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We present a methodology for the automated verification of quantum protocols using MCMAS, a
symbolic model checker for multi-agent systems [17]. The method is based on the logical framework
developed by D’Hondt and Panangaden [10] for investigating epistemic and temporal properties, built
on the model for Distributed Measurement-based Quantum Computation (DMC) [9], an extension
of the Measurement Calculus [8] to distributed quantum systems. We describe the translation map
from DMC to interpreted systems, the typical formalism for reasoning about time and knowledge in
multi-agent systems [14]. Then, we introduce DMC2ISPL, a compiler into the input language of the
MCMAS model checker [17]. We demonstrate the technique by verifying the Quantum Teleportation
Protocol, and discuss the performance of the tool.

1 Introduction

Quantum computing has gained prominence in the last decade due to theoretical advances as well as
applications to security, information processing, and simulation of quantum mechanical systems [19].
With this increase of activity, the need for validation of correctness of quantum algorithms has arisen.
Model checking has shown to be a promising verification technique [6]. However, tools and techniques
for model checking both temporal and epistemic properties of quantum systems have not been developed
yet. In this paper we aim to bridge this gap by introducing a methodology for the automated verification
of quantum protocols using MCMAS [17], a symbolic model checker for multi-agent systems (MAS).

The fundamental question from an epistemic point of view is how to model a flow of quantum
information. Is it meaningful to talk about “quantum knowledge”? And if it is, how can we express
this concept? Several logics, which can be used for reasoning about knowledge in the context of
distributed quantum computation, have been recently suggested. One of the first attempts was based on
Quantum Message Passing Environments [18]. A different approach, i.e. Quantum Dynamic-Epistemic
Logic [1, 2, 3], was developed to model the behaviour of quantum systems. A third account [7, 10, 11] was
built on the Distributed Measurement-based Quantum Computation [9], which extends the Measurement
Calculus [8], a formal model for one-way quantum computations. Among these accounts, the logic
based on Distributed Measurement-based Quantum Computation (DMC) has an underlying operational
semantics similar to the semantics of interpreted systems [14]. This makes it suitable for model checking
using MCMAS. However, interpreted systems (IS) have a Boolean semantics, which requires us to
abstract from the underlying probability distribution. While we recognise that a full analysis of quantum
phenomena requires stochastic considerations, we believe there are still useful lessons to be learned about
protocols when these are abstracted from. The point of the paper is partly to explore this hypotheses.

In this paper we describe a translation from DMC to IS. We also report on a source-to-source compiler
that performs the translation into the input language of MCMAS. The compiler enables the use of MCMAS

to verify automatically temporal and epistemic properties of quantum protocols specified in DMC. We
verify the Quantum Teleportation protocol [5] against the properties stated and informally proved in [10],
and show that one specification does not hold contrary to the paper’s claim.
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Related Work. Several approaches to model checking quantum systems have already appeared in the
literature. To our knowledge, the only dedicated verification tool for quantum protocols is the Quantum
Model Checker (QMC) [15]. The model checker supports specifications in quantum computational
temporal logic (QCTL), but quantum operators are restricted to the Clifford group, which is the normalizer
of the group of Pauli operators [19]. Although it contains many common operators, quantum circuits that
involve only Clifford group operators are not universal. Such circuits can be simulated in polynomial time
on a classical computer; however, this leads to a loss of expressive power.

In the same research line [20] a theoretical framework to model check LTL properties using quantum
automata is proposed, and an algorithm for checking invariants of quantum systems is presented. Finally,
in [13] the Quantum Key Distribution (QKD) protocol is verified against specific eavesdropping security
properties. The authors elaborate an ad hoc model of the protocol, that they analyse using PRISM [16].

However, we stress that none of these contributions explicitly deal with knowledge. So, these
approaches do not allow the verification of the temporal epistemic properties discussed in [10].

Structure. Organizationally, Section 2 gives an overview of the Distributed Measurement-based
Quantum Computation, Interpreted Systems, and Quantum Epistemic Logic. Section 3 presents a
methodology for translating a protocol specified in DMC into the corresponding IS. Section 4 describes
and evaluates an implementation of the formal methodology. Section 5 offers brief conclusions.

2 Preliminaries

We discuss only the issues directly related to the paper and refer the reader to the relevant references for an
in-depth coverage of these topics. We assume familiarity with the concepts of quantum computation [19].

2.1 Distributed Measurement-based Quantum Computation

At the heart of the Measurement Calculus are measurement patterns [8]. A pattern P = (V, I,O,A )
consists of a computation space V , which contains all qubits involved in the execution of P , a set I of
input qubits, a set O of output qubits, and a finite sequence A of commands Ap . . .A1, which are applied to
qubits in V from right to left. The possible commands are the entanglement operator Eqr, the measurement
Mα

q , and the corrections Xq and Zq, where q and r represent the qubits on which these commands operate,
and α is a measurement angle in [0,2π].

An agent A [9], denoted as A(i,o) : Q.E , is characterised by its classical input i and output o, by a
set Q of qubits, and by a finite event sequence E , which consists of patterns and commands for classical
(c?x, c!y) and quantum (qc?x, qc!q) communication. A network N of agents [9] is defined as a set
of concurrently acting agents, together with the global quantum state σ , specifically N = A1(i1,o1) :
Q1.E1 | . . . | Am(im,om) : Qm.Em ‖ σ , abbreviated as N = |i Ai(ii,oi) : Qi.Ei ‖ σ . The configuration C
of a network N at a particular point in time is described by a set of agents, their classical local states, and
the quantum state σ , formally C = σ ,Γ1,a1 | Γ2,a2 | . . . | Γm,am, abbreviated as C = σ , |i Γi,ai, where Γi

represents the classical state of agent ai, which is defined as a partial mapping from classical variables to
values. The set CN contains all configurations that potentially occur during the execution of the network
N .

Operational and denotational semantics for DMC are defined in [9]; however, here we are more
interested in its small-step semantics. The following small-step rules for configuration transitions describe
how the network evolves over time. If the quantum state does not change in an evaluation step, the writing
σ ` precedes the rule. Also, we use a shorthand notation for agents: ai = Ai : Qi.Ei, ai.E = Ai : Qi.[Ei.E],
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a−q = A : Q\q.E , and a+q = A : Q]q.E [q/x], where E is some event.

σ ,P(V, I,O,A )−→λ σ ′,Γ′

σ ,Γ,A : I]R.[E .P] =⇒λ σ ′,Γ∪Γ′,A : O]R.E
(1)

Γ2(y) = v
σ ` (Γ1,a1.c?x | Γ2,a2.c!y =⇒ Γ1[x 7→ v],a1 | Γ2,a2)

(2)

σ ` (Γ1,a1.qc?x | Γ2,a2.qc!q =⇒ Γ1,a+q
1 | Γ2,a−q

2 )
(3)

L =⇒λ R
L | L′ =⇒λ R | L′

(4)

The first rule refers to local operations. Since a pattern’s big-step semantics is given by a probabilistic
transition system, described by −→, a probability λ is introduced here. Also, an agent changes its sort
depending on the pattern’s output O. The next two rules are for the classical and the quantum rendez-
vous. For the quantum rendez-vous a substitution q for x in the event sequence of the receiving agent is
performed and agents need to update their qubit sorts. (4) is a metarule, which is required to express that
any of the other rules may fire in the context of a larger system.

2.2 Interpreted Systems and MCMAS

Interpreted systems [14] are the typical formalism for reasoning about time and knowledge in multi-agent
systems. In IS each agent i from a non-empty set Ag of agents is modelled by a set of local states Li, a
set of actions Acti that she may perform according to her protocol function Pi, and an evolution function
ti. A special agent E, representing the environment in which the other agents operate, is also described
by a set of local states LE , a set of actions ActE , a protocol PE , and an evolution function tE . For every
j ∈ Ag∪{E}, the protocol Pj is defined as a function Pj : L j→ 2Act j , assigning a set of actions to a given
local state. Intuitively, α j ∈ Pj(l j) means that action α j is enabled in l j. The evolution function t j is
a transition function returning the target local state given the current local state and the set of actions
performed by all agents, formally t j : L j×Act1×·· ·×Actn×ActE → L j under the constraint α j ∈ Pj(l j).
Agents evolve simultaneously in every state of the system according to the joint transition function t.

The set Act of joint actions is defined as the Cartesian product of all agents’ actions, formally
Act = Act1×·· ·×Actn×ActE . The Cartesian product S = Li×·· ·×Ln×LE of the agents’ local states
is the set of all global states of the system. The local state of agent i in the global state g ∈ S is denoted
as li(g). The description of an interpreted system is concluded by including a set of atomic propositions
AP = {p1, p2, . . .} and an evaluation relation V ⊆ AP×S. Formally, an interpreted system is defined as a
tuple IS = 〈(Li,Acti,Pi, ti)i∈Ag,(LE ,ActE ,PE , tE),V 〉 .

Interpreted systems can be used to interpret CTLK, a logic combining the branching-time temporal
logic CTL with epistemic modalities. The formal language L is built from propositional atoms p ∈ AP
and agents i ∈ Ag as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ϕ | EXϕ | EGϕ | EϕUψ | Ki

The formulae in L have the following intuitive meaning. EXϕ : there is a path where ϕ holds in the next
state; EGϕ: there is a path where ϕ always holds; EϕUψ: there is a path where ϕ holds at least until at
some state ψ holds; Kiϕ: agent i knows ϕ . The other standard CTL formulae, e.g., AFϕ: for all paths
ϕ eventually holds, can be derived from the above. The formal definition of satisfaction in interpreted
systems follows.
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In an interpreted system M the evolution function t determines a transition relation M−→ on states such
that s M−→ s′ iff there is a joint action α ∈ Act such that t(s,α) = s′. A path π is an infinite sequence of

states s0
M−→ s1

M−→ . . .. Further, πn denotes the n-th state in the sequence, i.e, sn. Finally, for each agent
i ∈ Ag, we introduce the epistemic equivalence relation ∼M

i such that s∼M
i s′ iff li(s) = li(s′).

Given the IS M , a state s, and a formula φ ∈L , the satisfaction relation � is defined as follows:

(M ,s) � p iff V (p,s)
(M ,s) � ¬φ iff (M ,s) 6� φ

(M ,s) � φ ∨φ ′ iff (M ,s) � φ or (M ,s) � φ ′

(M ,s) � EXφ iff there is a path π such that π0 = s, and (M ,π1) � φ

(M ,s) � EGφ iff there is a path π such that π0 = s, and for all n ∈ N, (M ,πn) � φ

(M ,s) � EφUφ ′ iff there is a path π such that π0 = s, for some n ∈ N, (M ,πn) � φ ′,
and for all n′, 0≤ n′ < n implies (M ,πn′) � φ

(M ,s) � Kiφ iff for all s′ ∈ S, s∼M
i s′ implies (M ,s′) � φ

A formula φ ∈L is true in an IS M , or M � φ , iff for all s ∈ S, (M ,s) � φ .
In [17] the authors present a methodology for the verification of IS based on model checking [6] via

ordered binary decision diagrams. These verification techniques have been implemented in the MCMAS

model checker. The input to the model checker is given as an Interpreted Systems Programming Language
(ISPL) program, which is essentially a machine readable IS.

2.3 Quantum Epistemic Logic

A formal framework for reasoning about temporal and epistemic properties of distributed quantum systems
was developed in [10] on top of DMC. The authors argue that quantum knowledge is not a meaningful
concept, but it is of interest to reason about classical knowledge pertaining to a quantum system. In this
sense, the quantum information possessed by an agent concerns the qubits she owns, the local operations
she applies to these qubits, the non-local entanglement she shares initially, and possibly prior knowledge
of her local quantum inputs. All this information is contained in her local state Γi and her event sequence
Ei. Given a network N , the epistemic accessibility relation ∼N

i for an agent Ai is defined in [10] as
follows: for all configurations C = σ , |i Γi,Ai : Qi.Ei and C′ = σ ′, |i Γ′i,Ai : Q′i.E

′
i in CN , C and C′ are

indistinguishable to agent Ai, written as C ∼N
i C′, if Γi = Γ′i and Ei = E ′i . The semantics for the modal

operator Ki for the knowledge of agent Ai is then defined in the usual way: (C,N ) � Kiϕ iff for all C′,
C′ ∼N

i C implies (C′,N ) � ϕ .
We now give the truth conditions for all formulae in L in a network N .The set of atomic propositions

AP = {x = v,x = y,Ai has q,q1 . . .qn = |ψ〉 ,qi = q j} is considered in [7]. In a configuration C of a
network N the truth conditions for these atomic propositions are given as follows:

(C,N ) � x = v iff there is an agent i such that Γi(x) = v
(C,N ) � x = y iff there are agents i, j such that Γi(x) = Γi(y)
(C,N ) � Ai has q iff q ∈ Qi

(C,N ) � q1 . . .qn = |ψ〉 iff q1 . . .qn = |ψ〉
(C,N ) � qi = q j iff there is |ψ〉 such that |ψ〉= qi = q j

In networks the small-step rules given in Section 2.1 determine a transition relation N−→ such that
C N−→C′ iff there is a rule that applied to C returns C′. A path γ is an infinite sequence of configurations
C0

N−→C1
N−→ . . .. Further, γn denotes the n-th state in the sequence, i.e, Cn. Finally, for each agent Ai
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in the network, we introduce the epistemic equivalence relation ∼N
i such that C ∼N

i C′ iff Γi = Γ′i and
Ei = E ′i .

Given the network N , a configuration C, and a formula φ ∈L , the satisfaction relation � is defined
as follows:

(C,N ) � p iff C satisfies the corresponding condition above for atomic p ∈ AP
(C,N ) � ¬φ iff (C,N ) 6� φ

(C,N ) � φ ∨φ ′ iff (C,N ) � φ or (C,N ) � φ ′

(C,N ) � EXφ iff there is a path γ such that γ0 =C, and (γ1,N ) � φ

(C,N ) � EGφ iff there is a path γ such that γ0 =C, and for all n ∈ N, (γn,N ) � φ

(C,N ) � EφUφ ′ iff there is a path γ such that γ0 =C, for some n ∈ N, (γn,N ) � φ ′,
and for all n′, 0≤ n′ < n implies (γn′ ,N ) � φ

(C,N ) � Kiφ iff for all C′ ∈N , C ∼N
i C′ implies (C′,N ) � φ

A formula φ ∈L is true in a network N , or N � φ , iff for all configurations C, (C,N ) � φ .

2.4 Quantum Teleportation Protocol
The goal of the Quantum Teleportation Protocol (QTP) is to transmit a qubit from one party to another
with the aid of an entangled pair of qubits and classical resources. For reasons of space we refer to [5] for
a detailed presentation of QTP. The DMC specification of the protocol is given in [9] as:

NQT P = A : {1,2}.[(c!s2s1).M
0,0
12 E12] | B : {3}.[Xx2

3 Zx1
3 .(c?x2x1)] ‖ E23.

The informal reading is as follows: Alice A and Bob B share the entangled pair E23 of qubits 2 and 3, and
Alice wants to transmit the input qubit 1. In the first step, she entangles (E12) her qubits 1 and 2. Then she
measures (M0,0

12 ) both of them. Next, she sends via classical communication (c!s2s1) the measurement
outcomes to Bob. Upon receipt (c?x2x1), Bob applies corrections (Xx2

3 Zx1
3 ) to his qubit 3 depending on

these measurements. The result is that Bob’s qubit 3 is guaranteed to be in the same state as Alice’s input
qubit 1.

3 Formal Mapping

In this section we present a methodology for translating a protocol specified in DMC into the corresponding
IS. Formally, we define a mapping f : DMC→ IS, such that f preserves satisfaction of formulae in the
specification language L . First, we describe the translation of the global quantum state and classical
states of agents. Then we cover the rules in DMC. Finally, we show that f is sound.

3.1 Classical States of Agents and Global Quantum State

Given a network N we introduce an agent i ∈ Ag for each agent Ai(ii,oi) : Qi.Ei in N , as well as the
Environment agent E. We take a local state li ∈ Li of agent i to be a tuple of vector variables (~x,~y,~s,~q, pc)
defined as follows:

• Each classical input bit in ii is mapped to a variable y ∈ li in the domain {0,1}.
• A bit received from an agent via the classical receive event c?x in the event sequence Ei is mapped

to a variable x ∈ li in the domain {0,1,⊥}, where ⊥ denotes the undefined value before communi-
cation.
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• A variable s ∈ li, called signal, represents the outcome of a measurement event Mα
q in the event

sequence Ei, where q is the measured qubit and α is a measurement angle. A signal can attain
values {0,1,⊥}, where ⊥ denotes the undefined value of the signal before the agent executes the
measurement.

• A variable q ∈ li in the domain {0,1,2} represents the ownership relation between agent Ai and
qubit q with the following meaning: if Ai is not in possession of q, i.e., q /∈ Qi, then we take q = 0.
If Ai owns the qubit q, i.e., q ∈ Qi, then q = 1 or q = 2. The former value represents that Ai does
not know the exact state of the qubit, the latter value represents that she knows it. We assume
that the agent knows the state of the qubit once she measures it or prepares it in a specific state.
This is motivated as there is classical information involved in both cases. However, the agent loses
this knowledge when she sends the qubit to another agent, as it is no longer in her possession, or
entangles it with another qubit. Note that correction commands preserve knowledge because they
are deterministic actions that neither entangle nor separate qubits.

• pc ∈ li is a counter for the events in the event sequence Ei executed by agent Ai.

Example 1. Consider the specification of QTP in DMC as given in Section 2.4. The local state
of Alice is described by the tuple lA = (s1,s2,q1,q2,q3, pc), and similarly the local state of Bob is
lB = (x1,x2,q1,q2,q3, pc). In the initial state Alice owns the input qubits q1 and q2 in the entangled pair,
while Bob owns the qubit q3, and neither of them knows anything about their qubits. Alice has not yet
measured any qubit nor has she sent anything to Bob. The program counters of both agents point to the
first event in their event sequences. All this is captured in variable assignments (⊥,⊥,1,1,0,1) for Alice
and (⊥,⊥,0,0,1,1) for Bob.

A local state lE ∈ LE of the Environment represents the quantum state σ of the network. lE is a tuple
of vector variables (~q,~q′,~e,gc) defined as follows:
• We divide the global quantum state at any given time into the smallest possible substates - individual

qubits and/or systems of entangled qubits - such that these are in pure states, i.e., they can be
represented as a vector in a Hilbert space. We generate the reachable quantum state space of the
network using the small-step rules for patterns and enumerate all such encountered substates. Thus,
every reachable substate has an associated name qsn, n ∈ N.

• For every qubit q ∈N we introduce a variable q ∈ lE . The domain of q is the set of names of
quantum states that q may attain in any run of the protocol, together with the value ⊥ indicating
that the qubit is not in a pure state but entangled with other qubits.

• Similarly, for every system of entangled qubits we introduce a variable e ∈ lE . The domain of e is
the set of names of quantum states that the system may attain, together with the value ⊥ indicating
that either the system is not in a pure state or its qubits are not entangled.

• Each variable q and e is assigned a name if only if they are pure and cannot be further separated.
Otherwise, they are assigned the value ⊥. The global state σ is then the tensor product of these
substates.

• In addition, we make use of an auxiliary variable q′ for each qubit q ∈N recording the name of its
initial state, and introduce the global counter gc ∈ lE that increases with every action in the network.
This is used to track the global time and to enumerate the configurations in CN according to their
occurrence in the path.
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Action Qubit/Entangled System State Name

Initially q1 [a,b]T qs1
e23

1
2 [1,1,1,−1]T qs2

E12 e123
1
2 [a,a,a,−a,b,b,−b,b]T qs3

M0
1

q1

1
2 [
√

2,
√

2]T qs4
1
2 [
√

2,−
√

2]T qs5

e23

1
2 [a+b,a+b,a−b,−a+b]T qs6
1
2 [a−b,a−b,a+b,−a−b]T qs7

M0
2

q2

1
2 [
√

2,
√

2]T qs4
1
2 [
√

2,−
√

2]T qs5

q3

[a,b]T qs1
[a,−b]T qs8
[b,a]T qs9
[−b,a]T qs10

Xx2
3 Zx1

3 q3 [a,b]T qs1

Table 1: Enumeration of quantum substates in the evolution of QTP.

Example 2. The global quantum state of QTP is represented in the local state of the Environment
E as the tuple lE = (q1,q2,q3,q′1,q

′
2,q
′
3,e23,e123,gc). The initial state of the input qubit q1 is [a,b]T , for

a,b ∈ C. We assume that it is not equal to states [1,0]T and [0,1]T of the standard basis, nor to states
1
2 [
√

2,
√

2]T and 1
2 [
√

2,−
√

2]T of the measurement basis. In these cases there are fewer states, but the
procedure is analogous. Table 1 shows the enumeration of substates occurring in all possible runs of the
network, as Alice and Bob execute quantum commands according to QTP. For instance, the initial state
of the network is (qs1,⊥,⊥,qs1,⊥,⊥,qs2,⊥,1). Note that only the input qubit q1 and the system of two
entangled qubit e23 have assigned named states. This is because the individual qubits q2 and q3 are not in
a pure state and the system of all three qubit e123 can be further separated. Indeed, the whole quantum
state can be expressed as the tensor product [a,b]T ⊗ 1

2 [1,1,1,−1]T , or by using names qs1⊗qs2.

3.2 Transition Rules

Events in the event sequence Ei of agent Ai are mapped into actions in Acti. Actions are executed according
to a protocol function Pi and their effects are described by evolution functions ti and tE depending on
whether the classical state of agent Ai changes, or the quantum state σ of the system changes, or both.
Before introducing the mapping for events, note that DMC is a probabilistic calculus, whereas IS have a
Boolean semantics. We deal with this issue by allowing all admissible transitions, abstracting away from
the probability distribution. As a result, we lose the ability to reason about the probability of reaching a
state. However, this is not an issue for us as we need to reason about non-probabilistic properties only as
the choice of the language L demonstrates.

Note also that the execution of a pattern P in DMC occurs in a single transition step and depends
on the big-step semantics of the pattern (see Rule 1). However, we handle transitions at the level of
individual commands of P , and so the execution depends on the small-step semantics of patterns and
may span across several time steps. This leads to a finely grained state space. In the rest of this section we
present the actions, the protocols, and the evolution functions associated with the classical and quantum
communication and the quantum commands presented in Section 2.1.

Classical rendez-vous. Assume that agent Ai sends the value of y to agent A j who stores it in x,
specified in DMC as Γi,Ai : Qi.c!y and Γ j,A j : Q j.c?x, and that this is the vth (resp. wth) event in Ei
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(resp. E j). We translate this by considering the actions snd j y0 and snd j y1 in the set Acti of actions for
agent i, and action rcv i x in Act j. The protocol functions are:

Pi(li) = {snd j y0}, if pc = v∧ y = 0,
Pi(li) = {snd j y1}, if pc = v∧ y = 1,

Pj(l j) = {rcv i x}, if pc = w.

The configuration transition, described by Rule 2, is translated into the following evolution functions for
the agents i and j:

ti(li,Acti,Act j) = pc 7→ pc+1, if (Acti = snd j y0∨Acti = snd j y1)∧Act j = rcv i x,

t j(l j,Acti,Act j) = pc 7→ pc+1∧ x 7→ 0, if Acti = snd j y0∧Act j = rcv i x,

t j(l j,Acti,Act j) = pc 7→ pc+1∧ x 7→ 1, if Acti = snd j y1∧Act j = rcv i x.

The rationale behind the above equations is that when agents perform paired send/receive actions at
the same time step, their program counters are incremented, and variable x of agent A j is assigned the
transmitted value.

Quantum communication. Assume that agent Ai sends a qubit q ∈ Qi to agent A j, described as
Γi,Ai : Qi.qc!q and Γ j,A j : Q j.qc?q, and that this is the vth (resp. wth) event in Ei (resp. E j). We introduce
actions qsnd j q and qrcv i q in Acti and Act j respectively. The protocol functions are:

Pi(li) = {qsnd j q}, if pc = v,

Pj(l j) = {qrcv i q}, if pc = w.

Rule 3 defines the configuration transition in terms of sets of qubits Qi and Q j. When Ai sends the qubit
q, it is removed from her set, and when A j receives q, it is added to her set. This is translated into IS by
the evolution functions:

ti(li,Acti,Act j) = pc 7→ pc+1∧q 7→ 0, if Acti = qsnd j q∧Act j = qrcv i q,

t j(l j,Acti,Act j) = pc 7→ pc+1∧q 7→ 1, if Acti = qsnd j q∧Act j = qrcv i q.

This means that when both agents concurrently execute the respective quantum communication events,
their local program counters are incremented, and the ownership of the qubit changes, i.e., Ai is no longer
in possession of q while A j owns it but does not know its state.

Corrections. The events X s
q and Zs

q differ only in their matrix representations, so we describe them
together. Assume that agent Ai executes the Pauli operator X or the Pauli operator Z on a qubit q at step
v of Ei if signal s = 1, otherwise she skips the event. This scenario has the following DMC description:
Γi,Ai : q]Ri.U s

q , with U s
q ∈ {X s

q ,Z
s
q}. We introduce actions x q and z q in Acti, and since the agent applies

the event conditionally, we also include the action skip. In the rest of the description we refer to both
actions x q and z q as u q. The protocol function is then given as:

Pi(li) = {skip} if pc = v∧ s = 0;
Pi(li) = {u q} if pc = v∧ s = 1.

For example, we have the following ground protocol function for Bob in QTP:

PB(lB) = {skip}, if pc = 3∧ x1 = 0; PB(lB) = {skip}, if pc = 4∧ x2 = 0;
PB(lB) = {z q3}, if pc = 3∧ x1 = 1; PB(lB) = {x q3}, if pc = 4∧ x2 = 1.
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The small-step semantics for corrections is defined as σ ,Γi
U s

q−→U
sΓi
r σ ,Γi. Assume that the qubit q is in

system e, which again may be just q or some entangled system. The local state of the agent Ai changes
only through the pc increment. We define the evolution functions as:

tE(lE ,Acti) = gc 7→ gc+1∧ e 7→ qsy, if e = qsx∧Acti = u q;
ti(li,Acti) = pc 7→ pc+1, if Acti = u q∨Acti = skip;

where qsx (resp. qsy) is the name of the state before (resp. after) the execution. The ground evolution
function of E in QTP with respect to Bob’s corrections Xx2

3 Zx1
3 is given as the following equations

corresponding to measurement outcomes x1x2 7→ 10, x1x2 7→ 01, and x1x2 7→ 11 respectively. Note that in
the last case Bob executes both actions z q3 and x q3 sequentially, while in the first two cases he executes
only one of them and skips the other.

tE(lE ,ActB) = gc 7→ gc+1∧q3 7→ qs1, if q3 = qs8∧ActB = z q3;
tE(lE ,ActB) = gc 7→ gc+1∧q3 7→ qs1, if q3 = qs9∧ActB = x q3;
tE(lE ,ActB) = gc 7→ gc+1∧q3 7→ qs9, if q3 = qs10∧ActB = z q3.

Entanglement. Assume that agent Ai applies at step v of Ei the entanglement operator Eqr on qubits q
and r. The DMC definition of the agent in this case is Γi,Ai : q,r]Ri.Eqr. Since this event is independent
of signals, we add only one corresponding action ent q r to Acti and define the following protocol function:

Pi(li) = {ent q r}, if pc = v. The small-step rule for entanglement is given as σ ,Γi
Eqr−→ CZqrσ ,Γi, where

CZqr is the controlled-Z operator realising the entanglement. Since we divide the global state σ into its
smallest pure substates, we have two possible situations. In the first case q ∈ e′ and r ∈ e′′, where e′ and
e′′ are isolated qubits, distinct entangled systems, or combination of both. The resulting entangled system
e is the union of the two systems e′ and e′′, and we define the evolution function of the Environment E as:

tE(lE ,Acti) = gc 7→ gc+1∧ e 7→ qsz∧ e′ 7→ ⊥∧ e′′ 7→ ⊥, if e′ = qcx∧ e′′ = qcy∧Acti = ent q r;

where qsx, qsy, and qsz are the names of the quantum states in which the systems e′, e′′ are during the
execution of the event, and e after the execution. For instance, the ground evolution function in QTP for
Alice’s entanglement E12 is:

tE(lE ,ActA) = gc 7→ gc+1∧ e123 7→ qs3∧q1 7→ ⊥∧ e23 7→ ⊥,
if q1 = qc1∧ e23 = qc2∧ActA = ent q1 q2.

Note that there may be many possible combinations of various states for e′ and e′′, and we have to define
the evolution function for all of them. In the second case the qubits q and r are part of the same system e
and we simply have the evolution function:

tE(lE ,Acti) = gc 7→ gc+1∧ e 7→ qsy, if e = qsx∧Acti = ent q r;

where qsx (resp. qsy) is the name of the state before (resp. after) the execution. In both cases the local
state of agent Ai is updated as follows:

ti(li,Acti) = pc 7→ pc+1∧q 7→ 1∧ r 7→ 1, if Acti = ent q r.

This equation states that the counter of Ai is incremented and the agent loses any knowledge about the
state of q and r she might have had, since neither qubit is in a pure state anymore.

Measurement. This is a complex event modifying the quantum state of the network as well as the
local states of agents. Suppose that agent Ai in step v of Ei measures her qubit q in the {|+α〉 , |−α〉} basis,
specified in DMC as Γi,Ai : q]Ri.

t [Mα
q ]

s, where s and t are signals. A measurement is a stochastic event
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/0 /0 Actions m q +α , m q −α

Protocol Pi(li(g)) = {m q +α ,m q −α}, if pc = v

s /0
Actions m q s0 +α , m q s0 −α , m q s1 +α , m q s1 −α

Protocol Pi(li(g)) = {m q s0 +α ,m q s0 −α}, if pc = v∧ s = 0
Pi(li(g)) = {m q s1 +α ,m q s1 −α}, if pc = v∧ s = 1

/0 t
Actions m q t0 +α , m q t0 −α , m q t1 +α , m q t1 −α

Protocol Pi(li(g)) = {m q t0 +α ,m q t0 −α}, if pc = v∧ t = 0
Pi(li(g)) = {m q t1 +α ,m q t1 −α}, if pc = v∧ t = 1

s t

Actions m q s0 t0 +α , m q s0 t0 −α , m q s0 t1 +α , m q s0 t1 −α ,
m q s1 t0 +α , m q s1 t0 −α , m q s1 t1 +α , m q s1 t1 −α

Protocol

Pi(li(g)) = {m q s0 t0 +α ,m q s0 t0 −α}, if pc = v∧ s = 0∧ t = 0
Pi(li(g)) = {m q s0 t1 +α ,m q s0 t1 −α}, if pc = v∧ s = 0∧ t = 1
Pi(li(g)) = {m q s1 t0 +α ,m q s1 t0 −α}, if pc = v∧ s = 1∧ t = 0
Pi(li(g)) = {m q s1 t1 +α ,m q s1 t1 −α}, if pc = v∧ s = 1∧ t = 1

Table 2: Actions and protocol rules for various degree of dependency of measurements.

and may also depend on signals s and t. We express this non-determinism by associating two actions to a
given local state li of agent i. However, due to a possible dependency on signals s and t, there are four
different sets of actions and protocol rules. We list them in Table 2, where /0 means that the measurement
does not depend on a particular signal.

The following two transitions are defined in the small-step semantics for the measurement event:

σ ,Γi

t [Mα
q ]

r

−−−→λ 〈+αΓi
|
q

σ ,Γi[0/q] and σ ,Γi
t [Mα

r ]
s1

−−−−→λ 〈−αΓi
|
q

σ ,Γi[1/q]. This is the source of non-determinism
in the transition system, but we do not consider the probability λ as long as it is non-zero.

There are again four types of evolution functions. They differ in the computation of quantum states,
and since we give only the general rules, here we describe the evolution functions only for the independent
measurement, i.e., when s = t = /0. As far as the translation rules are concerned, the other three types
differ only in the names of the actions and the actual names of quantum states. We can translate them
analogously.

We now consider two cases where both measurement outcome are possible. First, for the measurement
of an isolated qubit q we define the evolution function of the Environment E as follows:

tE(lE ,Acti) = gc 7→ gc+1∧q 7→ qs+α
, if q = qcx∧Acti = m q +α ;

tE(lE ,Acti) = gc 7→ gc+1∧q 7→ qs−α
, if q = qcx∧Acti = m q −α ;

where qs+α
and qs−α

are names of the {|+α〉 , |−α〉} measurement basis. If the qubit q is part of an
entangled system e, then the system becomes separated on measurement. The measured qubit q collapses
and the rest of qubits form a new system e′. We define the evolution function as follows:

tE(lE ,Acti) = gc 7→ gc+1∧q 7→ qs+α
∧ e 7→ ⊥∧ e′ 7→ qsy, if e = qcx∧Acti = m q +α ,

tE(lE ,Acti) = gc 7→ gc+1∧q 7→ qs−α
∧ e 7→ ⊥∧ e′ 7→ qsz, if e = qcx∧Acti = m q −α .

In both cases the measurement outcome is assigned to a signal variable s′ of agent Ai and her evolution
function is given by:

ti(li,Acti) = pc 7→ pc+1∧ s′ 7→ 0∧q 7→ 2, if Acti = m q +α ;
ti(li,Acti) = pc 7→ pc+1∧ s′ 7→ 1∧q 7→ 2, if Acti = m q −α .

For instance, consider the first measurement that Alice performs in QTP. All three qubits are entangled
together and therefore measuring the input qubit q1 causes separation of the system e123 into two parts,
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q1 and e23, and has two possible outcomes. Both have probability λ = 0.5, but we do not take this into
account since all we require is that they are non-zero, therefore the respective transitions are admissible.
We have the following ground evolution functions for the Environment and Alice:

tE(lE ,ActA) = gc 7→ gc+1∧q1 7→ qs4∧ e123 7→ ⊥∧ e23 7→ qs6, if e123 = qc3∧ActA = m q1 +α ;
tE(lE ,ActA) = gc 7→ gc+1∧q1 7→ qs5∧ e123 7→ ⊥∧ e23 7→ qs7, if e123 = qc3∧ActA = m q1 −α ;
tA(lA,ActA) = pc 7→ pc+1∧ s1 7→ 0∧q1 7→ 2, if ActA = m q1 +α ;
tA(lA,ActA) = pc 7→ pc+1∧ s1 7→ 1∧q1 7→ 2, if ActA = m q1 −α .

In the case that the measured qubit is in a state that coincides with one of the states of the measurement
basis, there is only one possible outcome and we need to prevent reaching an impossible state. The
translation of the transition function in case that a measurement outcome has zero probability requires
modification of the evolution functions. We only show the case when measuring |−α〉 is impossible. The
evolution function of the Environment is given as:

tE(lE ,Acti) = gc 7→ gc+1∧q 7→ qs+α
, if q = qc+α

∧ (Acti = m q +α ∨Acti = m q −α).

The Environment “signals” that the measurement of q in a quantum state qsx has only one possible
outcome. We introduce action envx in ActE and define the following protocol function: PE(lE) = {envx},
if q = qsx. The evolution function of agent i is then defined as:

ti(li,Acti,ActE) = pc 7→ pc+1∧ s′ 7→ 0∧q 7→ 2, if Acti = m q +α ∨(Acti = m q −α ∧ActE = envx),

ti(li,Acti,ActE) = pc 7→ pc+1∧ s′ 7→ 1∧q 7→ 2, if Acti = m q −α ∧ActE 6= envx.

3.3 Correctness Proof

We now show that the translation f defined in the previous section is sound, that is, f preserves the
truth conditions of formulae defined in the language L introduced in Section 2.2 from the set of atomic
propositions AP = {x = y,qi = q j}. In [7] the truth conditions for the atoms in AP in a configuration C of
a network N are given as follows:

(C,N ) |= x = y iff there are agents i, j such that Γi(x) = Γi(y);

(C,N ) |= qi = q j iff the global quantum state σ is such that σ = qi = q j.

Intuitively, x = y holds iff the bits denoted by x and y are equal. Also, qi = q j holds iff the qubits
denoted by qi and q j are equal. We can prove the following result on the translation f and the language
L .

Theorem 1. For every formula φ ∈L ,

(C,N ) |= φ iff ( f (N ), f (C)) |= φ

Proof. The proof is by induction on the length of φ . For reasons of space, we only provide a sketch
of the proof. If φ is an atomic formula, then φ is of the form a = b, where a and b are both either
bits or qubits. By the definition of f (C) in Section 3.1 we can easily check that (C,N ) |= a = b iff
( f (N ), f (C)) |= a= b. Thus, the base case holds. The inductive case for propositional connectives ¬
and ∨ is straightforward.

If φ = EXψ , then by the translation of events in the event sequence E into actions in Act defined
in Section 3.2, we can see that two configurations C,C′ ∈N are in the temporal relation induced by
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E , or C N−→C′, iff their translations f (C), f (C′) ∈ f (N ) are in the temporal relation induced by Act, or

f (C)
f (N )−−−→ f (C′). The result then follows by the induction hypothesis. The inductive case for the other

temporal operators is similar.
If φ = Kiψ , then by the definition of the local state li of an agent i in Section 3.1, we have that

li( f (C)) = l′i( f (C′)) iff Γi = Γ′i and Ei = E ′i , that is, C ∼N
i C′ iff f (C)∼ f (N )

i f (C′). Also in this case the
result follows by the induction hypothesis. This completes the sketch.

Theorem 1 allows us to check whether a specification φ ∈L is satisfied in a network N by verifying
φ in the corresponding interpreted system f (N ).

4 Implementation and Evaluation

In this section we present an implementation of the formal map above. DMC2ISPL1 is a source-to-source
compiler, written in C++ and using GNU Octave libraries for matrix operations. DMC2ISPL translates a
protocol specified in a machine-readable DMC input format into an ISPL program. The code generated is
then run by MCMAS, which in turn reports on the specification requirements of the protocol.

We modified DMC, so it can be read by the compiler. The adaptation closely follows the syntax of
the original DMC, but also reflects some features of ISPL. A DMC file consists of five modules: a set of
agents, a set of qubits, whose initial state is explicitly declared, a set of groups of agents that are used
in formulae involving group modalities, a set of formulae to be verified, and a set of macros that allow
agents to perform complex quantum operations in a single time step. The declaration of an agent consists
of a set of input qubits, a set of a priori known qubits, a set of classical inputs, and a set of events the
agent executes. For illustration, the DMC code snippet for QTP can be found in Listing 1.

1 −− AGENTS
2 A l i c e : {1 ,2} ,
3 {} ,
4 {} ,
5 {c ! ( Bob , s2 ) , c ! ( Bob , s1 ) , Me(2 ,0 ,− ,− , s2 ) , Me(1 ,0 ,− ,− , s1 ) , En ( 1 , 2 ) } ;
6
7 Bob : {3} ,
8 {} ,
9 {} ,

10 {cX ( 3 , x2 ) , cZ ( 3 , x1 ) , c ? ( Al i ce , x2 ) , c ? ( Al i ce , x1 ) } ;
11
12 −− QUBITS
13 1 : ? ;
14 2 , 3 : { ( 0 . 5 , 0 ) , ( 0 . 5 , 0 ) , ( 0 . 5 , 0 ) , (−0.5 , 0 ) } ;
15
16 −− FORMULAE
17 AF {3 = i n i t ( 1 ) } ;
18 ! EF K ( Al ice , {3} ) and ! EF K ( Bob , {3} ) ;
19 AF K( Bob , {3 = i n i t ( 1 ) } ) ;
20 ! EF K( Al ice , {3 = i n i t ( 1 ) } ) ;

Listing 1: QTP.dmc

DMC2ISPL has the architecture of a standard compiler. It consists of the three following components:
a module for parsing and validating the DMC input file, a module for generating the reachable quantum

1The source code is available from http://www.doc.ic.ac.uk/~pg809/dmc2ispl.tar.gz

http://www.doc.ic.ac.uk/~pg809/dmc2ispl.tar.gz
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Figure 1: The epistemic accessibility relations of Alice and Bob in the QTP network.

state space, and a module for generating the ISPL output file. Essentially, since MCMAS does not
support matrix arithmetic, the compiler is responsible for computation of the reachable quantum state
space, enumeration of encountered quantum states, and generation of the evolution function of the global
quantum system. Quantum states of a n-qubit system are represented as 2n×1 complex matrices and
unitary operators and measurement projections as 2n×2n sparse complex matrices. After the elimination
of the global phase, whenever two identical state matrices are encountered during the evolution of the
quantum state of the n-qubit system, they have assigned the same name. MCMAS then works with these
enumerations.

We used the compiler to verify QTP, as well as the Quantum Key Distribution (QKD) [12], and the
Superdense Coding (SDC) [4] protocol against the properties from the reference papers [7, 10]. Table 3
summarises these properties. We discuss QTP in more detail.

The figure 1 gives a graphical representation of the possible configurations in the QTP network. Note
that configurations are parametrised by measurement outcomes and the quantum input |ψ〉. The first
formula in QTP section of Table 3 states that the NT P network is correct, since the state of Bob’s qubit
q3 will eventually be equal to the initial state of Alice’s qubit q1. The second formula states that neither
agent knows the actual quantum state of the qubit q3 at any point of the computation. The third formula
states that Bob eventually knows that the state of his qubit q3 is equal to the initial state of qubit q1. The
last formula states that Alice never knows this fact.

Interestingly, while [10] states that all four formulae are true in the model, MCMAS evaluated the
last formula to false. The reason is that even though Alice cannot distinguish configuration C00

3 (|ψ〉)
from C00

4 (|ψ〉), the atom q3 = init(q1) holds in both configurations as Bob does not apply any correction
for measurement outcomes s1s2 7→ 00, and so the quantum state of the system is invariant along this
path. This shows the importance of an automated algorithmic approach to verification as opposed to a
hand-made inspection.

We conclude with some performance considerations. The tests were carried out on a 32-bit Fedora
12 Linux machine with a 2.26GHz Intel Core2 Duo processor and 2.9GiB RAM as follows: first, we
translated the DMC specification into the corresponding ISPL code using the compiler, then we analysed
the resulting code using MCMAS. Table 4 reports the results for the three protocols. It can be seen that
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Protocol Formula Reading

QTP

AF(q3 = init(q1)) q3 eventually equals to initial q1
¬EFKA(q3 = |ψ〉)∧¬EFKB(q3 = |ψ〉) neither A nor B ever knows state of q3

AFKB(q3 = init(q1)) B eventually knows q1 was teleported
¬EFKA(q3 = init(q1)) A never knows q1 was teleported

QKD αA = αB→ AF(KA(s1 = s2)∧KB(s1 = s2)) success if A & B used the same basis
αA 6= αB→¬EF(KA(s1 = s2)∨KB(s1 = s2)) failure if A & B used different bases

SDC
AF(s1 = y1∧ s2 = y2) B eventually receives the inputs of A

AFKB(s1 = y1∧ s2 = y2) B eventually knows the inputs
¬EFKAKB(s1 = y1∧ s2 = y2) A never knows the fact above

Table 3: Verified properties of QKD and SDC protocols.

Protocol Reachable States Memory (kB) Time (s)
DMC2ISPL MCMAS DMC2ISPL MCMAS DMC2ISPL MCMAS

QTP 40 108 7184 6068 0.015 0.066
QKD 53 348 7240 6119 0.016 0.014
SDC 4239 2192 8132 6279 0.112 0.407

Table 4: Verification results for QTP, QKD and SDC protocols.

all protocols were verified very quickly. This is due to their small state space and the limited number of
entangled qubits involved.

However, the amount of required resources grows exponentially for a constant increase in the number
of entangled qubits. Additionally, measuring a quantum system using many different measurement angles
results in many unique quantum states, which in turn requires a large number of enumeration values and
an extensive evolution function. This affects the verification of a quantum protocol by MCMAS. We
analysed several experimental protocols to test the limits of the tool. The results showed that protocols
with up to 107 reachable classical states and 20 entangled qubits can be realistically verified.

5 Conclusion

In this paper we presented a methodology for the automated verification of quantum distributed systems
via model checking. We defined a translation from DMC to IS, so that MCMAS can be used to verify
protocols specified in DMC. Even though the translation does not take into account stochastic properties
of quantum protocols, in the sense that we abstract away from the underlying probability distribution,
many useful non-probabilistic properties can still be verified as shown in reference papers [7, 10]. We
implemented the methodology in a source-to-source compiler and adapted the DMC formalism to be
used as an input language for the compiler. Several quantum protocols were translated and their temporal
epistemic properties were successfully checked with MCMAS.

Given the universality of the underlying Measurement Calculus [8], the expressive power of DMC in
terms of available quantum operations is complete. However, DMC does not support any control flow
statement for the classical part of protocols. This is one of the two major limitations of the technique,
although it can be solved by a suitable extension of the language. Another limitation results from the state
space explosion and cannot be easily overcome since the quantum simulator requires exponential time
and space on a classical computer.
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