]
to the contrary allow such dependencies as every probability is described as a rational function of a finite
set of global parameters.

From the side of view of compositional specification, Interval Markov chains [18] and Abstract
probabilistic automata [9,10] serve as specification theories for MC and PA featuring satisfaction relation,
and various refinement relations. In order to be closed under parallel composition, Abstract PA allow
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general polynomial constraints on probabilities instead of interval bounds. Since for Interval MC it
is not possible to explicitly construct parallel composition, the problem whether there is a common
implementation of a set of Interval Markov chains is addressed instead [11]. To the contrary, interval
bounds on rates of outgoing transitions work well with parallel composition in the continuous-time
setting of Abstract interactive Markov chains [20]. The reason is that unlike probabilities, the rates do
not need to sum up to 1. A different way [38] to successfully define parallel composition for interval
models is to separate synchronising transitions from the transitions with uncertain probabilities. This
is also the core of our approach to parallel composition when constructing a case study as discussed in
Section 5.

We are not aware of any existing bisimulation for uncertain or parametric probabilistic models.
Among similar concepts studied in the literature are simulation [38] and refinement [9, 11, 18] relations
for previously mentioned models. Our definition of bisimulation in the competitive setting is inspired by
the alternating bisimulation [1, 6].

Many new verification algorithms for interval models appeared in last few years. Reachability and
expected total reward is addressed for for Interval MC [8] as well as Interval MDP [37]. PCTL model
checking and LTL model checking are studied for Interval MC [2,7,8] and also for Interval MDP [28,36].
Among other technical tools, all these approaches make use of (robust) dynamic programming relying
on the fact that transition probability distributions are resolved dynamically. For the static resolution of
distributions, adaptive discretisation technique for PCTL parameter synthesis is given in [14]. Uncertain
models are also widely studied in the control community [13, 25, 37], mainly interested in maximal
expected finite-horizon reward or maximal expected discounted reward.

Structure of the paper We start with necessary preliminaries in Section 2. In Section 3, we give the
definitions of probabilistic bisimulations for interval MDP and discuss their properties and differences.
In Section 4, we give the FPT algorithms for both cooperative and competitive cases. Finally, in Section 5
we demonstrate our approach on a case study. Due to space limitations, we refer the reader interested in
detailed proofs to [16].

2 Preliminaries

In this paper, the sets of all positive integers, rational numbers, real numbers and non-negative real
numbers are denoted by N, Q, R, and R≥0, respectively. For a set X , we denote by ∆(X) the set of
discrete probability distributions over X .

2.1 Interval Markov Decision Processes

Let us formally define Interval MDP.

Definition 1 (IMDP). An Interval Markov Decision Process (IMDP) M is a tuple (S,A,AP,L, I), where
S is a finite set of states, A is a finite set of actions, AP is a finite set of atomic propositions, L : S→ 2AP

is a labelling function, and I : S×A×S→ I is an interval transition probability function where I is a set
of subintervals of [0,1].

Furthermore, for each state s and action a, we denote by s a−→µ that µ ∈ ∆(S) is a feasible distribution,
i.e. for each state s′ we have µ(s′) ∈ I(s,a,s′). We require that the set {µ | s a−→µ}, also denoted by
E s,a, is non-empty for each state s and action a.
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An interval MDP is initiated in some state s1 and then moves in discrete steps from state to state
forming an infinite path s1 s2 s3 · · · . One step, say from state si, is performed as follows. First, an action
a ∈ A is chosen non-deterministically by Scheduler. Then, Nature resolves the uncertainty and chooses
non-deterministically one corresponding feasible distribution µ ∈ E si,a. Finally, the next state si+1 is
chosen randomly according to the distribution µ .

Let us define the semantics of an IMDP formally. A path is a finite or infinite sequence of states
ω = s1 s2 · · · . For a finite path ω , we denote by last(ω) the last state of ω . The set of all finite paths and
the set of all infinite paths are denoted by Pathsfin and Pathsinf , respectively. Furthermore, let Pathsω =
{ωω ′ | ω ′ ∈ Pathsinf } denote the set of paths that have the finite prefix ω ∈ Pathsfin.

Definition 2 (Scheduler and Nature). A scheduler is a function σ : Pathsfin → ∆(A) that to each finite
path ω assigns a distribution over the set of actions. A nature is a function π : Pathsfin×A→ ∆(S) that to
each finite path ω and action a assigns a feasible distribution, i.e. an element of E s,a where s = last(ω).
We denote by Σ the set of all schedulers and by Π the set of all natures.

For an initial state s, a scheduler σ , and a nature π , let Prσ ,π
s denote the unique probability measure over

(Pathsinf ,B)1 such that the probability Prσ ,π
s [Pathss′ ] of starting in s′ equals 1 if s = s′ and 0, otherwise;

and the probability Prσ ,π
s [Pathsωs′ ] of traversing a finite path ωs′ equals Prσ ,π

s [Pathsω ] ·∑a∈A σ(ω)(a) ·
π(ω,a)(s′).

Observe that the scheduler does not choose an action but a distribution over actions. It is well-
known [31] that such randomisation brings more power in the context of bisimulations. To the contrary,
nature is not allowed to randomise over the set of feasible distributions E s,a. This is in fact not necessary,
since the set E s,a is closed under convex combinations. Finally, a scheduler σ is said to be deterministic
if σ(ω)(a) = 1 for some action a for all finite paths ω .

2.2 Probabilistic Computation Tree Logic (PCTL)

There are various ways how to describe properties of interval MDPs. Here we focus on probabilistic
CTL (PCTL) [15]. The syntax of PCTL state formulas ϕ and PCTL path formulas ψ is given by:

ϕ := true | x | ¬ϕ | ϕ1∧ϕ2 | P1p(ψ)

ψ := Xϕ | ϕ1Uϕ2 | ϕ1U
≤kϕ2

where x ∈ AP, p ∈ [0,1] is a rational constant, 1∈ {≤,<,≥,>}, and k ∈ N.
The satisfaction relation for PCTL formulae depends on the way how non-determinism is resolved for

the probabilistic operator P1p(ψ). When quantifying both the non-determinisms universally, we define
the satisfaction relation s |=(∀) ϕ as follows: s |=(∀) x if x∈ L(s); s |=(∀) ¬ϕ if not s |=(∀) ϕ; s |=(∀) ϕ1∧ϕ2
if both s |=(∀) ϕ1 and s |=(∀) ϕ2; and

s |=(∀) P1p(ψ) if ∀σ ∈ Σ ∀π ∈Π : Prσ ,π
s
[
|=(∀) ψ

]
1 p. (∀)

where |=(∀) ψ denotes the set of infinite paths {ω ∈ Pathsinf | ω |=(∀) ψ} and the satisfaction relation

1 Here, B is the standard σ -algebra over Pathsinf generated from the set of all cylinder sets {Pathsω | ω ∈ Pathsfin}. The
unique probability measure is obtained by the application of the by extension theorem (see, e.g. [3]).
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ω |=(∀) ψ for an infinite path ω = s1s2 · · · and a path formula ψ is given by:

ω |=(∀) Xϕ if s2 |= ϕ;

ω |=(∀) ϕ1U
≤kϕ2 if there exists i≤ k such that si |=(∀) ϕ2,

and s j |=(∀) ϕ1 for every 0≤ j < i;

ω |=(∀) ϕ1Uϕ2 if there exists k ∈ N such that ω |=(∀) ϕ1U
≤kϕ2.

It is easy to show that the set |=(∀) ψ is measurable for any path formula ψ , hence the definition is correct.
We explain how the semantics differs for different resolution of non-determinism in the next section.

3 Probabilistic Bimulations for Interval Markov decision processes

Let us fix an interval MDP (S,A,AP,L, I). In this section, we define probabilistic bisimulations for
different interpretations of Interval MDP. Namely the bisimulation ∼(∀) for the cooperative setting and
bisimulations ∼(∃σ∀) and ∼(∃π∀) for two different applications for the competitive setting. We then show
that ∼(∃σ∀) and ∼(∃π∀) actually coincide.

3.1 Cooperative resolution of non-determinism

In the context of verification of parallel systems with uncertain transition probabilities, it makes sense to
assume that Scheduler and Nature are resolved cooperatively in the most adversarial way. This setting
yields a bisimulation quite similar to standard probabilistic bisimulation for models with one type of
non-determinism [23]. First, let us denote by s−→µ that a transition from s according to µ can be taken
cooperatively, i.e. that there is a decision ρ ∈ Dist(A) of Scheduler and decisions s a−→µa of Nature for
each a such that µ = ∑a∈A ρ(a) · µa. In other words, s−→µ if µ ∈ conv{E s,a | a ∈ A} where convX
denotes the convex hull of X .

Definition 3. Let R⊆ S×S be a equivalence relation. We say that R is probabilistic (∀)-bisimulation if
for any (s, t) ∈ R we have that L(s) = L(t) and

for each s−→ µ
there is t −→ ν such that µ(C ) = ν(C ) for each equivalence class C ∈ S/R.

Furthermore, we write s∼(∀) t if there is a probabilistic (∀)-bisimulation R such that (s, t) ∈ R.

Intuitively, each (cooperative) step of Scheduler and Nature from state s needs to be matched by a
(cooperative) step of Scheduler and Nature from state t; symmetrically, s also needs to match t. As a
first result, we show that the bisimulation ∼(∀) preserves the (cooperative) universally quantified PCTL
satisfaction |=(∀).

Theorem 1. For states s∼(∀) t and any PCTL formula ϕ , we have s |=(∀) ϕ if and only if t |=(∀) ϕ .

Dually, the non-determinism could also be resolved existentially. This corresponds to the setting
where we want to synthesise both the scheduler σ that controls the system and choice of feasible prob-
ability distributions π such that σ and π together guarantee a specified behaviour ϕ . This setting is
formalised by the satisfaction relation |=∃ which is defined like |=(∀) except for the operator P1p(ψ)
where we set

s |=(∃) P1p(ψ) if ∃σ ∈ Σ ∃π ∈Π : Prσ ,π
s
[
|=(∃) ψ

]
1 p. (∃)
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Note that for any formula of the form P<p(ψ), we have s |=∃ P<p(ψ) if and only if we have s |=(∀)
¬P≥p(ψ). This can be easily generalised: for each state formula ϕ we obtain a state formula ϕ such that
s |=∃ ϕ if and only if s |=(∀) ϕ for each state s. Hence ∼(∀) also preserves |=∃.
Corollary 1. For states s∼(∀) t and any PCTL formula ϕ , we have s |=(∃) ϕ if and only if t |=∃ ϕ .

3.2 Competitive resolution of non-determinism

As already argued for in Section 1, there are applications where it is natural to interpret the two sources
of non-determinism in a competitive way.

Control synthesis under uncertainty In this setting we search for a scheduler σ such that for any
nature π , a fixed property ϕ is satisfied. This corresponds to the satisfaction relation |=(∃σ∀), obtained
similarly from |=(∀) by replacing the rule (∀) with

s |=(∃σ∀) P1p(ψ) if ∃σ ∈ Σ ∀π ∈Π : Prσ ,π
s
[
|=(∃σ∀) ψ

]
1 p. (∃σ∀)

As regards bisimulation, the competitive setting is not a common one. We define a bisimulation
similar to the alternating bisimulation of [1] applied to non-stochastic two-player games. For a decision
ρ ∈ ∆(A) of Scheduler, let us denote by s ρ−→µ that µ is a possible successor distribution, i.e. there are
decisions µa of Nature for each a such that µ = ∑a∈A ρ(a) ·µa.

Definition 4. Let R⊆ S×S be an equivalence relation. We say that R is probabilistic (∃σ∀)-bisimulation
if for any (s, t) ∈ R we have that L(s) = L(t) and

for each ρs ∈ ∆(A)
there is ρt ∈ ∆(A)

such that for each t
ρt−→ ν

there is s
ρs−→ µ such that µ(C ) = ν(C ) for each equivalence class C ∈ S/R.

Furthermore, we write s∼(∃σ∀) t if there is a probabilistic (∃σ∀)-bisimulation R such that (s, t) ∈ R.

The exact alternation of quantifiers might be counter-intuitive at first sight. Note that it exactly
corresponds to the situation in non-stochastic games [1] and that this bisimulation preserves the PCTL
logic with |=(∃σ∀).

Theorem 2. For states s∼(∃σ∀) t and any PCTL formula ϕ , we have s |=(∃σ∀) ϕ if and only if t |=(∃σ∀) ϕ .

Similarly to Corollary 1, we could define a satisfaction relation with the alternation ∀σ ∈ Σ ∃π ∈ Π
that is then preserved by the same bisimulation ∼(∃σ∀). However, we see no natural application thereof.

Parameter synthesis in parallel systems In this setting, we search for a resolution π of the under-
specified probabilities such that for any scheduler σ resolving the interleaving non-determinism, a fixed
property ϕ is satisfied. This corresponds to the satisfaction relation |=(∃π∀), obtained similarly from |=(∀)
by replacing the rule (∀) with

s |=(∃π∀) P1p(ψ) if ∃π ∈Π ∀σ ∈ Σ : Prσ ,π
s
[
|=(∃π∀) ψ

]
1 p. (∃π∀)

This yields a definition of bisimulation similar to Definition 4. For a choice (µa)a∈A of underspecified
probabilities, let us denote by s (µa)−→µ that µ is a possible successor distribution, i.e. there is a decision
ρ of Scheduler such that µ = ∑a∈A ρ(a) ·µa.
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Definition 5. Let R ⊆ S×S be a symmetric relation. We say that R is probabilistic (∃π∀)-bisimulation
if for any (s, t) ∈ R we have that L(s) = L(t) and

for each (µa)a∈A where s a−→ µa for each a ∈ A

there is (νa)a∈A where t a−→ νa for each a ∈ A

such that for each t
(νa)−→ ν

there is s
(µa)−→ µ such that µ(C ) = ν(C ) for each equivalence class C ∈ S/R,

Furthermore, we write s∼(∃π∀) t if there is a probabilistic (∃π∀)-bisimulation R such that (s, t) ∈ R.

The fact that this bisimulation preserves |=(∃π∀) can be proven analogously to Theorem 2.

Theorem 3. For states s∼(∃π∀) t and any PCTL formula ϕ , we have s |=(∃π∀) ϕ if and only if t |=(∃π∀) ϕ .

As a final result of this section, we show that these two bisimulations coincide.

Theorem 4. We have ∼(∃σ∀) = ∼(∃π∀).

Thanks to this result, we denote from now on these coinciding bisimulations by∼(∃∀). As a conclud-
ing remark, note that Definitions 3, 4 and 5 can be seen as the conservative extension of probabilistic
bisimulation for (state-labelled) MDPs. To see that assume the set of uncertainty for every transition is
a singleton. Since there is only one choice for the nature, the role of nature can be safely removed from
the definitions. Moreover, it is worthwhile to note that Theorems 1, 2 and 3 show the soundness of the
probabilistic bisimulation definitions with respect to PCTL. Unfortunately, it is shown in [31, 32] that
probabilistic bisimulation for probabilistic automata is finer than PCTL equivalence which leads to the
incompleteness in general. Since MDPs can be seen as a subclass of PAs, it is not difficult to see that the
incompleteness holds also for MDPs.

We also remark that the notions ∼(∀) and ∼(∃∀) are incomparable, as it is for instance observable in
Example 1.1. It is shown in the example that t ∼(∀) t and u∼(∃∀) u. However it is not hard to verify that
t 6∼(∃∀) t and u 6∼(∀) u. For the latter, notice that for example u can evolve to r with probability one by
taking action b, whereas u cannot simulate. The former is noticeable in the situation where the controller
wants to maximise the probability to reach r, but the nature declines. In this case t chooses action b and
the nature let it go to r with probability 0.8. Nevertheless the nature can prevent t to evolve into r with
probability more than 0.6, despite the fact which action has been chosen by t.

4 Algorithms

In this section, we give algorithms for computing bisimulations∼(∀) and∼(∃∀). We show that computing
bisimulations in both cases is fixed-parameter tractable.

Example 4.1. Let us start by illustrating the ideas on Example 1.1 from Section 1.

t

` r

a

[0.1,0.3]

b

[0
,1
]

[0.8,1] [0.
2,

0.6
]

t

` r

c

[0.1,1]

d

[0
,0
.8
]

[0.4,0.9] [0.
2,

0.4
]

u

` r

a

[0.1,0.6]

b

[0
,1
]

[0,1] [0,
0.6

]

u

` r

a

[0.1,0.6]

c

[0
,1
]

[0,1]

[0.
1,

0.8
]
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t ∼(∀) t

ta b

`+ r = 1

0.1≤ `≤ 0.3

0.8≤ r ≤ 1

`+ r = 1

0.2≤ `≤ 0.6

0≤ r ≤ 1

P1

`

r

1

1

.1 .3

.8

[0.1,0.2]
P2

`

r

1

1

.2 .6

[0.2,0.6]

tc d

`+ r = 1

0.1≤ `≤ 1

0.4≤ r ≤ 0.9

`+ r = 1

0.2≤ `≤ 0.4

0≤ r ≤ 0.8

P3

`

r

1.1

.4

.9
[0.1,0.6]

P4

`

r

1

1

.2 .4

.8

[0.2,0.4]

u∼(∃∀) u

ua b

`+ r = 1

0.1≤ `≤ 0.6

0≤ r ≤ 1

`+ r = 1

0≤ `≤ 0.6

0≤ r ≤ 1

P1[0.1,0.6]

P2[0,0.6]

ua c

`+ r = 1

0.1≤ `≤ 0.6

0≤ r ≤ 1

`+ r = 1

0.1≤ `≤ 0.8

0≤ r ≤ 1

P1[0.1,0.6]

P3[0.1,0.8]

The general sketch of the algorithm is as follows. We need to construct the polytopes of probability dis-
tributions offered by the actions; in our examples the polytopes are just line segments in two-dimensional
space. We get t ∼(∀) t since the convex hull of P1 and P2 equals to the convex hull of P3 and P4. Similarly,
we get u∼(∃∀) u since u and u have the same set of minimal polytopes w.r.t. set inclusion.

Let us state the results formally. Let us fix M = (S,A,AP,L, I) where b is the maximal number
of different actions maxs∈S |{I(s,a, ·) | a ∈ A}|, f is the maximal support of an action maxs∈S,a∈A |{s′ |
I(s,a,s′) 6= [0,0]}|, and |M| denotes the size of the representation using adjacency lists for non-zero
elements of I where we assume that the interval bounds are rational numbers encoded symbolically in
binary.

Theorem 5. There is an algorithm that computes ∼(∀) in time polynomial in |M| and exponential in f .
There is also an algorithm that computes ∼(∃∀) in time polynomial in |M| and exponential in f and b.

Computing both bisimulations follows the standard partition refinement approach [4, 19, 26], for-
malized by the procedure Bisimulation in Algorithm 1. Namely, we start with R being the complete
relation and iteratively remove from R pairs of states that violate the definition of bisimulation with re-
spect to R. The core part is finding out whether two states “violate the definition of bisimulation”. This
is where the algorithms for the two bisimulations differ.

4.1 Cooperative resolution of non-determinism of the bisimulation ∼(∀)

Let us first address ∼(∀) where the violation is checked by the procedure Violate(∀). We show that this
amounts to checking inclusion of polytopes defined as follows. Recall that for s ∈ S and an action a ∈ A,
E s,a denotes the polytope of feasible successor distributions over states with respect to taking the action
a in the state s. By E s,a

R , we denote the polytope of feasible successor distributions over equivalence
classes of R with respect to taking the action a in the state s. Formally, for µ ∈ ∆(S/R) we set µ ∈ E s,a

R
if we have

µ(C ) ∈
[

∑
s′∈C

inf I(s,a,s′) ∑
s′∈C

sup I(s,a,s′)
]

for each C ∈ S/R.

Note that we require that the probability of each class C must be in the interval of the sum of probabilities
that can be assigned to states of C . Furthermore, we define E s

R as the convex hull of
⋃

a∈A E s,a
R . It is the set

of feasible successor distributions over S/R with respect to taking an arbitrary distribution over actions
in state s. As specified in the procedure Violate(∀), we show that it suffices to check equality of these
polytopes.

Proposition 1. We have s∼(∀) t if and only if L(s) = L(t) and E s
∼(∀) = E t

∼(∀) .
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Bisimulation(M)

1: R←{(s, t) ∈ S×S | L(s) = L(t)};
2: repeat
3: R′← R;
4: for all s ∈ S do
5: D← /0;
6: for all t ∈ [s]R do
7: if Violate(s, t,R)
8: D← D∪{t};
9: split [s]R in R into D and [s]R \D;

10: until R = R′;
11: return R;

Violate(∀)(s, t,R)

1: return E s
R 6= E t

R;

Violate(∃∀)(s, t,R)

1: S,T ← /0;
2: for all a ∈ A do
3: if Minimal(s,a,R) // E s,a

R strictly m.?

4: S← S∪{E s,a
R };

5: if Minimal(t,a,R)
6: T ← T ∪{E t,a

R };
7: return S 6= T ;

Minimal(s,a,R)

1: k← |A|−1;
2: C1, . . . ,Ck← compute the sets of corners of other polytopes;
3: B← (1,−1); // constraints on ρ such that Bρ +d ≥ 0 implies E

s,ρ
R ⊆ E s,a

R
4: d← (−1,1); // initially, Bρ +d ≥ 0 implies ∑ρ = 1, i.e. ρ ∈ ∆({1, . . . ,k})
5: for all c1, . . . ,ck ∈C1×·· ·×Ck do
6: R← /0;
7: for all intersections x of E s,a

R with the line segment from vi to v j for some i 6= j do
8: R← R∪{(r1, · · · ,rk)} where ri · ci + r j · c j = x and r` = 0 for ` 6∈ {i, j};
9: for all facets F of the convex hull of R do

10: add to matrices B,d a constraint corresponding to the half-space given by F that includes R;
11: return (Bρ +d = 0 not feasible); // no intersection of the convex hulls of all sets R?

Algorithm 1: Probabilistic bisimulation algorithm for interval MDPs

Proof. Let us first introduce one notation. For each distribution µ ∈ ∆(S), let µ ∈ ∆(S/ ∼(∀)) denote
the corresponding distribution such that µ(C ) = ∑s∈C µ(s). As regards the “if” part, for each choice
s−→µ , we have µ ∈ E s

∼(∀) . Similarly, for each ρ ∈ E t
∼(∀) , there is a choice t−→ν such that ν = ρ .

Hence, s∼(∀) t. As regards the “only if” part, let us assume that there is a distribution ρ over equivalence
classes such that, say ρ ∈ E s

∼(∀) \E t
∼(∀) . There must be a choice s−→µ such that µ = ρ and there is no

choice t−→ν such that ν = ρ . Hence, s 6∼(∀) t.

Complexity Given an IMDP M, let |S| = n, |A| = m, b be the maximal number of different actions
maxs∈S |{I(s,a, ·) | a∈A}|, and f be the maximal support of an action maxs∈S,a∈A |{s′ | I(s,a,s′) 6= [0,0]}|.

It is easy to see that the procedure Violate(∀) is called at most n3-times. Each polytope E s,a
R has at

most C = f ·2 f−1 corners, computing the convex hull E s
R takes O((bC)2) time [5]. Checking inclusion of

two polytopes then can be done in time polynomial [34] in the number of corners of these two polytopes.
In total, computing of ∼(∀) can be done in time |M|O(1) ·2O( f ).

4.2 Competitive resolution of non-determinism of the bisimulation ∼(∃∀)

In this case, the violation of bisimilarity of s and t with respect to R is addressed by the procedure
Violate(∃∀). Here, we check that s and t have the same set of strictly minimal polytopes. For a state s, an
action a ∈ A, and an equivalence R⊆ S×S, we say that E s,a

R is strictly minimal if no convex combination
of the remaining polytopes of s is a subset of E s,a

R . More precisely, if for no distribution ρ ∈ ∆(A\{a}),
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we have E s,ρ
R ⊆ E s,a

R where E s,ρ
R denotes the polytope {∑b∈A\{a}ρ(b) ·xb | each xb ∈ E s,b

R }.

Proposition 2. We have s∼(∃∀) t if and only if L(s)= L(t) and {E s,a
∼(∃∀) | a∈A,E s,a

∼(∃∀) is strictly minimal}=
{E t,a
∼(∃∀) | a ∈ A,E t,a

∼(∃∀) is strictly minimal}.

Proof. We first address the “if” part. For each choice of Nature (µa)a∈A where each s a−→µa , let M =
{µa | a∈A} and M′⊆M be the subset where each distribution lies within some strictly minimal polytope
E s,b
∼(∃∀) . Because the strictly minimal polytopes coincide, we can construct a choice of Nature N = (νa)a∈A

such that N = {νa | a ∈ A}= M′. Because N ⊆M, it is easy to see that for each t (νa)−→ν there is s (µa)−→µ
such that µ(C ) = ν(C ) for each C ∈ S/R.

As regards the “only if” part, let us assume that there is, say in t, a strictly minimal polytope E t,b
∼(∃∀)

that is not in the set of strictly minimal polytopes for s. There is a choice of Nature (µa)a∈A for state s
such that no convex combination of elements of M = {µa | a ∈ A} lies in E t,b

∼(∃∀) ; in particular no element
of M lies in E t,b

∼(∃∀) . For any choice of Nature (νa)a∈A for state t, νb is not a convex combination of
elements from M. Thus, if Scheduler chooses action b, there is no s (µa)−→µ such that µ(C ) = νb(C ) for
each C ∈ S/R and it does not hold s∼(∃∀) t.

Next, we need to address how to compute whether a polytope is strictly minimal. We construct
B and d such that Bρ + d ≥ 0 implies E s,ρ

R ⊆ E s,a
R . Checking of strictly minimality then reduces to

checking feasibility of this linear system. The system gets constructed iteratively. Let P1, · · · ,Pk de-
note the polytopes corresponding to all actions in s except for a. We enumerate all combinations
(c1, . . . ,ck) ∈C(P1)×·· ·×C(Pk) of corners of the polytopes. For each such combination we add into B
and d new constraints B(c1,...,ck) and d(c1,...,ck) such that for any ρ satisfying B(c1,...,ck)ρ +d(c1,...,ck) ≥ 0 we
have ∑ρici ∈ E s,a

R . For details, see the procedure Minimal in Algorithm 1.

Proposition 3. We have Bρ +d ≥ 0 is not feasible if and only if E s,a
R is strictly minimal where the rows

of B and d are obtained as a union of rows

B = {1,−1} ∪
⋃
{B(c1,...,ck) | (c1, . . . ,ck) ∈ C(P1)×·· ·×C(Pk)}

d = {−1,1} ∪
⋃
{d(c1,...,ck) | (c1, . . . ,ck) ∈ C(P1)×·· ·×C(Pk)}.

Proof. Let ρ be any feasible solution of the system. It is easy to see that E s,ρ
R ⊆ E s,a

R since E s,ρ
R is convex

and since all corners of E s,ρ
R (obtained as a convex ρ-combination of corners of all E s,b

R ) lie within E s,a
R .

Hence, E s,a
R is not strictly minimal. As regards the other direction, let E s,a

R be not strictly minimal. By
definition, there is a distribution ρ over the remaining actions in s such that E s,ρ

R ⊆ E s,a
R . Then, this

distribution ρ must satisfy Bρ +d ≥ 0.

Complexity Again let |S|= n, |A|=m, b be the maximal number of different actions maxs∈S |{I(s,a, ·) |
a ∈ A}|, and f be the maximal support of an action maxs∈S,a∈A |{s′ | I(s,a,s′) 6= [0,0]}|.

Again, Violate(∃∀) is called at most n3 times. The procedure Violate(∃∀) is then linear in m and
in the complexity of Minimal. There are at most ( f · 2 f−1)b combinations of corners of the polytopes.
For each such combination, b(b−1) times the intersection points of a line and a polytope are computed
(in time polynomial in |M|), and at most f ! facets of the resulting polytope R are inspected. Overall,
computing of ∼(∃∀) can be done in time |M|O(1) ·2O( f 2b).
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5 Case Study

As a case study, we consider a model of Carrier Sense Multiple Access with Collision Detection (CSMA
/ CD), which is an access control on a shared medium, used mostly in early Ethernet technology. In
this scheme multiple devices can be connected to a shared bus. Multiple attempts at the same time
to grab bus access leads to collision. At this point, the senders in collision probabilistically schedule a
retransmission according to exponential back-off algorithm. The algorithm uniformly determines a delay
before the next retransmission, which is between 0 to 2n−1 time slots after occurrence of n-th collision.
After a pre-specified number of failed retransmissions, a sender aborts the sending process.

There are two sources of uncertainty in the model. Uncertainty in sending data lies in the fact that the
exact probability of sending a message from a sender could be unknown. Instead it is within an interval.
The other source comes from imprecise information about collision. If two nodes try to send a frame at
the slightly same time, a collision will happen. Conversely it will not happen, when the later transmitter
checks the bus and detects it occupied. Since the exact probability of a collision occurrence depends on
many parameters and is likely unknown, it is expressed as an uncertain interval rather than an exact value
in the model.

Concurrent execution of the node and the bus processes assembles the CSMA/CD model. To this
end we need a formalism that supports communication among components via parallel composition. We
thus consider a subclass of abstract PAs [9] with interval constraints on probabilities. The subclass in
general is not closed under parallel composition. The problem arises when two actions exhibiting uncer-
tainty want to synchronise. Parallel composition in this case imposes some interdependency between the
choices of the composed action, which cannot be expressed by a simple interval bound and needs to be
expressed by more complicated polynomial constraints. Nevertheless by excluding synchronisation of
actions containing uncertainty, abstract PAs with interval constraints feature closure under parallel com-
position and thereby allow compositional modelling. This is of course not a strict restriction, because
we can always shift uncertainty to the actions that are not subject to parallel composition by introducing
proper auxiliary states and transitions. In our case study all components are in this subclass and respects
the restriction, as uncertainty prevails on actions that are not subject to parallel composition. Conse-
quently it enables us to utilise compositional system design by using existing tools. Since the model
arising from parallel composition is not subject to any further communication, we can close it and obtain
an IMDP at the end.

We use process algebra prCRL [21], implemented in tool scoop [35], for compositional modelling
of CSMA/CD. The model has two parameters: number of nodes attached to the bus and maximum
collision allowed before abortion. As we are interested in model checking of a model arisen from parallel
composition we apply the semantics of bisimulation in cooperative way, namely ∼(∀). The state space
is generated by scoop and then the bisimulation quotient is computed. Since the maximum size f of
the set supported by uncertain transitions is two, the algorithm of Section 4 is tractable. Reduction in
state and transition space gained after bisimulation minimisation is reported in Table 1. As shown in the
table, the reduction of both state and transition space increases when putting more nodes in the network.
Indeed, then there are more nodes performing similar activities and thereby increasing the symmetry in
the model. On the other hand, increasing the maximum number of collisions allows the nodes to more
likely send frames at different time slots. As a result it decreases the symmetry and then the reduction
factor.
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Table 1: Impact of bisimulation minimisation on CSMA/CD model2

Node # Max collision #
Original Model Minimised Model Reduction Factor

State # Transition # States # Transition # For states For transitions

2
1 233 466 120 220 48% 53%
2 497 988 310 581 38% 41%
3 865 1858 576 1186 33% 36%

3
1 4337 10074 1244 2719 71% 73%
2 52528 125715 18650 42795 64% 66%
3 239213 619152 90492 225709 62% 64%

4
1 60357 154088 10904 27308 82% 82%
2 1832005 4876636 421570 1112129 77% 77%

5 1 751905 2043090 90538 248119 88% 88%

6 Conclusion

In this paper, we study strong bisimulations for interval MDPs. In these models there are two sources of
non-determinism and we deal with different interpretations of these non-determinisms. This yields two
different bisimulations and we give decision algorithms for both of them.

Note that our decision algorithms can be easily adapted to the slightly broader setting of uncertain
MDPs with rectangular uncertainty sets [25]. In this setting, a general convex polytope (not necessar-
ily induced by intervals) is associated to each action in each state. Still, it is assumed that transition
probabilities from different states or under different actions are independent.

First open question for future work is the exact complexity of our decision problems. One way
to address this question is to prove NP-hardness of the general problem. Another way is to identify
interesting subclasses of interval MDPs for that a polynomial-time algorithm exists. Second direction
for future work is to address a richer formalism for uncertainties (such as polynomial constraints or even
parameters appearing in multiple states/actions). Third, compositional modelling over interval models
also deserves a more systematic treatment. Understanding better the ways how large models with interval
uncertainties can be composed, may bring further ideas for efficient analysis of these models.
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ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological
networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the
sum of a network topology and a number of interaction parameters. The topology describes the
interactions between biological entities in form of a graph, while the parameters determine the speed
of occurrence of such interactions.

When a mismatch is observed between the behavior of an ANIMO model and experimental data,
we want to update the model so that it explains the new data. In general, the topology of a model
can be expanded with new (known or hypothetical) nodes, and enables it to match experimental data.
However, the unrestrained addition of new parts to a model causes two problems: models can become
too complex too fast, to the point of being intractable, and too many parts marked as ”hypothetical”
or ”not known” make a model unrealistic. Even if changing the topology is normally the easier task,
these problems push us to try a better parameter fit as a first step, and resort to modifying the model
topology only as a last resource.

In this paper we show the support added in ANIMO to ease the task of expanding the knowledge
on biological networks, concentrating in particular on the parameter settings.

1 Introduction

The investigation of biological processes relies on computational support on a daily basis. This happens
not only because of the extremely large amount of data generated in the -omics era, but also because
many processes are simply too complex to be understood without appropriate modeling tools. For this
reason, systems biology [25] has become more and more important in the last several years.

A single biological network such as a signaling or gene network, may involve up to hundreds of
different molecular species. As it would be very difficult to understand the dynamic behavior of such
networks just by looking at their static representations, many tools were built [8, 10, 24, 22, 7, 16]
to help the biologists define models of executable biology [12]. ANIMO (Analysis of Networks with
Interactive MOdeling [26]) is one of such tools. Its primary objective is to let the expert biologists
work directly on the formalization of their knowledge, supporting the generation of new insights on the
studied processes [27]. An ANIMO model is formed by two main parts: the network topology and

∗Corresponding author
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the parameters. The topology describes which biological components are included in the model, and
which are the interactions we want to represent. The parameters define the rate of occurrence of such
interactions, which are described based on simplified kinetic formulae.

Proteins are normally expressed at different concentrations in different individuals of the same species,
and yet the overall behavior of their biological networks does not differ significantly. This phenomenon
has led to the notion that biological networks are inherently robust [1, 20]. In modeling terms, this means
that, if a model is a close representation of a biological network, most of the parameters of that model
can vary inside a certain interval without influencing the qualitative behavior of the whole network. The
interactive approach of ANIMO is based on the assumption of robustness, as our tool is mainly aimed
at the development of network models with a focus on the topology. Ideally, the biologist can “play”
with the topology of a network, working towards matching the qualitative behavior of experimental data,
rather than precisely reproducing it. However, it is not our intention to concentrate exclusively on the
network topology: in many cases a better parameter choice can improve the behavior of a network more
than the addition of new components. Indeed, making an unnecessarily complex model could reduce its
usefulness both in terms of analysis performances and closeness to reality. The first problem is simply
due to the complexity of a network, which would require more and more computational resources to be
analysed1. Realism of network models is more related to their ultimate usefulness: a model that explains
a particular behavior very well but contains many nodes marked as “unknown” has little applicability, as
its connection with known processes is very loose. Therefore, it is desirable that a better parameter set is
regularly sought for during the design cycle of a complex biological network model. Some support for
parameter choice was already provided in the first versions of ANIMO. We present here an extended set
of tools aimed at achieving a closer fit between ANIMO models and experimental data. A guideline on
how to use these tools to get the best results will also be presented as an ideal workflow. Thanks to the
better awareness on parameter choice gained through this new extension of ANIMO, the biologists will
be able to judge more easily which are the most promising topologies for a network, and thus drive the
experimental research more efficiently.

2 ANIMO models

The starting point of ANIMO is the traditional static representation of biological networks, which can
be easily drawn and managed in softwares like Cytoscape [17]. Indeed, ANIMO was implemented as a
plug-in to Cytoscape, with the aim of adding dynamics to the static representation of biological networks,
and thus allow for analysis on the behavior of such networks. The user interface of ANIMO can be seen
in Figure 1a: at the center is the Network panel, where the network model is represented in the familiar
nodes-edges form used in the domain of biology. Models in ANIMO are activity-based, in the sense
that nodes have their activity as main property, and interactions among nodes change the activity of their
targets. The concept of activity can be intended for example as a generic post-translational modification
a molecule can undergo to change its function. In the case of a kinase, the phosphorylated state is
usually interpreted as active. In the context of a gene network, the activity of a node standing for a gene
represents its current transcriptional status.

A basic type of analysis that can be performed with ANIMO is the generation of a simulation run,
which is presented to the user in the form of a graph (to the right). The activity graphs generated by
ANIMO show the variation in activity of selected nodes over the course of the simulation run. In addition

1We also refer to the problem of state space explosion: when a model contains too many loosely coupled components, the
set of its possible evolutions grows exponentially, to the point of making it impossible to effectively apply analysis techniques.
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to that, a slider placed under each graph allows the user to color the nodes in the Network panel depending
on their activity level at any point during the course of the simulation: the Legend panel on the left links
colors to activity. ANIMO models are based on the formalism of Timed Automata [2], which is not
directly shown to the user. Indeed, ANIMO was designed with the aim of enabling expert biologists to
formalize their knowledge without the need for additional mathematical training. For the details on the
Timed Automata model used in ANIMO, we refer the interested reader to [26].

(a) (b)

Figure 1: ANIMO user interface. (a) The main window of Cytoscape, with the ANIMO plug-in showing a network model and the result of a
simulation. (b) Editing the parameters for an ANIMO interaction.

Of the two main components of an ANIMO model, only the topology is immediately visible to the
user in the Network panel; the parameters are accessed by double clicking the arcs representing node-
node interactions. The dialog window that is shown for an interaction contains the details of the abstract
reaction kinetic describing the interaction, together with the current value of its parameter k (see Fig. 1b).
The unique parameter associated to any interaction in ANIMO is used as a scale factor to make the
modelled reaction occur faster or slower. We also provide the user with pre-set values for k, encouraging
an initial qualitative assignment of reaction rates as “slow”, “fast” and so forth. This approach is based
on the assumption that biological networks are inherently robust: once an acceptable set of parameters
is found, a more precise parameter search will generally have little impact on the fitness of a model to
a reference data set. However, as can be seen in the small example in Figure 2, robustness does not
imply that any parameter choice will do. In that example, all parameters are initially set to medium
(Fig. 2a). The peak in EGFR was obtained setting the value of k for EGFR internalization a EGFR to
fast (Fig. 2b). As this is not enough to get a peak also for ERK, which remains constantly inactive, a
lower value of k for ERK phosphatase a ERK can be tried. A first attempt with slow (Fig. 2c) leads to
a low peak, which can be increased by further lowering that parameter to very slow (Fig. 2d). Further
adjustment of the parameters and non-default scenario choices (explained later) leads to the graph shown
in Figure 1a. Network motifs such as the feedback loop shown in Figure 2 make models more dependent
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Figure 2: Example parameter settings on a simple feedback network. Arc width on the left represents parameter values: thicker arcs correspond
to higher values. Colors on the left represent node activities at the points in time highlighted by the vertical red lines in the corresponding graphs
on the right.

on parameter settings. As biological networks tend to heavily rely on cross-talk, network topologies can
rapidly become complex. Some manual parameter fitting is currently necessary for the more complex
ANIMO models. This work is sometimes slow and error-prone, taking away some of the user-friendliness
for which ANIMO aims. We will show how ANIMO has been improved to make parameter choice easier
for the user.

3 Support for parameter synthesis in ANIMO

When a model does not match experimental data, ANIMO offers three main tools to achieve a better
fit: manual parameter editing, comparisons between different model versions, and the newly introduced
parameter sweep.

3.1 Manual parameter editing

Double-clicking on an arrow in the Cytoscape representation of an interaction lets the user access a
dialog that allows to change the approximated scenario and parameters for the selected interaction. The
simplified scenarios were described in detail in [26], here a rough introduction is given.

In ANIMO models, the activity level defines the fraction of a molecular species that is considered
active. The activity level is expressed in ANIMO with an integer value between 0 (completely inactive)
and a maximum value that represents complete activity. The maximum value can be chosen by the user
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on a range between 1 and 100, determining the granularity (or precision) with which the activity of the
reactant is represented in the model. For example, an ANIMO node with 2 levels of granularity (thus
with maximum activity set to 1) can be used to represent a gene, which is considered as either completely
active or completely inactive. A more precise representation of the activity level is necessary when we
want to represent more complex dynamics, where also intermediate values are considered important.
The activity level of a node can be changed in an ANIMO model by way of activations and inhibitions,
which make it respectively rise and decrease. Each occurrence of an abstract interaction changes the
activity level of the downstream node by 1 step. For example, consider the interaction MEK → ERK,
which represents the activation of ERK by (active) MEK. Each time that interaction occurs, the activity
level of ERK rises by 1: if ERK has 100 activity levels, it will take 100 interactions to take it from full
inactivity to full activity. The rate at which such interactions will occur is determined by the scenario
and parameter of the interaction.

The scenarios are used to choose which are the nodes to be taken into account when computing the
speed at which an interaction occurs.

Scenario 1 the simplest of the three, this scenario approximates an interaction without taking into ac-
count the abundance of substrate (what is being changed by the interaction): the activation/inhibition
rate depends only on the activity level of the upstream node. In the MEK → ERK example, the
rate of the interaction would be linearly dependent on the current activity level of MEK.

Scenario 2 scenario 2 models the interaction rate to be directly dependent both on the activity level of the
upstream node and on the availability of substrate. By substrate we mean the inactive downstream
node in case of activation interaction, and active downstream node in case of inhibition. In the
MEK → ERK example, the interaction rate is linearly dependent on both the activity level of
MEK and the inactive fraction of ERK. The inactive level of a node is computed by subtracting
the current activity level from the maximum activity.

Scenario 3 the nodes on which this scenario depends can be chosen directly by the user, and can be the
active or inactive fraction of any two nodes in the network. This scenario can be used to represent
an AND-gate, where two nodes are required to be simultaneously active in order to influence their
target.

The choice for the parameter k can be made directly by inserting a numeric value, or indirectly by
choosing a preset among the proposed qualitative values very slow, slow, medium, fast, very fast.

3.2 Comparing model versions

Particularly large networks make it more difficult for the user to understand the effects of a change in
network topology or interaction parameters. To overcome this difficulty, ANIMO allows the user to
visually compare two versions of a model in terms of their simulation results. The Results panel in
Figure 1a shows the graph of selected node activities during the course of an ANIMO simulation. The
button labelled “Difference with. . . ” allows to compare the current simulation data with another based on
a possibly different version of the model. When the two simulations to be compared have been chosen,
ANIMO produces a new graph plotting the difference between the two original simulations. The slider
under the new graph allows to visualize also in the Network panel the changes in node activity in the
whole network: Figure 3 shows the difference between the first and last version of the model in Figure 2:
the difference was computed as d - a. Nodes colored in green in the Network panel are more active in
version d, while red nodes are more active in version a.
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Figure 3: Difference between the graphs in Figures 2a and 2d. The Network panel shows the activity difference in the network topology at the
chosen simulation point represented by a vertical red line on the graph in the Result panel.

By changing the title of a simulation, a user can keep track of different versions of their model, which
can be also kept and saved with the model, to be used in future sessions or for sharing purposes. Should a
user want to backtrack to a particular version of the network, the “Reset to here” button can be used (see
Fig. 1a, buttons above the graph). As an additional help to recall what a model version consisted of, the
tooltip of the “Reset to here” button shows an image of the network topology, taken in the moment when
the selected simulation was begun. A click on the “Reset to here” button will reset the network topology
and parameters at the ones used to generate the selected simulation. As the adaptation of a model may
proceed on different paths, the “Difference with. . . ” and “Reset to here” buttons provide the user with
some help with tracking the changes to the model and selecting the most promising ones.

3.3 Parameter sweep

In order to avoid introducing too many changes to the topology of a network, ANIMO users should be
reasonably sure that a topology does not fit a given data set before modifying the structure of the network.
As this would entail an extensive parameter search which, even with the tools described in Sections 3.1
and 3.2, would require a considerable amount of time and effort, we have provided the latest version of
ANIMO with a support for parameter sweeps. The idea is to let ANIMO automatically explore a user-
defined parameter space by computing a series of simulations based on a constant network topology,
where only the parameters are being changed. Comparing the results with a given experimental data
series will allow for an automatic pre-screening, leaving the user with a choice among the best fitting
settings. Moreover, the task of parameter sweeping can be trivially parallelized, allowing us to exploit the
multi-core architectures available in most personal computers, and present the users with the requested
results in considerably less time. In our case, the multi-core parameter sweep is implemented by using a
thread pool pattern [14], relying on the local scheduler to have the threads distributed on all CPU cores.
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Another important option provided in ANIMO is the choice between linear and logarithmic scales
when defining the way a parameter space has to be explored: this gives the user more control on the
balance between precision and performances. When considering a big set of interactions or of parameter
settings, it is faster to proceed in logarithmic steps. After a more precise interval of parameters has
been identified for a subset of the interactions, a linear search becomes more feasible. In this way, the
computational resources can be used more efficiently and results can be obtained faster.

The goodness of a model configuration is determined in ANIMO by comparing the activity graph
resulting from a simulation with the selected configuration against a given experimental data set, applying
the following formula for each of the selected data series i:

Errori =
maxTime
max
t=0

|Datai(t)−Modeli(t)|
nLevelsi

where Datai(t) is the experimental data point at time t for the series i, Modeli(t) is the corresponding
value on the graph computed by ANIMO with the current parameter configuration, and nLevelsi is the
granularity (number of levels) of the network node i. The error of the given model configuration is then
computed as the maximum error over all selected data series:

Error =
nSeries
max
i=0

(Errori)

Thanks to the support for parameter sweeps, ANIMO users can obtain better insight on the parameter
sensitivity of their models, identifying critical points in the networks. This can help identifying the most
sensitive areas of a network, and possibly suggest some intervention points for successive topology
expansions, if model robustness needs to be enforced. Note that the approach is only sketched here:
statistical considerations on confidence should also be taken into account.

All the simulations computed in ANIMO when performing a parameter sweep are based on a de-
terministic version of the model: a given parameter configuration gives always the same simulation as
result. This is why we use only one simulation per configuration when comparing the results with ex-
perimental data. However, the user can add some non-determinism to the model by defining uncertainty
intervals around which interaction times are distributed. For example, the default setting of 5% uncer-
tainty illustrated in [26] implies that an interaction can complete in a time t sampled from an uniform
distribution in the continuous interval [0.95×T,1.05×T ]. Here, T is the exact time for one interaction
step, and is computed by applying the selected scenario to the current activity levels of the nodes involved
in the interaction. Adding uncertainty to a model can be used to test its robustness. The user can then ask
ANIMO to compute a number of simulations in overlay mode, which will allow the user to see all the
simulations superposed in one graph, and realize whether in some cases the model significantly deviates
from its normal behavior.

We now present an example application of ANIMO’s parameter sweep feature on the model shown
in Figure 1a. Thanks to parameter sweep, we can make a more exhaustive search than the one presented
in Figure 2, using an automatic approach instead of a manual trial-and-error process. We started by
choosing scenario 2 for the two interactions involving ERK, while the other three interactions were left
to scenario 1: this allows us to obtain a smoother looking graph for ERK. A logarithmic parameter sweep
was performed, letting the parameter values vary over the 5 pre-sets “very slow” (k = 0.001), “slow”
(k = 0.002), “medium” (k = 0.004), “fast” (k = 0.008), “very fast” (k = 0.016) for all 5 interactions in
the network. This resulted in parameter choicesinteractions = 55 = 3125 simulations, that were computed
in 43 seconds on an eight-core Intelr Core

TM
i7 CPU at 2.80GHz equipped with 4 Gb RAM and running

Ubuntu GNU/Linux 13.10 64bit. The model we consider here is small enough for one simulation to take
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Figure 4: Result window of a logarithmic parameter sweep in the ANIMO model of Figure 1a.

Reaction k
EGF→ EGFR Fast
EGFR→ EGFR internalization Medium
EGFR internalization a EGFR Very Fast
EGFR→ ERK Fast
ERK phosphatase a ERK Medium

Table 1: Qualitative values of the parameters k used in the example model to obtain the graph shown in Figure 1a.

less than a second, but the exponential growth of the number of simulations required for a parameter
sweep can make the sheer number of tasks challenging for any processing unit. For example, a more
complex model involving 10 interactions instead of 5 would require 510 = 9765625 simulations, which
could be computed in approximately a day and a half on an eight-core machine. Still, the possibility
to compute simulations in parallel provides a significant help in reducing the impact of an exponential
growth of the space to be explored.

The result window shown by ANIMO at the end of the computation of the 3125 simulations can be
seen in Figure 4, where the best 6 results are listed in form of graphs. By interacting with the interface, the
user can choose to see more of the top-scoring results: this will allow to check the width of the parameter
settings for which the wanted behavior can still be considered “close enough” to the experimental data.
Pressing one of the buttons labelled “I want this” under one of the graphs allows the user to copy the
parameters used in the selected simulation to the network model. The graph in Figure 1a was obtained
by choosing the first graph shown in Figure 4, i.e. setting the parameters as in Table 1. It can be seen that
the model does not fit the data very precisely: this is because some nodes known to influence the activity
of ERK were purposely left out of the example for simplicity’s sake.
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4 Suggested ANIMO workflow

In order to better profit from what ANIMO offers to the biologist, we suggest a step-by-step modeling
workflow:

1. Define a starting topology, based on literature data and current knowledge on the network.

2. Choose the interaction parameters from the pre-set qualitative values, based on experience (e.g.,
protein expression is much slower than phosphorylation). The choice on the approximated kinetics
can be for the most part based on scenario 1, referring to Section 3.1.

3. Check that the network behaves as expected (e.g. addition of EGF makes ERK activity rapidly
increase and successively decrease).

4. Possibly iterate the steps 1 to 3 until the network behaves as expected.

5. Compare the model with experimental data.

6. If the model does not fit the data, change the parameters using more precise numerical values
and/or scenario settings.

7. If the data fitting is still not satisfactory, apply parameter sweep to (subsets of) the model as de-
scribed in Section 3.3.

8. When a good fit is found, add non-determinism to the model and ensure that the behavior does not
change significantly under reasonably high uncertainty settings.

9. If the model can fit the data only with very precise parameter settings, or a parameter configuration
that fits the data cannot be found after a reasonably extensive search on the parameter space, change
the network topology possibly adding more nodes from literature. If no candidates can be found
in literature, speculative candidates can be found by “playing” with the current configuration in
ANIMO’s user interface. We advise to let expert biologists perform this step on their own, or to
perform it under their supervision, in order to keep the network both simple and realistic. For the
same reason, we also advise not to introduce more than a couple of nodes at a time.

10. Parameters for newly introduced interactions can be chosen as in step 2, possibly iterating steps 2
to 7 to refine the parameters.

11. To check how changes in the network are reflected in the behavior of the model, we advise to use
the comparison tools described in Section 3.2.

If the model fits the data reasonably well only after modifications to the initial topology, it may contain
some hypothetical or unexpected nodes. In that case, additional laboratory experiments can be designed
starting from the hypotheses introduced in the model, and help the biologists decide which are the most
precise explanations for the experimental observations.

A simplified graphical representation of the workflow can be found in Figure 5: the three degrees of
precision with the parameter settings are highlighted with progressively darker shades of blue. Moreover,
the figure helps to stress the fact that in our method changes in topology (green boxes) should be made
as a last step, after a reasonable attempt at making the model fit via parameter adjustments. Again, it is
important to remember that if a model behaves correctly only for very narrow parameter settings then it
may not be as robust as expected, so a review of its topology may be needed.

The process described above allows the biologists to formalize their knowledge, and makes it easier to
have group discussions when trying to combine multiple subnetworks in a more comprehensive model. It
is worth noting that experience in both the specific biological setting and generic modeling of biological
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Figure 5: ANIMO modeling workflow.
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events represents an important asset for a faster and more realistic modeling process with ANIMO.
However, as we claimed with all previous versions of the tool, it is still the case that no experience in
formal methods is needed in order to use ANIMO. In particular, an ideal ANIMO user could have no
experience on the Timed Automata foundations of the tool and yet fully profit from its features.

5 Conclusions

ANIMO has been extended with a proper support for parameter synthesis. Now the tool can be used
more efficiently to model biological networks, without concentrating exclusively on their topology. In
particular, the addition of an automatic parameter sweep feature allows the user to save considerable
amounts of time, keeping closer to experimental data without the need to perform a parameter search by
hand.

In the future, we plan to improve our parameter analysis techniques, possibly using some of the
techniques already developed for testing parameter sensitivity [3, 13] and robustness [5, 9, 18, 30] in
Timed Automata and hybrid systems more in general [23, 4]. Techniques adopted in other formalisms
such as e.g. differential equations [22, 11, 19], rule-based languages [6, 28] or Bayesian networks [21] are
also being considered as a source of inspiration. As already stated, parameter sensitivity is very important
in biological models: if a treatment derived from a model is based on narrow bounds for a parameter,
that parameter must not exhibit significant variety among patients. By introducing an automatic analysis
for parameter sensitivity, our tool could point out the zones of a network model where the user should
concentrate more, for example by improving the topology, or by performing more focused parameter
sweeps. Moreover, we also aim at applying some results from automata learning [29] to the generation
of Timed Automata models based on experimental data: generating models that exhibit specific behaviors
implies a careful definition of their parameter space. Finally, parametric model checking [15] represents
an interesting development direction: having a tool automatically output the parameter intervals for
which some given outputs are observed is a highly valued resource for the biological researcher.
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[7] Claudine Chaouiya, Elisabeth Remy, Brigitte Mossé & Denis Thieffry (2003): Qualitative Analysis of Regu-
latory Graphs: A Computational Tool Based on a Discrete Formal Framework. In Luca Benvenuti, Alberto
De Santis & Lorenzo Farina, editors: Positive Systems, Lecture Notes in Control and Information Sciences
294, Springer, Berlin / Heidelberg, pp. 830–832, doi:10.1007/978-3-540-44928-7 17.

[8] Federica Ciocchetta, Adam Duguid, Stephen Gilmore, Maria Luisa Guerriero & Jane Hillston (2009):
The Bio-PEPA Tool Suite. International Conference on Quantitative Evaluation of Systems, pp. 309–310,
doi:10.1109/QEST.2009.27.

[9] Conrado Daws & Piotr Kordy (2006): Symbolic Robustness Analysis of Timed Automata. In: FORMATS,
pp. 143–155, doi:10.1007/11867340 11.
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1Scuola Superiore Sant’Anna, Pisa, Italy∗
2LSV, ENS Cachan & CNRS, France
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We propose here a framework to model real-time components consisting of concurrent real-time
tasks running on a single processor, using parametric timed automata. Our framework is generic and
modular, so as to be easily adapted to different schedulers and more complex task models. We first
perform a parametric schedulability analysis of the components using the inverse method. We show
that the method unfortunately does not provide satisfactory results when the task periods are consid-
ered as parameters. After identifying and explaining the problem, we present a solution adapting the
model by making use of the worst-case scenario in schedulability analysis. We show that the analysis
with the inverse method always converges on the modified model when the system load is strictly
less than 100%. Finally, we show how to use our parametric analysis for the generation of timed
interfaces in compositional system design.

Keywords: Real-Time Scheduling, Parametric Schedulability Analysis, Parametric Timed Automata.

1 Introduction

Designing and analysing distributed real-time systems is a very challenging task. The main source of
complexity arises from the large number of parameters to consider: tasks priorities, computation times
and deadlines, synchronisation, precedence and communication constraints, etc. Finding the optimal
values for the parameters is not easy and often a small change in one parameter may completely change
the behaviour of the system and even compromise its correctness. For these reasons, designers are
looking for analysis methodologies that allow incremental design and exploration of the parameter space.

We consider here real-time systems consisting of a set of real-time tasks executed concurrently on
a single processor platform. Each task can be time-triggered or event-triggered: in the first case, it is
activated periodically, and each time it executes a portion of code called job or instance, after which it
self-suspends, waiting for their next periodic activation. In the second case, instances are activated by
internal or external events. Each task is characterised by a relative deadline, that is the maximum amount
of time that must elapse from the activation of one instance to its completion.

A scheduler is needed to decide which task to execute at each instant. The scheduler can be on-
line if the decision is taken while the system is running depending on the current state; or off-line if
the schedule is pre-computed before the system runs. Fixed Priority Preemptive Scheduling (FPPS) has
been standardised in POSIX [1] and is currently available in all commercial and open-source Real-Time
Operating Systems.

∗The research leading to these results has received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement No. 246556.

†This work is partially supported by STIC Asie project CATS (“Compositional Analysis of Timed Systems”).
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One important requirement of real-time systems is to ensure that the system is schedulable, i.e. that
all tasks will always complete before their deadlines when scheduled by the selected algorithm. Testing
the system under different input and state conditions does not guarantee the system schedulability (i.e.
that the system is schedulable), because the number of possibilities to test is too large to guarantee
complete coverage of all possible cases. A better approach is to build an abstract model of the system,
and perform analysis on the model.

A large body of research literature has addressed the problem of schedulability analysis of real-time
tasks, both using formal methods (e.g. [2, 15, 16]) and mathematical equations (e.g. [12, 25]). In the
literature, a task is typically modelled by several parameters, typically (i) a worst-case computation time
(i.e. an upper bound of the execution time of every instance of the task under every possible condition),
(ii) a deadline, and (iii) an activation pattern (e.g. periodic, sporadic, arrival curve). A periodic task
is activated every period; a sporadic task can be activated at any time, but the distance between two
activations is lower bounded by a constant minimum interarrival time; finally, an arrival curve [28] is
a function α(t) that defines an upper bound on the maximum number of activations in any interval of
length t.

Real-Time Components and Timed Interfaces

For complex distributed real-time systems, a component-based methodology may help reduce the com-
plexity of the design and analysis phases. This paper is a first step toward the definition of a timed
interface for a real-time component. Therefore, we now describe our notion of real-time component and
timed interface.

We define a distributed real-time system as a set of real-time components. Each component runs on
a dedicated single processor node, and all components are connected to each other by a local network. A
component consists of a provided interface, a required interface, and an implementation (see e.g. [17]).

The provided interface is a set of methods that a component makes available to other components of
the system. Each method is characterised by: (i) the method signature, which is the name of the method
and the list of parameters, and (ii) a worst-case activation pattern, which describes the maximum number
of invocations the method is able to handle in any interval of time. In this paper, we will describe the
worst-case activation pattern by an arrival curve [28]. The semantic of invocation of a method can be
synchronous (the caller waits for the method to be completed) or asynchronous (the caller continues to
execute without waiting for the completion of the operation).

The required interface is a set of methods that the component requires for carrying out its services.
Each method is characterised by its signature and a worst-case invocation pattern.

The implementation of a component is the specification of how the component carries out its work. In
our model, a component is implemented by a set of concurrent real-time tasks and by a scheduler. Tasks
can be time-triggered, when periodically activated; or event-triggered, in which case they are activated
by a call to a provided method of the component. In other words, an event-triggered task implements one
method of the provided interface, and in turn it may invoke a method of the required interface.

A graphical representation of a component is shown in Figure 1. In this example, the component
provides one single method in the provided interface (pictorially represented by the red rectangle), and
does not specify any method in the required interface. The component is implemented by three tasks:
tasks τ1 and τ3 are time triggered (the green clocks in the picture), whereas task τ2 implements the
method in the provided interface, and hence it is triggered by invocations from external clients.

In a component-based design methodology, components are independently designed and developed,
and then integrated in the final system by connecting them together through their interfaces. It is clear
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Client A

Client B

Component C

Figure 1: A component with three tasks and one method in the provided interface.

that the interface specification plays an important role in this methodology: for a real-time component,
the interface should contain not only the functional specification (i.e. method signature, constraints on the
parameters, etc.) but also the timed behaviour of the component. In particular, in this paper we enhance
the specification of the interface by adding parameters on the activation pattern and on the response delay
of a method.

Given a component C , its provided interface is thus defined as:
• a set of method signatures m1,m2, . . .;

• a parametric arrival curve αi(t) for each method mi, which represents the activation pattern that
the corresponding implementing task will receive;

• a worst-case response time Di parameter for each method mi.
Similarly, the required interface of a component is defined as:
• a set of method signatures m1,m2, . . .;

• a parametric arrival curve αi(t) for each method mi that represents the activation pattern generated
by this component;

• for every synchronous method call, a maximum allowed delay Ri in receiving the response.
Finally, the component is characterised by a set of constraints on the parameters: for all valuations

of the parameters satisfying the constraints, the component is guaranteed to be correct both from the
functional point of view (i.e. the component produces correct values) and from the timing point of view
(i.e. all tasks complete before their deadlines, and all provided functions return their values within the
desired maximum response delay).

The road to realise such a component-based design methodology is long and many theoretical and
practical problems need to be solved before the methodology can be used in practice. One important
problem is how to compute the set of constraints that define the correct behaviour of a component.
In the process of designing and analysing a component in isolation, it is necessary to use parametric
arrival curves for describing the activation patterns for event-triggered tasks, and parametric deadlines
for bounding their response times. Performing a parametric analysis aims at deriving a set of constraints
for these parameters that make the component schedulable. During integration, the correctness of the
system is checked by intersecting the constraints of the communicating components to see if there is
some feasible assignment of parameters that makes all components schedulable.

Objectives

Our general research agenda, that goes beyond the scope of this paper, is to establish a component-based
design methodology and analysis for real- time components. One of the important steps in the proposed
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methodology is to be able to perform parametric analysis of a component with respect to its activation
patterns.

In this paper, we focus on solving two specific problems:

1. how to build a formal parametric model of a component consisting of a set of real-time tasks, some
of which can be periodic, others can be activated by generic arrival curves; and

2. how to perform a parametric analysis of the schedulability of the component, thus deriving a set
of constraints that define the space of parameters that make the component schedulable.

For the sake of simplicity, in this paper we focus only on the provided interface of a component; that
is, we investigate on the parametric analysis of a component with respect to the patterns of activations.
The analysis of the required interface is the subject of future work.

Contributions

Our contribution is threefold. First, we propose a formal model of a real-time component based on para-
metric timed automata [4], a popular formalism for modelling real-time systems. Unlike many similar
models proposed in the literature, our modelling framework is completely modular: a system is obtained
by combining simpler automata, each one implementing one aspect of the component. In particular, we
separate the specification of the task behaviour from the activation pattern (periodic, sporadic or generic
arrival curve), and from the scheduler. In this way we can easily and seamlessly change the scheduler and
the activation pattern of a task without changing the rest of the component specification, which is very
important during the parametric analysis of a component. For the analysis, we use the inverse method [8]
and the IMITATOR tool [7].

As a second contribution, we show that, when the activation patterns are parametric, the inverse
method does not provide satisfactory results, in the sense that it may output a constraint reduced to a
single point. We describe the problem and provide a solution that is valid for periodic (with no offset),
sporadic and generic activation patterns that can be described by arrival curves.

Finally, as third contribution, we describe how this model can be used as a basis for synthesising the
timed interface of a real-time component.

Organisation of the Paper

The rest of this paper is organised as follows. Section 2 reviews related work. Section 3 recalls the neces-
sary preliminaries, viz. real-time systems, parametric timed automata and the inverse method. Section 4
presents our model of a real-time component using parametric timed automata. Section 5 introduces
our parametric analysis, allowing to deal with parametric task activations. Section 6 introduces prelimi-
nary work allowing to perform a component-based parametric analysis. Section 7 concludes and present
further directions of research.

2 Related Work

Parametric analysis of real-time systems using mathematical equations has already been addressed in
the past. Bini et al. [10] proposed a method for parametric analysis of real-time periodic tasks where
parameters can be either worst-case computation times or task periods. However, with Bini et al.’s
approach, changing the task model requires the development of a new methodology.
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A more general approach to scheduling analysis is to use formal methods for modelling a real-time
system. A formal framework for scheduling problems using timed automata with stopwatches has been
proposed in [2]. Fersman et al. [15] proposed a Task Automaton. Similar approaches have been proposed
using time(d) Petri nets [11, 22].

It is possible to perform an exploration of the parameter space using timed automata, as in [20].
However, their approach is not fully parametric: the analysis is repeated for all combination of the
discrete values of the parameters. Hence, their method does not scale well as the number of parameters
and the number of discrete values increases. Furthermore, that approach does not consider non-integer
points, and cannot be used to quantify the system robustness.

Full parametric analysis can be performed using specific formalisms. For example, formalisms such
as parametric timed automata (PTA) [4] and parametric time Petri nets [29], have been used to model
parametric schedulability problem (see, e.g. [14, 27]). In particular, thanks to generality of these mod-
elling languages, it is possible to model a larger class of constraints, and perform full parametric analysis
on many different variables, for example task offsets.

The inverse method IM [8] can be used for exploring the space of parameters of a parametric timed
automaton (and, more generally, of a parametric stopwatch automaton) in the proximity of a valuation
point. In this paper we use this method for performing parametric analysis of real-time systems where
task activation patterns are modelled with parametric arrival curves.

We have used a similar approach in [27], where a distributed real-time system has been modelled
using parametric stopwatch automata. However, in [27] the methodology is limited to only use the tasks’
computation times as parameters. Here, we investigate a situation where arrival curves are considered as
parameters too. Furthermore, our final goal is to be able to perform interface-based parametric analysis.

Our generic modular approach can be seen as a contract-based methodology where “provided” and
“required” interfaces are instances of (assumption, guarantee) pairs in the contract terminology. An
interface-based approach to the design and analysis of real-time systems using assume/guarantees has
already been proposed in the literature [19, 26], but their approach is not parametric. Compositional
verification of timed systems, using assume guarantee reasoning, has also been considered in [23] for
event-recording automata, a subclass of timed automata; again, this approach is non-parametric.

3 Preliminaries

3.1 Real-Time Tasks

A real-time task τi is a sequence of instances (or jobs) Ji,k, with k = 0,1, . . .. Each instance Ji,k =
(ai,k,ci,k,di,k) is characterised by an arrival time ai,k, a computation time ci,k, and an absolute deadline
di,k. The system is schedulable if the scheduling algorithm orders the execution times of the jobs such
that each job executes ci,k units of execution in interval [ai,k,di,k]. Additionally, an instance can only start
executing after the previous instances from the same task have completed: if we denote by fi,k−1 the
finishing time of the (k−1)th instance, then each job can only execute in interval [max( fi,k−1,ai,k),di,k].

Task τi is then characterised by three parameters:
• the Worst-Case Execution Time Ci, which is an upper bound on the execution time of any instance

of the task (i.e. ∀k > 0 : ci,k ≤Ci);

• the relative deadline Di; the absolute deadline of every instance can be computed as di,k = ai,k+Di;

• the arrival pattern.
For the arrival pattern, we consider three kinds of schemes:
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• Periodic: this arrival pattern is characterised by a period Ti, and the arrival time of every instance
is computed as:

ai,0 = 0

∀k > 0 : ai,k = ai,k−1 +Ti

• Sporadic: this arrival pattern is characterised by a minimum interarrival time that we denote again
by Ti, and the arrival times of every instance must respect the following constraints:

ai,0 = 0

∀k > 0 : ai,k ≥ ai,k−1 +Ti

• Arrival curve [28]: in this case the pattern of arrival must respect a certain function called arrival
curve αi(t) : R→N. The arrival curve constrains the number n of arrivals in any interval of a given
length ∆:

∀k ≥ 0,∀n > 0 : n≤ αi(ai,k+n−1−ai,k)

In other words, the number of arrival events in any interval must not exceed the value of the
arrival curve for that interval1. Arrival curves are monotonically non-decreasing, and convex, i.e.
∀t,δ : αi(t+δ )≤ αi(t)+αi(δ ). The value of the an arrival curve at time 0 is also called burstiness
and represents the amount of simultaneous arrival events that can be sent to a task. Arrival curves
are a generalisation of the sporadic arrival model. In fact, a sporadic task can be represented by
an arrival curve with burstiness αi(0) = 1 and a periodic behaviour. However, an arrival curve can
have any convex shape.
The sum of two arrival curves is still an arrival curve. Also, we can define a partial order relation-
ship between arrival curves using the natural ordering between values of the function: αi(·)�α j(·)
iff ∀t αi(t)� α(t).
In this paper we deal with parametric arrival curves. In particular, we will use periodic arrival
curves of the form:

αNu,P(t) = Nu +
⌊ t

P

⌋
(1)

where Nu is a discrete parameter that denotes the initial burstiness, and P is a continuous parameter
that denotes the period. Using the partial order relationship, a generic arrival curve can always be
upper bounded by a periodic arrival curve of the form (1).

3.2 Parametric Stopwatch Automata

We introduce here an extension of parametric timed automata that will be used in Section 4 to model real-
time systems. Timed automata are finite-state automata augmented with clocks, i.e. real-valued variables
increasing uniformly, that are compared within guards and invariants with timing delays [3]. Parametric
timed automata (PTA) [4] extend timed automata with parameters, i.e. unknown constants, that can be
used in guards and invariants. We will use here an extension of PTA with stopwatches [2], where clocks
can be stopped in some control states of the automaton.

Given a set X of clocks and a set U of parameters, a constraint C over X and U is a conjunction
of linear inequalities on X and U2. Given a parameter valuation (or point) π , we write π |= C when

1Unlike in [28], for simplicity in this paper we only consider upper bound arrival curves.
2Note that this is a more general form than the strict original definition of PTA [4]; since most problems for PTA are

undecidable anyway, this has no practical incidence, and increases the expressiveness of the formalism.
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the constraint where all parameters within C have been replaced by their value as in π is satisfied by a
non-empty set of clock valuations.

Definition 1. A parametric timed automaton with stopwatches (PSA) A is (Σ,Q,q0,X ,U,K, I,slope,→)
with Σ a finite set of actions, Q a finite set of locations, q0 ∈ Q the initial location, X a set of h clocks, U
a set of parameters, K a constraint over U, I the invariant assigning to every q ∈ Q a constraint over X
and U, slope : Q→ {0,1}h assigns a constant slope to every location, and→ a step relation consisting
of elements (q,g,a,ρ,q′), where q,q′ ∈ Q, a ∈ Σ, ρ ⊆ X is the set of clocks to be reset, and the guard g
is a constraint over X and U.

The slope function is the extension of parametric timed automata to stopwatch timed automata, since
it allows one to stop the time elapsing of some clock variables in some locations. This expressive power
is used in the context of schedulability to model the preemption mechanism.

It is well-known that the parallel composition (using a synchronisation on actions) of several PSA is
itself a PSA. Hence, it is common to model a complex system by composing several system components
modelled themselves using PSA.

The semantics of a PSA A is defined in terms of states, i.e. pairs (q,C) where q ∈ Q and C is a
constraint over X and U . Given a point π , we say that a state (q,C) is π-compatible if π |=C. Runs are
alternating sequences of states and actions, and traces are time-abstract runs, i.e. alternating sequences
of locations and actions. The trace set of A corresponds to the traces associated with all the runs
of A . Given A and π , we denote by A [π] the (non-parametric) timed stopwatch automaton where
each occurrence of a parameter has been replaced by its constant value as in π . Details can be found in,
e.g. [8].

3.3 The Inverse Method

The inverse method for PSA [8] exploits the knowledge of a reference point of timing values for which
the good behaviour of the system is known. The method synthesises automatically a dense space of
points around the reference point, for which the discrete behaviour of the system, that is the set of all the
admissible sequences of interleaving events, is guaranteed to be the same.

The inverse method IM proceeds by exploring iteratively longer runs from the initial state. When
a π-incompatible state is met (that is a state (q,C) such that π 6|= C), a π-incompatible inequality J is
selected within the projection of C onto U . This inequality is then negated, and the analysis restarts with
a model further constrained by ¬J. When a fixpoint is reached, that is when no π-incompatible state
is found and all states have their successors within the set of reachable states, the intersection of all the
constraints onto the parameters is returned.

IM proceeds by iterative state space exploration, and its result comes under the form of a fully
parametric constraint. By repeatedly applying the method, we are able to decompose the parameter
space into a covering set of “tiles”, which ensure a uniform behaviour of the system: it is sufficient to
test only one point of the tile in order to know whether or not the system behaves correctly on the whole
tile. This is known as the behavioural cartography [5]. Both the inverse method and the behavioural
cartography are semi-algorithms; that is, they are not guaranteed to terminate but, if they do, their result
is correct.
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4 A Modular Framework for Modelling Real-Time Systems

In this section we refer to a real-time system as a set of real-time tasks scheduled by a FPPS on a single
processor. Of course, the discussion is valid also when considering a single component of a large real-
time distributed system.

Our model of a real-time system consists of three kinds of PSA components: the task automata,
the task activation automata and the scheduler automaton. We refer to the composition of these PSA
components through synchronisation labels as the system automaton.

Each task is modelled using a task automaton. Such a task automaton is shown in Figure 2a. Each
task automaton contains two (local) continuous clock variables c and d. Clock c counts the execution
of the task and clock d counts the time passed since last job arrival. Since we consider generic activation
patterns (periodic, sporadic or arrival curves), a new instance may be activated while the previous ones
have not yet completed. Hence, there could be several active jobs from the same task at the same time.
A discrete3 variable N is used to count the number of simultaneous active instances for the task.

Initially, a task is in location Idle. The synchronisation label arrival event notifies that a new instance
from this task is activated and triggers a transition to a committed location ActEvent. A committed
location is a location where time elapsing is not allowed, represented graphically using a double circle
location. The label arrival is used between a task and the scheduler. The task will then go to location
Waiting and wait there for the scheduler’s decision whether to occupy the CPU. If a task has the highest
priority among the active tasks in the system, the scheduler will send dispatch to trigger the transition
from Waiting to Running. While a task is in Running, the scheduler could revoke the CPU for a higher
priority task through synchronisation label preemption.

Clock d always progresses and the execution time clock variable c is stopped if a task is waiting.
When a task is waiting for the CPU or running on the CPU, to react to new activations, it will non-
deterministically choose to increase the counter N of active instances by 1. When a job misses its
deadline (d = D) before completing its execution, it will go to DeadlineMissed. When a task finishes its
execution (c = N ∗C), it will go back to initial location Idle.

There could be many different activation patterns for a task, such as periodic, sporadic or according
to arrival curves. We only require that the activation automaton synchronises with the task automaton on
label arrival event. As a demonstration, Figure 2b shows the activation model for a periodic task. Every
period T , the automaton sends the signal arrival event to inform the arrival of a new job.

In this paper, we assume tasks are scheduled according to a fixed-priority fully-preemptive scheduler
(FPPS). The scheduler automaton synchronises with the tasks and decides which task will occupy the
CPU at each time. The structure of the automaton is completely fixed given a number of tasks.

Figure 2c shows a scheduler for two tasks, where task 1 has higher priority. The scheduler automaton
can be expanded in a similar form to deal with a task set with more tasks. In the scheduler automaton, the
labels arrival, dispatch, preemption and end are the same as in task automaton; we append a label with
index i, e.g. endi, to denote that this label synchronises with task i. The convention we use for naming
the location encodes the status of the tasks: Rtx means the task τx is running; Atx means task τx is just
activated; Wtx means task τx is waiting; Et is saying the task just finished its execution.

3Discrete variables are not part of the original PTA/PSA formalisms, but can seen as syntax sugar to increase the number of
discrete states (locations). Such discrete variables are supported by most tools for (parametric) timed automata.
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Figure 2: The modelling framework for a real-time system

5 Parametric Schedulability Analysis of Real-Time Components

5.1 Convergence Problem

We first show that the application of the inverse method IM to a system with parametric task activations
does not yield satisfactory results. Consider a task set with two periodic tasks τ1 = (31,T1,T1),τ2 =
(49,T2,T2) with implicit deadlines (i.e. deadlines always equal to periods). If we use IM with initial
values T1 = 60 and T2 = 120, respectively, the final constraints obtained will be T1 = 60 and T2 = 120.
That is, the result produced by IM is a single point, the initial valuation.

Such result is caused by an important property of the schedule. The inverse method synthesises a set
of constraints that delimit the values for the parameters that result in the same exact traces as the initial
valuation. The schedule generated by a set of periodic real-time tasks is itself periodic with period H
(also called hyperperiod). In particular, the sequence of scheduling events repeats itself every H, and
different H will result in different traces of task execution. The hyperperiod can be computed as the
least common multiple of all task periods: H = lcm(T1, . . . ,Tn). When periods are parametric, and since
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function lcm() is highly non linear, a small variation on one period can cause very large variations in the
hyperperiod. For example, consider the two previous tasks with initial valuation of the periods T1 = 60
and T2 = 120, respectively. Their hyperperiod is 120. When we increase the second period to 121, the
hyperperiod becomes 7260. Clearly, in this second case the traces are much longer and contain many
more events. This explains why IM only converges to the initial valuation.

Of course, things become even more complex when considering generic arrival patterns. The next
section solves this convergence problem by exploiting a well-known result from classical scheduling
theory.

5.2 An Improved Model of the System

As discussed in Section 5.1, it is infeasible to apply IM directly to a system model with parametric arrival
patterns. We will try to avoid this situation by adapting the system automaton (Figure 2) by exploiting
the concept of critical instant.

For a set of periodic or sporadic tasks scheduled by FPPS on a single processor it is possible to define
a critical scenario, which is the situation that arises when all tasks are simultaneously activated (critical
instant) and every task τi generates subsequent jobs as soon as it is allowed. According to the seminal
work by Liu and Layland [24], the worst-case response time of a task can be found in the busy period
(i.e. interval in which the processor is continously busy) that starts at the critical instant.

This means that, if we want to check the schedulability of a set of periodic or sporadic real-time
tasks, it is sufficient to activate all tasks at time zero and check that no deadline is missed in the first busy
period starting at time 0. Therefore, as soon as the processor becomes idle we can stop our search.

In the system automaton in Section 4, each trace corresponds to a possible schedule of the task set.
However, we now know that to check the schedulability of a task set, it is sufficient to analyse traces
starting from the critical instant till the first idle time in CPU. So, we adapt the system automaton as
follows:

• The task activation automaton is required to release its first job at time 0 and it will emit the
subsequent jobs as fast as the task is allowed;

• In the scheduler automaton, after all tasks complete their execution, instead of going back to Idle,
it will transit from Et to a new location Stop, where this is no outgoing edge.

The first point is used to simulate the worst-case behaviour of tasks at the critical instant. Rather than
going to Idle and waiting for new task releases, the scheduler automaton (also the system automaton)
simply stops. We call this adapted scheduling model as the idle-time scheduler automaton.

The idle-time scheduler automaton actually simulates the longest busy period, which starts from the
critical instant and ends at the first idle time of the processor. The length of this busy period depends
both on the execution time and on activation periods of the tasks. However, the dependence from the
periods is not so strong as with the hyperperiod. Let us consider again the previous set of two periodic
tasks τ1 = (C1 = 31,T1 = D1 = 60) τ2 = (49,120,120). The schedule for the first busy period is shown
in Figure 3. Task τ1 executes twice before the first instance of τ2 can complete.

The length of the busy period in this case is 2C1 +C2 = 111. By doing some simple calculation, it is
easy to see that changing T1 to any value in [56,79] does not change the sequence of events in the busy
period: in facts, for any value of T1 in that interval, τ1 will still execute two times before the first instance
of τ2 completes. Also, changing T2 to any value T2 ≥ 112 does not change the busy period.

Hence, we can apply IM on the new model and avoid the convergence problem as in Section 5.1.
Let us assume T1 ∈ [40,120], T2 ∈ [80,200] and let us apply the behavioural cartography to obtain the
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Figure 3: Schedule of the first busy period of the example task set

Figure 4: Constraints on T1 and T2 obtained by the behavioural cartography

constraint space of T1,T2 that keeps the task set schedulable. The result is given in Figure 4 in a graphical
form. The red part (on the left) is the constraint space on T1 and T2 in which the system misses τ2’s
deadlines, whereas the green part (on the right) is where no deadline is missed.

When applying the behavioural cartography to the idle-scheduler automaton, there may exist a com-
bination of parameters that cause the system to go into overload, i.e. there will be no idle time in the
schedule. For example, in case of periodic tasks, this happens when the total system utilisation is such
that ∑n

i=1
Ci
Ti
> 1. In the previous example, (T1 = 40,T2 = 80) is one such point. Of course, this will

surely cause a deadline miss, because it means that the total amount of work to be performed (utilisation)
exceeds the amount of available processor time.

To solve this case, we put an upper bound on the maximal depth of the traces computed by IM. This
bound is always computable in the case of periodic real-time tasks, and corresponds to computing an
upper bound to the time where a deadline miss will happen. A method for computing such a bound can
be built by using the concept of demand bound function [9].

5.3 Applicability of the Idle-Time Scheduler

It is possible to prove that the concepts of critical instant and maximal busy periods are valid also when
considering tasks activated by generic arrival curves [28]. In particular, the critical scenario corresponds
to the time instant in which all tasks are activated with their initial burstiness (critical instant), and their
successive instances arrive as soon as possible without violating their arrival curves. Then, the worst-
case response time can be found in the busy period starting at the critical instant and corresponding to
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Burstingn:=0
ArrEvent

p≤ P
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n := n+1

arrival event
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p := 0

arrival event
p = P
p := 0

Figure 5: Arrival curve automaton

the critical scenario. Therefore, we will use the same technique also for generic arrival curves.
In Figure 5 we show the simple PSA model for a parametric periodic arrival curve described by

Equation 1. Initially, the arrival curve automaton is in a committed location Bursting with n = 0, where
n is a discrete variable counting the number of initial client requests. The automaton emits Nu activations
for a task (τ2 in our case) within 0 time elapse and then moves to location ArrEvent where is starts
behaving as a periodic activation automaton as in Figure 2b, and produces activations events every P.

For other different task models there is no critical instant. For example, when considering periodic
tasks with initial offset different from zero, there is no worst-case scenario in the schedule. Instead, it
is necessary to analyse all busy periods in the interval [0,2H +Φmax], where Φmax is the largest initial
offset [21].

Given a task set T of periodic real-time task with offsets, we can build a task set T ′ that contains
the same tasks with the same parameters except that their initial offsets are all set to zero. In this case, it
is possible to prove that, if T ′ is schedulable, then also T is schedulable. However, the converse does
not hold. Therefore, it is possible to perform a parametric analysis of T ′ using our idle-time scheduler,
and the set of values of the parameters produced by the analysis is a subset of the set of valid parameters
for the original system T . A more precise analysis requires point-by- point exploration of the parameter
space.

Finally, in this paper we assume that task are independent from each other, and do not self-suspend
waiting for other events different from the activation event. An example of self-suspending task is a task
that performs a remote procedure call, and self-suspends waiting for the response. Again, in this case
there is not a single critical scenario for the task set, therefore our simplified model cannot be used.

6 Towards Timed Interfaces

In this section we show how it is possible to define a timed interface of a real-time component using
parametric analysis.

Consider the system of Figure 1: it consists of 3 tasks τ1,τ2 and τ3 running on a single processor with
FPPS. A task with smaller index has higher priority. τ1 and τ3 are periodic tasks with τ1 = (C1 = 2,D1 =
8,T1 = 8) and τ3 = (C3 = 20,D3 = 50,T3 = 50). Task τ2 has C2 = 5 and implements the method provided
in the interface. We assume that this component is linked to a local networks, and task τ2 receives the
requests from clients running on other nodes of the network. We would like to know how many clients
can ask requests to the system, with which frequency, and the maximum delay that is going to pass from
the request to the response. Therefore, we need to study the possible activation patterns of task τ2 and
its worst-case response time. For modelling the activation patterns, we use a parametric arrival curse
as described by Equation 1. For example, Nu = 2 and P = 100 means that we can connect at most 2
independent clients, and that between any two consecutive requests after the first two there must be at
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Nu = 1 when (20≤ P≤ 26)∨ (27≤ P≤ 34)∨ (35≤ P≤ 50)→ Dmin
2 = 10

Nu = 2 when (24≤ P≤ 26)∨ (27≤ P≤ 34)∨ (35≤ P≤ 50)→ Dmin
2 = 14

Nu = 3 when (P = 47)∨ (48≤ P≤ 50)→ Dmin
2 = 21

Table 1: The final interface

most 100 units of time.
Both Nu and P are parameters we are going to synthesise with our parametric analysis. Another

parameter is the delay (deadline) D2 of τ2. We are interested in the parameter space that guarantees all
the tasks are schedulable.

First, we construct the activation automaton for α(t) as in Figure 5. Following the method described
in Section 4, and using the idle-time scheduler automaton, we then compose the final automaton.

Given that C2 = 5, it is easy to see that the burst (Nu) of the arrival curve automaton cannot be larger
than 3, otherwise τ3 will be doomed to miss its deadline, because D3 <C3+4C2+5C1. Additionally, we
assume P and D2 lie in following intervals:

P ∈ [20,50], D2 ∈ [10,50]

Nu is a discrete parameter that must be treated separately from the other parameter. Our strategy is to
instantiate Nu with 1, 2 and 3 individually and apply IM to each case in order to synthesise constraints
over P and D2 that keep the system schedulable. The resulted parameter spaces for the three cases are
visualised in Figure 6.

We can use these values to build a timed interface specification for the component.
• the number of distinct independent clients that can be connected to the service must respect the

constraint 1≤ Nu ≤ 3;

• Depending on the number of clients, the relationship between minimum request period P and worst
case response time D2 is specified in Table 1.

Reducing the number of regions

As it is possible to see in Figure 6 and in Table 1, the parameter space returned by IM consists of a set
of disjoint tiles. Each tile is a convex region and the resulting interface is the union of (maybe a large
number of) these convex regions. Such an interface may not be easy to use due to the large number of
disjoint regions.

In some cases, it is possible to perform a “merge” operation between the tiles, as explained in [6],
in order to reduce the number of convex regions composing the final interface. Two convex regions
are mergeable if their convex hull equals to their union. Given tiles returned from IM, we repeatedly
replace mergeable tiles, satisfying this condition, with their union till there are no mergeable tiles. If we
restrict ourselves to integers solutions, we may further merge adjacent tiles. For example, the constraint
(20 ≤ P ≤ 26) can be merged with (27 ≤ P ≤ 34), thus obtaining (20 ≤ P ≤ 34). We are currently
investigating efficient methods for automatically merging tiles resulting from IM cartography.

7 Conclusion and Future Work

In this paper we have presented a PTA model of a real-time systems scheduled by FPPS. We have shown
how to perform a parametric analysis using IM with a specific model of the scheduler that stops at the
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(a) Nu = 1 (b) Nu = 2 (c) Nu = 3

Figure 6: Parameter space (green) for Nu, P and D2

first idle time. Finally, we have shown how to use parametric analysis for the design and the specification
of the interface of a real-time component.

We wish to continue along this line of research and investigate about the possibility to systematically
use parametric analysis for interface specification. We are currently investigating efficient methods for
reducing the complexity of the set of regions produced by IM, either by using more sophisticated merging
techniques, or by using conservative approximations. Also, we plan to extend the analysis to more
complex task models like self-suspending tasks and task dependencies.

More specifically on the parameter synthesis techniques, it would be interesting to reuse some tech-
nique for integer parameter synthesis recently proposed in [18]; on the negative side, only integer points
are synthesised, thus preventing the interpretation of the result for robustness analysis (in the sense of
infinitesimal variations of the parameters); on the positive side, these techniques are efficient and guar-
anteed to terminate. Also, combining the inverse method with IC3 [13] is an interesting future direction
of research.

A more general (and challenging) objective is also to be able to derive (possibly non-linear) con-
straints relating the discrete and continuous parameters, e.g. relating the number of clients (“Nu” in
Section 6) with the timing parameters (“P” and “D2” in Section 6).
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Scenario-aware dataflow (SADF) is a prominent tool for modeling and analysis of dynamic em-
bedded dataflow applications. In SADF the application is represented as a finite collection of syn-
chronous dataflow (SDF) graphs, each of which represents onepossible application behaviour or
scenario. A finite state machine (FSM) specifies the possibleorders of scenario occurrences. The
SADF model renders the tightest possible performance guarantees, but is limited by its finiteness.
This means that from a practical point of view, it can only handle dynamic dataflow applications
that are characterized by a reasonably sized set of possiblebehaviours or scenarios. In this paper
we remove this limitation for a class of SADF graphs by means of SADF model parametrization
in terms of graph port rates and actor execution times. First, we formally define the semantics of
the model relevant for throughput analysis based on (max,+)linear system theory and (max,+) au-
tomata. Second, by generalizing some of the existing results, we give the algorithms for worst-case
throughput analysis of parametric rate and parametric actor execution time acyclic SADF graphs with
a fully connected, possibly infinite state transition system. Third, we demonstrate our approach on
a few realistic applications from digital signal processing (DSP) domain mapped onto an embedded
multi-processor architecture.

1 Introduction

Synchronous dataflow (SDF) [19] was introduced as a restriction of Kahn process networks (KPN) [18]
to allow compile-time scheduling. The termsynchronousmeansstaticor regular. Synchronous dataflow
graphs (SDFGs) are directed graphs where nodes are calledactorsand edges are calledchannels. The
numbers of data samples produced or consumed are known at compile time. We refer to these data sam-
ples astokensand to the token production and consumption numbers asrates. Although SDF is very
fitted to model regular streaming applications, it is due to its static nature, very lacking in its ability
to capture the dynamic behaviour of modern streaming applications. Therefore, a notable number of
SDF extensions has been proposed over the years. Cyclo-static dataflow (CSDF) [6] allows token pro-
duction and consumption to vary between actor firings as longas the variation forms a certain type of
a periodic pattern, while models such as parametrized synchronous dataflow (PSDF) [5], variable-rate
dataflow (VRDF) [23], variable-rate phased dataflow (VPDF) [23] and schedulable parametric dataflow
(SPDF) [10] introduce parametric rates. Scenario-aware dataflow (SADF) [22] encodes the dynamism
of an application by identifying a finite number of differentbehaviours calledmodesor scenarios. Each
of the modes is represented by a single synchronous dataflow graph. The modes or scenarios can occur
in known or unknown sequences. A finite state machine (FSM) isused to encode occurrence patterns.
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SADF is equiped with a technique that yields the tightest possible performance guarantees [12]. The
power of this technique lies in its ability to consider transitions over all possible scenario sequences as
given by the FSM. Considering only the worst-case scenario,i.e. the scenario with the lowest through-
put, without considering scenario transitions could be toooptimistic. On the other hand, merging all
application SDFGs into one SDFG where an actor takes the worst-case execution time over all SDFGs in
SADF would be too pessimistic. This is due to the fact that subsequent iterations belonging to different
scenarios may overlap in time, i.e. execute in a pipelined fashion. However, SADF is limited by its
finiteness. It can only handle a reasonably sized set of application scenarios.

To illustrate this, let us define an abstract parallel application consisting of a nestedfor loop with
parametric affine loop bounds:

ProcessData.A(out g, out h);

for (i=0; i<=g; i++){

for (j=0; j<=h; j++){

// Perform two tasks in parallel

#region ParallelTasks

// Perform two tasks in parallel

Parallel.Invoke(() =>

{

ProcessData.B(i,j);

}, // close first parallel action

() =>

{

ProcessData.C(i,j);

} // close second parallel action

); // close Parallel.Invoke

#endregion

ProcessData.D(i,j);

}

}

The example application consists of 4 subtasks:ProcessData.A, ProcessData.B, ProcessData.C
andProcessData.D with known worst-case execution times. Data parallelism iselegantly specified
using theParallel.Invoke construct. Inside theParallel.Invoke construct, anAction delegate
is passed for each item of work. The application is mapped onto a multi-processor platform. The task
assignment employed is purely static. In order to add complexity, we assume that the application executes
in a pipelined fashion, i.e. more instances of the application can be active at the same time. Such an
assumption introduces resource dependencies over subsequent activations of the application. In other
words, a subtask of the(i + 1)th activation of the application might have to wait for a certain subtask
of the ith activation to complete and release the corresponding processing element. As specified by the
example code,g andh can take different values during each application execution, i.e. they are data-
dependant and are the result of input data processing performed by the subtaskProcessData.A. Let
us assume we know thatg can take the value from the interval

[
0, n

2

]
and h can take the value from

the interval
[
0, m

2

]
. In that case, from a pure timing perspective, this application will exhibit as many

behaviours as there are integer points in the rational 2-polytope Pn,m given by the set of constraints
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{0≤ 1
2n, 0≤ 1

2m}. Forn= 4500 andm= 2001, to be able to use SADF to derive the tightest worst-case
performance bounds, even for such a simple application executing in a pipelined fashion on a multi-
processor platform, we would have to generate 2,252,126 SDFGs [8]. The situation gets even worse
when dealing with platforms that support dynamic voltage and frequency scaling (DVFS), which is a
commonly used technique that adapts both voltage and frequency of the system in respect to changing
workloads [20]. In this case also the execution times of the application subtasks would vary depending
on the current DVFS setting of the processing element they are mapped to.

In our work, we will remove these limitations which hamper the use of SADF in important applica-
tion domains. For this purpose, we will add parametrizationto the basic SADF modeling approach both
in terms of parametric rates and parametric actor executiontimes given over a parameter space, which is a
totally non-trivial extension because the current core of the SADF framework relies strongly on the con-
stant nature of the rates and actor execution times. We raisethe problem of SADF parametrization in the
scope of existing parametric dataflow models. PSDF [5] and SPDF [10] are two semantically very similar
models that provide a high level of generalization. We prefer SPDF due to syntactical convenience. By
incorporating SPDF semantics into the definition of our parametric rate and parametric actor execution
time SADF (PSADF), we show that the SPDF model can at run-timebe treated as a special case of a
SADF. We then derive a technique for worst-case throughput analysis for PSADF. We demonstrate our
approach on a few realistic applications from the digital signal processing (DSP) domain.

2 Related Work

Throughput analysis of SDFGs is studied by many authors. Reference [15] gives a good overview of
the existing methods. Due to the static nature of SDF, these methods cannot be applied to any form of
parametric dataflow. [14] presents three methods for throughput computation for an SDFG where actor
execution times can be parameters. However, the technique does not consider parametric rates and can
only handle the static case, i.e. the graph cannot change parameter values during its execution. [12]
introduces the (max,+) semantics for the SADF model relevant for worst-case performance analysis, but
is, as previously mentioned, practically limited to a reasonably sized set of scenarios. The most closely
related work to ours can be found in [9]. It combines the approaches presented in [12] and [14] and
yields a technique that finds throughput expressions for an SADFG where actors can have parameters as
their execution times. However, the (max,+) semantics introduced in [9] can consider only parametric
actor execution times and not parametric rates. A straightforward extension of [9] to cover the case
of parametric rates is not possible because it is not clear how to symbolically execute the graph in the
presence of parametric rates. In the scope of rate parametric dataflow models [5][10], little attention
has been given to the aspect of time. Two examples of parametric models that explicitly deal with time
are VRDF [23] and VPDF [23]. These address the problem of buffer capacity computation under a
throughput constraint, but both have a structural constraint that each production ofp tokens must be
matched by exactly one consumption ofp tokens. That drastically limits the scope of applications it can
consider.

So, the current approaches in throughput analysis for dataflow MoCs either cannot consider paramet-
ric rates [15][14][12][9], or impose too hard structural constraints that severely limit the expressivity of
the model [23]. In our work we will remove these limitations by embedding the SPDF model [10] which
provides a high level of generalization into the SADF model [22][12].
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3 Preliminaries

3.1 Synchronous Dataflow Graphs

SDFG is a directed graph(A ,E ) where nodes representactorswhich in turn represent functions or tasks,
while edges represent their dependencies. We also refer to edges aschannels. Execution of an actor is
denoted as firing and it is assigned with a time duration. In SDF, the number of tokens consumed and
produced by an actor is constant for each firing. We refer to these numbers asrates. Actors communicate
using tokens sent over channels from one actor to another. Fig. 1a shows an example of an SDFG with
5 actors (A = {A,B,C,D,E}) and 9 channels (E = {(A,B),(B,C),(C,C), . . .}). Some channels might
contain initial tokens, depicted with solid dots. The example graph contains 5 initial tokens that are
labeledt1, . . . , t5. Each actor is assigned with a firing time duration, denoted in the actor node, below the
actor name, e.g. actorA has a firing duration of 29 time-units. Each port is assigned with a rate. When
the value is omitted, it means that the value equals to 1. As rates in SDF are constant for each firing,
it is possible to construct a finite schedule (if it exists) that can be periodically repeated [19]. Such a
schedule assures liveness and boundedness [19]. We call such minimal sequence of firings an iteration of
the SDFG. This is a sequence of firings that has no net effect onthe token distribution in the graph. The
numbers of firings of each actor within an iteration constitute therepetition vectorof an SDFG. We only
consider dataflow graphs that are bounded and live. Throughput is considered in terms of the number of
iterations per time-unit, i.e. the number of iterations executed in one period normalized by the repetition
vector divided by the duration of the period [15]. It is natural to do so, because an iteration represents a
coherent set of calculations, e.g. decoding of a video frame. For more details we refer to [19][15].

3.2 (max,+) Algebra for SDFGs

Let a⊕ b = max(a,b), a⊗ b = a+ b for a,b ∈ R = R∪ {−∞}. By max-algebra we understand the
analogue of linear algebra developed for the pair of operations(⊕,⊗) extended to matrices and vectors
[4]. Let~γ denote the vector of production times of tokens that exist intheir different channels in between
iterations, i.e. it has an entry for each initial token in thegraph. Then~γk denotes the vector of production
times of initial tokens afterk iterations of the graph. These vectors then can be found using (max,+)
algebra [4]. The evolution of the graph is then given by the following equation:~γk+1 = G~γk, where
G = {gi j } is a (max,+) characteristic matrix of the graph. Entrygi j specifies the minimal elapsed time
from the production time of thej th token in the previous iteration to the production time of theith token
in the current iteration. When theith token is not dependent on thej th token, thengi j = −∞. The
specification of the algorithm for obtainingG can be found in [13]. The (max,+) characteristic matrix
for the example SDFG in Fig. 1a takes the form:

G =




29 −∞ −∞ 29 −∞
33 4 −∞ 33 −∞
63 −∞ 30 63 −∞
−∞ −∞ −∞ −∞ 0
64 5 31 64 −∞



.
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(a) An example SDFG. (b) MPAG of the example
SDFG.

Figure 1: Synchronous dataflow

For example,~γ1 can be calculated as below:

~γ1 =




29 −∞ −∞ 29 −∞
33 4 −∞ 33 −∞
63 −∞ 30 63 −∞
−∞ −∞ −∞ −∞ 0
64 5 31 64 −∞







0
0
0
0
0



=




max(29+0,29+0)
max(33+0,4+0,33+0)
max(63+0,30+0,63+0)

max(0+0)
max(64+0,5+0,31+0,64+0)



=




29
33
63
0
64



.

Paper [12] explains how to obtain the throughput of an SDFG from the matrixG. Briefly, matrixG
defines a corresponding (max,+) automaton graph (MPAG) [11]. MPAG has as many nodes as there are
initial tokens in the graph. An edge with the weightgi j is created from thej th node to theith if gi j 6=−∞.
The maximum cycle mean (MCM)λ of the MPAG identifies the critical cycle of the SDFG. The critical
cycle limits the throughput of the SDFG which takes the value1/λ . MPAG of the example SDFG graph
is displayed in Fig. 1b. The cycle with weightsg14−g51−g45 (denoted with bold arrows) determines
the throughput which takes the value of 1/31 iterations per time-unit.

3.3 Scenario-Aware Dataflow Graphs (SADFG)

SADF models the dynamism of an application in terms of modes or scenarios. Every scenario is modeled
by an SDFG, while the occurence patterns of scenarios are given by an FSM. We give the following
definition of an SADFG.

Definition 1. A Scenario-aware dataflow graph (SADFG) is a tuple
SADFG= (S,F), where:

• S= {si | si = (sceni,Gi)} is a set of ordered pairs of scenarios and their corresponding SDFGs;

• F = (Q,q0,δ ,Σ,E) is the scenario finite state machine consisting of a finite setQ of states, an
initial state q0 ∈ Q, a transition relationδ ⊆ Q×Q, a scenario labellingΣ : Q→ S and a set of
final states E, where E= Q.

Fig. 2a shows an example SADFG with two scenarios,a andb. In this example both scenarios use
the same scenario graph, but the actor execution times differ. For example, actorA has a firing duration
of 29 time-units in scenarioa and 28 time units in scenariob. The scenario FSM is fully connected and
thus allowing arbitrary scenario order.

Every finite path of arbitrary lengthq over the FSM corresponds to a sequenceswith s(k) = Σ(q(k)).
When the FSM performs a transition, the SDFG graph associated with the destination state is executed for
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(a) An example SADFG. (b) MPAG of the examle
SADFG.

Figure 2: Scenario-aware dataflow

exactly one iteration. LetG(si) denote then×n (max,+) characteristic matrix for the scenariosi , wheren
is the number of initial tokens in the SADFG. Then the completion time of ak-long sequence of scenarios
can then be defined as a sequence of (max,+) matrix multiplicationsA (s1 . . .sk)=G(sk) . . .G(s1)~i, where
~i specifies the initial enabling times of the graph’s initial tokens and usually~i =~0. The worst case increase
of A (s) for a growing length ofsspecifies the worst-case throughput for any sequence of scenarios [11]
[12]. Reference [12] explains how to build the MPAG of an SADFG. Again, the inverse of the MCM
(1/λ ) of the obtained MPAG denotes the worst-case throughput of that particular SADFG. A special
case that arises in practice, which will be of the utmost importance in our SADF parametrization, is
when scenarios can occur in arbitrary order, yielding the SADF FSM to be fully connected and with a
single state for each scenario. In that case, the throughputof an SADFG equals to the maximum cycle
mean of the MPAG that corresponds to the (max,+) matrixG = max

q∈Q
(G(Σ(q))) [12]. The operatormax

denotes taking the maximum of the elements of the individualscenario matrices. The corresponding
scenario matrices for the example SADFG in Fig. 2a are:

G(a) =




29 −∞ −∞ 29 −∞
33 4 −∞ 33 −∞
63 −∞ 30 63 −∞
−∞ −∞ −∞ −∞ 0
64 5 31 64 −∞




G(b) =




28 −∞ −∞ 28 −∞
34 6 −∞ 34 −∞
72 −∞ 24 72 −∞
−∞ −∞ −∞ −∞ 0
82 16 34 82 −∞



.

The critical cycle of the corresponding MPAG obtained from the maximized matrixG = max(G(a),
G(b)), is denoted by bold arrows in Fig. 2b. Throughput in this caseequals 1/37 iterations per time-
unit. This example also demonstrates that the worst-case throughput value cannot simply be obtained by
only considering the ‘worst-case’ scenario, or by analysing the graph where each actor takes its worst-
case execution time over all scenarios.

4 Parametric Rate and Actor Execution Time SADF Analysis

We start this section by formally defining the PSADF model andshowing the (max,+) equivalence be-
tween SADF and PSADF. We use this result in defining the PSADF worst-case throughput calculation
problem as a constrained optimization problem over the PSADF graph (PSADFG) parameter space,
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where the objective functions are elements of the symbolic PSADFG (max,+) characteristic matrix. We
conclude by giving the theoretical foundation and the algorithm for symbolic PSADFG (max,+) charac-
teristic matrix extraction.

4.1 Motivation and Model Definition

SADF becomes impractical or even infeasible when it faces applications with a vast set of possible
behaviours. We overcome this limitation byparametrization. The problem of parametrization of a
dataflow model in terms of rates is not an easy task as it raisesquestions about properties like liveness,
boundedness and schedulability. A naive approach in just declaring any rate of interest as parametric,
could render the graph to deadlock, be unbounded or unschedulable. Therefore we start from SPDF
[10]. The liveness and boundedness properties for SPDF are decidable. SPDF extends SDF by allowing
rates to be parametric while preserving static schedulability. Rates are products of static natural numbers
and/or parameters that can change dynamically. The changesof each parameterp are made by a single
actor called its modifier eachα th time it fires using ‘set p[α ]’ annotation. We re-define SPDF [10] by
adding the notion of time of SDF/SADF to it.

Definition 2. A schedulable parametric dataflow graph (SPDFG) is a tuple SPDFG= (G ,PR,PD , i,
r,e,M,α), where:

• G is a directed connected graph(A ,E ) with A set of actors andE ⊆ A ×A set of edges
(channels);

• PR is a set of rate parameters (symbolic variables) used to define SPDF rates by the grammar
FR ::= k | pr |FR1 ·FR2, where pr∈PR, k∈ N+;

• PD is a set of actor execution time parameters (symbolic variables) used to define SPDF actor
execution times by the grammarFD ::= k · pd |FD1+FD2, where pd∈PD , k∈R+

0 ;

• i : E → N0 returns for each edge channel its number of initial tokens;

• r : A ×E →FR returns for each port (represented by an actor and one of its edges) its rate;

• e : A →FD returns for each actor its execution time;

• M : PR → A andα : PR →FR returns for each rate parameter its modifier and its change
period.

We consider only live SPDFGs as defined in [10]. We allow parameters (rates and actor execution
times) to change in between iterations. The introduction ofparametric actor execution times to SPDF
does not influence the liveness property. We define actor execution times as linear combinations of
parameters. This gives us the ability to encode dependence,e.g. in case two actors are mapped onto the
same processor, the ratio of their execution times will always be constant within an iteration.

Fig. 3a shows an example of a SPDF graph where actors have parametric (p,q,s) or constant rates
and parametric execution times (a,b,c,d,e). Parametric ratesp ands are modified by the actorA every
time it fires, while the parametric rateq is modified by the actorB everypth time it fires.

Now we can define our parametric SADF model, by subjecting SPDF to the operational semantics
of SADF.

Definition 3. A parametric rate and parametric actor execution time SADFG(PSADFG) is a tuple
PSADFG= (G,Ω,F), where:

• G is a live SPDFG;
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• Ω = {~p | ~p ∈ N+|PR|×R+
0
|PD |} is a bounded and closed set of all allowed parameter values

(rates and actor execution times) for G or shortly the parameter space;

• F = (Q,q0,δ ,Σ) is the scenario state transition system consisting of a possibly infinite set Q of
states, an initial state q0 ∈Q, a transition relationδ ⊆Q×Q and a scenario labellingΣ : Q→Ω.

In contrast to SADF, which explicitly defines scenarios as a finite collection of SDF graphs, in
PSADF scenarios are implicitly defined over the bounded and closed vector parameter spaceΩ. Ele-
ments ofΩ are vectors~p ∈ N+|PR |×R+

0
|PD |. Let G(~p) be the PSADF (max,+) characteristicn×n

matrix for the parameter space point~p, wheren is the number of initial tokens in PSADFG. The op-
erational semantics of the model is as follows: every finite path of arbitrary lengthq over the scenario
transition systemF corresponds to a sequences with s(k) = Σ(q(k)). This is a sequence of parameters
space points, i.e.s= ~p. The evaluation of the PSADFG’s SPDFGG at a parameter space point is nothing
else but an SDFG. The characteristic (max,+) matrix of this SDFG equals toG(~p) (evaluation at a con-
crete~p∈Ω). When the scenario state transition system performs a transition, the SDFG obtained by the
evaluation of the PSADFG at that exact point is executed for exactly one iteration. Given previous rea-
soning, the analogy to SADF is obvious. We can say that PSADF is a compact representation of SADF.
From the performance analysis perspective, by using the provision of an infinite (max,+) automaton [11]
we can define the completion time of ak-long sequence of parameter point activations as a sequenceof
(max,+) matrix multiplicationsA (~p) = G(~pk) . . .G(~p1)~i as it is done in [12] for SADF. The worst case
increase ofA (~p) for a growing length of~p represents the worst-case throughput for any sequence of
parameters points allowed by the scenario transition system.

As already mentioned, PSADF is a compact representation of SADF. We use it to model the be-
haviour of applications characterized by vast number of scenarios where it is impossible to determine the
scenario occurrence pattern even if such exists. Therefore, in terms of PSADF we will be considering the
case of a fully connected scenario state transition system,i.e. δ = Q×Q, and where every state of the
transition system corresponds to one parameter space point, i.e. there is a bijective mappingz : Q→ Ω.
This way we will always be able to give a conservative bound onthe worst-case throughput. This is
due to the simple fact that the language recognized by an arbitrary PSADFF is always included in the
language recognized by the PSADFF whereδ = Q×Q and there exists a bijectionz : Q→Ω.

Proposition 1. The worst-case throughput of a PSADFG for whichδ = Q×Q and for which exists a
bijective mapping z: Q→ Ω equals to the inverse of the maximum cycle mean of the MPAG defined by
the matrixG = max

q∈Q
(G(z(q))).

Proof. Given the operational semantics of PSADF previously described and the fact thatΩ is bounded
and closed, it follows straightforwardly from [12][11].

4.2 Worst-Case Throughput Analysis

4.2.1 Problem Definition.

Given G(~p) = {gi j (~p)} as a matrix of continuous function over the closed and bounded parameter
spaceΩ that possesses an appropriate mathematical formulation, e.g. as equalities and inequalities
over a certain(|PR|+ |PD |)-dimensional vector space, using Proposition 1, our worst-case through-
put calculation problem becomes a set of maximally (n× n) constrained optimization problems with
G(~p) = {gi j (~p)} as the objective function(s) andΩ as the constraint set:
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(a) An example SPDFG/PSADFG. (b) PSADF actor model.

Figure 3: Parametric SADF

foreach (i, j) s.t. gi j (~p) 6=−∞ do
maximize

~p
gi j (~p)

subject to ~p∈Ω.

A continuous function over a bounded and closed set admits a maximum. Of course, the term continuous
includes also discrete functions that are continuous in theHeine sense. After maximizing all the element
functions ofG(~p), the worst-case throughput will equal to the MCM of the MPAG given by the maxi-
mized PSADFG (max,+) characteristic matrix. Our main challenge is thus to derive a technique for the
analytical formulation of the symbolic PSADFG (max,+) characteristic matrixG(~p). G(~p) is a matrix of
functions that in the (max,+) sense encodes the time distances between initial tokens in adjacent iterations
of a PSADFG. We will show that this is a matrix of polynomial functions of~p. Polynomial functions
are continuous. Then the problem can be solved as a polynomial programming problem overΩ. There
exists a variety of techniques for solving such problems depending on the ‘shape’ ofΩ. Do note here
that these optimization problems are solved independentlyas we are interested in the worst-case increase
of A (~p) for a growing length of~p (over a growing number of iterations).

4.2.2 (max,+) Algebra for PSADF.

In PSADF we only allow parameters to change between graph iterations, i.e#M(pr j )
α(pr j)

= 1 for parametric

rates in the context of SPDF. The same goes for parametric actor execution times. Currently, ourG(~p)
extraction technique requires that the considered PSADFG is ‘acyclic within an iteration’. If we take a
PSADFG and convert it to a directed acyclic graph (PSADFG-DAG) by removing the edges with initial
tokens, we require that only the PSADFG-DAG sink actors can produce tokens on the removed edges,
and only the PSADFG-DAG source actors can consume from thoseedges. We do not include self-edges
in this restriction. That is to say that we only allow cyclic dependencies tied to one actor. However,
we can still consider PSADFGs that are serial compositions of subgraphs that are ‘acyclic within an
iteration’ if the subgraph performs only one iteration during an iteration of the composite PSADFG. Our
G(~p) extraction process will depend on the PSADFG quasi-static schedule which can be obtained using
the procedure from [10]. Basically, the PSADFG-DAG is sorted topologically. Result of the topological
sorting is a string of actors. For PSADFG in Fig. 3a this string equals toABCDE. Now we replace every
actorX with X#X, where #X is the PSADFG repetition vector entry for actorX. For PSADFG in Fig. 3a
the final quasi-static schedule takes the formABpCpqDsE.

We continue by giving an appropriate (max,+) model of the PSADF actor as displayed in Fig. 3b.
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First let us briefly explain the (max,+) semantics of a dataflow actor firing. If T is the set of tokens
needed by an actor to perform its firing and for everyτ ∈ T, tτ is the time that token becomes available,
then the starting time of the actor firing is given by

⊕
τ ∈ T

tτ . If d is the execution time of that actor then the

tokens produced by the actor firing become available at
⊕

τ ∈ T
tτ +d. Now, letγ(Ai,k) be the completion

time of thekth firing of actorAi. This annotation is present in Fig. 3a for each of the actors.In order for
an actor to fire, it must have all its input dependencies satisfied. We can now derive the expression forγ :

γ(Ai,k) =


 ⊕

Ah|(Ah,Ai)∈E
γ
(

Ah,
⌈ r(Ai ,(Ah,Ai))k− i(Ah,Ai)

r(Ah,(Ah,Ai))

⌉)

⊗e(Ai). (1)

The completion time of thekth firing of actorAi corresponds to the maximal completion times of appro-
priately indexed firings of actors that feed its input edgesAh | (Ah,Ai)∈ E increased by its own execution

time e(Ai). The quotient
⌈

r(Ai ,(Ah,Ai))k−i(Ah,Ai)
r(Ah,(Ah,Ai))

⌉
is used to index the appropriate firing of the actors that

feed its input edges. Thei(Ah,Ai) member in the nominator of the fraction accounts for initialtokens.
Initial tokens have the semantics of the initial delay and form the initial conditions used to solve (max,+)
difference equations, analogue to the initial conditions in classical linear difference (recurrence) equa-
tions. We comply with the liveness criteria from [10] which among others requires that all SPDFG cycles
are live, i.e. within a cycle there is an edge with initial tokens to fire the actor the needed number of times
to complete an iteration, either a global one or a local one. Liveness and the ‘acyclic within an iteration’
restriction render (1) solvable and we can always obtain a solution for (1) in terms of initial conditions.
The analytical solution of a system of such (max,+) linear difference equations evaluated at the iteration
boundary for every actor of the graph will exactly give us theneeded symbolic PSADFG characteristic
(max,+) matrix. We follow the order of actors from the quasi-static schedule. This guarantees that we
respect data/resource dependencies. ElementX#X tells us that we have to solve (1) for actorX atk= #X.
The obtained solution is propagated to the next iteration ofthe algorithm. We continue until we reach
the end of the quasi-static schedule. At this point we will obtain solutions for all actors in terms of de-
pendence of their completion times at the iteration boundary on initial conditions. From these solutions
we can then easily construct the symbolic PSADFG characteristic (max,+) matrix.

Let us consider the PSADFG example in Fig. 3a. We write down (max,+) equations for each actor
(we omit the sign⊗, i.e. a⊗b will be denoted asab):

γ(A,k) = (γ(A,k−1)⊕ γ(E,k−2))a= aγ(A,k−1)⊕aγ(E,k−2), (2)

γ(B,k) = bγ(A,⌈ k
p
⌉), (3)

γ(C,k) =
(

γ(B,⌈k
q
⌉)⊕ γ(C,k−1)

)
c= cγ(B,⌈k

q
⌉)⊕cγ(C,k−1), (4)

γ(D,k) =

(
γ(A,⌈k

s
⌉)⊕ γ(D,k−1)

)
d = dγ(A,⌈k

s
⌉)⊕dγ(D,k−1), (5)

γ(E,k) = (γ(C, pqk)⊕ γ(D,sk))e= eγ(C, pqk)⊕eγ(D,sk). (6)
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The initial conditions are:

γ(A,0) = t1, γ(D,0) = t2, γ(C,0) = t3, γ(E,−1) = t4, γ(E,0) = t5. (7)

We can now evaluate and solve them at an iteration boundary given by the sequential scheduleABpCpqDsE.
Firing actorA using (2) withk= 1 we obtain:

γ(A,1) = aγ(A,0)⊕aγ(E,−1) = at1⊕at4. (8)

Firing Bp using (3) withk= p and using (8) we obtain:

γ(B, p) = abt1⊕abt4. (9)

Firing Cpq using (4) withk= pq and (9) we obtain (backward substitution):

γ(C, pq) = abct1⊕abct4⊕cγ(C, pq−1) = abcpqt1⊕cpqt3⊕abcpqt4. (10)

Firing Ds using (5) withk= ssimilarly evaluates to:

γ(D,s) = adst1⊕dst2⊕adst4. (11)

Firing E using (6) withk= 1 and (10) (11) we obtain:

γ(E,1) = aet1(bcpq⊕ds)⊕dset2⊕cpqet3⊕aet4(bcpq⊕ds). (12)

In (12) initial conditionst1 andt4 are (max,+) multiplied by a symbolic (max,+) summation term(bcpq⊕
ds). We refer to this situation as aconflict. The production time of the tokens generated by actorE
will depend on the relationship between(b+ pqc) andsd. Before proceeding, we have to consider two
cases. One given by(b+ pqc≥ sd) and the other by(b+ pqc≤ sd). We must check the intersection
of newly added constraints and the already existing ones to reason against feasibility. If there are no
feasible points in one of the subregions, we drop the furtherevaluation within the same subregion. In
this example let us assume that both subregions contain feasible points. We easily construct the symbolic
matrices from the solutions that are all expressed in terms of their dependence on initial conditions at an
iteration boundary. We write down once more the solutions ofthe equations at the iteration boundary for
actors that reproduce the initial tokens. Those are actors(A,C,D,E). We will change the notation from
γ(Ai ,k) to t ′j depending on the indexes of initial conditions (tokens) andthe producing actor. We obtain
for (b+ pqc≥ sd):

t ′1 = at1⊕at4, (13)

t ′2 = adst1⊕dst2⊕adst4, (14)

t ′3 = abcpqt1⊕cpqt3⊕abcpqt4, (15)

t ′4 = t5, (16)

t ′5 = abcpqet1⊕dset2⊕cpqet3⊕abcpqet4. (17)

From (13)-(17) we then easily obtain the rows of the symbolic(max,+)matrix:

G(b+pqc≥sd) =




a −∞ −∞ a −∞
a+sd sd −∞ a+sd −∞

a+b+ pqc −∞ pqc a+b+ pqc −∞
−∞ −∞ −∞ −∞ 0

a+b+ pqc+e sd+e pqc+e a+b+ pqc+e −∞



.
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The same procedure is used for the(b+ pqc≤ sd) case. The evolution of the PSADF graph is then
governed by the following equations over the parameter space Ω: ~γk+1 = G(b+pqc≥sd)~γk and~γk+1 =

G(b+pqc≤sd)~γk, depending in which region ofΩ is the(k+1)th iteration scheduled. If(b+ pqc= sd), any
of the two can be chosen. In the definition of both regions we use the≤ and≥ operators to have them
remain closed. The functions that constitute the symbolic (max,+) matrices are polynomial functions of
~p.

In order to obtain the worst case throughput we will have to solve a mixed-integer polynomial pro-
gramming problem forG(b+pqc≥sd) andG(b+pqc<sd) over(Ω∩(b+ pqc≥ sd)) and(Ω∩(b+ pqc≤ sd)),
respectively. A collection of techniques that solve such problems for a variety of definitions ofΩ, e.g.
convex, non-convex or restricted to take only a few discretevalues, can be found in [21]. The matrix
max

(
G(b+pqc≥sd),G(b+pqc≤sd)

)
will define the MPAG of the example PSADFG. The inverse of the MCM

of this MPAG equals to the worst-case throughput.
At this point we present our recursive algorithm for symbolic PSADF (max,+) characteristic matrix

extraction (Algorithm 1). The inputs to the algorithm are the pre-computed sequential quasi-static sched-

Algorithm 1 Symbolic PSADFG (max,+) characteristic matrix extraction

1: function SYMBOLIC EXTRACT(Qss,MpEqSet,Φ ,Ss)
2: fBranchingNode← false
3: while not Qss.isFinished() do
4: currQssElem←Qss.popNextElem()
5: currSol← SOLVE(MpEqSet,currQssElem)
6: if currSol.Conflicted() then
7: fBranchingNode← true
8: while newΦ ← currSol.getNextConflict() do
9: if FEASIBILITY CHECK(newΦ ,Φ ) then

10: currΦ ←Φ
11: currΦ .Add(newΦ)
12: currMpEqSet←MpEqSet
13: currMpEqSet.ResolveC(newΦ)
14: Ss.Add(SYMBOLIC EXTRACT(Qss,currMpEqSet,currΦ ,Ss))
15: end if
16: end while
17: else
18: MpEqSet.Update(currSol)
19: end if
20: end while
21: if not fBranchingNodethen
22: return (mpEqSet,Φ)
23: else
24: return /0
25: end if
26: end function

uleQss, the set of PSADF (max,+) difference equationsMpEqSet, the initial parameter spaceΦ = Ω and
the initial solution setSs= /0. The solution setSsis a set of ordered pairsSs= {(GΦi ,Φi)}, whereGΦi is
the symbolic (max,+) matrix that governs the evolution of the PSADF in the regionΦi ⊆Ω generated by
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adding conflict resolving constraints toΩ during the execution of the algorithm. Algorithm traversesthe
sequential schedule taking one actor with its repetition count at a time (Line 3). Function SOLVE (Line
5) solves Equation (1) for the considered actor. If there areno conflicts in the solution, the algorithm
updates the equation set with the current solution that can be used in later iterations (Line 18). If there are
conflicts, i.e. there are

⊕
i

yi terms multiplying the initial conditions, we have to split the parameter space

(Line 8). For example, if the termy1⊕ y2⊕ y3 is multiplying an initial condition, we have to consider
three cases:(y1 > y2,y1 > y3), (y2 > y1,y2 > y3) and(y3 > y1,y3 > y2). Function FEASIBILITY CHECK

(Line 9) checks the emptiness of the intersection of the current constraint setΦ and the new constraints.
If the intersection is non-empty, new constraints are addedto the current set for this branch of explo-
ration (Line 11), conflicts are resolved (Line 13) and SYMBOLIC EXTRACT is recursively called again
(Line 14). If the intersection is non-feasible, this branchis dropped. If we continue in this fashion we
will eventually reach a non-branching node (Line 22).

We demonstrate our approach on the example PSADF graph in Fig. 3a. The example models a
dynamic streaming application consisting of loops with interdependent parametric affine loop bounds.
We define the ranges for parametric loop bounds (PSADF rates)as: p∈ [10,2000] ,q∈ [10,15] ands∈
[100,1500]. We also define linear dependencies between them:p+s≤ 1400 andq≤ p. Our application
is run on a multi-processor platform where each loop body (actor) is mapped onto a different processor.
Let PSADF actor execution times take the values of their nominal execution times multiplied by the
parameterci ∈ [1,5] to account for six different possible platform dynamic voltage and frequency scaling
(DVFS) settings. We obtain:a= 30ci , b = 20ci , c= 4ci , d = 3ci , e= ci . These constraints defineΩ
for our example. To obtain the worst-case throughput value we must maximize the matricesG(b+pqc≥sd)

andG(b+pqc≤sd) overΩ as given by the previously listed constraints. These becometwo mixed integer
polynomial programming problems overΩ∩ (b+ pqc≥ sd) andΩ∩ (b+ pqc≤ sd) and can be solved
using the technique from [21]. Throughput is given by the inverse of the MCM of the MPAG defined by
the matrixmax

(
G(b+pqc≤sd),G(b+pqc≥sd)

)
and equals to 1/390000 iterations per time-unit.

5 Experimental results

We demonstrate our throughput analysis technique on five representative DSP applications with paramet-
ric interdependent affine loop bounds listed in Table 1. The first column shows the number of PSADFG
actors, the second denotes the number of initial tokens, thethird shows the number of parametric rates,
the fourth gives the number of parametric actor execution times and the last shows the number of sce-
narios as the number of points in the PSADFG parameter spaceΩ. All applications, except the bounded
block parallel lattice reduction algorithm for MIMO-OFDM [3], are mapped onto a two-processor scalar
architecture. The latter is mapped onto a vector/SIMD architecture. To obtain the nominal actor execu-
tion times for our benchmark set, we used the AVR32 [1] simulator under a reference frequency of 32
MHz. For bounded block parallel lattice reduction algorithm [3] we used random numbers for nominal
actor execution times, as the source code of the algorithm isnot publicly available. We assume that
the frequency of each platform processor can be placed inside the range from 32 to 64 MHz, with the
step of 1 Mhz. For a 2 processor platform this will give 32 possible combinations. In contrast to the
conventional SADF approach from [12] which would have to generate|Ω| SDFGs, our approach in each
of these cases will solve maximally (n×n) polynomial programming problems without the need for the
enumeration ofΩ which is a difficulty by itself. Actually, in practice this number is usually less than
(n×n), because not all initial tokens depend on all other initialtokens in the graph rendering the matri-
ces to be quite sparse. Moreover, sometimes the entries in the symbolic PSADF (max,+) characteristic
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Table 1: Experimental results

Benchmark |A | n |PR| |PD | |Ω|
Fundam. freq. detector based on norm. autocorr. [2]12 6 2 2 16,687,681·32

Normalized LMS alg. [2] 9 6 2 2 385·32
High resolution spectral analysis [2] 9 6 2 2 385·32

Adaptive predictor program [7] 6 4 2 2 400·32
Bound. block parallel latt. reduct. alg. [3] 12 5 3 1 300·16

matrix are repetitive, so we only have to solve the corresponding problem once. The symbolic PSADF
(max,+) characteristic matrices of the benchmark applications were extracted manually using Algorithm
1, while the corresponding optimization problems were solved using CVX, a package for specifying and
solving convex programs [17][16].

6 Conclusion

In this paper we have presented an extension to SADF that allows to model applications with vast or
infinite sets of behaviours. We refer to our model as PSADF. Wehave proven the semantical equivalence
of the two models and used that result in the formulation of worst-case throughput calculation problem for
PSADF graphs with a fully connected state transition systemwithin a generic optimization framework.
The objective functions are functionals that represent theelements of the symbolic PSADF (max,+)
characteristic matrices. Furthermore, we have derived a (max,+) linear theory based algorithm that is able
to generate these matrices by combining a (max,+) difference equation solver and a recursive parameter
space exploration for a subclass of PSADF graphs that are ‘acyclic within an iteration’. As future work,
we want to fully automate our technique and investigate the problem of parametric throughput analysis
of PSADF graphs.
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