
EPTCS 151

Proceedings of the

14th International Conference on

Automata and Formal Languages
Szeged, Hungary, May 27-29, 2014

Edited by: Zolt́anÉsik and Zolt́an F̈ulöp

Published: 21st May 2014
DOI: 10.4204/EPTCS.151
ISSN: 2075-2180
Open Publishing Association

i

Table of Contents

Table of Contents .. i

Preface .. iii
Zoltán Ésik and Zoltán Fülöp

Invited Presentation: Saturation algorithms for model-checking pushdown systems. 1
Arnaud Carayol and Matthew Hague

Invited Presentation: From Finite Automata to Regular Expressions and Back—A Summary on
Descriptional Complexity .. 25

Hermann Gruber and Markus Holzer

Invited Presentation: On Varieties of Automata Enriched with an Algebraic Structure (Extended
Abstract) .. 49

Ondřej Klíma

Invited Presentation: Decision Problems for Deterministic Pushdown Automata on Infinite Words 55
Christof Löding

Invited Presentation: Equivalence Problems for Tree Transducers: A Brief Survey 74
Sebastian Maneth

Grammars with two-sided contexts .. 94
Mikhail Barash and Alexander Okhotin

Analyzing Catastrophic Backtracking Behavior in Practical Regular Expression Matching 109
Martin Berglund, Frank Drewes and Brink van der Merwe

Measuring Communication in Parallel Communicating FiniteAutomata . 124
Henning Bordihn, Martin Kutrib and Andreas Malcher

Languages of lossless seeds .. 139
Karel Břinda

Maximally Atomic Languages .. 151
Janusz Brzozowski and Gareth Davies

Simplifying Nondeterministic Finite Cover Automata 162
Cezar Câmpeanu

On the Expressiveness of TPTL and MTL overω-Data Words . 174
Claudia Carapelle, Shiguang Feng, Oliver Fernández Gil andKarin Quaas

ii

On Determinism and Unambiguity of Weighted Two-way Automata. 188
Vincent Carnino and Sylvain Lombardy

Operations on Automata with All States Final 201
Kristína Čevorová, Galina Jirásková, Peter Mlynárčik, Matúš Palmovský and Juraj Šebej

Commutative Languages and their Composition by ConsensualMethods . 216
Stefano Crespi Reghizzi and Pierluigi San Pietro

Similarity density of the Thue-Morse word with overlap-free infinite binary words 231
Chen Fei Du and Jeffrey Shallit

Cooperating Distributed Grammar Systems of Finite Index Working in Hybrid Modes 246
Henning Fernau, Rudolf Freund and Markus Holzer

Representations of Circular Words .. 261
László Hegedüs and Benedek Nagy

More Structural Characterizations of Some Subregular Language Families by Biautomata 271
Markus Holzer and Sebastian Jakobi

Buffered Simulation Games for Büchi Automata 286
Milka Hutagalung, Martin Lange and Etienne Lozes

Synchronizing weighted automata .. 301
Szabolcs Iván

Hyper-Minimization for Deterministic Weighted Tree Automata . 314
Andreas Maletti and Daniel Quernheim

K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions 327
Ludovic Mignot, Nadia Ouali Sebti and Djelloul Ziadi

Boolean Circuit Complexity of Regular Languages 342
Maris Valdats

A Simple Character String Proof of the "True but Unprovable”Version of Gödel’s First
Incompleteness Theorem. .. 355

Antti Valmari

Subset Synchronization of Transitive Automata 370
Vojtěch Vorel

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. iii–v, doi:10.4204/EPTCS.151.0

Preface

The 14th International Conference Automata and Formal Languages (AFL 2014) was held in Szeged,
Hungary, from the 27th to the 29th of May, 2014. The conference was organized by the Department of
Foundations of Computer Science of the University of Szeged. Topics of interest covered the theory and
applications of automata and formal languages and related areas.

The scientific program consisted of invited lectures by

Arnaud Carayol (Marne-la-Vallée),
Markus Holzer (Giessen),
Ondřej Kĺıma (Brno),
Christof Löding (Aachen),
Sebastian Maneth (Edinburgh)

and 21 short presentations.

This volume contains the texts of the invited lecturers and the 21 papers selected by the International
Program Committee from a total of 33 submissions. We would like to thank everybody who submitted a
paper to the conference.

The members of the International Program Committee were

Marie-Pierre Béal (Marne-la-Vallée),
Symeon Bozapalidis (Thessaloniki),
Erzsébet Csuhaj-Varjú (Budapest),
Jürgen Dassow (Magdeburg),
Volker Diekert (Stuttgart),
Pál Dömösi (Debrecen, Nyı́regyháza),
Frank Drewes (Umea),
ZoltánÉsik (Szeged, chair),
Zoltán Fülöp (Szeged, co-chair),
Viliam Geffert (Kosice),
Oscar H. Ibarra (Santa Barbara, CA, USA),
Masami Ito (Kyoto),
Martin Kutrib (Giessen),

Kamal Lodaya (Chennai),
Markus Lohrey (Siegen),
Andreas Maletti (Stuttgart),
Alexander Okhotin (Turku),
Friedrich Otto (Kassel),
Giovanni Pighizzini (Milano),
Libor Polák (Brno),
Antonio Restivo (Palermo),
Kai Salomaa (Kingston, ON, Canada),
Pedro V. Silva (Porto),
György Vaszil (Debrecen),
Pascal Weil (Bordeaux),
Hsu-Chun Yen (Taipei).

We thank all members of the Program Committee and their subreferees who assisted in the selection of
the papers. Special thanks go to the Szent-Györgyi Albert Agora for providing us with the conference
facilities, and to our our sponsors, the John von Neumann Computer Society, the Szeged Software Zrt,
and the Institute of Informatics of the University of Szeged.

Szeged, May 2014.

ZoltánÉsik and Zoltán Fülöp

iv Preface

Local organization

ZoltánÉsik
Zoltán Fülöp
Éva Gombás
Szabolcs Iván
Zoltán L. Németh
Sándor Vágvölgyi

AFL Steering Committee

A. Ádám (Budapest, chair)
I. Babcsányi (Budapest)
E. Csuhaj-Varjú (Budapest)
P. Dömösi (Debrecen, Nyı́regyháza)
Z. Ésik (Szeged)
Z. Fülöp (Szeged)
F. Gécseg (Szeged)
S. Horváth (Budapest)
L. Hunyadvári (Budapest)
L. Kászonyi (Szombathely)
A. Nagy (Budapest)
A. Pukler (Győr)
M. Szijártó (Győr, Székesfehérvár)

Z. Ésik and Z. Fülöp v

List of subreviewers

Dragana Bajic
A. Baskar
Beatrice Berard
Mikhail Berlinkov
Johanna Björklund
Benedikt Bollig
Péter Burcsi
Michaël Cadilhac
Maxime Crochemore
Judit Csima
Flavio D’Alessandro
Attila Egri-Nagy
Szilárd Zsolt Fazekas
Gabriele Fici
Anna Frid
Yo-Sub Han
Markus Holzer
Norbert Hundeshagen

Szabolcs Iván
Sebastian Jakobi
Artur Jeż
Antonios Kalampakas
Stefan Kiefer
Manfred Kufleitner
Peter Leupold
Andreas Malcher
Eleni Mandrali
Giovanni Manzini
Katja Meckel
Victor Mitrana
Frantisek Mraz
Benedek Nagy
Laurent Noé
Beatrice Palano
Svetlana Puzynina
George Rahonis

Gwenaël Richomme
Chloé Rispal
Benoı̂t Rittaud
Aleksi Saarela
Moshe Schwartz
Juraj Sebej
Shinnosuke Seki
Simoni Shah
Magnus Steinby
Vaishnavi Sundararajan
Louis-Marie Traonouez
Mikhail Volkov
Igor Walukiewicz
Qichao Wang
Yuan-Fang Wang
Abuzer Yakaryilmaz
Niklas Zechner
Georg Zetzsche

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 1–24, doi:10.4204/EPTCS.151.1

c© A. Carayol and M. Hague
This work is licensed under the
Creative Commons Attribution License.

Saturation algorithms for model-checking pushdown systems∗

Arnaud Carayol
LIGM

Université Paris-Est & CNRS

arnaud.carayol@univ-mlv.fr

Matthew Hague
Department of Computer Science

Royal Holloway University of London

matthew.hague@rhul.ac.uk

We present a survey of the saturation method for model-checking pushdown systems.

1 Introduction

Pushdown systems have, over the past 15 years, been popular with the software verification community.
Their stack can be used to model the call stack of a first-orderrecursive program, with the control state
holding valuations of the program’s global variables, and stack characters encoding the local variable
valuations. As such the control flow of first-order recursiveprograms (such as C and Java programs)
can be accurately modelled [29]. Pushdown systems have played a key role in the automata-theoretic
approach to software model checking and considerable progress has been made in the implementation of
scalable model checkers of pushdown systems. These tools (e.g. Bebop [3] and Moped [21, 39, 52, 50])
are an essential back-end components of high-profile model checkers such as SLAM [2].

A fundamental result for the model-checking of pushdown systems was established by Büchi in
[12]. He showed that the set of stack contents reachable fromthe initial configuration of a pushdown
system form a regular language and hence can be represented by a finite state automaton. The procedure
provided by Büchi to compute this automaton from the pushdown system is exponential. In [15], Caucal
gave the first polynomial time algorithm to solve this problem. This efficient computation is obtained by
a saturation process where transitions are incrementally added to the finite automaton. This technique,
which is the topic of this survey, was simplified and adapted to the model-checking setting by Bouajjaniet
al. in [7] and independently by Finkelet al. in [22].

The saturation technique allows global model checking of pushdown systems. For example, one may
construct a regular representation of all configurations reachable from a given set of initial configurations,
or, dually, the set of all configurations that may reach a given set of target configurations. As well as
providing direct solutions to simple reachability properties (e.g. can an error state be reached from a
designated initial configuration), the representations constructed by global analyses may be reused in
a variety of settings. For example, once may perform multiple (and dynamic) queries on the set of
reachable states without having to re-run the model checking routine. Additionally, these representations
may be combined as part of a larger algorithm or proof. For example, Bouajjaniet al. provided solutions
to the model checking problem for the alternation freeµ-calculus by combining the results obtained
through multiple global reachability analyses [7].

In this survey, we present the saturation method under its different forms for reachability problems in
Section 3. The saturation technique also generalises to theanalysis of two-players games played over the
configuration graph of a pushdown systems. This extension based on the work of Cachat [13] and Hague
and Ong [28] is presented in Section 4. In Section 5, we reviewthe various model-checking tools that

∗We thank Didier Caucal and Olivier Serre for helpful discussions. This survey was supported by the Engineering and
Physical Sciences Research Council [EP/K009907/1].

2 Saturation algorithms for model-checking pushdown systems

implement the saturation technique. We conclude in Section6 by giving an overview of the extensions
of the basic model of pushdown system for which the saturation technique has been applied.

2 Preliminaries

2.1 Finite automata

We denote byΣ∗ the set of words over the finite alphabetΣ. Forn≥ 0, we denote byΓ≤n the set of words
of length at mostn.

A finite automatonA over the alphabetΣ is a tuple(S,I ,F ,δ) whereS is a finite set of states,
I ⊆ S is the set of initial states,F ⊆ S is the set of final states andδ ⊆ S×Σ×S is the set of transitions.
We writes

a−→
A

t to denote that(s,a, t) is a transition ofA . For a wordw∈ Σ∗, we writes
w

=⇒
A

t to denote

the fact thatA can reach the statet while reading the wordw starting from the states. The language
accepted byA from a states is

Ls(A) =

{
w∈ Σ∗

∣∣∣∣ ∃sf ∈F .s
w

=⇒
A

sf

}

and the language accepted byA is
L (A) =

⋃

s∈I
Ls(A) .

2.2 Pushdown system

A pushdown systemP is a given by a tuple(Q,Γ,⊥,∆) whereQ is a finite set of control states,Γ is the
finite stack alphabet,⊥∈ Γ is a special bottom of stack symbol and∆⊆ (Q×Γ)×(Q×Γ≤2) is the set of
transitions. We write(q,A)→ (p,w) for the transition((q,A),(p,w)). A configuration is a tuple(q,w)
whereq is a state inQ andw is a stack content in(Γ \ {⊥})∗⊥. In the configurationc = (q,Aw), the
pushdown system can apply the transition(q,A)→ (p,u) to go to the configurationc′ = (p,uw). As is
usual, we assume that transitions of the pushdown system does not pop the bottom of stack symbol or
does not push it on the stack (i.e. all transitions involving the symbol⊥ are of the formq⊥→ p⊥ or
q⊥→ p⊥A for someA ∈ Γ \{⊥}). We denote by−→

P
(or simply→ if P is clear from the context) the

relation on configurations defined by the transitions ofP. We denote by=⇒
P

the reflexive and transitive

closure of−→
P

.

3 Reachability problems for pushdown systems

A fundamental result for the model-checking of pushdown systems is the fact that the set of stack con-
tents:

{w∈ Γ∗ | ∃q∈Q,(q0,⊥)⇒ (q,w)}
that are reachable from an arbitrary initial configuration of the system, form a regular set of words over
the stack alphabetΓ.

A more elegant formulation of this result can be obtained by extending the notion of regularity to sets
of configurations. A set of configurationsC is regular if for every statep∈Q, the set of associated stack
contents{w ∈ Γ∗ | (p,w) ∈C} is regular. AP-automaton is a slight extension of the standard notion

A. Carayol and M. Hague 3

of finite automaton to accept configurations. The only extra assumption is that the set of states of the
P-automaton contains the set of states of the pushdown system. Formally, aP-automaton is of the form
(S,Q,F ,δ) whereQ is the set of states of the pushdown systemP. A configuration is(p,w) is accepted
by A if w is accepted byA starting from the statep (i.e. w∈ Lp(A)).

Theorem 1 [12] The set of configurations of a pushdown system reachablefrom the initial configuration
(i.e. the configuration(q0,⊥) for some arbitrary state q0) is regular. Moreover a P-automaton accepting
it can be effectively constructed from the pushdown system.

To the authors knowledge, the first proof of this result is dueto Büchi in [12]. The formalism used
by Büchi is not that of pushdown automata but that of prefix word-rewriting systems (which he calls
regular canonical systems). These systems syntactically include pushdown automata and conversely can
be simulated by pushdown automata. In [23], Greibach formalises the correspondence between the two
models and gives a simple proof based on a result on context-free languages proved by Bar-Hillelet
al. in [4]. Greibach also says that the result (for pushdown automata) was part of the folklore at the
time but never appeared in print. Even though effective, these proofs do not provide a polynomial time
algorithm1. The first polynomial time algorithm is due to Caucal [15, 16]which is based on a saturation
procedure of a finite state automaton. The idea behind the saturation method can be traced back to [5].
This method was independently rediscovered and used for model-checking purposes by Bouajjaniet al.
in [7] and Finkelet al. in [22].

A more general problem is, given a regular set of configurationsC, to compute the set:

Post∗P(C) = {c′ | ∃c∈C,c=⇒
P

c′}

of configurations that can be reached from a configuration inC.
The regularity ofPost∗(C), for any regular setC, can be derived from Theorem 1. Indeed starting

from a pushdown systemP and a regular set of configurationsC, we can create a new pushdown system
P′ which using new states builds any configuration inC and afterwards behaves likeP. Clearly the set
of configurations reachable from the initial configuration of P′ coincide withPost∗P(C) when restricted to
the states ofP.

As mentioned in the introduction, for model-checking purposes it is often interesting to compute the
set of configurations that can reach a given set ofbadconfigurations. This leads to consider the set

Pre∗P(C) = {c′ | ∃c∈C,c′⇒ c}

of configurations that can reach a configuration inC.
The regularity ofPre∗(C) for any regular setC can be deduced from the regularity ofPost∗(C). The

intuitive idea is to construct, fromP, a new pushdown systemP′ whose derivation relation is the inverse
of that ofP. For a transition of the formqA→ p of P, we add the transitionspX→ qAX for all symbols
X ∈ Γ. For a transitionqA→ pBC of P, we add two transitionpB→ r(C,q,A) andr(C,q,A)C→ qA where
r(C,q,A) is a new intermediary control state. For any two configurationsc andc′ of P, it holds thatc⇒P c′

if and only if c′ ⇒P′ c. HencePre∗P(C) is equal to the restriction ofPost∗P′(C) to the states ofP and is
therefore regular.

The section is structured as follows. We present Büchi’s original proof in Section 3.1. In Section 3.2,
we present the saturation algorithm to computePre∗(C) introduced in [7]. Finally in Section 3.3, we
characterise the derivation relation of the pushdown automata using the saturation technique following
[15].

1We will see Section 3.1 that it can easily be adapted to provide a polynomial time algorithm.

4 Saturation algorithms for model-checking pushdown systems

3.1 Büchi’s proof

We present a proof of Theorem 1 adapted from [12]. In the original proof, Büchi first reduced the
problem to a very simple form of pushdown system where transitions are either of the formpA→ q or
p→ qA. This model (calledreduced regular systemsby Büchi) is completely symmetric and therefore
computingPre∗ or Post∗ is essentially the same thing. However to adapt the proof to the formalism used
in this article (recall that our formalism does not allow rules of the formp→ qA), it is more convenient
to work with Pre∗ than withPost∗.

Given a pushdown systemP= (Q,F,⊥,∆), we construct aP-automaton acceptingPre∗P({(qf ,⊥)})
whereqf is an arbitraryfinal state of the pushdown system.

The construction is based on the following remark: to reach the configuration(qf ,⊥) from a con-
figuration(p,Aw⊥) it is necessary, at some point, to reach a configuration of theform (q,w⊥) for some
stateq∈Q. Moreover the first time such a configuration is reached, the actions taken byP cannot depend
on w since at no point wasw exposed at the top of the stack. Hence it must be the case thatpA⇒ q.

The P-automaton when accepting a stack contentA1 . . .An⊥ from the statep will guess the states
p1, . . . , pn such thatpA1 =⇒

P
p1 and piAi+1 =⇒

P
pi+1 for i ∈ [0,n− 1] and will enter a final state upon

reading the symbol⊥ if pn⊥=⇒
P

qf⊥.

Consider theP-automatonA with set of statesQ∪{s⊥} wheres⊥ is a new state and the only final
state of the automaton. The transitions of the automatonA are defined as follows:

• p
A−→ q if and only if pA=⇒

P
q for all p,q∈Q andA∈ Γ\{⊥},

• p
⊥−→ s⊥ if and only if p⊥=⇒

P
qf⊥ for all p∈Q.

A simple induction on the length of the stack content shows thatA accepts a stack contentw⊥ from
the stateq∈Q if and only if (q,w⊥) belongs toPre∗({(qf ,⊥)}).

To make the construction effective, it remains to compute the relationspA⇒ q and p⊥ ⇒ q⊥ for
all statesp andq∈ Q and stack symbolA ∈ Γ. The procedure provided by Büchi is exponential2. He
first establishes a bound on the height of the stack necessaryto build a derivation path witnessing these
relations. As the bound is polynomial in the size of the pushdown system, the problem is reduced to a
simple reachability problem in a finite graph of exponentialsize with respect to the size of the pushdown
system.

To obtain a polynomial algorithm, it is enough to efficientlycompute the relationRew= {(pA,qB) |
pA=⇒

P
qB}. IndeedpA=⇒

P
q if and only if there existsr ∈ Q andB ∈ Γ such thatpA=⇒

P
rB (i.e.

(p,A, r,B) ∈Rew) andrB→ q is a transition ofP.
The key idea which is at the heart3 of the saturation algorithm presented in Section 3.2 is to express

Rew as a smallest fixed-point.
The relation Rew is the smallest relation (for the inclusion) in QΓ×QΓ such that:

• (pA, pA) ∈ Rewfor all p∈Q andA∈ Γ,

2In [12], theP-automaton constructed is deterministic (essentially theautomaton obtained by applying the power-set con-
struction to the automaton presented here). With the added constraint of determinism, it not possible to obtain a polynomial
algorithm as the smallest deterministic automaton is in general exponential in the size of the pushdown system. To convince
oneself, it is enough to consider a pushdown system that simulates a non-deterministic finite state automaton (NFA) by popping
its stack until the bottom of the stack is reached and when thebottom of the stack is reached goes to the stateqf if the NFA has
reached a final state.

3We will see that the algorithm presented in Section 3.2 performs a fixed-point computation for the relation{(pA,q) |
pA=⇒

P
q}.

A. Carayol and M. Hague 5

• (pA,qB) ∈ Rew if pA→ qB is a transition ofP,

• (pA,qC) ∈ Rew if (pA, rB) ∈ Rew and(rB,qC) ∈ Rew,

• (pA,qC) ∈ Rew if pA→ rBC is a transition ofP and there existst ∈ Q and D ∈ Γ such that
(rB, tD) ∈ Rew andtD→ q is a transition ofP.

The property(1) expresses that Rew is reflexive and(3) that it is transitive. Property(2) ensures that
Rew contains the relevant transitions ofP. Property(4) describes the case whenpA=⇒

P
qC is obtained

by a sequence of the formpA−→
P

rBC=⇒
P

qC whererB =⇒
P

q.

Using the Knaster-Tarski theorem, we can compute Rew as the limit of an increasing sequence of
relations(Rewi)i≥0 overQ×Γ. The relation Rew0 contains the elements satisfying property(1) and(2).
The relation Rewi+1 is obtained from Rewi by adding all the elements that can be derived by property
(3) or (4) in Rewi. The sequence(Rewi)i≥0) is increasing for the inclusion and its limit (i.e. the first set
such that Rewi+1 = Rewi) is equal to Rew. As at least one element is added at each step before the limit
is reached, the limit is reached in at most|Q|2|Γ|2 steps. Furthermore as the computation of Rewi+1 from
Rewi can be done in polynomial time with respect to the size ofP, the resulting algorithm is polynomial.
However the exact complexity is not as good as the algorithm presented in Section 3.2.

3.2 Saturation algorithm of [7]

In [7], Bouajjani et al. present an algorithm that given a pushdown systemP = (Q,Γ,⊥,∆) and aP-
automatonA = (S,Q,δ ,F), constructs a newP-automatonB acceptingPre∗P(L (A)). The only re-
quirement onA is that no transition inδ goes back to a state inQ4. This restriction also implies that
none of the states inQ are final.

The algorithm proceeds by adding transitions toA following a unique rule until no new transition
can be added. The resultingP-automatonB accepts the set of configurationsPre∗P(L (A)).
More precisely, the algorithm constructs a finite sequence(Ai)i∈[0,N] of P-automata. TheP-automaton
A0 is the automatonA . All the P-automataAi are of the form(S,Q,F ,δi), meaning that they only
differ by their set of transitions. The construction guaranties that for alli ∈ [0,N− 1], δi ⊆ δi+1 and
terminates whenδi+1 = δi. As at least one transition is added at each step, the algorithm terminates in at
most|Q|2|Γ| steps.

The set of transitionsδi+1 is obtained by adding toδi, the transition:

p
A−→ s if q

w
=⇒
Ai

sandpA→ qw is a transition ofP.

Note that only transitions starting with a state ofQ are added by the algorithm. In particular, the language
accepted the automatonAi from a state inS\Q never changes.5.

The construction ofδi+1 from δi ensures that the configurations that can reach in one step a configu-
ration inL (Ai) belong toL (Ai+1). Consider two configurationsc= (p,Au) andc′ = (q,wu) such that
pA→ qw is a transition ofP (and hencec−→

P
c′). Now assume thatc′ belongs toL (Ai). This means that

for some states∈ S and some final statesf ∈F , q
w

=⇒
Ai

s
u

=⇒
Ai

sf . The rule of construction ofδi+1 ensures

that p
A−→ s is a transition ofAi+1. Hencep

A
=⇒
Ai+1

s
u

=⇒
Ai+1

sf and the configurationc= (p,Au) is accepted by

Ai+1. As B is the limit of the saturation process (i.e. B = AN−1 = AN), L (B) is closed under taking

4This requirement is easily met by adding a copy of each state in Q if necessary. This restriction is required to ensure that
the first invariant maintained by the algorithm holds initially.

5Recall that initially the states inQ are not the target of any transition

6 Saturation algorithms for model-checking pushdown systems

the immediate predecessor for the relation−→
P

(i.e. if c′ ∈L (B) andc−→
P

c′ thenc∈L (B)). AsL (B)

includesL (A), it follows thatPre∗P(L (A))⊆L (B).
The proof of the converse inclusion requires a more careful analysis. The algorithm maintains two

invariants on the transitions inδi. For all i ∈ [0,N], the presence of a transitionp
A−→ s in δi guaranties

that:

1. pA=⇒
P

s if s belongs toQ.

2. the configuration(p,Au) belongs toPre∗(L (A)) for any u ∈Ls(Ai) = Ls(A) if s belongs to
S\Q.

From these invariants, it follows that for alli ≥ 0, L (Ai) ⊆ Pre∗P(L (A)). In particular,L (B)⊆
Pre∗P(L (A)).

Remark 1 As indicated by the first invariant, if we restrict our attention to transitions with both source
and target in Q, this algorithm is performing a fixed-point computation for the relation=⇒

P
restricted to

(Q×Γ)×(Q×{ε}). Indeed this relation can be characterised as the smallest relation (for the inclusion)
R such that:

1. pAR q if pA→ q belongs to∆,

2. pAR q if rBR q and pA→ rB belongs to∆,

3. pARq if pA→ rBC belongs to∆ and for some state s∈Q, rBRs and sCRq.

In fact, the algorithm performs the computation of the smallest such relation following the procedure
given by Knaster-Tarski theorem.

A naive implementation of this algorithm yields a complexity in O(|P|2|A |3). However a more
efficient implementation presented in [20] lowers the complexity toO(|Q|2|∆|).

In [20], an adaptation of the algorithm for computingPre∗ is given to computePost∗. The algorithm
is slightly less elegant as it requires the addition of new states before the saturation process. In fact, it is
very similar to first applying the transformation to invert the pushdown system presented at the beginning
of this section and then applying the algorithm to computePre∗.

In [39], Schwoon shows how to use the saturation algorithm toconstruct for any configurationc
accepted byB a derivation path to some configuration inL (A).

3.3 Derivation relation of a pushdown system

In this section, we will see that the saturation method can beadapted to characterise the derivation
relation of a pushdown system. Let us fix a pushdown system6 P = (Q,Γ,∆), an initial stateq0 and a
final stateqf . We aim at giving an effective characterisation of the following relation between stacks:

DerivP = {(u,v) ∈ Γ∗ | (q0,u) =⇒
P

(qf ,v)}.

In [15], Caucal showed that DerivP⊆ Γ∗×Γ∗ is a rational relation,i.e. it is accepted by a finite state
automaton with output (also called a transducer).

The proof presented here is based on [17] but similar ideas can be found in [38, 22]. The idea of the
proof is to use symbols to represent the actions of the pushdown system on the stack: one symbol for

6To simplify the presentation, we do not take the bottom of stack symbol into account.

A. Carayol and M. Hague 7

pushing a given symbol and one symbol for popping it. The pushdown system is transformed into a finite
state automaton that instead of performing the actions on the stack outputs the symbols that represent
these actions (see Section 3.3.1). This finite state automaton is then transformed using a saturation
algorithm so that it erases sequences of actions corresponding to pushing a symbol and then immediately
popping it (see Section 3.3.2). From thisreducedlanguage, the relation DerivP is easily characterised
(see Section 3.3.3).

3.3.1 Sequences of stacks actions

For every symbolA∈ Γ, we introduce two symbols:

• A+ which represents the action of pushing the symbolA on top of the stack,

• andA− which represents the action of popping the symbolA from the top of the stack.

We denote byΓ+ the set{A+ | A∈ Γ} of pushactions, byΓ− the set{A− | A∈ Γ} of popactions and by
Γ the setΓ+∪Γ− of all action symbols.

Intuitively a sequenceα = α1 . . .αn ∈ Γ∗ is interpreted as performing the actionα1, followed by the
actionα2 and so on. For instance, the effect on the stack of the transition pA→ qBC is represented by
the wordA−C+B+. First the automaton removes theA from the top of the stack and then pushesC and
thenB.

For two stacksu andv∈ Γ∗, we writeu
α v if u can be transformed intov by the sequence of actions

α . For instance, we haveABB
α DCB for the α sequenceA−B−C+D+. Note that some sequences of

actions such asB+C− cannot be applied to any stack. We say that such sequencesα arenon-productive,
i.e. there are nou andv∈ Γ∗ such thatu

α v.

From the pushdown systemP, we can construct a regular set of action sequences denoted BehaviourP
which contains all the sequences (even the non-productive ones) that can be performed byPwhen starting
in stateq0 and ending in stateqf . Consider for instance the finite state automaton7 (Q,{q0} ,

{
qf
}
,δ)

where the set of transitionsδ is given by:

p
A−C+B+−−−−−→ q∈ δ if pA→ qBC∈ ∆

p
A−B+−−−→ q∈ δ if pA→ qB∈ ∆

p
A−−→ q∈ δ if pA→ q∈ ∆

It is clear that BehaviourP characterises DerivP in the following sense:

(u,v) ∈ DerivP if and only if u
α v for someα ∈ BehaviourP.

However this representation of DerivP is not yet very helpful. For instance, BehaviourP can con-
tain non-productive sequences or sequences such asA−B+A+A−C+C− which is equivalent to the more
informative sequenceA−B+.

7The finite state automaton does not strictly conform to the definition we gave in Section 2 as its transitions are labelled by
words and not single letters. This can be easily avoided at the cost of adding intermediate states.

8 Saturation algorithms for model-checking pushdown systems

3.3.2 Reducing sequences of actions

To simplify BehaviourP, we first erase all factors of the formA+A− for A∈ Γ. These factors can safely
be omitted as they do not affect the stack: the symbol is pushed then immediately popped. A sequence
that does not contain any such factors is calledreduced.

To perform this erasure, we introduce the relation7→ which relates a stacku∈ Γ∗ and a stackv∈ Γ∗
if v can be obtained by erasing a factorA+A− from u (i.e. u= u1A+A−u2 andv = u1u2). Clearly, if
α 7→ β then the sequencesα andβ are equivalent with respect to their actions on the stack :

for u,v∈ Γ∗, u
α v if and only if u

β v.

As the rewriting relation7→ is confluent and decreases the length of the sequence, every sequence
α can be iteratively rewritten by7→ into a reduced sequence denoted Red(α). For instance the reduced
sequence associated toB−A+A+A−A−C+ is B−C+ asB−A+A+A−A−C+ 7→ B−A+A−C+ 7→ B−C+.

In [5], Benois showed8 that the set of reduced sequences corresponding to a regularset of sequences
is again regular.

Theorem 2 [5, 6] For any regular set R of action sequences, the corresponding set of reduced action
sequences:

Red(R) = {Red(α) | α ∈ R}
is regular. Moreover given a finite automatonA accepting R, an automaton acceptingRed(R) can be
constructed inO(|A |3).

The proof of this theorem is the essence of the saturation method. Starting with the automatonA ,
ε-transitions are added until no newε-transition can be added. Theε-transitions are added according
to the following rule. We add anε-transition from a statep to a stateq if it is possible to reachq from
p reading a word of formA+ε∗A−. It can be shown that the resulting saturated automaton accepts the
language:

{β ∈ Γ∗ | α 7→∗ β for someα ∈ R}.
The construction is concluded by taking theε-closure of the saturated automaton and restricting the
language to the set of reduced sequences (which is a regular language as it is the complement of the lan-
guage∪A∈ΓΓ∗A+A−Γ∗). A careful implementation of the procedure presented in [6] gives an algorithm
in O(|A |3).

3.3.3 Characterisation ofDerivP

One of the advantages of working with Red(BehaviourP) is that we can easily remove non-productive
sequences. Indeed a reduced sequence is non-productive if and only if it contains a factor of the form
A+B− for A 6= B∈ Γ.

We can hence compute the regular language:

RPP = Red(BehaviourP)∩
(

Γ∗ \
⋃

A6=B∈Γ
Γ∗A+B−Γ∗

)

which is composed of the reduced and productive action sequences characterising DerivP.

8Benois consider the erasure of all factor of the formA−A+ as well asA+A− but the proof is identical.

A. Carayol and M. Hague 9

The languageRPP does not contain any factor inΓ+Γ− and is hence included inΓ∗−Γ∗+. We can
express it as a finite union: ⋃

i∈[1,N]

XiYi

where for alli ∈ [1,N], Xi is a regular language inΓ∗− andYi is a regular language inΓ∗+.
Let us denote byUi the regular set{A1 · · ·An∈ Γ∗| |A1

− · · ·An
− ∈Xi} of words inΓ∗ that can be popped

by a sequence inXi and byVi the regular set{A1 · · ·An ∈ Γ∗| | An
+ · · ·A1

+ ∈Yi} of words inΓ∗ that can be
pushed by a sequence inYi .

The relation DerivP can be characterised as follows: a pair(w1,w2) belongs to DerivP, if for some
i ∈ [1,N], w1 can be written asuwwith u∈Ui andw2 can be written asvw for somev∈Vi . In other terms,
the relation DerivP can be written as a finite union of relations that remove a prefix of the stack belonging
to a certain regular language and replace any word in anotherregular language. As these relations are
easily accepted by finite transducer, so is DerivP. Combining all the steps, we obtain a polynomial time
algorithm for computing a transducer accepting DerivP from P.

4 Winning regions of pushdown games

The saturation technique also generalises to the analysis of pushdown games with two players:Éloise and
Abelard. The two players may, for example, model a program (Éloise) interacting with the environment
(Abelard). While the program can control its next move basedon its internal state, it cannot control the
results of requesting external input. Hence, the external input is decided by the second player.

A pushdown game may be used to analyse various types of properties. We will consider three, in-
creasingly expressive, types of properties here: reachability, Büchi and parity. We will begin by defining
games with generic winning conditions and then consider theinstantiations of this generic framework
for each winning condition in turn. We will simultaneously discuss the saturation algorithm for each of
these properties and show how they build upon each other.

The saturation algorithm was first extended to pushdown reachability games by Bouajjaniet al. [7].
Their algorithm was extended to the case of Büchi games by Cachat [13] and then to parity games by
Hague and Ong [28]. Our presentation will follow that of Hague and Ong since it provides the most
general algorithm, though we remark that all the essential ideas of the algorithm were in place by the
introduction of the Büchi algorithm. The main contribution of Hague and Ong was a proof framework
that simplified the technical arguments by Bouajjaniet al. and Cachat and allowed the full parity case to
go through.

4.1 Preliminaries

4.1.1 Pushdown games

We can obtain a two-player game from a pushdown systemP by the addition of two components: a par-
tition of the configurations ofP into positions controlled býEloise and positions controlled by Abelard;
and the definition of a winning condition that determines thewinner of any given play of the game.

In the following, for technical convenience, we will assumefor eachq ∈ Q andA ∈ Γ there exists
some(q,A)→ (p,w) ∈ ∆. Together with the bottom-of-stack symbol, this conditionensures that from
a configuration(q,w⊥) it is not possible for the system to become stuck; that is, reach a configuration
with no successor.

10 Saturation algorithms for model-checking pushdown systems

A two-player pushdown game is a tupleP=(Q,Γ,⊥,∆,W) such that(Q,Γ,⊥,∆) defines a pushdown
system,Q is partitionedQ= QE ⊎QA into Éloise and Abelard positions respectively, andW is a set of
infinite sequences of configurations ofP.

A play of a pushdown game is an infinite sequence(q0,w0),(q1,w1), . . . where(q0,w0) is some
starting configuration and(qi+1,wi+1) is obtained from(qi ,wi) via some transition(qi ,A)→ (qi+1,w) ∈
∆. In the case whereqi ∈QE it is Éloise who chooses the transition to apply, otherwise Abelard chooses
the transition.

The winner of an infinite play(q0,w0),(q1,w1), . . . is Éloise if (q0,w0),(q1,w1), . . . ∈W; otherwise,
Abelard wins the play. The winning regionW of a pushdown game is the set of all configurations from
which Éloise can always win all plays, regardless of the transitions chosen by Abelard.

4.1.2 Alternating automata

To extend the saturation algorithm to compute the winning region of a pushdown game, we augment the
automata used to recognise sets of configurations with alternation. Bouajjaniet al. first used alternating
automata to analyse pushdown reachability games via saturation [7], however, they used the equivalent
formalism ofalternating pushdown systemsrather than pushdown games. An alternating automaton is a
tupleA = (S,Γ,F ,δ) whereS is a finite set of states,Γ is a finite alphabet,F ⊆ S is the set of accepting
states, andδ ⊆ S×Γ×2S is a transition relation. Note that we do not specify a set of initial states. This
is because it is more convenient to present the following results in terms of the stacks accepted from
particular states, rather than fixing a set of initial states.

Whereas a transitions
A−→ t of a non-deterministic automaton requires the remainder ofthe word to be

accepted fromt, a transitions
A−→Sof an alternating automaton requires that the remainder of the word is

accepted from all statess′ ∈ S. It is this “for all” condition that captures the fact thatÉloise must be able
to win for all moves Abelard may make.

More formally, a run over a wordA1 . . .An ∈ Γ∗ from a states0 is a sequence

S1
A1−→ ·· · An−→ Sn+1

where eachSi is a set of states such thatS1 = {s0}, and for each 1≤ i ≤ n we have

∀s∈ Si .∃s Ai−→ S∈ δ ∧S⊆ Si+1 .

The run is accepting ifSn+1⊆F . Thus, for a given states, we defineLs(A) to be the set of words over
which there is an accepting run ofA from {s}.

WhenSi is a singleton set, we will often omit the set notation. For example, the run above could be
written

s0
A1−→ ·· · An−→ Sn+1 .

Further more, whenw= A1 . . .An we will write s
w−→ Sas shorthand for a run froms to S.

4.2 Pushdown reachability games

One of the simplest winning conditions for a game is the reachability condition. Given a target set of
configurationsC, the reachability condition states thatÉloise wins the game from a given configuration
if she can force all plays starting at that configuration to some configuration inC.

A. Carayol and M. Hague 11

That is, a pushdown reachability game is a tuple(Q,Γ,⊥,∆,C) such that(Q,Γ,∆,W) is a pushdown
game where

W = {c0,c1, . . . | ∃i.ci ∈C}
is the set of all sequences of configurations containing someconfiguration inC.

4.2.1 Characterising the winning region

In the sequel we will need to combine least and greatest fixed points. We will useµ to denote the least
fixed point operator, andν to denote the greatest fixed point operator.

In the simple case of reachability for a pushdown systemP and set of target configurationsC we can
characterise the winning regionW = Pre∗P(C) as

µZ.C∪PreP(Z)

where

PreP(Z) =

{
(p,w)

∣∣∣∣
p∈QE ⇒ ∃(p,w)→ c. c∈ Z ∧
p∈QA ⇒ ∀(p,w)→ c. c∈ Z

}
.

That is, to appear inW for a configuration belonging tóEloise, it must be possible for her to choose a
transition that progresses towardsC. For configurations belonging to Abelard, it must be the casethat he
cannot help but choose a transition that progresses towardsC.

4.2.2 Computing the winning region

Fix a pushdown reachability gameP = (Q,Γ,∆,C). We will show how to construct an automatonB
whose state set includes the statep for all p∈Q andw∈Lp(B) iff (p,w) ∈W .

ComputingÉloise’s winning region is a direct extension of the saturation algorithm forPre∗P(C)
in the non-game setting. We assumeC is a regular set of configurations represented by an alternating
automatonA = (S,Γ,δ ,F) such thatQ⊆ S and there are no-incoming transitions to any state inQ.

The saturation algorithm constructs the automatonB that is the least fixed point of the sequence of
automataA0,A1, . . . whereA0 =A = (S,Γ,δ0,F) andAi+1 = (S,Γ,δi+1,F) whereδi+1 is the smallest
set of transitions such that

1. δi ⊆ δi+1, and

2. for eachq∈QE, if (q,A)→ (p,w) ∈ ∆ andp
w−→ S is a run ofAi , then

q
a−→ S∈ δi+1

and

3. for eachq∈QA andA∈ Γ andS⊆ S such that for all

(q,A)→ (p,w) ∈ ∆

there exists a runp
w−→ S′ of Ai with S′ ⊆ S, we have

q
a−→ S∈ δi+1 .

One can prove that(p,w) ∈W iff w∈Lp(B). Thus we obtain regularity of the winning region. Since
the maximum number of transitions of an alternating automaton is exponential in the number of states
(and we do not add any new states), we have thatB is constructible in exponential time.

Theorem 3 The winning region of a pushdown reachability game is regular and constructible in expo-
nential time.

12 Saturation algorithms for model-checking pushdown systems

4.2.3 Winning strategies

Cachat has given two realisations ofÉloise’s winning strategy in a pushdown reachability game from a
configuration in her winning region [13] . The first is a positional strategy that requires space linear in
the size of the stack to compute. That is, he gives an algorithm that reads the stack and prescribes the
next move that́Eloise should make in order to win the game. The algorithm assigns costs to accepting
runs ofB for configurations inW by summing costs assigned to individual transitions.

Alternatively, Cachat presents a strategy that can be implemented by a pushdown automaton that
tracks the moves of Abelard and recommends moves toÉloise. Since the automaton tracks the game, the
strategy is not positional. However, the prescription of the next move requires only constant time.

In his PhD. thesis [14], Cachat also argues that similar strategies can be computed for Abelard for
positions in his winning region.

4.3 Pushdown B̈uchi games

Plays of a game are infinite sequences. The reachability condition only depends on finite prefixes of these
plays, hence games are won within a finite number of moves. This prevents the specification of liveness
properties such as “every request is followed by an acknowledgment”. Since it is not possible to know
when to “stop waiting” for an acknowledgment to arrive, it isnot possible to specify such conditions as
simple reachability properties.

Büchi conditions allow liveness properties to be defined since deciding the winner of a particular
play can take the whole infinite sequence into account. We define a pushdown Büchi game as a tu-
ple (Q,Γ,⊥,∆,F) – whereF ⊆ Q is a set of target control states – which defines a pushdown game
(Q,Γ,⊥,∆,W) with

W =
{
(p0,w0),(p1,w1), . . .

∣∣ ∀i.∃ j ≥ i.p j ∈ F
}
.

That is,Éloise wins the play if there is some control state inF that is visited infinitely often.
Cachat generalised the saturation method to construct the winning region of a pushdown Büchi

game [13] by introducing the nesting of fixed point computations and projection described below.
To characterise the winning region of a pushdown Büchi game, a single least fixed point computa-

tion no longer suffices. Intuitively this is because satisfying the Büchi condition amounts to repeatedly
satisfying a reachability condition; that is, repeatedly reaching a control state inF. We will begin by
giving the characterisation, and then decoding it in the following paragraphs. By abuse of notation, we
will write F to also denote the set of configurations{(p,w) | p∈ F } andF to denote its complement.
The winning region of́Eloise can be defined as

νZ0.µZ1.(F ∩PreP(Z0))∪
(
F ∩PreP(Z1)

)
.

There are two pre-steps in the formula:PreP(Z0) andPreP(Z1). When a configuration is inF then we
require thatÉloise can force the next step of play to stay withinZ0. When the configuration is not inF
we require that́Eloise can force play to stay withinZ1.

To understand the role of the different fixed points, imaginea game where there is only one move
from some configuration(p,w)

(p,w)→ (p,w) .

In the case wherep ∈ F it will be the case that(p,w) appears in the greatest fixed pointZ0. This is
because greatest fixed points can be “self-supporting”: if we include(p,w) in an approximation ofZ0,
then it will appear in the next approximation ofZ0 by virtue of the fact that it was in the old valuation.

A. Carayol and M. Hague 13

In the other case, whenp /∈ F, we would require(p,w) to appear in the least fixed pointZ1. However,
since the least fixed point is the smallest possible fixed point, its members cannot be self-supporting. That
is, if we took(p,w) out of our approximation, the next approximation would not include(p,w): there is
nothing external compelling(p,w) to be in the least fixed point. This is why a reachability property is a
least fixed point: it must contain only the configurations that eventually reach a target configuration – it
cannot put off satisfying this obligation for an infinite number of steps.

In terms of Büchi games this difference makes sense: a play that repeatedly visits only the configu-
ration(p,w) is only winning if p∈ F. If p /∈ F then a configuration can only be winning if it eventually
(after a finite number of steps) moves to a configuration that has a control state inF. Thus, the least fixed
point represents configurations that must eventually reacha “good” configuration, while the greatest
fixed point represents good configurations that are able to support themselves.

4.3.1 Computing the winning region

Automaton representation of multiple fixed points The saturation method for reachability properties
computed a single fixed point with a single fixed point variable. We can think of the successive automata
A0,A1, . . . as successive approximations of the value ofZ. The final automaton computed gives the value
of Z that is the solution to

µZ.C∪PreP(Z) .

In the case of Büchi games, there are two nested fixed point computations over the variablesZ0 and
Z1. The winning region is the greatest fixed point forZ0. However, in order to compute this fixed point
we also have to compute the least fixed point forZ1. Hence, we will need an automaton that can represent
two different sets of configurations: the approximation ofZ0 as well as the approximation ofZ1. Thus,
instead of having a statep of the alternating automaton for each control statep, we will have two states
p0 and p1. A configuration(p,w) appears in the current approximation ofZ0 if it is accepted fromp0,
and it appears in the current approximation ofZ1 if it is accepted fromp1. We will also use control states
of the formp2 to hold intermediate values of the computation.

Finally, the automata we build will have two additional states (these will be the only states that are
not of the formpα for someα). There will be one states⊥ that will be the only accepting state. Since
all stacks finish with the bottom-of-stack symbol⊥, this state will have no outgoing transitions, and all

incoming transitions will be of the forms
⊥−→{s⊥}. No other transitions in the automaton will be labelled

⊥.
The other additional state iss∗ from which all stacks are accepted. This state has the outgoing

transitionss∗
A−→ {s∗} for all A∈ Γ with A 6=⊥, ands∗

⊥−→ {s⊥}.

Evaluation strategy The saturation method computes fixed points following Knaster-Tarski theorem.
That is, to compute a least fixed point, it begins with the smallest potential value (the set of target
configurationsC in the case of reachability properties, and the empty set in the case of Büchi properties).
It then adds configurations to this set (by adding new transitions) that also necessarily appear in the least
fixed point. This process is repeated until nothing more needs to be added – at which point the least fixed
point has been calculated.

To compute a greatest fixed pointZ0 we follow the dual strategy. We begin with the largest possible
value, which is the set of all configurations, which we will represent by statesp0 with all possible
outgoing transitions. Next, the least fixed pointZ1 is calculated given the initial approximation ofZ0.
Once the value ofZ1 is known, it becomes our new approximation ofZ0. Notice that this approximation

14 Saturation algorithms for model-checking pushdown systems

is necessarily smaller than the initial attempt (both in terms of configurations accepted and transitions
present). We then recalculate the least fixed point forZ1 with the new smaller value ofZ0. In this way,
starting from the largest possible value forZ0 we successively shrink its value until a fixed point is found.
This fixed point will be the greatest fixed point.

Projection When computing the greatest fixed point forZ0 we repeatedly compute a least fixed point
for Z1. Each fixed point forZ1 becomes the new approximation ofZ0. Hence, during our algorithm we
need a method of assigning the value ofZ1 to Z0. We call this manipulation of transitionsprojection.

Suppose the only outgoing transition fromp1 is

p1 A−→
{

q1, p0}

and we want to assign the new value ofp0. To do this we simply remove all transitions fromp0 (the old
value) and introduce the transition

p0 A−→
{

q0, p0} .

There are several things to notice about this new transition. The first is that it emanates fromp0 rather
than p1. Next, we have changed the target stateq1 to q0. This is because we are renaming all the states
annotated with 1 to be annotated with 0. Finally, notice thatwe have not changed the target statep0.

By leaving p0 we are no longer simply transferring the value ofZ1 to Z0 since we are changing the
outgoing transitions fromp0. It is provable that this change in value is benign with respect to the fixed
point of Z0: sincep0 should accept all configurations(p,w) in the fixed point forZ0, the fact that any
run that reachesp0 may accept additional configurations coming from the new value of p0 rather than
the old simply means that we are accelerating the computation of the fixed point.

For example, suppose we had a pushdown Büchi game withp∈ F ∩QE and an automaton with the
transitions

p1 A−→
{

p0} andp1 ⊥−→ {s⊥} andp0 ⊥−→ {s⊥}
and the pushdown game contains (amongst others) the rule(p,A)→ (p,ε). In particular we accept the
configuration(p,A⊥) from p1, and we do so because we can pop theA to reach(p,⊥) (from which we
supposéEloise can win the game). After projection, we will have the transitions

p0 A−→
{

p0} andp0 ⊥−→ {s⊥} .
Notice we now have a loop fromp0 enabling any configuration of the form(p,A∗⊥) to be accepted
from p0. Thus we have increased the valuation during projection. However, this is benign because, by
repeated applications of(p,A)→ (p,ε) Éloise can reach(p,⊥) and win the game. Thus, the projection
has collapsed an unbounded sequence of moves into a single transition.

To calculate the fixed point forZ1 we begin with the empty set as an initial approximation. Then
we compute the new approximation forZ1. While computing this approximation we will use states of
the form p2 to store the new value. Thus, to assign the new approximationto Z1 we simply perform
projection from the statesp2 to p1 in the same way that we projected when assigningZ1 to Z0.

We thus define a projection function on states

πα ,β (s) =

s s= s∗∨s= s⊥
s s= pγ ∧ γ 6= α
pβ s= pα

which generalises naturally to a function on sets of statesπα ,β (S) =
{

πα ,β (s) | s∈ S
}

.

A. Carayol and M. Hague 15

Algorithm Fix a pushdown Büchi gameP = (Q,Γ,⊥,∆,F). We begin our presentation of the algo-
rithm by presenting a simple function for performing the projections described above. The function
PROJ(A , α , β) projects the value of the statespα to pβ and deletes all the statespα .

function PROJ(A , α , β)
(S,Γ,δ ,F)←A
S′← S\{pα | p∈Q}

δ ′←

{
s

A−→ S∈ δ
∣∣ ∀p∈Q.s 6= pα ∧s 6= pβ

}
∪{

pβ A−→ πα ,β (S)
∣∣∣ pα A−→ S∈ δ

}

return (S′,Γ,δ ′,F)
end function
The main algorithm contains two nested fixed point computations: the outer forZ0 and the inner for

Z1. The initial automatonA 0 contains only the statess∗ ands⊥ with transitions as described above. That
is A 0 = ({s∗,s⊥} ,Γ,δ ,{s⊥}) with

δ =
{

s∗ A−→ {s∗} | A∈ Γ∧A 6=⊥
}
∪
{

s∗ ⊥−→ {s⊥}
}

.

The algorithm is then a call to the function FIX 0(A 0) defined below. We define two functions for com-
puting the fixed points forZ0 andZ1. Both of these functions are similar to each other: they begin by
setting up an automaton representing the initial approximation of the fixed point, either by adding no
transitions (the empty set) or all transitions (the largestset). They then enter a loop of computing the
next approximation and then using projection to transfer (and accelerate) the new value to the statesp0 or
p1 as appropriate. The function FIX 0(A) computes the fixed point forZ0 and uses FIX 1(A) to compute
the next approximation, while FIX 1(A) computes the fixed point forZ1 and uses a function PRE(A) to
compute the next approximation. These two functions are thus defined

function FIX 0(A)
(S,Γ,δ ,F)←A
S′← S∪

{
p0 | p∈Q

}

δ ′←
{

p0 A−→ S | p∈Q∧A∈ Γ∧A 6=⊥∧S⊆ S′ \{s⊥}
}
∪
{

p0 ⊥−→ {s⊥} | p∈Q
}

B← (S′,Γ,δ ′,F)
repeat

B← FIX 1(B)
B← PROJ(B, 1, 0)

until B unchanged
return B

end function
and

function FIX 1(A)
(S,Γ,δ ,F)←A
S′← S∪

{
p1 | p∈Q

}

B← (S′,Γ,δ ,F)
repeat

B← PRE(B)
B← PROJ(B′, 2, 1)

until B unchanged

16 Saturation algorithms for model-checking pushdown systems

return B
end function .

The inner fixed point computation uses a function PRE(A) to compute the step of the calculation corre-
sponding to

(F ∩PreP(Z0))∪
(
F ∩PreP(Z1)

)
.

This function adds transitions in the same way as the loop of saturation algorithm for reachability games,
except it is sensitive to the two different fixed point variables. For convenience, we define the function
Ω such that

Ω(p) =

{
0 p∈ F

1 p /∈ F .

We can then define

function PRE(A)
(S,Γ,δ ,F)←A
S′← S∪

{
p2 | p∈Q

}

δ ′←

{
p2 A−→ S

∣∣∣ p∈QE∧∃(p,a)→ (q,w) ∈ ∆.qΩ(p) w−→ S
}
∪{

p2 A−→ S
∣∣∣ p∈QA∧∀(p,a)→ (q,w) ∈ ∆.∃qΩ(p) w−→ S′.S′ ⊆ S

}

return (S′,Γ,δ ′,F)
end function .

The automatonB that is the result of FIX 0(A 0) will be such that(p,w) ∈W iff w∈Lp0(B). Since
there are at most an exponential number of transitions in theautomaton each fixed point may iterate at
most an exponential number of times. This gives us an overallexponential run time for the algorithm.

Theorem 4 The winning region of a pushdown Büchi game is regular and computable in exponential
time.

Note that for the one player case (i.e. all states belong tóEloise), the computation can be done in
polynomial time [7, 22].

4.3.2 Winning strategies

Cachat also showed that, like in reachability games, it is possible to construct a linear space positional
strategy and a constant time (though not positional) pushdown strategy foŕEloise. However, in his PhD.
thesis [14] Cachat observes that adopting his techniques for computing strategies for Abelard is not
clear. However, it is known that, even for the full case of parity games, a pushdown strategy exists using
different techniques [57, 40].

4.4 Pushdown parity games

Parity games allow more complex liveness properties to be checked. To define a parity game, each
configuration is assigned a “colour” from a set of colours represented by natural numbers. The winner
of the game depends on the smallest colour appearing infinitely often in the run: if it is even theńEloise
wins the game, else Abelard wins.

More formally, given a sequence of configurationsρ = (q0,w0),(q1,w1), . . . let Inf(ρ) be the set of
control states appearing infinitely often inρ . That is

Inf(ρ) =
{

q
∣∣ ∀i∃ j > i.q j = q

}
.

A. Carayol and M. Hague 17

Given a set of control statesQ and maximum colourκ , let Ω : Q→{0, . . . ,κ} be a colouring function
assigning colours to each control state. We can generaliseΩ to sets of control statesPby taking the image
of P. That is,Ω(P) = {α | ∃p∈ P.Ω(p) = α }.

A pushdown parity game is a tuple(Q,Γ,⊥,∆,Ω) whereΩ : Q→ {0, . . . ,κ} is a colouring function
assigning to each control state a colour from the set{0, . . . ,κ}. Moreover, the tuple defines a pushdown
game(Q,Γ,⊥,∆,W) where

W = {ρ | min(Ω(Inf(ρ))) is even} .
Thus, a Büchi game is a special case of a parity game, where the set of colours is{0,1} and

Ω(p) =

{
0 p∈ F

1 p /∈ F .

4.4.1 Characterising the winning region

The characterisation of́Eloise’s winning region in terms of fixed points is a natural extension of the
Büchi version. That is, assumingκ to be odd and writingCα to denote{(p,w) | Ω(p) = α }, we need

νZ0.µZ1. · · · .νZκ−1.µZκ .
⋃

0≤α≤κ
(Cα ∩PreP(Zα)) .

This formula can be understood as a generalisation of the Büchi formula, whereF = C0 andF = C1.
When the colour of a configuration is odd, then it is bound by a least fixed point. Hence, it must eventually
exit this fixed point by visiting a configuration with a smaller colour (just like a configuration inF had
to visit a configuration inF). When the colour is even, then it is bound by a greatest fixed point – hence
a play can stay within this fixed point, never visiting a smaller colour, and satisfy the winning condition
for Éloise.

4.4.2 Computing the winning region

Fix a pushdown parity gameP= (Q,Γ,⊥,∆,Ω). Computing the winning region in a pushdown parity
game is a direct extension of the algorithm presented for Büchi games. Since a Büchi game is simply a
pushdown parity game with two colours, we generalise the nesting of the fixed point calls to an arbitrary
number of colours. To this end we introduce a function DISPATCH(A , α) that manages the level of
nesting, and performs a fixed point or a pre-step analysis as appropriate.

function DISPATCH(A , α)
if α = κ +1 then

return PRE(A)
else

return FIX (A , α)
end if

end function
Using this function we can define a generic fixed point function based on the Büchi functions. This
function performs the nested calculations and the projection as before. The initial transitions from the
new states introduced by the function depend on the parity ofα : when computing an even (greatest)
fixed point, we add all transitions, and when computing an odd(least) fixed point, we add no transitions.

function FIX (A , α)

18 Saturation algorithms for model-checking pushdown systems

(S,Γ,δ ,F)←A
S′←{pα | p∈Q}
if α is eventhen

δ ′←
{

pα A−→ S | p∈Q∧A∈ Γ∧A 6=⊥∧S⊆ S′ \{s⊥}
}
∪
{

pα ⊥−→ {s⊥} | p∈Q
}

else
δ ′← /0

end if
B← (S∪S′,Γ,δ ∪δ ′,F)
repeat

B← DISPATCH(B, α +1)
B← PROJ(B, α +1, α)

until B unchanged
return B

end function

Finally, we redefine the PRE(A) function to add transitions to the correct initial states.Note, we were
already usingΩ to distinguish between different fixed point variables, hence this function is almost
identical to the Büchi case.

function PRE(A)
(S,Γ,δ ,F)←A
S′← S∪

{
pκ+1 | p∈Q

}

δ ′←

{
pκ+1 A−→ S

∣∣∣ p∈QE∧∃(p,a)→ (q,w) ∈ ∆.qΩ(p) w−→ S
}
∪{

pκ+1 A−→ S
∣∣∣ p∈QA∧∀(p,a)→ (q,w) ∈ ∆.∃qΩ(p) w−→ S′.S′ ⊆ S

}

return (S′,Γ,δ ′,F)
end function

Thus, to compute the winning region of a pushdown parity game, we make the call DISPATCH(A 0, 0)
whereA 0 is the initial automaton with only the statess∗ ands⊥ as defined in the Büchi case.

The automatonB that is the result of DISPATCH(A 0, 0) will be such that(p,w)∈W iff w∈Lp0(B).
Since there are at most an exponential number of transitionsin the automaton each fixed point may iterate
at most an exponential number of times. This gives us an overall exponential run time for the algorithm.

Theorem 5 The winning region of a pushdown parity game is regular and computable in exponential
time.

4.4.3 Winning strategies

Unfortunately, it is currently unknown how to compute the winning strategies foŕEloise and Abelard
using the saturation technique for pushdown parity games. However, using a different approach, both
Walukiewicz [57] and Serre [40] have shown that a pushdown strategy exists for both players.

5 Implementations and Applications of Saturation Methods

In this article, we have presented the saturation method from a theoretical standpoint. The method,
however, is an algorithmic approach that is well suited to implementation, and several tools have been
constructed using saturation as its core technique.

A. Carayol and M. Hague 19

5.1 Single Player Implementations

Perhaps the most famous of these tools is Moped [21, 39] and its incarnation as a model checker for
Java, JMoped [52, 50]. In taking the algorithm from a theoretical tool to a practical one, a number of
new concerns had to be taken into account.

The rules of a pushdown system roughly correspond to the statements in a program. In a program
with thousands of lines, a fixed point iteration that checks,during each iteration, whether each rule leads
to new transitions in the automaton would be woefully inefficient. In constructing Moped, Esparzaet
al. [20] showed how this naive outer loop can be reorganised suchthat, at each iteration, only the relevant
rules of the system were considered, leading to a significantimprovement in performance.

A second consideration of applications to the analysis of program models is the handling of data
values. Boolean programs are essentially pushdown systemswhere each control state and stack character
contains a valuation of a set of global and local boolean variables respectively. These boolean programs
are the natural output of predicate abstraction tools such as SATABS [18] as well as the target compilation
language of JMoped.

Since there are only finitely many valuations of sets of boolean variables, they can directly be encoded
as control states or characters and standard pushdown analysis techniques can be employed. However,
since they are also exponential in number, such an approach is inherently inefficient. Hence, Esparzaet
al. introducedsymbolic pushdown systems[21] which make boolean valuations first class objects. The
saturation technique was extended by adding BDDs representing variable valuations to the edges of the
P-automata, leading to an implementation capable of analysing symbolic pushdown systems derived
from real-world programs.

Around this time it was observed by Reps that the BDDs could bereplaced by any abstract domain
of values that was sufficiently well behaved, and many staticanalyses could be derived. This led to the
introduction ofweighted pushdown systems[37] (and, indeed,extendedweighted pushdown systems
amongst other improvements [33, 32]), of which symbolic pushdown systems and their BDD represen-
tation were an instance. The developers of Moped created theweighted pushdown system library[58] as
a component of Moped, and Repset al. developed WALi [56] implementing these new algorithms.

5.2 Two-Player Implementations

Perhaps the most straight-forward optimisation to make to the saturation technique as presented for two-
player games is via the observation that a transition

s
A−→ S

is effectively redundant if there exists another transition

s
A−→ S′

with S′ ⊆ S. This is because an accepting run fromS contains within it an accepting run fromS′, and
thus the former transition can be removed.

When considering reachability games, it is also possible toimprove the naive fixed point iteration,
as in the single-player case, to avoid checking against all pushdown rules during each step of the im-
plementation. Such an optimisation was introduced by Suwimonteerabuthet al. and implemented with
applications to certificate chain analysis [53].

This work has recently been built upon by Song who has developed various tools based upon reduc-
tions to Büchi games and tools for their analysis. Primarily this work has focussed on a specification

20 Saturation algorithms for model-checking pushdown systems

language that is an extension of CTL and its translation intosymbolic pushdown Büchi games [44, 46]
resulting in the tool PuMoC [45]. The main application of this work has been in the detection of malware.
More recently still, this work has been developed for LTL-like properties to deal with situations where
the CTL approach was insufficient [47], culminating in the PoMMaDe tool [49].

However, the combination of BDD representations and alternating automata is not an easy one, since
BDDs lack the necessary alternation for a direct embedding.Hence, Song’s algorithm pays an extra expo-
nential in its worst-case complexity (doubly exponential rather than exponential), although the practical
runtime is improved. The optimal inclusion of symbolic representations into the analysis of two-player
games remains an open problem.

The saturation technique for the full case of parity games has been implemented in the PDSolver
tool [27] and applied to dataflow analysis problems for Java programs. Due to the interactions between
the several layers of fixed points, it is not clear how to adaptEsparzaet al. and Suwimonteerabuthet al.’s
efficient algorithms to this case, nor how to include symbolic representations. These remain limitations
of the tool, and interesting avenues for future work.

6 Extensions of the Saturation Method

In this article we have looked at the different saturation methods for pushdown systems. Across several
articles, the technique has proved to be applicable to various extensions to the basic model. We briefly
list some of these results here.

Concurrency The reachability problem for pushdown systems with two or more stacks is well known
to be undecidable. Since multiple stacks are needed to modelmulti-thread recursive programs, a number
of underapproximation techniques have been studied for which the reachability problem is decidable.
One such technique isbounded context switching[36] where the number of interactions between the
threads is limited to ana priori fixed numberk. While this cannot prove the absence of errors, it is
effective at finding bugs in programs, since, empirically, bugs usually manifest themselves within a
small number of interactions. This restriction can be relaxed further by allowing a bounded number of
phases[54] (where all threads run concurrently, but during each phase only one thread is allowed to pop
from its stack), or a bounded scope [55] (where, threads are scheduled in a round-robin fashion, and
characters may only be removed from the stack if they were pushed at most a fixed number of rounds
earlier).

The saturation technique has proved useful for each of theserestrictions. In particular, Moped has
been extended to provide context bounded analysis of multi-stack pushdown systems [51] by Suwimon-
teerabuthet al. and saturation was used by Seth to provide a regular solutionto the global reachability
problem for phase bounded pushdown systems [43]. The original proof that the reachability problem for
scope bounded pushdown systems is decidable was itself an extension of the saturation technique [55].

An alternative restriction that permits a decidable reachability and LTL model checking problem
is that ofordered multi-pushdown systemswhere only the leftmost non-empty stack is able to remove
characters. Atig provides two extensions of the saturationtechnique in this direction [1]. First, instead
of each pushdown rule adding a fixed sequence of characters tothe stack, he allows rules to contain
languages of sequences that may be pushed. If it is decidablewhether the language of a rule intersected
with a regular language is empty, then an augmented saturation technique leads to an effective analysis
algorithm. In particular, the model checking problem for ordered pushdown systems can be solved with
this formalism.

A. Carayol and M. Hague 21

Finally, Song generalises his LTL model checking algorithms to the case of pushdown systems with
dynamic thread creation [48], again using a saturation technique at its core.

Ground Tree Rewrite Systems and ResourcesGround tree rewrite systems can be thought of as
pushdown systems with a single control state and a more complex stack structure. That is, the stack is
a tree rather than a word. Rewrite rules in this system replace complete subtrees. For example a push
rule (p,A)→ (p,BC) can be considered to be replacing the subtree consisting in the leaf nodeA with the
subtreeB(C) (i.e. aB-node with aC-leaf as a child). In 1987, Dauchetet al. used saturation to show that
the confluence problem for these systems is decidable [19]. More recently, Lang and Löding adapted
this method to analyse prefix replacement systems with resource usage [34].

Higher-Order and Collapsible Pushdown Systems Pushdown systems provide a natural model for
first-order recursive programs. When considering higher-order programs, we can usehigher-order push-
down systems[35] whose stacks have a nested “stack-of-stacks” structure. These systems correspond to
higher-order recursion schemessatisfying asafetyconstraint [30]. Recently, these systems were gener-
alised tocollapsible pushdown systems(via panic automata[31]), providing an automata model without
the need for the safety constraint [25].

The saturation technique was first applied to the analysis ofhigher-order systems by Bouajjani and
Meyer [8] who considered higher-order pushdown systems with a single control state. This algorithm
was generalised by Hague and Ong to permit an arbitrary number of control states [26]. An alternative
construction in the case of second order higher-order pushdown systems was provided by Seth [41].

More recently this approach was developed by Broadbentet al. to obtain a saturation algorithm
for the full case of collapsible pushdown systems [9], leading to the analysis tool C-SHORe [10]. This
algorithm was applied directly to the analysis of recursionschemes (without the intermediate automata
model) by Broadbent and Kobayashi, resulting in the HorSat tool [11].

Finally, the case of concurrent higher-order systems has been briefly considered. Seth used satura-
tion to show that parity games over phase-bounded higher-order pushdown systems (without collapse) are
effectively solvable [42]. Recently, Hague showed that thesaturation approaches for first-order phase-
bounded, ordered and scope-bounded pushdown systems can beadapted to solve the analogous reacha-
bility problems for collapsible pushdown systems [24].

References

[1] M. F. Atig (2012): Model-Checking of Ordered Multi-Pushdown Automata. Logical Methods in Computer
Science8(3), doi:10.2168/LMCS-8(3:20)2012.

[2] T. Ball, V. Levin & S. K. Rajamani (2011):A decade of software model checking with SLAM. Commun.
ACM 54(7), pp. 68–76, doi:10.1145/1965724.1965743.

[3] T. Ball & S. K. Rajamani (2000):Bebop: A Symbolic Model Checker for Boolean Programs. In: Proceedings
of SPIN’00, pp. 113–130, doi:10.1007/10722468_7.

[4] Y. Bar-Hillel, M. Perles & E. Shamir (1961):On formal properties of simple phrase structure grammars. Z.
Phonetik Sprachwiss. Kommunikat.14, p. 143172.

[5] M. Benois (1969):Parties rationnelles du groupe libre. Comptes-Rendus de l’Acamdémie des Sciences de
Paris, Série A269, pp. 1188–1190.

[6] M. Benois & J. Sakarovitch (1986):On the Complexity of Some Extended Word Problems Defined by Can-
cellation Rules. Inf. Process. Lett.6, pp. 281–287, doi:10.1016/0020-0190(86)90087-6.

22 Saturation algorithms for model-checking pushdown systems

[7] A. Bouajjani, J. Esparza & O. Maler (1997):Reachability Analysis of Pushdown Automata: Application to
Model-Checking. In: Proceedings of CONCUR’97, pp. 135–150, doi:10.1007/3-540-63141-0_10.

[8] A. Bouajjani & A. Meyer (2004):Symbolic Reachability Analysis of Higher-Order Context-Free Processes.
In: Proceedings of FSTTCS’04, pp. 135–147, doi:10.1007/978-3-540-30538-5_12.

[9] C. H. Broadbent, A. Carayol, M. Hague & O. Serre (2012):A Saturation Method for Collapsible Pushdown
Systems. In: Proceedings of ICALP’12, pp. 165–176, doi:10.1007/978-3-642-31585-5_18.

[10] C. H. Broadbent, A. Carayol, M. Hague & O. Serre (2013):C-SHORe: a collapsible approach to higher-
order verification. In: Proceedings of ICFP’13, pp. 13–24, doi:10.1145/2500365.2500589.

[11] C. H. Broadbent & N. Kobayashi (2013):Saturation-Based Model Checking of Higher-Order Recursion
Schemes. In: Proceedings of CSL’13, pp. 129–148, doi:10.4230/LIPIcs.CSL.2013.129.

[12] R. J Büchi (1964):Regular canonical systems. Archive for Mathematical Logic6(3), pp. 91–111, doi:10.
1007/BF01969548.

[13] T. Cachat (2002):Symbolic Strategy Synthesis for Games on Pushdown Graphs. In: Proceedings of
ICALP’02, pp. 704–715, doi:10.1007/3-540-45465-9_60.

[14] T. Cachat (2003):Games on Pushdown Graphs and Extensions. Ph.D. thesis, RWTH Aachen. Available at
http://www.liafa.jussieu.fr/~txc/Download/Cachat-PhD.pdf.

[15] D. Caucal (1988):Récritures suffixes de mots. Research Report RR-0871, INRIA.

[16] D. Caucal (1990):On the Regular Structure of Prefix Rewriting. In: Proceedings of CAAP’90, Lecture Notes
in Computer Science431, Springer, pp. 87–102, doi:10.1007/3-540-52590-4_42.

[17] D. Caucal (2008):Deterministic graph grammars. In Jörg Flum, Erich Grädel & Thomas Wilke, editors:
Logic and Automata: History and Perspectives in Honor of Wolfgang Thomas, Texts in Logic and Games2,
Amsterdam University Press, pp. 169–250.

[18] E. M. Clarke, D. Kroening, N. Sharygina & K. Yorav (2005): SATABS: SAT-Based Predicate Abstraction for
ANSI-C. In: Proceedings of TACAS’05, pp. 570–574.

[19] M. Dauchet, S. Tison, T. Heuillard & P. Lescanne (1987):Decidability of the Confluence of Ground Term
Rewriting Systems. In: Proceedings of LICS’87, pp. 353–359.

[20] J. Esparza, D. Hansel, P. Rossmanith & S. Schwoon (2000): Efficient Algorithms for Model Checking Push-
down Systems. In: Proceedings of CAV’00, pp. 232–247, doi:10.1007/10722167_20.

[21] J. Esparza & S. Schwoon (2001):A BDD-Based Model Checker for Recursive Programs. In: Proceedings of
CAV’01, pp. 324–336, doi:10.1007/3-540-44585-4_30.

[22] A. Finkel, B. Willems & P. Wolper (1997):A direct symbolic approach to model checking pushdown systems.
Electr. Notes Theor. Comput. Sci.9, pp. 27–37, doi:10.1007/3-540-45465-9_60.

[23] S. A. Greibach (1967):A note on pushdown store automata and regular systems. Proceedings of the American
Mathematical Society, pp. 263–268, doi:10.1090/S0002-9939-1967-0209086-1.

[24] M. Hague (2013):Saturation of Concurrent Collapsible Pushdown Systems. In: Proceedings of FSTTCS’13,
pp. 313–325, doi:10.4230/LIPIcs.FSTTCS.2013.313.

[25] M. Hague, A. S. Murawski, C.-H. Luke Ong & O. Serre (2008): Collapsible Pushdown Automata and Re-
cursion Schemes. In: Proceedings of LICS’08, pp. 452–461, doi:10.1109/LICS.2008.34.

[26] M. Hague & C.-H. L. Ong (2008):Symbolic Backwards-Reachability Analysis for Higher-Order Pushdown
Systems. Logical Methods in Computer Science4(4), doi:10.2168/LMCS-4(4:14)2008.

[27] M. Hague & C.-H. L. Ong (2010):Analysing Mu-Calculus Properties of Pushdown Systems. In: Proceedings
of SPIN’10, pp. 187–192, doi:10.1007/978-3-642-16164-3_14.

[28] M. Hague & C.-H. Luke Ong (2009):Winning Regions of Pushdown Parity Games: A Saturation Method.
In: Proceedings of CONCUR’09, pp. 384–398, doi:10.1007/978-3-642-04081-8_26.

[29] N. D. Jones & S. S. Muchnick (1977):Even Simple Programs Are Hard To Analyze. J. ACM 24(2), pp.
338–350, doi:10.1145/322003.322016.

A. Carayol and M. Hague 23

[30] T. Knapik, D. Niwinski & P. Urzyczyn (2002):Higher-Order Pushdown Trees Are Easy. In: Proceedings of
FoSSaCS’02, pp. 205–222, doi:10.1007/3-540-45931-6_15.

[31] T. Knapik, D. Niwinski, P. Urzyczyn & I. Walukiewicz (2005): Unsafe Grammars and Panic Automata. In:
Proceedings of ICALP’05, pp. 1450–1461, doi:10.1007/11523468_117.

[32] A. Lal & T. W. Reps (2006):Improving Pushdown System Model Checking. In: Proceedings of CAV’06, pp.
343–357, doi:10.1007/11817963_32.

[33] A. Lal, T. W. Reps & G. Balakrishnan (2005):Extended Weighted Pushdown Systems. In: Proceedings of
CAV’05, pp. 434–448, doi:10.1007/11513988_44.

[34] M. Lang & C. Löding (2013):Modeling and Verification of Infinite Systems with Resources. Logical Methods
in Computer Science9(4), doi:10.2168/LMCS-9(4:22)2013.

[35] A. N. Maslov (1976):Multilevel stack automata. Problems of Information Transmission15, pp. 1170–1174.

[36] S. Qadeer (2008):The Case for Context-Bounded Verification of Concurrent Programs. In: Proceedings of
the SPIN’08, Springer-Verlag, Berlin, Heidelberg, pp. 3–6, doi:10.1007/978-3-540-85114-1_2.

[37] T. W. Reps, S. Schwoon, S. Jha & D. Melski (2005):Weighted pushdown systems and their application to
interprocedural dataflow analysis. Sci. Comput. Program.58(1-2), pp. 206–263, doi:10.1016/j.scico.
2005.02.009.

[38] J. Sakarovitch (2009):Elements of Automata Theory. Cambridge University Press, doi:10.1017/

CBO9781139195218.

[39] S. Schwoon (2002):Model-checking Pushdown Systems. Ph.D. thesis, Technical University of Munich.

[40] O. Serre (2004):Contribution à létude des jeux sur des graphes de processusà pile. Ph.D. thesis, Uni-
versité Paris 7 – Denis Diderot, UFR dinformatique. Available athttp://tel.archives-ouvertes.fr/
tel-00011326.

[41] A. Seth (2008):An Alternative Construction in Symbolic Reachability Analysis of Second Order Pushdown
Systems. Int. J. Found. Comput. Sci.19(4), pp. 983–998, doi:10.1142/S012905410800608X.

[42] A. Seth (2009):Games on Higher Order Multi-stack Pushdown Systems. In: Proceedings of RP’09, pp.
203–216, doi:10.1007/978-3-642-04420-5_19.

[43] A. Seth (2010):Global Reachability in Bounded Phase Multi-stack PushdownSystems. In: Proceedings of
CAV’10, pp. 615–628, doi:10.1007/978-3-642-14295-6_53.

[44] F. Song & T. Touili (2011):Efficient CTL Model-Checking for Pushdown Systems. In: Proceedings of
CONCUR’11, pp. 434–449, doi:10.1007/978-3-642-23217-6_29.

[45] F. Song & T. Touili (2012):PuMoC: a CTL model-checker for sequential programs. In: Proceedings of
ASE’12, pp. 346–349, doi:10.1145/2351676.2351743.

[46] F. Song & T. Touili (2012): Pushdown Model Checking for Malware Detection. In: Proceedings of
TACAS’12, pp. 110–125, doi:10.1007/978-3-642-28756-5_9.

[47] F. Song & T. Touili (2013):LTL Model-Checking for Malware Detection. In: Proceedings of TACAS’13, pp.
416–431, doi:10.1007/978-3-642-36742-7_29.

[48] F. Song & T. Touili (2013):Model Checking Dynamic Pushdown Networks. In: Proceedings of APLAS’13,
pp. 33–49, doi:10.1007/978-3-319-03542-0_3.

[49] F. Song & T. Touili (2013):PoMMaDe: pushdown model-checking for malware detection. In: Proceedings
of ESEC/FSE’13, pp. 607–610, doi:10.1145/2491411.2494599.

[50] D. Suwimonteerabuth, F. Berger, S. Schwoon & J. Esparza(2007): jMoped: A Test Environment for Java
Programs. In: Proceedings of CAV’07, pp. 164–167, doi:10.1007/978-3-540-73368-3_19.

[51] D. Suwimonteerabuth, J. Esparza & S. Schwoon (2008):Symbolic Context-Bounded Analysis of Multi-
threaded Java Programs. In: Proceedings of SPIN’08, pp. 270–287, doi:10.1007/978-3-540-85114-1_
19.

24 Saturation algorithms for model-checking pushdown systems

[52] D. Suwimonteerabuth, S. Schwoon & J. Esparza (2005):jMoped: A Java Bytecode Checker Based on Moped.
In: Proceedings of TACAS’05, pp. 541–545, doi:10.1007/978-3-540-31980-1_35.

[53] D. Suwimonteerabuth, S. Schwoon & J. Esparza (2006):Efficient Algorithms for Alternating Pushdown
Systems with an Application to the Computation of Certificate Chains. In: Proceedings of ATVA’06, pp.
141–153, doi:10.1007/11901914_13.

[54] S. La Torre, P. Madhusudan & G. Parlato (2007):A Robust Class of Context-Sensitive Languages. In:
Proceedings of LICS’07, pp. 161–170, doi:10.1109/LICS.2007.9.

[55] S. La Torre & M. Napoli (2011):Reachability of Multistack Pushdown Systems with Scope-Bounded Match-
ing Relations. In: Proceedings of CONCUR’11, pp. 203–218, doi:10.1007/978-3-642-23217-6_14.

[56] WALi: Weighted Automata Library:https://research.cs.wisc.edu/wpis/wpds/download.php.

[57] I. Walukiewicz (2001):Pushdown Processes: Games and Model-Checking. Inf. Comput.164(2), pp. 234–
263, doi:10.1006/inco.2000.2894.

[58] WPDS Library:http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/wpds/.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 25–48, doi:10.4204/EPTCS.151.2

c© H. Gruber and M. Holzer

From Finite Automata to Regular Expressions and Back—A
Summary on Descriptional Complexity

Hermann Gruber
knowledgepark AG, Leonrodstr. 68,

80636 München, Germany

hermann.gruber@knowledgepark-ag.de

Markus Holzer
Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany

holzer@informatik.uni-giessen.de

The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene
on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of
the literature and summarize results on upper and lower bounds on the conversion of finite automata
to regular expressions andvice versa. We also briefly recall the known bounds for the removal of
spontaneous transitions (ε-transitions) on non-ε-free nondeterministic devices. Moreover, we report
on recent results on the average case descriptional complexity bounds for the conversion of regular
expressions to finite automata and brand new developments onthe state elimination algorithm that
converts finite automata to regular expressions.

1 Introduction

There is a vast literature documenting the importance of thenotion of finite automata and regular ex-
pressions as an enormously valuable concept in theoreticalcomputer science and applications. It is well
known that these two formalisms are equivalent, and in almost all monographs on automata and formal
languages one finds appropriate constructions for the conversion of finite automata to equivalent regular
expressions and back. Regular expressions, introduced by Kleene [68], are well suited for human users
and therefore are often used as interfaces to specify certain patterns or languages. For example, in the
widely available programming environment UNIX , regular(-like) expressions can be found in legion of
software tools like, e.g.,awk, ed, emacs, egrep, lex, sed, vi, etc., to mention a few of them. On the
other hand, automata [94] immediately translate to efficient data structures, and are very well suited for
programming tasks. This naturally raises the interest in conversions among these two different notions.
Our tour on the subject covers some (recent) results in the fields of descriptional and computational com-
plexity. During the last decade descriptional aspects on finite automata and regular expressions formed
an extremely vivid area of research. For recent surveys on descriptional complexity issues of finite au-
tomata and regular expressions we refer to, for example, [39, 56, 57, 58, 59, 60, 103]. This was not only
triggered by appropriate conferences and workshops on thatsubject, but also by the availability of mathe-
matical tools and the influence of empirical studies. For obvious reasons, this survey lacks completeness,
as finite automata and regular expressions fall short of exhausting the large number of related problems
considered in the literature. We give a view of what constitutes, in our opinion, the most interesting
recent links to the problem area under consideration.

Before we start our tour some definitions are in order. First of all, our nomenclature of finite au-
tomata is as follows: anondeterministic finite automaton withε-transitions (ε-NFA) is a quintuple
A = (Q,Σ,δ ,q0,F), whereQ is the finite set ofstates, Σ is the finite set ofinput symbols, q0 ∈ Q is
the initial state, F ⊆ Q is the set ofaccepting states, andδ : Q× (Σ∪{ε})→ 2Q is thetransition func-
tion. If a finite automaton has noε-transitions, i.e., the transition function is restrictedto δ : Q×Σ→ 2Q,
then we simply speak of anondeterministic finite automaton(NFA). Moreover, a nondeterministic finite

26 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

automaton isdeterministic(DFA) if and only if |δ (q,a)| = 1, for all statesq∈ Q and lettersa∈ Σ. The
language acceptedby the finite automatonA is defined asL(A) = {w ∈ Σ∗ | δ (q0,w)∩F 6= /0}, where
the transition function is recursively extended toδ : Q× Σ∗ → 2Q. Second, we turn to the definition
of regular expressions: theregular expressionsover an alphabetΣ and the languages they describe are
defined inductively in the usual way:1 /0, ε , and every lettera with a ∈ Σ is a regular expression, and
whens andt are regular expressions, then(s+ t), (s· t), and(s)∗ are also regular expressions. The lan-
guage defined by a regular expressionr, denoted byL(r), is defined as follows:L(/0) = /0, L(ε) = {ε},
L(a) = {a}, L(s+ t) = L(s)∪L(t), L(s· t) = L(s) ·L(t), andL(s∗) = L(s)∗. For further details on finite
automata and regular expressions we refer to, e.g., [61].

We start our tour on the subject with the question on the appropriate measure for finite automata
and regular expressions. We discuss this topic in detail in Section 2. There we also concentrate on two
specific measures: on star height for regular expressions and cycle rank for the automaton side. By
Eggan’s theorem [26] both measures are related to each other. Recent developments, in particular on the
conversion from finite automata to regular expressions, utilize this connection to prove upper and lower
bounds. Then in Section 3 we take a closer on the conversion from regular expressions to equivalent
finite automata. We recall the most prominent conversion algorithms such as Thompson’s construction
and its optimized version the follow automaton, the position or Glushkov automaton, and conversion by
computations of the (partial-)derivatives. We summarize the known relations on these devices, which
were mostly found during the last decade. Significant differences on these constructions are pointed out
and the presented developments on lower bound and upper bound results enlighten the efficiency of these
algorithms. Some of the bounds are sensitive to the size of the alphabet. Besides worst case descriptional
complexity results on the synthesis problem of finite automata from regular expressions, we also list
some recent results on the average case complexity of the transformation of regular expressions to finite
automata. Finally, in Section 4 we consider the converse transformation. Again, we summarize some of
the few conversion techniques, but then stick in more detailto the so-called state elimination technique.
The reason for that is, that in [97], it was shown that almost all conversion methods can be recast as
variants of the state elimination technique. Here, the ordering in which the states are eliminated can
largely affect the size of the regular expression corresponding to the given finite automaton. We survey
some heuristics that have been proposed for this goal. For appropriate choices of the ordering, nontrivial
upper bounds on regular expression size can be proved. By looking at the transition structure of the
NFA, results from graph theory can help in obtaining shorterexpressions. There we try to illustrate the
key insights with the aid of examples, thereby avoiding the need for a deeper dive into graph theoretic
concepts. We also explain the technique by which the recent lower bounds on regular expression size
were obtained. In this part, the known upper and lower boundsmatch only in the sense that we can
identify the rough order of magnitude. So we observe an interesting tension between algorithms with
provable performance guarantees, other heuristics that are observed to behave better in experiments, and
finally some lower bounds, which seize the expectations thatwe may have on practical algorithms.

2 Measures on Finite Automata and Regular Expressions

What can be said about the proper measure on finite automata and regular expressions? For finite au-
tomata there are two commonly accepted measures, namely thenumber of states and the number of

1For convenience, parentheses in regular expressions are sometimes omitted and the concatenation is simply written as
juxtaposition. The priority of operators is specified in theusual fashion: concatenation is performed before union, and star
before both product and union.

H. Gruber and M. Holzer 27

transitions. The measuresc (nsc, respectively) counts the number of states of a deterministic (nondeter-
ministic, respectively) finite automaton andtc (ntc, respectively) does the same for the number of transi-
tions for the appropriate devices. Moreover,nscε (ntcε , respectively) gives the number of states (transi-
tions, respectively) in anε-NFA. The following relations between these measures are well known—see
also [84, 86, 94].

Theorem 1 Let L⊆ Σ∗ be a regular language. Then

1. nscε(L) = nsc(L)≤ sc(L)≤ 2nsc(L) andtc(L) = |Σ| · sc(L) and

2. nsc(L)−1≤ ntcε(L)≤ ntc(L)≤ |Σ| · (nsc(L))2,

wheresc(L), tc(L) (nsc(L), ntc(L), respectively) refers to the minimum (nsc, ntc, respectively) among
all DFAs (NFAs, respectively) accepting L. Similarly,nscε(L) (ntcε(L), respectively) is the minimum
nscε (ntcε , respectively) among allε-NFAs for the language L.

As it is defined above, deterministic transition complexityis not an interesting measure by itself,
because it is directly related tosc, the deterministic state complexity. But the picture changes when
deterministic transition complexity is defined in terms of partial DFAs. Here, apartial DFA is an NFA
which transition functionδ satisfies|δ (q,a)| ≤ 1, for all statesq ∈ Q and all alphabet symbolsa∈ Σ.
A partial DFA cannot save more than one state compared to an ordinary DFA, but it can save a consid-
erable number of transitions in some cases. This phenomenonis studied, e.g., in [30, 75, 76]. Further
measures for the complexity of finite automata, in particular measures related to unambiguity and limited
nondeterminism, can be found in [39, 40, 41, 59, 63, 70, 71, 72, 92, 93, 95].

Now let us come to measures on regular expressions. While there are the two commonly accepted
measures for finite automata, there is no general agreement in the literature about the proper measure
for regular expressions. We summarize some important ones:the measuresize is defined to be the total
number of symbols (including /0,ε , symbols from alphabetΣ, all operation symbols, and parentheses) of
a completely bracketed regular expression (for example, used in [2], where it is called length). Another
measure related to the reverse polish notation of a regular expression isrpn, which gives the number
of nodes in the syntax tree of the expressions (parentheses are not counted). This measure is equal to
the length of a (parenthesis-free) expression in post-fix notation [2]. The alphabetic widthawidth is the
total number of alphabetic symbols fromΣ (counted with multiplicity) [27, 83]. Relations between these
measures have been studied, e.g., in [27, 28, 42, 66].

Theorem 2 Let L⊆ Σ∗ be a regular language. Then

1. size(L)≤ 3· rpn(L) andsize(L)≤ 8·awidth(L)−3,

2. awidth(L)≤ 1
2 · (size(L)+1) andawidth(L)≤ 1

2 · (rpn(L)+1), and

3. rpn(L)≤ 1
2 · (size(L)+1) andrpn(L)≤ 4·awidth(L)−1,

wheresize(L) (rpn(L), awidth(L), respectively) refers to the minimumsize (rpn, awidth, respectively)
among all regular expressions denoting L.

Further measures for the complexity of regular expressionscan be found in [8, 27, 28, 49]. To our
knowledge, these latter measures received far less attention to date.

In the remainder of this section we concentrate on two important measures on regular expression
and finite automata that at first glance do not seem to be related to each other:star heightandcycle
rank or loop complexity. Both measures are very important, in particular, for the conversion of finite
automata to regular expressions and for proving lower boundresults on the latter. Intuitively, the star

28 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

height of an expression measures the nesting depth of Kleene-star operations. More precisely, for a
regular expression, thestar heightis inductively defined by

height(/0) = height(ε) = height(a) = 0,

height(s+ t) = height(s· t) = max(height(s),height(t)) ,

and

height(s∗) = 1+height(s).

The star height of a regular languageL, denoted byheight(L) is then defined as the minimum star height
among all regular expressions describingL. The seminal work dealing with the star height of regular ex-
pressions [26] established a relation between the theory ofregular languages and the theory of digraphs.
Thecycle rank, or loop complexity, of a digraphD is defined inductively by the following rules: (i) the
cycle rank of an acyclic digraph is zero, (ii) cycle rank of a strongly connected component (SCC) of the
digraph with at least one arc is 1 plus the minimum cycle rank among the digraphs obtainable fromD
by deleting a vertex, and (iii) the cycle rank of a digraph with multiple SCCs equals the maximum cycle
rank among the sub-digraphs induced by these components. So, roughly speaking, the cycle rank of a
digraph is large if the cycle structure of the digraph is intricate and highly connected. The following
relation between cycle rank of automata and star height of regular languages became known asEggan’s
Theorem[26, 97]:

Theorem 3 The star height of a regular language L equals the minimum cycle rank among allε-NFAs
accepting L.

An apparent difficulty with applying Eggan’s Theorem is thatthe minimum is taken over infinitely
many automata, and the cycle rank of the minimum DFA for the language does not always attain that
minimum. That makes the star height a very intricate property of regular languages. Indeed, the de-
cidability status of the star height problem was open for more than two decades, until a very difficult
algorithm was given in [54]. For recent progress on algorithms for the star height problem, the reader is
referred to [67]. From the above it is immediate thatheight(L) ≤ nsc(L). If the language is given as a
regular expression, a result from [43] tells us a much sweeter truth:

Lemma 4 Let L⊆ Σ∗ be a regular language with alphabetic width n. Thenheight(L)≤ 3log(n+1).

The idea behind the proof of this lemma is that we can convert aregular expression into aε-NFA
of similar size. The cycle structure of that automaton is well-behaved; and thus its cycle rank is low
compared to the size of the automaton. Then Eggan’s Theorem is used to convert the automaton back
into a regular expression of low star height.

We return to the relationship between required size and starheight of regular expressions later on.
Now let us turn our attention to the conversion of regular expressions into equivalent finite automata.

3 From Regular Expressions to Finite Automata

The conversion of regular expressions into small finite automata has been intensively studied for more
than half a century. Basically the algorithms can be classified according to whether the output is an
ε-NFA, NFA, or even a DFA. In principle one can distinguish between the following three major con-
struction schemes and variants thereof:

1. Thompson’s construction[100] and optimized versions, such as thefollow automaton[66, 91],

H. Gruber and M. Holzer 29

2. construction of theposition automaton, or Glushkov automaton[38, 83], and

3. computation of the(partial) derivative automaton[4, 14].
Further automata constructions from regular expressions can be found in, e.g., [6, 13, 19, 65, 31, 102].
We briefly explain some of these approaches in the course of action—for further readings on the subject
we refer to [97].

Thompson’s construction [100] was popularized by the implementation of the UNIX commandgrep
(globally search a regular expression and print). It amounts to the recursive connection of sub-automata
via ε-transitions. These sub-automata are connected in parallel for the union, in series for the concatena-
tion, and in an iterative fashion for the Kleene star. This yields anε-NFA with a linear number of states
and transitions. A structural characterization of the Thompson automaton in terms of the underlying
digraph is given in [36, 37]. Thompson’s classical construction went through several stages of adaption
and optimization. The construction with the least usage ofε-transitions was essentially given already
in 1961 by Ott and Feinstein [91], which also can be found in [24, 77, 82]—see Figure 1. Later this

(a) /0

λ

(b) ε

a

(c) a

r

s

(d) Unionr +s

r s

(e) Concatenationr ·s

λ

r

λ

(f) Kleene starr∗

Figure 1: The inductive construction of Ott and Feinstein [91] yielding the precursor of the follow
automatonAf (r) for a regular expressionr.

construction was refined by Ilie and Yu [66] and promoted under the namefollow automaton. In fact,
the follow automaton is constructed from a regular expression r by recursively applying the construction
of Ott and Feinstein and simultaneously improving on the useof ε-transitions in the following sense: (i)
in the concatenation construction aε-transition into the common state to both sub-automata leads to an
appropriate state merging; similarly a state merging is done for anε-transition leaving the common state,
(ii) in the Kleene star construction, if the middle state is on a cycle ofε-transitions, all these transitions
are removed, and all states of the cycle are merged, and (iii)after the construction is finished, a possible
ε-transition from the start state is removed and both involved states are merged appropriately. Notice,
that the automaton thus constructed may still containε-transitions. In order to amend the situation, anε-
removal procedure is applied: simply replace any sequence of anε-transition followed by ana-transition
by directly connecting the states on both ends of the sequence by a singlea-transition directly. A final
step takes care about theε-transition to the final state. This results in the follow automatonAf (r) of [66],
for the regular expressionr.

Example 5 Imagine a software buffer supporting the actions a (“add work packet”) and b (“remove
work packet”), with a total capacity of n packets. Let rn denote the regular expression for the action
sequences that result in an empty buffer and never cause the buffer to exceed its capacity. Then

r1 = (ab)∗ and rn = (a· rn−1 ·b)∗, for n≥ 2.

30 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

Following the construction of the follow automaton as described in [66] results in the automaton depicted
in Figure 2. Observe the constructed automaton is minimal, which is not the case in general. This is our

0 1
a

b
2

a

b
. . .

a

b
n

a

b

Figure 2: The follow automatonAf (rn) acceptingL(rn).

running example, where the behaviour of the state elimination technique described in the next section is
discussed in more detail.

Preliminary bounds on the required size of a finite automatonequivalent to a given regular expression
were given in [66]. Later, a tight bound in terms of reverse polish notation [51], and also a tight bound
in terms of alphabetic width was found [42]. In the next theorem we summarize the results from [42, 51,
66]—here size of an automaton refers to the sum of the number of states and the number transitions:

Theorem 6 Let n≥ 1, and r be a regular expression of alphabetic width n. Then size 22
5 n is sufficient for

an equivalentε-NFA accepting L(r). In terms of reverse polish length, the bound is22
15(rpn(r)+1)+1.

Furthermore, there are infinitely many languages for which both bounds are tight.

The aid for the tight bound in terms of the alphabetic width stated in the previous theorem is a
certain normal form for regular expressions, which is a refinement of thestar normal formfrom [13].
The definition reads as follows—transformation into strongstar normal form preserves the described
language, and is weakly monotone with respect to all usual size measures:

Definition 7 The operators◦ and • are defined on regular expressions2 over alphabetΣ. The first
operator is given by: a◦ = a, for a∈ Σ, (r + s)◦ = r◦ + s◦, r?◦ = r◦, r∗◦ = r◦; finally, (r · s)◦ = r · s, if
ε /∈ L(rs) and r◦+s◦ otherwise. The second operator is given by: a• = a, for a∈ Σ, (r +s)• = r•+s•,
(r ·s)• = r• ·s•, r∗• = r•◦∗; finally, r?• = r•, if ε ∈ L(r) and r?• = r•? otherwise. Thestrong star normal
form of an expression r is then defined as r•.

What about the transformation of a regular expression into afinite automaton ifε-transitions are
not allowed? One way to obtain an NFA directly is to perform the standard algorithm for removingε-
transitions, see, e.g., [61], which may increase the numberof transitions at most quadratically. Another
way is to directly implement the procedure during the recursive construction using non-ε-transitions to
connect the sub-automata appropriately. Constructions ofthis kind can be found in, e.g., [3, 69]. For
the conversion ofε-NFAs to NFAs the lower bound of [64] applies. There it was shown that there are
infinitely many languages which are accepted byε-NFAs with O(n · (logn)2) transitions, such that any
NFA needs at leastΩ(n2) transitions. This lower bound is witnessed by a language over a growing
size alphabet and shows that, in this case, the standard algorithm for removingε-transitions cannot be
improved significantly. For the case of binary alphabets, a lower bound ofΩ(n·2c·√logn), for everyc< 1

2,
was proved in [64] as well.

Another possibility to obtain ordinary NFAs is to directly construct theposition automaton, also
called theGlushkov automaton[38]—see also [83]. Intuitively, the states of this automaton correspond
to the alphabetic symbols or, in other words, to positions between subsequent alphabetic symbols in the
regular expression. Let us be more precise: assume thatr is a regular expression overΣ of alphabetic

2Since /0 is only needed to denote the empty set, and the need for ε can be substituted by the operatorL? = L∪{ε}, an
alternative is to introduce also the?-operator and instead forbid the use of /0 andε inside non-atomic expressions. This is
sometimes more convenient, since one avoids unnecessary redundancy already at the syntactic level [42].

H. Gruber and M. Holzer 31

width n. In r we attach subscripts to each letter referring to its position (counted from left to right) inr.
This yields amarkedexpressionr with distinct input symbols over an alphabetΣ that contains all letters
that occur inr. To simplify our presentation we assume that the same notation is used for unmarking, i.e.,
r = r. Then in order to describe the position automaton we need to define the following sets of positions
on the marked expression. LetPos(r) = {1,2, . . . ,awidth(r)} andPos0(r) = Pos(r)∪{0}. The position
setFirst takes care of the possible beginnings of words inL(r). It is inductively defined as follows:

First(/0) = First(ε) = /0,

First(ai) = {i},
First(s+ t) = First(s)∪First(t),

First(s· t) =
{
First(s)∪First(t) if ε ∈ L(s)

First(s) otherwise,

and

First(s∗) = First(s).

Accordingly the position setLast takes care of the possible endings of words inL(r). Its definition is
similar to the definition ofFirst, except for the concatenation, which reads as follows:

Last(s· t) =
{
Last(s)∪Last(t) if ε ∈ L(t)

Last(t) otherwise.

Finally, the setFollow takes care about the possible continuations in the words inL(r). It is inductively
defined as

Follow(/0) = Follow(ε) = Follow(ai) = /0

Follow(s+ t) = Follow(s)∪Follow(t)

Follow(s· t) = Follow(s)∪Follow(t)∪Last(s)×First(t)

and

Follow(s∗) = Follow(s)∪Last(s)×First(s).

Then the position automaton forr is defined asApos(r) = (Pos0(r),Σ,δpos,0,Fpos), whereδ (0,a) = { j ∈
First(r) | a= a j }, for everya∈ Σ andδ (i,a) = { j | (i, j) ∈ Follow(r) anda= a j }, for everyi ∈ Pos(r)
anda∈ Σ, andFpos= Last(r), if ε 6∈ L(r), andFpos= Last(r)∪{0} otherwise.

Example 8 Consider the regular expression rn from Example 5. If we mark the regular expression rn,
then we obtainrn = (a1(a2(a3 . . .b2n−2)

∗b2n−1)
∗b2n)

∗. Easy calculations show that the position sets read
as follows:

First(rn) = {1}
Last(rn) = {2n}

and

Follow(rn) = {(i, i +1) | 1≤ i < 2n}∪{(i,2n− i +1),(2n− i +1, i) | 1≤ i ≤ n}

The position automaton on state setPos0(r) is depicted in Figure 3. Here the set of final states is
Fpos= {0,2n}, sinceε ∈ L(rn). Observe, that the follow automaton Af(rn) can be obtained from Apos(rn)

32 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

0 1
a

2
a . . .a na

n+1. . .2n−12n
bbb

b b ba a a

Figure 3: The position automatonApos(rn) acceptingL(rn).

by taking the quotient of automata, i.e., merging of states,with respect to the relation≡ f described
in [66], which contains the elements(i,2n− i), for 0 ≤ i ≤ 2n. This leads to the merging of states0
and2n, states1 and2n−1, states2 and2n−2, up to states n−1 and n+1.

An immediate advantage of the position automaton is observed, e.g., in [1, 7]: for a regular expres-
sion r of alphabetic widthn, for n≥ 0, the position automatonApos(r) always has preciselyn+1 states.
Simple examples, such as the singleton set{an}, show that this bound is tight. Nevertheless, several
optimizations have been developed that give NFAs having often a smaller number of states, while the
underlying constructions are mathematically sound refinements of the basic construction. A characteri-
zation of the position automaton is given in [16]. Moreover,structural comparisons between the position
automaton with its refined versions, namely thefollow automaton, thepartial derivative automaton[4],
or thecontinuation automaton[7] is given in [18, 66]. The partial derivative automaton isknown un-
der different names, such asequation automaton[85] or Antimirov automaton[4]. Further results on
structural properties of these automata, when built from regular expressions in star normal form, can be
found in [17, 20]. A quantitative comparison on the sizes of the the aforementioned NFAs for specific
languages shows that they can differ a lot. The results listed in Table 1 are taken from [66]—here size of
an automaton refers to the sum of the number of states and the number transitions. For comparison rea-

Finite Automaton

Expression Af (·) Apd(·) Apos(·) Acfs(·)

r1 = (a1+ ε)∗ andrn+1 = (rn+sn)
∗

Θ(|rn|2) Θ(|rn| · (log|rn|)2)
with sn = rn[a j 7→ a j+2n−1]

Θ(|rn|)

rn,m = (∑i=1 ai)(∑n
i=1 ai +∑m

i=1 bi)
∗ Θ(|rn,m|) Θ(|rn,m|2) Θ(|rn,m| · (log|rn,m|)2)

rn = ∑n
i=1ai · (b1+b2+ . . .+bn)

∗ Θ(|rn|) Θ(|rn|1/2) Θ(|rn|3/2) Θ(|rn| · (log|rn|)2)

rn = (a1+ ε) · (a2+ ε) · · ·(an+ ε) Θ(|rn|2) Θ(|rn| · (log|rn|)2)

Table 1: Comparing sizes of some automata constructions forspecific languages from the literature—
gray shading marks the smallest automaton. HereAf refers to the follow automaton,Apd to the partial
derivative automaton,Apos to the position automaton, andAcfs to the common follow set automaton.
Moreover, |rn| (|rn,m|, respectively) refers to the alphabetic width of the regular expressionrn (rn,m,
respectively).

sons also thecommon follow set automaton Acfs is listed—since the description ofAcfs is quite involved
we refer the reader to [65]. There, this automaton was used toprove an upper bound on the number of
transitions. The issue on transitions for NFAs, in particular when changing from anε-NFA to an NFA,
is discussed next.

H. Gruber and M. Holzer 33

Despite the mentioned optimizations, except for the commonfollow set automaton, all of these con-
structions share the same problem with respect to the numberof transitions. An easy upper bound on the
number of transitions in the position automaton isO(n2), independent of alphabet size. It is not hard to
prove that the position automaton for the regular expression

rn = (a1+ ε) · (a2+ ε) · · ·(an+ ε)

hasΩ(n2) transitions. It appears to be difficult to avoid such a quadratic blow-up in actual size if we stick
to the NFA model. Also if we transform the expression first into aε-NFA and perform the standard algo-
rithm for removingε-transitions, see, e.g., [61], we obtain no better result. This naturally raises the ques-
tion of comparing the descriptional complexity of NFAs overregular expressions. For about forty years,
it appears to have been considered as an unproven factoid that a quadratic number of transitions will be
inherently necessary in the worst case (cf. [65]). A barely super-linear lower bound ofΩ(nlogn) on the
number of transitions of any NFA accepting the language of the expressionrn was proved [65]. More
interestingly, the main result of that paper is an algorithmtransforming a regular expression of sizen into
an equivalent NFA with at mostO(n · (logn)2) transitions. See Figure 4 on how the algorithm of [65]
saves transitions for regular expressionrn, explained forn= 5. In fact, this upper bound made their lower

0 1 2 3 4 5
a1

a2

a3

a4

a5

a2

a3

a4

a5

a3

a4

a5

a4

a5

a5
0 1 2 3 4 5

a1

a1,a2

a3

a4

a5

a2 a3

a4

a5

a4

a5

a5

Figure 4: Letrn = (a1 + ε) · (a2 + ε) · · · (an + ε) and n = 5. Position automatonApos(r5) (left) and
its refined version the common follow set automatonAcfs(r5) (right) accepting languageL(r5); in both
cases the dead state and all transitions leading to it are notshown. The automatonAcfs(r5) is obtained
as follows: the state 1 ofApos(r5) is split such that the new state gets the outgoing transitions labeled
with a3, a4, anda5, and is finally identified with state 2, which can be done sinceit has the same outgoing
transitions.

bound look reasonable at once! Shortly thereafter, an efficient implementation of that conversion algo-
rithm was presented [52], and the lower bound was improved in[73] to Ω(n · (logn)2/ log logn). Later
work [98] established that any NFA accepting languageL(rn) indeed must have at leastΩ(n · (logn)2)
transitions. So the upper bound ofO(n· (logn)2) from [65] is asymptotically tight:

Theorem 9 Let n≥ 1and r be a regular expression of alphabetic width n. Then O(n·(logn)2) transitions
are sufficient for an NFA to accept L(r). Furthermore, there are infinitely many languages for whichthis
bound is tight.

Notice that the example witnessing the lower bound is over analphabet of growing size. For alphabets
of size two, the upper bound was improved first [33] toO(n· logn), and then even ton·2O(log∗ n), where
log∗ denotes the iterated binary logarithm [98]. Moreover, a lower bound ofΩ(n · (logk)2) on the size
of NFAs with k-letter input alphabet was show in [98], too. Thus the question from [62] whether a
conversion from regular expressions over a binary alphabetinto NFAs of linear size is possible, is almost
settled by now.

34 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

Theorem 10 Let n≥ 1 and r be a regular expression of alphabetic width n over a binary alphabet.
Then n·2O(log∗ n) transitions are sufficient for a NFA to accept L(r).

Next, let us briefly discuss the problem of converting regular expressions to DFAs. Again, this prob-
lem has been studied by many authors. The obvious way to obtain a DFA is by applying the well known
subsetor power-set construction[94]. Due to this construction the obtained DFA may be of exponential
size. A more direct and convenient way is to use Brzozowski’sderivatives of expressions [14]. A tax-
onomy comparing many different conversion algorithms is given in [102]. Regarding the descriptional
complexity, a tight bound of 2n+1 states in terms of alphabetic width is given in [69]. The mentioned
work also establishes a matching lower bound, but for a rather nonstandard definition of size. In terms
of alphabetic width, the best lower bound known to date is from [28]. Together, we have the following
result:

Theorem 11 Let n≥ 1 and r be a regular expression of alphabetic width n over a binary alphabet. Then
2n+1 states are sufficient for a DFA to accept L(r). In contrast, for infinitely many n there are regular
expressions rn of alphabetic width n over a binary alphabet, such that the minimal DFA accepting L(rn)
has at least542

n
2 states.

Recent developments on the conversion of regular expressions to finite automata show an increasing
attention on the study of descriptional complexity in the average case. For instance, in [89] it was shown
that, when choosing the expression uniformly at random, theposition automaton hasΘ(n) transitions
on average, wheren refers to the nodes in the parse tree of the expression. A similar result holds w.r.t.
alphabetic width, for the position automaton as well as for the partial derivative automaton [11]. A closer
look reveals that the number of transitions in the partial derivative automaton is, on average, half the size
of the number of transitions in the position automaton [11],for large alphabet sizes; this also holds for
the number of states [10]. Results on the average size ofε-NFAs built from Thompson’s construction and
variants thereof [66, 99, 100] can be found in [12]—in their investigation the authors consider the follow
automaton before the finalε-removal is done. Let us call this deviceε-follow automaton. It turns out
that theε-follow automaton is superior to the other constructions considered. In particular, the number of
ε-transitions asymptotically tends to zero, i.e., theε-follow automaton approaches the follow-automaton.

Almost all of these results were obtained with the help of theframework of analytic combina-
torics [29]. The idea to use this approach is quite natural. Recall, that the number of regular expressions
of a certain size measured by, e.g., alphabetic width, can becounted by using generating functions—for
more involved measures, one has to use multivariate generating functions. To this end one transforms
a grammar describing regular expressions such as, e.g., thegrammar devised in [50], into a generating
function. Since the grammar describes a combinatorial class, the generating function can be obtained by
thesymbolic methodof [29], and the coefficients of the power series can be estimated to give approxi-
mations of the measure under consideration.

Finally, let us note, that the results on the average size of automata depends on the probability distri-
bution that is used for the average-case analysis. In [90] itwas shown that the number of transitions of
the position automaton is inΘ(n2) under a distribution that is inspired from random binary search trees
(BST-like model). To our knowledge, average case analysis under the BST-like model for other automata
such as the follow automaton or the partial derivative automaton, has not been conducted so far.

4 From Finite Automata to Regular Expressions

There are a few classical algorithms for converting finite automata into equivalent regular expressions,
namely

H. Gruber and M. Holzer 35

1. thealgorithm based on Arden’s lemma[5, 22], and

2. theMcNaughton-Yamada algorithm[83], and

3. thestate elimination technique[15].

These procedures look different at first glance. We briefly explain the main idea of these approaches—
for a detailed description along with an explanation of the differences between the methods, the reader
is referred to [97]. There it is shown, that all of the above approaches are more or less reformulations of
the same underlying algorithmic idea, and they yield (almost) the same regular expressions.3

An algebraic approach to solve the conversion problem from finite automata to regular expressions
is thealgorithm based on Arden’s lemma[5, 22]. It puts forward a set of language equations for a given
finite automaton. Here, theith equation describes the setXi of wordsw such that the given automaton
can go from theith state to an accepting state on readingw. That system of equations can be resolved
by eliminating the indeterminatesXi using a method that resembles Gaussian elimination. But we work
in a an algebraic structure different from a field, so for the elimination of variables, we have to resort to
Arden’s lemma:

Lemma 12 Let Σ be an alphabet, and let K,L ⊆ Σ∗, where K does not contain the empty wordε . Then
the set K∗L is the unique solution to the language equation X= K ·X+L, where X is the indeterminate.

Now let us have a look on how Arden’s lemma can be applied to ourrunning example.

Example 13 From the automaton depicted in Figure 2 one reads off the equations

X0 = a·X1+ ε , Xi = a·Xi+1+b·Xi−1, for 1≤ i < n, and Xn = b·Xn−1.

Substituting the right hand side of Xn in the next to last equation and solving it by Arden’s lemma results in
Xn−1 =(ab)∗b·Xn−2. For short, Xn−1= r1 ·b·Xn−2, where ri is defined as in Example 5. Next this solution
is substituted into the equation for Xn−2. Solving for Xn−2 gives us Xn−2 = r2 ·b·Xn−3. Proceeding in this
way up to the very first equation gives us X0 = a · rn−1 ·b ·X0+ ε . The solution to the indeterminate X0

is according to Arden’s lemma(a · rn−1 · b)∗ · ε = rn, by applying obvious simplifications. Hence, for
instance, in case n= 6 we obtain(a(a(a(a(a(ab)∗b)∗b)∗b)∗b)∗b)∗.

TheMcNaughton-Yamada algorithm[83] maintains a matrix with regular expression entries, where
the rows and columns are the states of the given automaton. The iterative algorithm uses a ranking on
the state set, and proceeds inn rounds, ifn is the number of states in the given automatonA. In the
matrix (a jk) j,k computed in roundi, the entrya jk is an expression describing the nonempty labelsw of
computations ofA starting in j and ending ink, such that none of the intermediate states of the compu-
tation is ranked higher thani. From these expressions, it is not difficult to obtain a regular expression
describingL(A).

Example 14 Running the McNaughton-Yamada algorithm on the automaton depicted in Figure 2 for
n= 3 with the ranking3,2,1,0 starts with the following matrix:

3 2 1 0

3 /0 b /0 /0
2 a /0 b /0
1 /0 a /0 b
0 /0 /0 a /0

3Let us also mention that there is another algebraic algorithm from [22], which is based on the recursive decomposition of
matrices into blocks. Here, the precise relation to the aforementioned algorithms remains to be investigated [97].

36 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

If (a jk) j,k denotes the matrix computed in round i, then the matrix(b jk) j,k for round i+1can be computed
using the rule

b jk = a jk +a ji (aii)
∗aik

After the first round, the entry in the upper left corner of thematrix reads as/0+ /0 /0∗ /0. It is of course
helpful to simplify the intermediate regular expressions,by applying some obvious simplifications. As
noted in [83], we can use in particular

bi j = (aii)
∗ai j and bji = a ji (aii)

∗.

Then the matrix computed in the first round reads as

/0 b /0 /0
a ab b /0
/0 a /0 b
/0 /0 a /0

 ,

the one from the second round is

b(ab)∗a b(ab)∗ b(ab)∗b /0
(ab)∗a (ab)∗ab (ab)∗b /0
a(ab)∗a a(ab)∗ a(ab)∗b b

/0 /0 /0 /0

 ,

and the computation is continued in the same vein. Finally, the entry in the lower-right corner of the ma-
trix reads as(a(a(ab)∗b)∗b)∗a(a(ab)∗b)∗b, and the desired regular expression describing L3 is obtained
by adding the empty word:ε +(a(a(ab)∗b)∗b)∗a(a(ab)∗b)∗b.

A few industrious readers, who have worked out the calculation of the previous example until the
final matrix, may have observed that many of the intermediateexpressions were actually not needed for
the final result. Indeed, in a computer implementation [79, page 8] of the basic McNaughton-Yamada
algorithm during the 1960s, the author notes:“a basic fault of the method is that it generates such cum-
bersome and so numerous expressions initially.”Below we discuss how the generation of unnecessary
sub-expressions can be avoided.

We now come to an algorithm that we describe in greater detail, namely thestate elimination algo-
rithm [15]. This procedure maintains an extended finite automaton, whose transitions are labeled with
regular expressions, rather than alphabet symbols. The computation of an NFAA can be thought of as
reading the input word letter by letter, thereby nondeterministically changing its state with each letter
in a way that is consistent with its transition tableδ . On reading a wordw ∈ Σ, we say that the finite
automatonA and can go on inputw from statej to statek, if there is a computation on inputw takingA
from statej to k. Similarly, for a subsetU of the state setQ of the automatonA, we say thatA can go on
input w from statej through U to statek, if there is a computation on inputw takingA from statej to k,
without going through any state outsideU , except possiblyj andk. With therôlesof j, k, andU fixed as
above, we now define the languageLU

jk as the set of input words on which the automatonA can go fromj
to k throughU . The state elimination scheme fixes an ordering on the state set Q. Starting withU = /0,
regular expressions denoting the languagesL /0

jk for all pairs(j,k) ∈ Q×Q can be easily read off from the
transition table ofA. Now an important observation is that for each statei ∈ Q\U holds

LU∪{i}
jk = LU

jk ∪LU
ji · (LU

ii)
∗ ·LU

ik.

H. Gruber and M. Holzer 37

Letting i run over all states according to the ordering, we can grow thesetU one by one, in each round
computing the intermediate expressionsrU∪{i}

jk for all j andk. The final regular expression is obtained

by utilizing the factL(A) =
⋃

f∈F LQ
q0 f .

As observed already by McNaughton and Yamada [83], we haveawidth(L /0
jk)≤ |Σ|, and each round

increases the alphabetic width of each intermediate sub-expression by a factor of at most 4. Another
convenient trick is to modify the automaton, by adding a new initial states and a new final statet to the
automaton without altering the language, such thatt is the single final state, and there are no transitions
enterings or leavingt. Thens andt need not to be added to the setU . Instead, observe thatL(A) = LU

st,
with U = Q\{s, t}. We also note4 that the computation ofrU

jk needs to be carried out only for thosej
andk not inU . We thus obtain the following bound:

Theorem 15 Let n≥ 1 and A be an n-state NFA over alphabetΣ. Then alphabetic width|Σ| · 4n is
sufficient for a regular expression describing L(A). Such an expression can be constructed by state
elimination.

In contrast, the state elimination algorithm might suddenly yield a much simpler regular expres-
sion once we change the ordering in which the states are eliminated. We illustrate the influence of the
elimination ordering on a small example.

Example 16 Consider our software buffer from Example 5 for n= 6. Let Ln := L(rn). For illustration,
a minimal DFA for L6 is depicted in Figure 5. The two regular expressions

(a(a(a(a(a(ab)∗b)∗b)∗b)∗b)∗b)∗

and

ε +a(ab+ba)∗b+a(ab+ba)∗aa(ab+ba+bb(ab+ba)∗aa+aa(ab+ba)∗bb)∗bb(ab+ba)∗b

both describe the language L6. The first expression is obtained by eliminating the states in the order6,
5, 4, 3, 2, 1, and0, while the second expression is produced by the order0, 2, 4, 6, 1, 5, and3. Note

0 1
a

b
2

a

b
3

a

b
4

a

b
5

a

b
6

a

b

Figure 5: A minimal DFA accepting the languageL6 := L(r6).

that the expressions have very different structure. The first is much shorter, but has star height6, while
the second, and longer expression, has star height2. Indeed, in [81] it was shown that the minimum star
height among all regular expressions denoting Ln equals⌊log(n+1)⌋, so the star height of the second
expression is optimal. The authors suspect that this language family exhibits a trade-off in the sense that
the regular expressions for Ln cannot be simultaneously short and of low star height.

Perhaps the earliest reference mentioning the influence of the elimination ordering is from 1960.
In [83], they proposed to identify the states that “bear the most traffic,” i.e., those vertices in the under-
lying graph with the highest degree, and to eliminate these states at last. Since then, various heuristics
for computing elimination orderings that yield short regular expressions have been proposed in the lit-
erature. In [74], a simple greedy heuristic was devised. It was proposed to assign a measure to each

4The same trick applies for the McNaughton-Yamada algorithm: If the single initial and the single final state are not
eliminated, we can erase the entries of theith row and theith column of the computed matrix in roundi.

38 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

state, and this measure is recomputed each time when a state is eliminated. This measure indicates the
priority in which the states are eliminated. Observe that eliminating a state tends to introduce new arcs
in the digraph underlying the automaton. Thus we can order the states by a measure that is defined as
the number of ingoing arcs times the number of outgoing arcs.In [23] a refined version of the same
idea is proposed, which takes also the lengths of the intermediate expressions into account, instead of
just counting the ingoing and outgoing arcs. Later, a different strategy for accounting the priority of
a state was suggested: as measure function, simply take the number of cycles passing through a state.
There are some automata, where this heuristic outperforms the one we previously described, but on most
random DFAs the performance is comparable. For the heuristic based on counting the number of cycles,
recomputing the measure after the elimination of each statedoes not make a big difference [87]. Another
idea is to look for simple structures in finite automata, suchas bridge states [53]. A bridge state typically
exists if the language under consideration can be written asthe concatenation of two nontrivial regular
languages. Unfortunately, a random DFA almost surely contains no bridge states at all, as the number
of states grows larger [87]. These and other heuristics werecompared empirically on a large set of ran-
dom DFAs as input in [48, 87]. Although there are also advanced strategies for choosing an elimination
ordering, which have provable performance guarantees, thegreedy heuristic from [23] performs best in
most cases.

Beyond heuristics, we can use elimination orderings to prove nontrivial upper bounds on the conver-
sion of DFAs over small alphabets into regular expressions.For the case of binary alphabets, a bound
of O(1.742n) was given in [44], which was then improved toO(1.682n) in [25]. These bounds can be
reached with state elimination by using appropriate elimination orderings. The latest record isO(1.588n),
and the algorithm departs from pure state elimination, see [47].

Theorem 17 Let n≥ 1and A be an n-state DFA over a binary alphabet. Then size O(1.588n) is sufficient
for a regular expression describing L(A).

Similar bounds, but with somewhat larger constants in placeof 1.588, can be derived for larger
alphabets. Moreover, the same holds for NFAs having a comparably low density of transitions.

We sketch how to establish a simpler upper bound than this, which after all giveso(4n) for all alpha-
bets of constant size. To get things going, assume that we want to determineLU

jk, and that the underlying
sub-graph induced byU falls apart into two mutually disconnected sub-graphsA andB. Then on read-
ing a wordw, the automaton goes fromj to k either throughA or throughB, and thusLU

jk = LA
jk ∪LB

jk,
and this is reflected by the regular expressions computed using state elimination. In particular, if the
sub-graph induced byU is an independent set, i.e., a set of isolated vertices, in the underlying graph,
thenLU

jk =
⋃

i∈U L{i}
jk . In this case, the blow-up factor incurred by eliminatingU is linear in|U |, instead

of exponential in|U |. For a DFAA over constant alphabet, the underlying graph has a linear number of
edges. It is known that such graphs have an independent set ofsizecn, wherec is a constant depending
on the number of edges. Suppose thatU is such an independent set. Then we partition the state set
of A into an “easy” partU and a “hard” partQ\U . EliminatingU increases the size of the intermediate
expressions by a factor linear in|U |. Thereafter, eliminating the remaining(1− c)n states may incur
a size blow-up by a factor of 4(1−c)n. Altogether, this gives a regular expression of alphabeticwidth
in |Σ| ·o(4n) for L(A).

Let us again take a look at an example.

Example 18 For illustrating the above said, consider the language

L3 = (a1b1)
∗ ⊔⊔(a2b2)

∗ ⊔⊔(a3b3)
∗,

H. Gruber and M. Holzer 39

000 001

010 011

100 101

110 111

a1

b1

a1

b1

a1

b1

a1

b1

a3

b3

a3

b3

a3

b3

a3

b3

a2 b2 a2 b2

a2 b2 a2 b2

Figure 6: Automaton accepting the languageL3 = (a1b1)
∗ ⊔⊔(a2b2)

∗ ⊔⊔(a3b3)
∗. The underlying graph

is the 3-dimensional cube.

where theinterleaving, or shuffle, of two languages L1 and L2 over alphabetΣ is

L ⊔⊔M = {w∈ Σ∗ | w∈ x ⊔⊔y for some x∈ L and y∈ M },

and the interleaving x⊔⊔y of two words x and y is defined as the set of all words of the formx1y1x2y2 · · ·xnyn,
where x= x1x2 · · ·xn, y= y1y2 · · ·yn with xi ,yi ∈ Σ∗, for n≥ 1 and1≤ i ≤ n. Note that in this definition,
some of the sub-words xi and yi can be empty.

The language L3 can be accepted by a partial DFA over the state set{0,1}3, and whose transition
function is given such that input ai sets the ith bit left of the rightmost bit of the current statefrom 0 to 1,
and input bi resets the ith bit, again counting from right to left, of the current state from1 to 0. All other
transitions are undefined. The initial state is000, which is also the single final state. Notice that the
graph underlying this automaton is the3-dimensional cube, with8 vertices—see Figure 6. Generalizing
this example to d≥ 3, the underlying graph of Ld is the d-dimensional hypercube, with2d many vertices.

It is well known that the d-dimensional hypercube is2-colorable, and thus has an independent set
that contains at least half of the vertices. Eliminating this independent set before the other vertices yields
a regular expression of alphabetic width O(n·2n), which is way better than the trivial bound of O(4n).

We present another application of this idea. Planar finite automata are a special case of finite au-
tomata, which were first studied in [9]. To convert a planar finite automaton into a regular expression,
one can look for a small set of vertices, whose removal leavesto mutually disconnected sub-graphs with
vertex setsA andB. Then again, we haveLU

jk = LA
jk ∪LB

jk, and this is reflected by the regular expres-
sions computed by state elimination. Since the sub-graphs induced byA andB are again planar, one
can apply the trick recursively. Also for this special case,tight upper and lower bounds were found
recently [28, 43, 46].

Theorem 19 Let n≥ 1 and A be an n-state planar DFA or NFA over alphabetΣ. Then size|Σ| ·2O(
√

n)

is sufficient for a regular expression describing L(A). Such an expression can be constructed by state
elimination.

Taking this idea again a step further, one can arrive at a parametrization where the conversion problem
from finite automata to regular expressions is fixed-parameter tractable, in the sense that the problem is

40 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

exponential in that parameter, but not in the size of the input. Recall that we have introduced the concept
of cycle rank of a digraph in the course of discussing the starheight in Section 2. Now for a digraphD,
let Dsym denote the symmetric digraph obtained by replacing each arcin D with a pair of anti-parallel
arcs. Theundirected cycle rankof D is defined as the cycle rank ofDsym. If the conversion problem
from finite automata to regular expressions is parametrizedby the undirected cycle rank of the given
automaton, one can prove the following bound [46]:

Theorem 20 Let n≥ 1 and A be an n-state DFA or NFA over alphabetΣ, whose underlying digraph is of
undirectedcycle rank at most c, for some c≥ 1. Then size|Σ| ·4c ·n is sufficient for a regular expression
describing L(A). Such an expression can be constructed by state elimination.

Observe that fixed-parameter tractability also holds in thesense of computational complexity, since
computing the undirected cycle rank is fixed-parameter tractable, see, e.g., [96]. A natural question is
now whether we can find a similar parametrization in terms of cycle rank, instead of undirected cycle
rank. Well, there are acyclic finite automata that require regular expressions of super-polynomial size [27,
49]. Notice that these automata have cycle rank 0. Hence the best we can hope for is a parametrization
that is quasi-polynomial when the cycle rank is bounded. Onecan indeed obtain such an estimate [47],
but the method is more technical, and no longer uses only state elimination. The upper bound in terms
of directed cycle rank reads as follows:

Theorem 21 Let n≥ 1 and A be an n-state DFA or NFA over alphabetΣ, whose underlying digraph
is of cycle rank at most c, for some c≥ 1. Then size|Σ| ·nO(c·logn) is sufficient for a regular expression
describing L(A).

But in the general case, the exponential blow-up when movingfrom finite automata to regular expres-
sions is inherent, that is, independent of the conversion method. Already in the 1970s the existence of
languagesLn was shown, that admitn-state finite automata, but require regular expressions of alphabetic
width at least 2n−1, for all n≥ 1, see [27]. Their witness language is over an alphabet of growing size,
which is quadratic in the number of states. Their proof technique was tailored to the witness language
involved. The question whether a comparable size blow-up can also occur for constant alphabet size [28]
was settled only a few years ago. The answer was provided around the same time by two independent
groups of researchers, who worked with different proof techniques, and gave different examples [35, 43].

How are such lower bounds established? We shall describe a general method, which has been used
to prove lower bounds on regular expression size in various contexts [34, 43, 45, 55]. In the context of
lower bounds for regular expression size, a more convenientformulation of Lemma 4 is the star height
lemma, which reads as follows:

Lemma 22 Let L be a regular language. Thenawidth(L)≥ 2Ω(height(L)).

That is, the minimum regular expression size of a regular language is at least exponential in the
minimum required star height. But now this looks as if we havereplaced one evil with another, since
determining the star height is eminently difficult in general [67]. But there is an important special case,
in which the star height can be determined more easily: apartial deterministic finite automaton is called
bideterministic, if it has a single final state, and if the NFAobtained by reversing all transitions and
exchanging the roles of initial and final state is again a partial DFA—notice that, by construction, this
NFA in any case accepts the reversed language. A regular languageL is bideterministicif there exists
a bideterministic finite automaton acceptingL. These languages form a proper subclass of the regular
languages. For these languages,McNaughton’s Theorem[80] states that the star height is equal to the
cycle rank of the digraph underlying the minimal partial DFA.

H. Gruber and M. Holzer 41

Example 23 Define Km = {w∈ {a,b}∗ | |w|a ≡ 0 modm} and Ln = {w∈ {a,b}∗ | |w|b ≡ 0 modn}.
For simplicity, assume m≤ n. It is straightforward to construct deterministic finite automata with m
states (with n states, respectively) arranged in a directedcycle describing the languages Km and Ln,
respectively. By applying the standard product construction on these automata, we obtain a deterministic
finite automaton A accepting the language Km∩Ln. The digraph underlying automaton A is the directed

a a a a

b b b

b

b

a

b

a

Figure 7: Drawing of the discrete directed(m×n)-torus in the case wherem= 2 andn= 4, induced by
the automata for the languagesKm andLn.

discrete torus. This digraph can be described as the Cartesian graph product of two directed cycles, see
Figure 7 for illustration. The cycle rank of the(m×n)-torus is equal to m if m= n, and equal to m+1
otherwise [43]. It is easily observed that the automaton A isbideterministic, hence the star height of L(A)
coincides with the cycle rank of its underlying digraph. By invoking the star height lemma, we can derive
a lower bound of2Ω(m) on the minimum regular expression size required for Lm∩Kn.

For the succinctness gap between DFAs and regular expressions over binary alphabets, a lower bound

of 2Ω(
√

n/ logn) was reported in [35], while a parallel effort [43] resulted in an asymptotically tight lower
bound of 2Ω(n). We have the following result:

Theorem 24 Let n≥ 1 and A be an n-state DFA or NFA over alphabetΣ. Then size|Σ| ·2Θ(n) is suffi-
cient and necessary in the worst case for a regular expression describing L(A). This already holds for
alphabets with at least two letters.

Recall that the notation 2Θ(n) implies a lower bound ofcn, for somec> 1. The hidden constant in the
lower bound for binary alphabets is much smaller compared tothe lower bound of 2n−1 previously ob-
tained in [27] for large alphabets. The upper bound from Theorem 17 implies thatc can be at most 1.588
for alphabets of size two. Narrowing down the interval for the best possiblec for various alphabet sizes
is a challenge for further research.

We turn our attention to interesting special cases of regular languages, namely thefinite and the
unary regular languages. Here, the situation is significantly different, as we can harness specialized
techniques which are more powerful than state elimination.Also, finite and unary languages have star
height at most 1, and thus more tailored techniques than the star height lemma are needed to establish
lower bounds. Indeed, the case of finite languages was already addressed in the very first paper on
the descriptional complexity of regular expressions [27].They give a specialized conversion algorithm
for finite languages, which is different from the state elimination algorithm. Their results imply that
every n-state DFA accepting a finite language can be converted into an equivalent regular expression

42 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

of sizenO(logn). The method is quite interesting, since it is not based on state elimination, but rather
on a clever application of the repeated squaring trick. Theyalso provide a lower bound ofnΩ(log logn)

when using an alphabet of sizeO(n2). The challenge of tightening this gap was settled more than thirty
years later in [49], where a lower bound technique from communication complexity is adapted, which
originated in the study of monotone circuit complexity.

Theorem 25 Let n≥ 1 and A be an n-state DFA or NFA over alphabetΣ accepting a finite language.
Then size|Σ| · nΘ(logn) is sufficient and necessary in the worst case for a regular expression describ-
ing L(A). This still holds for constant alphabets with at least two letters.

The case of unary languages was discussed in [32, 78, 101]. Here the main idea is that one can
exploit the simple cycle structure of unary DFAs and of unaryNFAs in Chrobak normal form [21]. In
the case of NFAs, elementary number theory helps to save a logarithmic factor of the quadratic upper
bound [32]. The main results are summarized in the followingtheorem.

Theorem 26 Let n≥ 1 and A be an n-state DFA over a unary alphabet. Then sizeΘ(n) is sufficient and
necessary in the worst case for a regular expression describing L(A). When considering NFAs, the upper
bound changes to O(n2/ logn).

The tight bounds for the conversion of unary NFAs to regular expressions thus remain to be deter-
mined. The conversion problem has been studied also for a fewother special cases of finite automata.
Examples include finite automata whose underlying digraph is an acyclic series-parallel digraph [88],
Thompson digraphs [36], and digraphs induced by Glushkov automata [16].

Acknowledgments. Thanks to Sebastian Jakobi for helpful comments and suggestions on an earlier
draft of this paper.

References

[1] A. Aho, R. Sethi & J. D. Ullman (1986):Compilers: Principles, Techniques, and Tools. Addison Wesley.

[2] A. V. Aho, J. E. Hopcroft & J. D. Ullman (1974):The Design and Analysis of Computer Algorithms.
Addision-Wesley.

[3] A. V. Aho & J. D. Ullman (1972):The Theory of Parsing, Translation and Compiling. I, Prentice-Hall.

[4] V. Antimirov (1996): Partial derivatives of regular expressions and finite automaton constructions. Theo-
retical Computer Science155(2), pp. 291–319, doi:10.1016/0304-3975(95)00182-4.

[5] D. N. Arden (1961):Delayed-Logic and Finite-State Machines. In T. Mott, editor:Proceedings of the1st
and2nd Annual Symposium on Switching Theory and Logical Design, American Institute of Electrical
Engineers, New York, Detroit, Michigan, USA, pp. 133–151, doi:10.1109/FOCS.1961.13.

[6] A. Asperti, C. Sacerdoti Coen & E. Tassi (2010):Regular Expressions, au point. arXiv:1010.2604v1
[cs.FL].

[7] G. Berry & R. Sethi (1986):From Regular Expressions to Deterministic Automata. Theoretical Computer
Science48(3), pp. 117–126, doi:10.1016/0304-3975(86)90088-5.

[8] Ph. Bille & M. Thorup (2010): Regular Expression Matching with Multi-Strings and Intervals. In
M. Charikar, editor:Proceedings of the21st Annual ACM-SIAM Symposium on Discrete Algorithms,
Society for Industrial and Applied Mathematics, Austin, Texas, USA, pp. 1297–1308, doi:10.1137/1.

9781611973075.104.

[9] R. V. Book & A. K. Chandra (1976):Inherently Nonplanar Automata. Acta Informatica6(1), pp. 89–94,
doi:10.1007/BF00263745.

H. Gruber and M. Holzer 43

[10] S. Broda, A. Machiavelo, N. Moreira & R. Reis (2010):On the Average Number of States of Partial Deriva-
tive Automata. In Y. Gao, H. Lu, S. Seki & S. Yu, editors:Proceedings of the14th International Conference
Developments in Language Theory, LNCS6224, Springer, London, Ontario, Canada, pp. 112–123, doi:10.

1007/978-3-642-14455-4_12.

[11] S. Broda, A. Machiavelo, N. Moreira & R. Reis (2012):On the Average Size of Glushkov and Partial Deriva-
tive Automata. International Journal of Foundations of Computer Science23(5), pp. 969–984, doi:10.
1142/S0129054112400400.

[12] S. Broda, A. Machiavelo, N. Moreira & R. Reis (2014):A Hitchhiker’s Guide to Descriptional Complexity
Through Analytic Combinatorics. Theoretical Computer Science528, pp. 85–100, doi:10.1016/j.tcs.
2014.02.013.

[13] A. Brüggemann-Klein (1993):Regular Expressions into Finite Automata. Theoretical Computer Science
120, pp. 197–213, doi:10.1016/0304-3975(93)90287-4.

[14] J. A. Brzozowski (1964):Derivatives of regular expressions. Journal of the ACM11, pp. 481–494, doi:10.
1145/321239.321249.

[15] J. A. Brzozowski & E. J. McCluskey (1963):Signal flow graph techniques for sequential circuit state
diagrams. IEEE Transactions on ComputersC-12(2), pp. 67–76, doi:10.1109/PGEC.1963.263416.

[16] P. Caron & D. Ziadi (2000):Characterization of Glushkov automata. Theoretical Computer Science233(1–
2), pp. 75–90, doi:10.1016/S0304-3975(97)00296-X.

[17] J.-M. Champarnaud, F. Ouardi & D. Ziadi (2007):Normalized Expressions and Finite Automata. Interna-
tional Journal of Algebra and Computation17(1), pp. 141–154, doi:10.1142/S021819670700355X.

[18] J.-M. Champarnaud & D. Ziadi (2002):Canonical derivatives, partial derivatives and finite automaton con-
structions. Theoretical Computer Science289(1), pp. 137–163, doi:10.1016/S0304-3975(01)00267-5.

[19] C.H. Chang & R. Paige (1992):From Regular Expressions to DFA’s Using Compressed NFA’s. In A. Apos-
tolico, M. Chrochemore, Z. Galil & U. Manber, editors:Proceedings of the3rd Annual Symposium on
Combinatorial Pattern Matching, LNCS 644, Springer, Tucson, Arizon, USA, pp. 90–110, doi:10.1007/

3-540-56024-6_8.

[20] H. Chen (2010):Finite Automata of Expressions in the Case of Star Normal Form and One-Unambiguity.
Technical Report ISCAS-LCS-10-11, Chinese Academy of Sciences, Institute of Software, State Key Lab-
oratory of COmputer Science, Beijing 100190 China.

[21] M. Chrobak (1986):Finite automata and unary languages. Theoretical Computer Science47, pp. 149–158,
doi:10.1016/0304-3975(86)90142-8.

[22] J. H. Conway (1971):Regular Algebra and Finite Machines. Chapman and Hall.

[23] M. Delgado & J. Morais (2004):Approximation to the Smallest Regular Expression for a Given Regular
Language. In M. Domaratzki, A. Okhotin, K. Salomaa & S. Yu, editors:Proceedings of the9th Conference
on Implementation and Application of Automata, LNCS 3317, Springer, Kingston, Ontario, Canada, pp.
312–314, doi:10.1007/978-3-540-30500-2_31.

[24] D.-Z. Du & K.-I. Ko (2001): Problem Solving in Automata, Languages, and Complexity. John Wiley &
Sons, doi:10.1002/0471224642.

[25] K. Edwards & G. Farr (2012):Improved Upper Bounds for Planarization and Series-Parallelization of
Degree-Bounded Graphs. The Electronic Journal of Combinatorics19(2), p. #P25.

[26] L. C. Eggan (1963):Transition graphs and the star height of regular events. Michigan Mathematical Journal
10, pp. 385–397, doi:10.1307/mmj/1028998975.

[27] A. Ehrenfeucht & H. P. Zeiger (1976):Complexity Measures for Regular Expressions. Journal of Computer
and System Sciences12(2), pp. 134–146, doi:10.1016/S0022-0000(76)80034-7.

[28] K. Ellul, B. Krawetz, J. Shallit & M.-W. Wang (2004):Regular Expressions: New Results and Open Prob-
lems. Journal of Automata, Languages and Combinatorics9(2/3), pp. 233–256.

44 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

[29] Ph. Flajolet & R. Sedgewick (2009):Analytic Combinatorics. Cambridge University Press, doi:10.1017/

CBO9780511801655.

[30] Y. Gao, K. Salomaa & S. Yu (2011):Transition Complexity of Incomplete DFAs. Fundamenta Informaticae
110(1–4), pp. 143–158.

[31] P. Garcı́a, D. López, J. Ruiz & G. I.́Alvarez (2011):From regular expressions to smaller NFAs. Theoretical
Computer Science412, pp. 5802–5807, doi:10.1016/j.tcs.2011.05.058.

[32] P. Gawrychowski (2011):Chrobak Normal Form Revisited, with Applications. In B. Bouchou-Markhoff,
P. Caron, J.-M. Champarnaud & D. Maurel, editors:Proceedings of the16th Conference on Implemen-
tation and Application of Automata, LNCS 6807, Springer, Blois, France, pp. 142–153, doi:10.1007/

978-3-642-22256-6_14.

[33] V. Geffert (2003):Translation of binary regular expressions into nondeterministic ε-free automata with
O(nlogn) transitions. Journal of Computer and System Sciences66(3), pp. 451–472, doi:10.1016/
S0022-0000(03)00036-9.

[34] W. Gelade (2010):Succintness of regular expressions with interleaving, intersection, and counting. Theo-
retical Computer Science411(31–33), pp. 2987–2998, doi:10.1016/j.tcs.2010.04.036.

[35] W. Gelade & F. Neven (2008):Succinctness of Complement and Intersection of Regular Expressions. In
S. Albers & P. Weil, editors:Proceedings of the25th International Symposium on Theoretical Aspects of
Compter Science, Leibniz International Proceedings in Informatics1, Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl, Germany, Bordeaux, France, pp.325–336.

[36] D. Giammarresi, J.-L. Ponty, D. Wood & D. Ziadi (2004):A Characterization of Thompson Digraphs.
Discrete Applied Mathematics134(1–3), pp. 317–337, doi:10.1016/S0166-218X(03)00299-3.

[37] D. Giammarresi, J.-L. Pony & D. Wood (1999):Thompson Languages. In J. Karhumäki, H. Maurer, G. Păun
& G. Rozenberg, editors:Jewels are Forever: Contributions on Theoretical ComputerScience in Honor of
Arto Salomaa, Springer, pp. 16–24, doi:10.1007/978-3-642-60207-8_2.

[38] V. M. Glushkov (1961):The abstract theory of automata. Russian Mathematics Surveys16, pp. 1–53,
doi:10.1070/RM1961v016n05ABEH004112.

[39] J. Goldstine, M. Kappes, C. M. R. Kintala, H. Leung, A. Malcher & D. Wotschke (2002):Descriptional
Complexity of Machines with Limited Resources. Journal of Universal Computer Science8(2), pp. 193–234,
doi:10.1142/9781848165458_0001.

[40] J. Goldstine, C. M. R. Kintala & D. Wotschke (1990):On Measuring Nondeterminism in Regular Lan-
guages. Information and Computation86(2), pp. 179–194, doi:10.1016/0890-5401(90)90053-K.

[41] J. Goldstine, H. Leung & D. Wotschke (1992):On the relation between amibuity and nondeterminism in
finite automata. Information and Computation100, pp. 261–170, doi:10.1016/0890-5401(92)90014-7.

[42] H. Gruber & St. Gulan (2010):Simplifying Regular Expressions. In A. H. Dediu, H. Fernau & C. Martı́n-
Vide, editors:Proceedings of the4th International Conference Language and Automata Theory and Appli-
cations, LNCS 6031, Springer, Trier, Germany, pp. 285–296, doi:10.1007/978-3-642-13089-2_24.

[43] H. Gruber & M. Holzer (2008):Finite Automata, Digraph Connectivity, and Regular Expression Size. In
L. Aceto, I. Damgaard, L. A. Goldberg, M. M. Halldórsson, A.Ingólfsdóttir & I. Walkuwiewicz, editors:
Proceedings of the35th International Colloquium on Automata, Languages and Propgramming, LNCS
5126, Springer, Reykjavik, Iceland, pp. 39–50, doi:10.1007/978-3-540-70583-3_4.

[44] H. Gruber & M. Holzer (2008):Provably Shorter Regular Expressions from Deterministic Finite Automata
(Extended Abstract). In M. Ito & M. Toyama, editors:Proceedings of the12th International Conference
Developments in Language Theory, LNCS 5257, Springer, Kyoto, Japan, pp. 383–395, doi:10.1007/

978-3-540-85780-8_30.

[45] H. Gruber & M. Holzer (2009): Tight Bounds on the Descriptional Complexity of Regular Expres-
sions. In V. Diekert & D. Nowotka, editors:Proceedings of the13th International Conference Devel-
opments in Language Theory, LNCS 5583, Springer, Stuttgart, Germany, pp. 276–287, doi:10.1007/

978-3-642-02737-6_22.

H. Gruber and M. Holzer 45

[46] H. Gruber & M. Holzer (2013):Provably Shorter Regular Expressions From Finite Automata. International
Journal of Foundations of Computer Science24(8), pp. 1255–1279, doi:10.1142/S0129054113500330.

[47] H. Gruber & M. Holzer (2014):Regular Expressions From Deterministic Finite Automata, Revisited.
IFIG Research Report 1403, Institut für Informatik, Justus-Liebig-Universität Gießen, Arndtstr. 2, D-35392
Gießen, Germany.

[48] H. Gruber, M. Holzer & M. Tautschnig (2009):Short Regular Expressions from Finite Automata:
Empirical Results. In S. Maneth, editor: Proceedings of the14th Conference on Implementation
and Application of Automata, LNCS 5642, Springer, Sydney, Australia, pp. 188–197, doi:10.1007/

978-3-642-02979-0_22.

[49] H. Gruber & J. Johannsen (2008):Tight Bounds on the Descriptional Complexity of Regular Expres-
sions. In R. Amadio, editor: Proceedings of the11th Conference Foundations of Software Science
and Computational Structures, LNCS 4962, Springer, Budapest, Hungary, pp. 273–286, doi:10.1007/

978-3-540-78499-9_20.

[50] H. Gruber, J. Lee & J. Shallit (2012):Enumerating regular expressions and their languages.
arXiv:1204.4982 [cs.FL].

[51] St. Gulan & H. Fernau (2008):An Optimal Comstruction of Finite Automata From Regular Expressions. In
R. Hariharan, M. Mukund & V. Vinay, editors:Proceedings of the28th Conference on Foundations of Soft-
ware Technology and Theoretical Compter Science, Dagstuhl Seminar Proceedings08002, Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Bangalore, India,
pp. 211–222.

[52] Ch. Hagenah & A. Muscholl (2000):Computingε-free NFA from regular expressions in O(nlog2(n)) time.
RAIRO–Informatique théorique et Applications / Theoretical Informatics and Applications34(5), pp. 257–
277, doi:10.1051/ita:2000116.

[53] Y.-S. Hand & D. Wood (2007):Obtaining shorter regular expressions from finite-state automata. Theoreti-
cal Computer Science370(1–3), pp. 110–120, doi:10.1016/j.tcs.2006.09.025.

[54] K. Hashiguchi (1988):Algorithms for determining the relative star height and star height. Information and
Computation78(2), pp. 124–169, doi:10.1016/0890-5401(88)90033-8.

[55] M. Holzer & S. Jakobi (2011):Chop Operations and Expressions: Descriptional Complexity Con-
siderations. In G. Mauri & A. Leporati, editors: Proceedings of the15th International Conference
Developments in Language Theory, LNCS 6795, Springer, Milan, Italy, pp. 264–275, doi:10.1007/

978-3-642-22321-1_23.

[56] M. Holzer & M. Kutrib (2009):Nondeterministic Finite Automata—Recent Results on the Descriptional and
Computational Complexity. International Journal of Foundations of Computer Science20(4), pp. 563–580,
doi:10.1142/S0129054109006747.

[57] M. Holzer & M. Kutrib (2010):The Complexity of Regular(-Like) Expressions. In Y. Gao, H. Lu, S. Seki &
S. Yu, editors:Proceedings of the14th International Conference Developments in Language Theory, LNCS
6224, Springer, London, Ontario, Canada, pp. 16–30, doi:10.1007/978-3-642-14455-4_3.

[58] M. Holzer & M. Kutrib (2010): Descriptional Complexity—An Introductory Survey. In C. Martı́n-
Vide, editor: Scientific Applications of Language Methods, World Scientific, pp. 1–58, doi:10.1142/
9781848165458_0001.

[59] M. Holzer & M. Kutrib (2010): Descriptional Complexity of (Un)ambiguous Finite State Machines and
Pushdown Automata. In A. Kucera & I. Potapov, editors:Proceedings of the4th Workshop on Reachability
Problems, LNCS6227, Springer, Brno, Czech Republic, pp. 1–23, doi:10.1007/978-3-642-15349-5_1.

[60] M. Holzer & M. Kutrib (2011):Descriptional and Computational Complexity of Finite Automata—A Sur-
vey. Information and Computation209(3), pp. 456–470, doi:10.1016/j.ic.2010.11.013.

[61] J. E. Hopcroft & J. D. Ullman (1979):Introduction to Automata Theory, Languages and Computation.
Addison-Wesley.

46 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

[62] J. Hromkovič (2002):Descriptional Complexity of Finite Automata: Concepts andOpen Problems. Journal
of Automata, Languages and Combinatorics7(4), pp. 519–531.

[63] J. Hromkovič, J. Karhumäki, H. Klauck, G. Schnitger &S. Seibert (2002):Communication complexity
method for measuring nondeterminism in finite automata. Information and Computation172(2), pp. 202–
217, doi:10.1006/inco.2001.3069.

[64] J. Hromkovič & G. Schnitger (2005):NFAs with and withoutε-transitions. In L. Caires, G. F. Italiano,
L. Monteiro, C. Palamidessi & M. Yung, editors:Proceedings of the32nd International Colloquium Au-
tomata, Languages and Programming, LNCS3580, Springer, Lisbon, Portugal, pp. 385–396, doi:10.1007/

11523468_32.

[65] J. Hromkovič, S. Seibert & Th. Wilke (2001):Translating Regular Expressions into Smallε-Free Automata.
Journal of Computer and System Sciences62(4), pp. 565–588, doi:10.1006/jcss.2001.1748.

[66] L. Ilie & S. Yu (2003):Follow automata. Information and Computation186(1), pp. 140–162, doi:10.1016/
S0890-5401(03)00090-7.

[67] D. Kirsten (2005): Distance desert automata and the star height problem. RAIRO–Informatique
théorique et Applications / Theoretical Informatics and Applications39(3), pp. 455–509, doi:10.1051/
ita:2005027.

[68] S. C. Kleene (1956):Representation of events in nerve nets and finite automata. In C. E. Shannon &
J. McCarthy, editors:Automata studies, Annals of mathematics studies34, Princeton University Press, pp.
2–42.

[69] E. Leiss (1981): The complexity of restricted regular expressions and the synthesis problem for
finite automata. Journal of Computer and System Sciences23(3), pp. 348–254, doi:10.1016/
0022-0000(81)90070-2.

[70] H. Leung (1998):On Finite Automata with Limited Nondeterminism. Acta Informatica35(7), pp. 595–624,
doi:10.1007/s002360050133.

[71] H. Leung (1998):Separating exponentially ambiguous finite automata from polynomially ambiguous finite
automata. SIAM Journal on Computing27(4), pp. 1073–1082, doi:10.1137/S0097539793252092.

[72] H. Leung (2005):Descriptional complexity of NFA of different ambiguity. International Journal of Founda-
tions of Computer Science16(5), pp. 975–984, doi:10.1142/S0129054105003418.

[73] Y. Lifshits (2003):A lower bound on the size ofε-free NFA corresponding to a regular expression. Infor-
mation Processing Letters85(6), pp. 293–299, doi:10.1016/S0020-0190(02)00436-2.

[74] S. Lombardy, Y. Régis-Gianas & J. Sakarovitch (2004):Introducing VAUCANSON. Theoretical Computer
Science328(1–2), pp. 77–96, doi:10.1016/j.tcs.2004.07.007.

[75] E. Maia, N. Moreira & R. Reis (2013):Incomplete Transition Complexity of Basic Operations on Finite
Languages. In S. Konstantinidis, editor:Proceedings of the18th International Conference on Implemen-
tation and Application of Automata, LNCS 7982, Springer, Halifax, Nova Scotia, Canada, pp. 349–356,
doi:10.1007/978-3-642-39274-0_31.

[76] E. Maia, N. Moreira & R. Reis (2013):Incomplete Transition Complexity of Some Basic Operations. In
P. v. Emde Boas, F. C. A. Groen, G. F. Italiano, J. R. Nawrocki &H. Sack, editors:Proceedings of the
39th International Conference on Current Trends in Theory andPractice of Computer Science, LNCS7741,
Springer,Špindlerøuv Mlýn, Czech Republic, pp. 319–331.

[77] Z. Manna (1974):Mathematical Theory of Computation. McGraw-Hill.

[78] A. Martinez (2002):Efficient Computation of Regular Expressions from Unary NFAs. In J. Dassow, M. Hoe-
berechts, H. Jürgensen & D. Wotschke, editors:Pre-Proceedings of the4th Workshop on Descriptional
Complexity of Formal Systems, Report No.586, Department of Computer Science, The University of West-
ern Ontario, Canada, London, Ontario, Canada, pp. 216–230.

[79] H. V. McIntosh (1968):REEX: A CONVERT Program to Realize the McNaughton-Yamada Analysis Algo-
rithm. Technical Report AIM-153, MIT Artificial Intelligence Laboratory.

H. Gruber and M. Holzer 47

[80] R. McNaughton (1967):The loop complexity of pure-group events. Information and Control11(1–2), pp.
167–176, doi:10.1016/S0019-9958(67)90481-0.

[81] R. McNaughton (1969):The loop complexity of regular events. Information Sciences1, pp. 305–328,
doi:10.1016/S0020-0255(69)80016-2.

[82] R. McNaughton (1982):Elementary computability, formal languages, and automata. Prentice-Hall.

[83] Robert McNaughton & Hisao Yamada (1960):Regular expressions and state graphs for automata. IRE
Transactions on Electronic ComputersEC-9(1), pp. 39–47, doi:10.1109/TEC.1960.5221603.

[84] A. R. Meyer & M. J. Fischer (1971):Economy of description by automata, grammars, and formal sys-
tems. In: Proceedings of the12th Annual Symposium on Switching and Automata Theory, IEEE Computer
Society Press, pp. 188–191, doi:10.1109/T-C.1971.223108.

[85] B. G. Mirkin (1966):An Algorithm for Constructing a Base in a Language of RegularExpressions. Engi-
neering Cybernetics5, pp. 110–116.

[86] F. R. Moore (1971):On the bounds for state-set size in the proofs of equivalencebetween deterministic,
nondeterministic, and two-way finite automata. IEEE Transaction on ComputingC-20, pp. 1211–1219,
doi:10.1109/T-C.1971.223108.

[87] N. Moreira, D. Nabais & R. Reis (2010):State Elimination Ordering Strategies: Some ExperimentalRe-
sults. In I. McQuillan & G. Pighizzini, editors:Proceedings of the12th Workshop on Descriptional Com-
plexity of Formal Systems, EPTCS31, Saskatoon, Saskatchewan, Canada, pp. 139–148.

[88] N. Moreira & R. Reis (2009):Series-Parallel Automata and Short Regular Expressions. Fundamenta Infor-
maticae91(3–4), pp. 611–629.

[89] C. Nicaud (2009):On the Average Size of Glushov’s Automaton. In A. H. Dediu, A. M. Ionescu & C. Martı́n-
Vide, editors:Proceedings of the3rd International Conference Language and Automata Theory and Appli-
cations, LNCS 5457, Springer, Tarragona, Spain, pp. 626–637, doi:10.1007/978-3-642-00982-2_53.

[90] C. Nicaud, C. Pivoteau & B. Razet (2010):Average Analysis of Glushkov Automata under a BST-Like
Model. In K. Lodaya & M. Mahajan, editors:Proceedings of the30th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, Leibniz International Proceedings
in Informatics8, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, Chennai, India,
pp. 388–399.

[91] G. Ott & N. H. Feinstein (1961):Design of Sequential Machines From Their Regular Expressions. Journal
of the ACM8(4), pp. 585–600, doi:10.1145/321088.321097.

[92] A. Palioudakis, K. Salomaa & S. Akl (2013):Comparisons Between Measures of Nondeterminism on Finite
Automata. In H. Jürgensen & R. Reis, editors:Proceedings of the15th International Workshop Descriptional
Complexity of Formal Systems, LNCS 8031, Springer, London, Ontario, Canada, pp. 229–240, doi:10.

1007/978-3-642-39310-5_21.

[93] A. Palioudakis, K. Salomaa & S. G. Akl (2012):State Complexity and Limited Nondeterminism.
In M. Kutrib, N. Moreira & R. Reis, editors:Proceedings of the14th Workshop on Descriptional
Complexity of Formal Systems, LNCS 7386, Springer, Braga, Portugal, pp. 252–265, doi:10.1007/

978-3-642-31623-4_20.

[94] M. O. Rabin & D. Scott (1959):Finite Automata and Their Decision Problems. IBM Journal of Research
and Development3, pp. 114–125, doi:10.1147/rd.32.0114.

[95] B. Ravikumar & O. H. Ibarra (1989):Relating the Type of Ambiguity of Finite Automata to the Succinctness
of Their Representation. SIAM Journal on Computing18(6), pp. 1263–1282, doi:10.1137/0218083.

[96] F. Reidl, P. Rossmanith, F. Sánchez Villaamil & S. Sikdar (2014):A Faster Parameterized Algorithm for
Treedepth. arXiv:1401.7540v3 [cs.DS].

[97] J. Sakarovitch (2009):Elements of Automata Theory. Cambridge University Press, doi:10.1017/

CBO9781139195218.

48 From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity

[98] G. Schnitger (2006):Regular Expressions and NFAs Withoutε-Transitions. In B. Durand & W. Thomas,
editors: Proceedings of the23th International Symposium on Theoretical Aspects of Computer Science,
LNCS3884, Springer, Marseille, France, pp. 432–443.

[99] S. Sippu & E. Soisalon-Soininen (1988):Parsing Theory, Volume I: Languages and Parsing. EATCS
Monographs on Theoretical Computer Science15, Springer, doi:10.1007/978-3-642-61345-6.

[100] K. Thompson (1968):Regular Expression Search Algorithm. Communications of the ACM11(6), pp.
419–422, doi:10.1145/363347.363387.

[101] A. W. To (2009):Unary finite automata vs. arithmetic progressions. Information Processing Letters109(17),
pp. 1010–1014, doi:10.1016/j.ipl.2009.06.005.

[102] B. W. Watson (1995):Taxonomies and Toolkits of Regular Language Algorithms. PhD thesis, Eindhoven
University of Technology, Department of Mathematics and Computer Science, Den Dolech 2, 5612 AZ
Eindhoven, The Netherlands.

[103] S. Yu (2001):State complexity of regular languages. Journal of Automata, Languages and Combinatorics
6, pp. 221–234.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 49–54, doi:10.4204/EPTCS.151.3

On Varieties of Automata Enriched
with an Algebraic Structure

(Extended Abstract)

Ondřej Klı́ma
Department of Mathematics and Statistics,

Masaryk University,
Brno, Czech Republic∗

klima@math.muni.cz

Eilenberg correspondence, based on the concept of syntactic monoids, relates varieties of regular lan-
guages with pseudovarieties of finite monoids. Various modifications of this correspondence related
more general classes of regular languages with classes of more complex algebraic objects. Such gen-
eralized varieties also have natural counterparts formed by classes of finite automata equipped with
a certain additional algebraic structure. In this survey, we overview several variants of such varieties
of enriched automata.

Algebraic theory of regular languages is a well establishedfield in the theory of formal languages.
A basic ambition of this theory is to obtain effective characterizations of various natural classes of reg-
ular languages. The fundamental concept is the notion ofsyntactic monoidof a given regular language
L, which is the smallest possible monoid recognizing the languageL, and which is isomorphic to the
transition monoid of the minimal automaton ofL. First examples of natural classes of languages, which
were effectively characterized by properties of syntacticmonoids, were the star-free languages [34] hav-
ing aperiodic syntactic monoids and the piecewise testablelanguages [36] havingJ -trivial syntactic
monoids. A general framework for discovering relationships between properties of regular languages
and properties of monoids was provided by Eilenberg [9], whoestablished a one-to-one correspondence
between so-calledvarietiesof regular languages andpseudovarietiesof finite monoids. Here varieties
of languages are classes closed under taking quotients, preimages under morphisms and Boolean oper-
ations. On the other hand pseudovarieties of finite monoids are classes closed under taking finite direct
products, submonoids and morphic images. Thus a membershipproblem for a given variety of regu-
lar languages can be translated to a membership problem for the corresponding pseudovariety of finite
monoids. An advantage of this translation is that pseudovarieties of monoids are exactly classes of finite
monoids which have equational description by pseudoidentities [32].

The goal of this contribution is not to overview all notions and applications of the algebraic theory
of regular languages. For thorough introduction to that theory we refer to [25]. Other overviews are for
example [26] and [44]. A more detailed information concerning the theory of pseudovarieties of finite
monoids can be found in the survey [2] or in the books [1] and [33].

We should mention that many interesting classes of regular languages, which are studied by the
algebraic methods, come from logic. It is well known that regular languages which are definable in the
first order logic of finite linear orderings are exactly star-free languages [23]. Within the class of star-
free languages, there were defined the so-calleddot-depth hierarchy[7] and closely relatedStraubing–
Thérien hierarchy[38, 41]. In [42] it was shown that a language belongs to thenth level of the latter

∗Supported by the project “Algebraic Methods in Quantum Logic” by ESF, No. CZ.1.07/2.3.00/20.0051.

50 On Varieties of Automata Enriched with an Algebraic Structure

hierarchy if and only if it is definable by a formula withn alternations of quantifiers. Moreover, the class
of star-free languages is exactly the class of all languagesdefinable by linear temporal logic [15]. For a
recent survey on the classes of languages given by fragmentsof first-order logic we refer to [8] and [40].
Some recent results can be found for example in [19] and [29].

Since not every natural class of languages is closed under all mentioned operations, various gener-
alizations of the notion of varieties of languages were studied. One possible generalization is the notion
of positive varietiesof languages introduced in [24] for which an equational characterization was given
in [27]; the positive varieties need not be closed under complementation. In the same direction one can
consider varieties which need not be closed under taking unions (see [30]). We shall return to these con-
cepts later. Another possibility is to weaken the closure property for preimages under morphisms. In this
way one can considerC -varieties of regular languages which were introduced in [39] and whose equa-
tional description was given in [20]. Here we require the presence of preimages under morphisms only
for morphisms from a certain special classC . An important example is the class formed by morphisms
which map letters to letters; such varieties of languages (so-calledliteral varieties)and the correspond-
ing pseudovarieties of monoids with marked generators (so-calledmonoid-generator pairs) were studied
in [12]. Classes of languages with a complete absence of the preimages requirement were studied in [13].

In our contribution we would like to consider varieties of automata as another natural counterpart to
varieties of regular languages. We should emphasize that the considered automata are deterministic finite
automata. Characterizing of varieties of languages by properties of minimal automata is quite natural,
since usually we assume that an input of a membership problemfor a fixed variety of languages is given
exactly by a minimal deterministic automaton. For example,if we want to effectively test whether an
input language is piecewise testable, we do not want to compute its syntactic monoid which could be
quite large1. Instead of that we consider a condition which must be satisfied by its minimal automaton
and which was given in the original Simon’s paper [36]. This characterization was used in [37] and [43]
to obtain a polynomial and quadratic algorithm, respectively, for testing piecewise testability. In [18]
Simon’s condition was reformulated and the so-calledlocally confluent acyclic automata2 were defined.
Therefore we are looking for a general definition of a termvariety of automata, to obtain a setting in
which we could talk, for example, about the variety of locally confluent acyclic automata.

Let us consider a minimal automatonAL of a regular languageL. A first easy observation is the
following: if we change the initial state inAL then the resulting automaton recognizes a left quotient of
the original languageL. Similarly but not trivially, if we change the final states, the resulting automaton
recognizes a Boolean combination of right quotients of the original languageL. Since we are interested in
characterizations of varieties of languages, the choice ofan initial state and final states can be left free and
we can consider only underlying labeled graphs3 which will form our varieties of automata. Furthermore,
since varieties of languages are closed under taking unionsand intersections, we need to include direct
products of automata in our varieties of automata. Considering a preimage of a given regular languageL
under some morphismf , one can construct an automaton from the minimal automatonAL of L, so-called
f -subautomaton, where states form a subset and a new action by each lettera is the same as the action
by the word f (a) in the original automaton. Since these constructions generate new automata, namely
products of automata andf -subautomata, and since we are mainly interested in minimalautomata, we
also include into our variety of automata all morphic imagesof existing automata. Finally, from technical
reasons we add disjoint unions of automata. Thus a variety ofautomata will be a class of automata closed

1More than(n−1)! wheren is the number of states of the minimal automaton, see [5] for precise bounds.
2These automata recognize exactly piecewise testable languages and paper [18] contains a new (purely automata based)

proof which does not use Simon’s original result.
3Such automata without initial and final states are sometimescalled semiautomata in the literature.

Ondřej Klı́ma 51

under taking products, disjoint unions, morphic images andf -subautomata. And of course, when we are
limited to morphisms from a certain classC , we can even talk aboutC -varieties of automata. Then one
can prove an Eilenberg type correspondence: varieties of languages correspond to varieties of automata.
This concept occurred in [10] in the case of literal morphisms and in [6] under the name varieties of
C -actions. In particular, one can consider the variety of allcounter-free automata [23] characterizing
star-free languages or the variety of all locally confluent acyclic automata.

Now we enrich automata by an algebraic structure. If we startwith a deterministic automaton where
all states are reachable from the initial one then we can assign to each stateq the setLq consisting of all
words which are acceptable if the computation starts from this state. SometimesLq is called thefutureof
the stateq. It is known [4] that identifying the states with the same future produces a minimal automaton.
Thus a stateq in the minimal automatonAL can be identified with its futureLq and therefore it is a subset
of A∗. Then such states are ordered by inclusion, which means thateach minimal automaton is implicitly
equipped with a partial order. Moreover, final states4 form an upward closed subset. This leads to a
notion of partially ordered automata where actions by letters are isotone mappings and languages are
recognized by final states which form an upward closed subset.

Furthermore, varieties, or more generallyC -varieties, of partially ordered automata5 can be defined
once again as classes which are closed under taking products, disjoint unions, morphic images andf -
subautomata. Now one can prove that these varieties of partially ordered automata correspond to positive
varieties of languages. A well known example is the level 1/2 in the Straubing-Thérien hierarchy of star-
free languages. The effective characterization of the level 1/2 can be found in [3]. This characterization
can be equivalently stated as validity of the identity 1≤ x in the syntactic ordered monoid of a lan-
guage [28]. Therefore, the corresponding variety of partially ordered automata is formed by automata
where actions are increasing mappings (for a stateq and a lettera we haveq·a≥ q).

Now we return to the representation of the minimal automatonAL of a regular languageL where a
stateq= Lq is a subset ofA∗ and we consider all possible intersections of states. Sincewe have only
finitely many states inAL, we obtain finitely many intersections. The resulting meet-semilatticeSL can
be naturally equipped with actions by letters: applying a letter a to an intersection

⋂
i∈I qi , i.e. a state

in SL, is the intersection of all statesqi · a. If we use as final states those which contain the empty
word, then final states form a principal filter in the semilattice SL. This idea leads to a notion of a
meet automatonwhich was introduced in [16]. Here the corresponding varieties of languages are not
closed under taking unions, since in the product of automatathe corresponding set of final states is not a
principal filter. Therefore the corresponding classes of regular languages are conjunctive varieties which
were defined in [30]. We have already mentioned that the syntactic (ordered) monoid of a language
is isomorphic to the transition (ordered) monoid of the (ordered) minimal automaton of the language.
Analogous statement is valid in the case of meet automata. Inparticular, thecanonical meet automaton
SL of a languageL is a minimal meet automaton of a given language. Moreover, its transition structure
is asyntactic semiringwhich is a minimal semiring recognizing the language and which can be defined
analogously to a syntactic monoid (see [30]). In the paper [16] there are mentioned some examples of
C -varieties of languages which can be characterized via varieties of meet automata. There is also a close
connection between the notion of a canonical meet automatonand a notion of auniversal automaton
which contains all minimal non-deterministic automata of agiven regular language (see [31] and [22]).

One can make one step further. As we add intersections to the representation of minimal automaton,

4A state is final if and only if it contains the empty word.
5There exist several papers which use the term ordered (deterministic, non-deterministic or two-way) automaton in a differ-

ent meaning, e.g. in [35] it is required that an action by a letter is increasing but need not be isotone.

52 On Varieties of Automata Enriched with an Algebraic Structure

we can try to add also unions. In other words, we consider the sublattice of the lattice 2A
∗

generated
by AL. Since this lattice is distributive, we define an abstract notion of a distributive lattice automata
(DL-automata) which are automata enriched by a distributive lattice structure, where both operations are
compatible with actions by letters. Note that this model differs from lattice automata defined in [21].
We want to define varieties ofDL-automata as a natural counterpart of generalized varieties of languages
which are not required to be closed under taking any of Boolean operations. Indeed, such classes natu-
rally occur in the theory of formal languages: for example, many classes defined by models of quantum
automata are of this kind. The goal is a characterization of such classes. Note that it is also possible
to extend this principle, consider the Boolean subalgebra of 2A∗

generated byAL and define a notion
of a BA-automaton. Before developing this theory we prefer to clarify all aspects of the theory ofDL-
automata, since there are some difficulties. For example, inthe case of meet automata, since actions by
letters are morphism with respect to the meet operation, actions by sets of letters are also morphisms
with respect to this operation. In the case ofDL-automata, such an extension is not valid.

At the end we could mention that one can extend the construction in at least two natural directions.
First, the theory of tree languages is a field where many fundamental ideas from the theory of determin-
istic automata were successfully generalized. Another recent notion of biautomata (see [17] and [14])
is based on considering both-sided quotients instead of left quotients only. In both cases one can try to
apply the previous constructions and consider varieties ofautomata (enriched by an algebraic structure).
Some papers in this direction already exist [11].

Acknowledgement

I would like to express my gratitude to my colleagues Michal Kunc and Libor Polák for our numerous
interesting discussions on the topic.

References

[1] J. Almeida (1994):Finite semigroups and universal algebra. World Scientific, Singapore, doi:10.1142/
2481.

[2] J. Almeida (2005):Profinite semigroups and applications. In V.B. Kudryavtsev, I.G. Rosenberg & M. Gold-
stein, editors:Structural theory of automata, semigroups, and universal algebra, NATO Science Series II:
Mathematics, Physics and Chemistry207, Springer, pp. 1–45, doi:10.1007/1-4020-3817-8_1.

[3] M. Arfi (1987): Polynomial Operations on Rational Languages. In F.-J. Brandenburg, G. Vidal-Naquet &
M. Wirsing, editors:STACS, Lecture Notes in Computer Science247, Springer, pp. 198–206, doi:10.1007/

BFb0039607.

[4] J. Brzozowski (1962):Canonical regular expressions and minimal state graphs fordefinite events. In: Math-
ematical theory of Automata, Symposia series12, Research Institute, Brooklyn, pp. 529–561.

[5] J. Brzozowski & B. Li (2013):Syntactic Complexity of R- and J-Trivial Regular Languages. In H. Jürgensen
& R. Reis, editors:DCFS, Lecture Notes in Computer Science8031, Springer, pp. 160–171, doi:10.1007/

978-3-642-39310-5_16.

[6] L. Chaubard, J.-́E. Pin & H. Straubing (2006):Actions, wreath products of C-varieties and concatenation
product. Theor. Comput. Sci.356(1-2), pp. 73–89, doi:10.1016/j.tcs.2006.01.039.

[7] R. Cohen & J. Brzozowski (1971):Dot-Depth of Star-Free Events. J. Comput. Syst. Sci.5(1), pp. 1–16,
doi:10.1016/S0022-0000(71)80003-X.

[8] V. Diekert, P. Gastin & M. Kufleitner (2008):A Survey on Small Fragments of First-Order Logic over Finite
Words. Int. J. Found. Comput. Sci.19(3), pp. 513–548, doi:10.1142/S0129054108005802.

Ondřej Klı́ma 53

[9] S. Eilenberg (1976):Automata, Languages and Machines, vol. B.Academic Press.

[10] Z. Ésik & M. Ito (2003):Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Au-
tomata. Acta Cybern.16(1), pp. 1–28. Available athttp://www.inf.u-szeged.hu/actacybernetica/
edb/vol16n1/Esik_2003_ActaCybernetica.xml.

[11] Z. Ésik & S. Iván (2008):Some Varieties of Finite Tree Automata Related to Restricted Temporal Log-
ics. Fundam. Inform.82(1-2), pp. 79–103. Available athttp://iospress.metapress.com/content/
4216mrh7r6477172/.

[12] Z. Ésik & K.G. Larsen (2003):Regular languages definable by Lindström quantifiers. RAIRO - Theoretical
Informatics and Applications37(3), pp. 179–241, doi:10.1051/ita:2003017.

[13] M. Gehrke, S. Grigorieff & J.-́E. Pin (2008): Duality and Equational Theory of Regular Languages.
In L. Aceto, I. Damgård, L.A. Goldberg, M.M. Halldórsson,A. Ingólfsdóttir & I. Walukiewicz, ed-
itors: ICALP (2), Lecture Notes in Computer Science5126, Springer, pp. 246–257, doi:10.1007/

978-3-540-70583-3_21.

[14] M. Holzer & S. Jakobi (2013):Minimization and characterizations for biautomata. In S. Bensch, F. Drewes,
R. Freund & F. Otto, editors:NCMA, 294,Österreichische Computer Gesellschaft, pp. 179–193.

[15] H. Kamp (1968):Tense logic and theory of linear orders. Ph.D. thesis, University of California.

[16] O. Klı́ma & L. Polák (2008):On varieties of meet automata. Theor. Comput. Sci.407(1-3), pp. 278–289,
doi:10.1016/j.tcs.2008.06.005.

[17] O. Klı́ma & L. Polák (2012):On biautomata. RAIRO - Theor. Inf. and Applic.46(4), pp. 573–592, doi:10.
1051/ita/2012014.

[18] O. Klı́ma & L. Polák (2013):Alternative Automata Characterization of Piecewise Testable Languages. In
M.-P. Béal & O. Carton, editors:Developments in Language Theory, Lecture Notes in Computer Science
7907, Springer, pp. 289–300, doi:10.1007/978-3-642-38771-5_26.

[19] M. Kufleitner & P. Weil (2012):On logical hierarchies within FO2-definable languages. Logical Methods
in Computer Science8(3), doi:10.2168/LMCS-8(3:11)2012.

[20] M. Kunc (2003):Equational description of pseudovarieties of homomorphisms. RAIRO - Theoretical Infor-
matics and Applications37(3), pp. 243–254, doi:10.1051/ita:2003018.

[21] O. Kupferman & Y. Lustig (2007):Lattice Automata. In B. Cook & A. Podelski, editors:VMCAI , Lecture
Notes in Computer Science4349, Springer, pp. 199–213, doi:10.1007/978-3-540-69738-1_14.

[22] S. Lombardy & J. Sakarovitch (2008):The universal automaton. In J. Flum, E. Grädel & T. Wilke, editors:
Logic and Automata, Texts in Logic and Games2, Amsterdam University Press, pp. 457–504.

[23] R. McNaughton & S. Papert (1971):Counter-Free Automata. M.I.T. Press.

[24] J.-É. Pin (1995):A Variety Theorem Without Complementation. Russian Mathematics39, pp. 80–90. Avail-
able athttp://www.liafa.jussieu.fr/~jep/publications.html.

[25] J.-É. Pin (1997): Syntactic semigroups. In G. Rozenberg & A. Salomaa, editors:Handbook of Formal
Languages, 1, Springer, pp. 679–746, doi:10.1007/978-3-642-59136-5_10. Available atwww.liafa.
jussieu.fr/~jep/publications.html.

[26] J.-É. Pin (2012):Equational Descriptions of Languages. Int. J. Found. Comput. Sci.23(6), pp. 1227–1240,
doi:10.1142/S0129054112400497.

[27] J.-É. Pin & P. Weil (1996):A Reiterman theorem for pseudovarieties of finite first-order structures. Algebra
Universalis35(4), pp. 577–595, doi:10.1007/BF01243597.

[28] J.-É. Pin & P. Weil (1997):Ponynominal Closure and Unambiguous Product. Theory Comput. Syst.30(4),
pp. 383–422, doi:10.1007/BF02679467.

[29] T. Place & M. Zeitoun (2014):Separating Regular Languages with First-Order Logic. CoRRabs/1402.3277.
Available athttp://arxiv.org/abs/1402.3277.

54 On Varieties of Automata Enriched with an Algebraic Structure

[30] L. Polák (2004):A classification of rational languages by semilattice-ordered monoids. Archivum Mathe-
maticum40(4), pp. 395–406. Available athttp://emis.muni.cz/journals/AM/04-4/index.html.

[31] L. Polák (2005):Minimalizations of NFA using the universal automaton. Int. J. Found. Comput. Sci.16(5),
pp. 999–1010, doi:10.1142/S0129054105003431.

[32] J. Reiterman (1982):The Birkhoff theorem for finite algebras. Algebra Universalis14, pp. 1–10, doi:10.
1007/BF02483902.

[33] J. Rhodes & B. Steinberg (2009):The q-theory of Finite Semigroups. Monographs in Mathematics, Springer,
doi:10.1007/b104443.

[34] M. P. Schützenberger (1965):On Finite Monoids Having Only Trivial Subgroups. Information and Control
8(2), pp. 190–194, doi:10.1016/S0019-9958(65)90108-7.

[35] T. Schwentick, D. Thérien & H. Vollmer (2001):Partially-Ordered Two-Way Automata: A New Characteri-
zation of DA. In W. Kuich, G. Rozenberg & A. Salomaa, editors:Developments in Language Theory, Lecture
Notes in Computer Science2295, Springer, pp. 239–250, doi:10.1007/3-540-46011-X_20.

[36] I. Simon (1975):Piecewise testable events. In H. Barkhage, editor:Automata Theory and Formal Languages,
Lecture Notes in Computer Science33, Springer, pp. 214–222, doi:10.1007/3-540-07407-4_23.

[37] J. Stern (1985):Complexity of Some Problems from the Theory of Automata. Information and Control66(3),
pp. 163–176, doi:10.1016/S0019-9958(85)80058-9.

[38] H. Straubing (1981):A Generalization of the Schützenberger Product of Finite Monoids. Theor. Comput.
Sci.13, pp. 137–150, doi:10.1016/0304-3975(81)90036-0.

[39] H. Straubing (2002):On Logical Descriptions of Regular Languages. In S. Rajsbaum, editor:LATIN ,
Lecture Notes in Computer Science2286, Springer, pp. 528–538, doi:10.1007/3-540-45995-2_46.

[40] H. Straubing & P. Weil (2012):An introduction to finite automata and their connection to logic. In
D. D’Souza & P. Shankar, editors:Modern Applications of Automata Theory, IISc Research Monographs Se-
ries, World Scientific, doi:10.1142/9789814271059_0001. Available athttp://arxiv.org/abs/1011.
6491.

[41] D. Thérien (1981):Classification of Finite Monoids: The Language Approach. Theor. Comput. Sci.14, pp.
195–208, doi:10.1016/0304-3975(81)90057-8.

[42] W. Thomas (1982):Classifying Regular Events in Symbolic Logic. J. Comput. Syst. Sci.25(3), pp. 360–376,
doi:10.1016/0022-0000(82)90016-2.

[43] A. Trahtman (2001):Piecewise and Local Threshold Testability of DFA. In R. Freivalds, editor:FCT, Lecture
Notes in Computer Science2138, Springer, pp. 347–358, doi:10.1007/3-540-44669-9_33.

[44] P. Weil (2004): Algebraic Recognizability of Languages. In J. Fiala, V. Koubek & J. Kratochvı́l,
editors: MFCS, Lecture Notes in Computer Science3153, Springer, pp. 149–175, doi:10.1007/

978-3-540-28629-5_8. Available athttp://arxiv.org/abs/cs/0609110.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 55–73, doi:10.4204/EPTCS.151.4

c© C. Löding
This work is licensed under the
Creative Commons Attribution License.

Decision Problems for Deterministic Pushdown Automata on
Infinite Words

Christof Löding
Lehrstuhl Informatik 7

RWTH Aachen University
Germany

loeding@cs.rwth-aachen.de

The article surveys some decidability results for DPDAs on infinite words (ω-DPDA). We summarize
some recent results on the decidability of the regularity and the equivalence problem for the class of
weakω-DPDAs. Furthermore, we present some new results on the parity index problem forω-
DPDAs. For the specification of a parity condition, the states of the omega-DPDA are assigned
priorities (natural numbers), and a run is accepting if the highest priority that appears infinitely often
during a run is even. The basic simplification question asks whether one can determine the minimal
number of priorities that are needed to accept the language of a givenω-DPDA. We provide some
decidability results on variations of this question for some classes ofω-DPDAs.

1 Introduction

Finite automata, which are used as a tool in many areas of computer science, have good closure and
algorithmic properties. For example, language equivalence and inclusion are decidable (see [9]), and
for many subclasses of the regular languages it is decidablewhether a given automaton accepts a lan-
guage inside this subclass (see [19] for some results of thiskind). In contrast to that, the situation for
pushdown automata is much more difficult. For nondeterministic pushdown automata, many problems
like language equivalence and inclusion are undecidable (see [9]), and it is undecidable whether a given
nondeterministic pushdown automaton accepts a regular language. The class of languages accepted by
deterministic pushdown automata forms a strict subclass ofthe context-free languages. While inclusion
remains undecidable for this subclass, a deep result from [15] shows the decidability of the equivalence
problem. Furthermore, the regularity problem for deterministic pushdown automata is also decidable
[17, 20].

While automata on finite words are a very useful model, some applications, in particular in verifi-
cation by model checking (see [2]), require extensions of these models to infinite words. Although the
theory of finite automata on infinite words (calledω-automata in the following) usually requires more
complex constructions because of the more complex acceptance conditions, many of the good properties
of finite automata on finite words are preserved (see [13] for an overview). Pushdown automata on infinite
words (pushdownω-automata) have been studied because of their ability to model executions of non-
terminating recursive programs. In [6] efficient algorithms for checking emptiness of Büchi pushdown
automata are developed (a Büchi automaton accepts an infinite input word if it visits an accepting state
infinitely often during its run). Besides these results, thealgorithmic theory of pushdownω-automata
has not been investigated very much. For example, in [5] the decidability of the regularity problem for
deterministic pushdownω-automata has been posed as an open question and to our knowledge no an-
swer to this question is known. Furthermore, it is unknown whether the equivalence of deterministic
pushdownω-automata is decidable.

56 Decision Problems forω-DPDAs

The first part of this article summarizes some recent partialresults on the regularity and equivalence
problem for deterministic pushdownω-automata from [12].

In the second part we consider decision problems concerningthe acceptance condition of the au-
tomata. One of the standard acceptance conditions ofω-automata is the parity condition (see [8] for an
overview of possible acceptance conditions). Such a condition is specified by assigning priorities (natu-
ral numbers) to the states of the automaton, using even priorities for “good” states and odd priorities for
the “bad” states. A run is accepting if among the states that occur infinitely often the highest priority is
even. For deterministic automata (independent of the precise automaton model), one can show that more
languages can be accepted if more priorities are used. So thenumber of priorities required for accepting
a language is a measure for the complexity of the language. A natural decision problem arising from
that, is the question of determining for a given deterministic parity automaton the smallest number of
priorities that are needed for accepting the language of theautomaton. This referred to as the parity
index problem.

For finite deterministic parity automata, the minimal number of priorities required for accepting the
language can be computed in polynomial time, and a corresponding automaton can be constructed by
simply reassigning priorities in the allowed range to the states of the given automaton [4]. For deter-
ministic pushdown parity automata it was shown in [10] that it is decidable whether a given automaton
is equivalent to a deterministic pushdown Büchi automaton. We present here the general result that the
parity index problem for deterministic pushdown parity automata is decidable. The method is based on
parity games on pushdown graphs and has already been described in the PhD thesis [14].

We further consider a model of deterministic pushdown automata in which the types of the action on
the pushdown store are determined by the input symbols, called visibly pushdown automata (VPA) [1].
In these automata, the input alphabet is partitioned into three sets of symbols, referred to as call, return,
and internal symbols. On reading a call, the pushdown automaton has to add a symbol to the stack, on
reading a return, it has to remove a symbol from the stack, andon reading an internal, it does not alter
the stack. It turns out that, for a fixed partition of the inputalphabet, this class of automata has good
closure and algorithmic properties [1]. On finite words it iseven possible to determinize such VPAs.
However, it turns out that Büchi VPAs cannot, in general, betransformed into equivalent deterministic
Muller or parity VPAs [1]. To resolve this problem, in [11] a variation of the parity condition has been
proposed, referred to as stair parity condition. It is defined as a standard parity condition, however, it is
not evaluated on the sequence of all states but only on the sequence of states that occur on steps of the
run. A step is a configuration in the run such that no later configuration has a smaller stack height. In [11]
it is shown that each nondeterministic Büchi VPA can be transformed into an equivalent deterministic
stair parity VPA. We prove here that the stair parity index problem for deterministic VPAs can be solved
in polynomial time. We also consider the question whether a given stair parity VPA is equivalent to a
parity VPA (with a standard parity condition instead of a stair condition). For the particular case of stair
Büchi VPAs we show that this problem is decidable.

The remainder of this paper is structured as follows. In Section 2 we introduce some basic termi-
nology and definitions. In Section 3 we consider the regularity and equivalence problem forω-DPDAs.
Section 4 is about the parity index of parity DPDAs and stair parity DVPAs. In Section 5 we show how
to decide whether the stair condition is needed for accepting the language of a given stair Büchi DVPAs.
In Section 6 we give a short conclusion.

C. Löding 57

2 Preliminaries

We denote the set of natural numbers (including 0) byN. For a setSwe denote its cardinality by|S|. Let
A be an alphabet, i.e., a finite set of symbols, thenA∗ is the set of finite words overA, andAω the set of
ω-words overA, i.e., infinite sequences ofA symbols indexed by the natural numbers. The subsets ofA∗

are called languages, and subsets ofAω are calledω-languages. The length of a finite wordw ∈ A∗ is
denoted by|w|, and the empty word isε . We assume the reader to be familiar with regular languages,i.e.,
the languages specified by regular expressions or equivalently by finite state automata (see, for example,
[9] for basics on regular languages).

We are mainly concerned with deterministic pushdown automata in this work. We first define push-
down machines, which are pushdown automata without acceptance condition. We then obtain pushdown
automata by adding an acceptance condition.

A deterministic pushdown machineM = (Q,A,Γ,δ ,q0,⊥) consists of

• a finite state setQ and initial stateq0 ∈ Q,

• a finite input alphabetA (we abbreviateAε = A∪{ε}),

• a finite stack alphabetΓ and initial stack symbol⊥ 6∈ Γ (let Γ⊥ = Γ∪{⊥}),

• a partial transition functionδ : Q×Γ⊥×Aε → Q×Γ∗
⊥ such that for eachp∈ Q andA∈ Γ⊥:

– δ (p,Z,a) is defined for alla∈ A andδ (p,Z,ε) is undefined, or the other way round.

– For each transitionδ (p,Z,a) = (q,W) with a∈ Aε the bottom symbol⊥ stays at the bottom
of the stack and only there, i.e.,W ∈ Γ∗⊥ if Z =⊥ andW ∈ Γ∗ if Z 6=⊥.

The set of configurations ofM is QΓ∗⊥ whereq0⊥ is the initial configuration. The stack consisting
only of ⊥ is called the empty stack. A configurationqσ is also written(q,σ). For a given input word
w∈ A∗ or w∈ Aω , a finite resp. infinite sequenceq0σ0,q1σ1, . . . of configurations withq0σ0 = q0⊥ is a
run of w onM if there areai ∈ Aε with w= a1a2 · · · andδ (qi ,Z,ai+1) = (qi+1,U) is such thatσi = ZV
andσi+1 =UV for some stack suffixV ∈ Γ∗

⊥.
For finite words, we consider the model of a deterministic pushdown automaton (DPDA)A =

(M ,F) consisting of a deterministic pushdown machineM = (Q,A,Γ,δ ,q0,⊥) and a set of final states
F ⊆Q. It accepts a wordw∈A∗ if w induces a run ending in a final state. These words form the language
L∗(A) ⊆ A∗. For ω-words, we consider two types of acceptance conditions, namely Büchi and parity
conditions. A Büchi DPDAA = (M ,F) is specified in the same way as a DPDA on finite words. The
ω-languageLω(A) defined byA is the set of allω-wordsw for which the run ofA on w contains a
state fromF at infinitely many positions.

For a parity DPDA, the acceptance condition is specified by a functionΩ : Q → N, which assigns
a number to each state, which is referred to as its priority. Arun is accepting if the highest priority
that occurs infinitely often is even. Note that Büchi conditions can be specified as parity conditions by
assigning priority 2 to states inF and priority 1 to states outsideF.

In Section 3 we consider the class of weak DPDAs. These are parity DPDAs, in which the transitions
can never lead from one stateq to another stateq′ with a smaller priority. Hence, in a run of a weak DPDA
the sequence of priorities is monotonically increasing, which implies that the sequence is ultimately
constant. It follows that each weak DPDA is equivalent to theBüchi DPDA that uses the set of states
with even priority as set of final states. We therefore also use term weak Büchi DPDAs to emphasize that
it is a subclass of Büchi DPDAs.

In general, we refer to DPDAs on infinite words asω-DPDAs if we do not explicitly specify the
type of acceptance. For simplicity, we assume that infinite sequences ofε-transitions are not possible

58 Decision Problems forω-DPDAs

in ω-DPDAs. Such sequences can be eliminated by redirecting certain ε-transitions into corresponding
sink states (the acceptance status of such a state would depend on the exact semantics one uses for runs
that end in an infiniteε-sequence). It is sufficient to compute the pairs(q,Z) of statesq and top stack
symbolsZ such that there is a run ofε-transitions leading fromqZ⊥ to some configuration of the form
qZWZ⊥, such that theZ at the bottom of the stack is never removed during this run. These pairs can be
computed efficiently (see [6]), and it is not difficult to see that redirecting theε-transitions from these
pairs(q,Z) is sufficient for eliminating all infiniteε-sequences.

We also consider the model of deterministic visibly pushdown automata (DVPA) [1]. These au-
tomata are defined with respect to a partitioned alphabetA= Ac∪Ai ∪Ar , whereAc contains all letters
that can only occur in transitions pushing some symbol onto the stack (call symbols),Ar those forcing
the automaton to pop a symbol from the stack (return symbols), andAi those leaving the stack unchanged
(internal symbols). Furthermore, DVPAs do not haveε-transitions. We also adopt the general conven-
tion that VPAs do not consider the top-most stack symbol in their transitions. This simplifies several
arguments. We can make this assumption without loss of generality, because it is possible to always keep
track of the top-most stack symbol in the control state.

Formally, a deterministic visibly pushdown machine over the partitioned alphabetA= Ac∪Ai ∪Ar is
of the formM = (Q,A,Γ,δ ,q0,⊥), whereδ consists of three transition functions

δc : Q×Ac → Q×Γ
δr : Q×Γ×Ar → Q
δi : Q×Ai → Q

Instead of defining the semantics of these transitions directly, we simply describe how the corresponding
transitions in a standard DPDA would look like. A call transition δc(q,c) = (p,Z) corresponds to a set
of transitionsδ (q,Y,c) = (p,ZY) for eachY ∈ Γ⊥. A return transitionδr(q,Z, r) = p corresponds to the
transitionδr(q,Z, r)= (p,ε), and an internal transitionδi(q, i) = p to a set of transitionsδ (q,Y, i) = (p,Y)
for eachY∈Γ⊥. Note that this definition does not admit transitions for return symbols on the empty stack.
In [1] such transitions are possible, but we prefer to use thesimpler model here to ease the presentation.

By adding an acceptance condition, we obtain DVPAs as in the general case. As forω-DPDAs, we
are interested inω-DVPAs with Büchi or parity condition. However, we also consider a variant of the
parity condition referred to as stair parity condition [11]. The condition is specified in the same way as
before, however, it is evaluated only on a subsequence of therun, namely on the sequence of steps, as
defined below.

A configurationqσ in a run of a DVPAA is called a step if the stack height of all configurationsq′σ ′

that come later in the run is bigger than the stack height ofqσ , i.e., |σ | ≤ |σ ′|. Note that the positions
of the steps do not depend on the automaton, but only on the input word, because the type of the stack
operation is determined for each input symbol. We can now define stair visibly pushdown automata. The
only difference to visibly pushdown automata is that they evaluate the acceptance condition only for the
subsequence of the run containing consisting of the steps.

In other words, a stair parity DVPA has the same components asa parity DVPA. An input is accepted
if in the run on this input the maximal priority that occurs infinitely often on a step is even. In the same
way we obtain stair Büchi DVPAs, which accept if an accepting state occurs on infinitely many steps.

We end this section by introducing some more terminology forvisibly pushdown automata that is
used in Sections 4 and 5.

The set of well matched words overA= Ac∪Ai ∪Ar is, intuitively speaking, the set of well-balanced
words in which for each position with a call symbol there is a later position at which this call is “closed”

C. Löding 59

by some return symbol (and vice versa, each return position has a corresponding previous call position).
Formally, the set is defined inductively as follows:

• Eacha∈ Ai is a well matched word.

• If u andv are well-matched words, thenuv is a well matched word.

• If w is a well matched word, thencwr is a well-matched word for eachc∈ Ac and eachr ∈ Ar .

The words that are created by the last rule are referred to as minimally well-matched words. Let
Lmwm denote this set, i.e., the words of the formcwr with a callc, a returnr, and a well-matched wordw.

The canonical language that can be accepted by a stair BüchiDVPA but by no parity DVPA is the
languageLsu of strictly unbounded words, containing all words over〈{c}, /0,{r}〉 with an infinite number
of unmatched calls. More formally, an infinite word is inLsu if it is of the form w1cw2cw3c· · · for well-
matched wordswi. In [1] it is shown thatLsu cannot be accepted by a parity DVPA. But it is easy to
construct a stair Büchi DVPAA for Lsu using only a single stack symbol and one accepting and one
non-accepting state (see [11]), whereA moves into the accepting state for eachc, and into the non-
accepting state for eachr. Note that the position after reading ac is a step in the run iff thisc does not
have a matching return. Thus, there are infinitely many unmatched calls iff there are infinitely many
accepting states on steps.

3 Regularity and Equivalence

In this section we summarize results from [12] that show how to solve the regularity problem and the
equivalence problem for weakω-DPDAs. The proof uses a reduction to the corresponding problems for
DPDAs on finite words. More details on these results can be found in [12] and in [14].

The regularity problem for DPDA is the problem of deciding for a given DPDA whether it accepts
a regular language. It has been shown to be decidable in [17] and the complexity has been improved in
[20].

Theorem 1([17]). The regularity problem for DPDAs is decidable.

The rough idea of the proof is as follows. Assuming that the language of the given DPDA is regular,
one shows that for each configuration above a certain height (depending on the size of the DPDA),
there is an equivalent configuration of smaller height. A finite state machine can then be constructed
by redirecting the transitions into higher configurations to their equivalent smaller counterparts. Here,
two configurations are considered to be equivalent if they define the same language when considered
as initial configuration of the DPDA. The decision method forthe regularity problem is then based on
the characterization of the regular languages in terms of the Myhill/Nerode equivalence. For a language
L ⊆ A∗, the Myhill/Nerode equivalence is defined as follows for wordsu,v∈ A∗:

u∼L v iff ∀w∈ A∗ : uw∈ L ⇔ vw∈ L.

A language of finite words is regular if, and only if, it has finitely many Myhill/Nerode equivalence
classes, and these classes can be used as states for a canonical finite automaton for the language.

Unfortunately, a corresponding result is not true forω-regular languages, in general. However, the
subclass of weakω-regular languages possesses a similar characterization in terms of an equivalence
[16]. This similarity raises the question whether the decidability results for DPDAs on finite words can
be lifted to weak DPDAs on infinite words.

60 Decision Problems forω-DPDAs

In [12] it is shown that this is indeed possible. In fact, it iseven possible to reduce questions for weak
ω-DPDAs to DPDAs on finite words. To establish such a connection, we associate a languageL∗(A)
of finite words to a weakω-DPDA A , which is obtained by viewingA as a DPDA on finite words and
taking the set of states with an even priority as the set of final states.

The first attempt for reducing the regularity problem for weak ω-DPDAs to the regularity problem
for DPDAs would be to testL∗(A) for regularity, whereA is the given weakω-DPDA. This approach is
sound because regularity ofL∗(A) impliesω-regularity ofLω(A): a finite deterministic automaton for
L∗(A) viewed as a Büchi automaton definesLω(A) because it visits final states at the same positions
asA .

That the approach is not complete is illustrated by the following simple example. Consider the
alphabet{a,b} and theω-languagea∗bω of words starting with a finite sequence ofa followed by an
infinite sequence ofb. Obviously, this language is regular. A weakω-DPDA A could proceed as follows
to accept this language. It starts by pushing a symbol onto the stack for eacha. When the firstb comes
in the input, it changes its state and starts popping the stack symbols again. Once the bottom of the stack
is reached, it changes to an accepting state and remains there as long as it reads furtherb (if another
a comes, then the input is rejected). Since the finitea-sequence is followed by infinitely manyb, it is
guaranteed thatA reaches the accepting state if the input is froma∗bω . Note that this is a weakω-DPDA
because it can change once from non-accepting to accepting states, and once more back to non-accepting
states. The languageL∗(A) of this weakω-DPDA is the set of all finite words of the formambn with
n ≥ m becauseA reaches the accepting state only after it has read as manyb asa. Thus,L∗(A) is
non-regular althoughLω(A) is.

For this example, the problem would be solved ifA switches to an accepting state as soon as the first
b is read (instead of deferring this change to the stack bottom). In general, one can show that each weak
ω-DPDA can be transformed in such a way that the above reduction to the regularity test forL∗(A), as
shown be the following theorem.

Theorem 2([12]). There is a normal form for weakω-DPDAs with the following properties:

1. For a weakω-DPDAA in normal form, the language Lω(A) is ω-regular if, and only if, L∗(A)
is regular.

2. Given two weakω-DPDAsA andB in normal form, Lω(A) = Lω(B) if, and only if, L∗(A) =
L∗(B).

Combining the first part of Theorem 2 with Theorem 1, we get thedecidability of the regularity
problem for weakω-DPDAs.

Corollary 1 ([12]). The regularity problem for weakω-DPDAs is decidable.

The second part of the theorem can be used to show the decidability of the equivalence problem for
weakω-DPDAs, based on the corresponding deep result for DPDAs.

Theorem 3([15]). The equivalence problem for DPDAs is decidable.

Corollary 2 ([12]). The equivalence problem for weakω-DPDAs is decidable.

The two problems for the full class ofω-DPDAs remain open. In [14] a congruence forω-languages
is identified that characterizes regularity within the class of ω-DPDA recognizable languages (a lan-
guage accepted by anω-DPDA is regular if, and only if, this congruence has finitelymany equivalence
classes). This might be step towards a solution for the regularity problem. However, the decidability of
characterizing criterion remains open.

C. Löding 61

q0/0 q1/2

q2/1 q3/0

q4/3

c1/Z1

c2/Z2

r1/Z1

r2/Z2

i1

i1

c1/Z1

i2

i1

c2/Z2

q0/0

q1/2

q′1/0

q2/1 q3/0

q4/1

c1/Z1

c2/Z2

r1/Z1

i1

r2/Z2

i1

i1

c1/Z1

i2

i1

c2/Z2

Figure 1: On the left-hand side: DVPA with minimal number of priorities for the given transition struc-
ture; on the right-hand side: equivalent DVPA with less priorities

4 The Parity Index Problem

In this section we are interested in the problem of reducing the number of priorities used in a parity
condition. Formally, we consider the following problem. Given a parity DPDA (or stair parity DVPA)
A , compute the smallest number of priorities required for acceptingLω(A) with a parity DPDA (or stair
parity DVPA). We refer to these two variants of the problem asthe parity index problem for DPDAs, and
the stair parity index problem for stair parity DVPAs.

For finite parity automata, it suffices to change the priorityassignment, in order to obtain an equiva-
lent automaton with the fewest number of priorities, and this modified priority function can be computed
in polynomial time [4].

For parity DPDAs the situation is different, as illustratedby the example in Figure 1 (taken from
[18]). We use a DVPA in the example, wherec1,c2 are calls,r1, r2 are returns,i1, i2 are internals, and
Z1,Z2 are stack symbols. The transitions on call symbols are annotated with the stack symbol to be
pushed, and for the return symbols with the stack symbol to bepopped. The priority function of the
DVPA on the left-hand side of Figure 1 (indicated as labels ofthe states) is minimal for the state set and
the transition structure. The problem is caused by the stateq1, which is part of the loop in the upper and
the lower branch. However, there is no run of the automaton that traverses both the upper and the lower
branch. If the first symbol in the input isc1, then the automaton storesZ1 on the stack. Whenever the
automaton reachesq1 in the future,Z1 will be on top of the stack and the automaton can only use the top
branch. For the lower branch andc2 as the first input symbol the situation is similar.

Splitting q1 into two copies as done in the DVPA on the right-hand side of the figure, makes it
possible to reassign priorities without using priority 3.

The example illustrates that we need to take a different approach for computing the parity index of
pushdown automata. This approach is also described in [14].

Let P⊂ N be a finite set of priorities. A parity DPDA using only priorities fromP is referred to as a
P-parity DPDA. To decide whether a given parity DPDAA has an equivalentP-parity DPDA, consider
the following game. There are two players, referred to as Automaton and Classifier. Automaton starts
in the initial configuration ofA and plays transitions ofA . After each move of Automaton, Classifier
chooses one priority fromP. The idea is that the classifier wants to prove that there is aP-parity DPDA
that acceptsLω(A). If Classifier chooses priorityk in a move, this can be interpreted as “the parity
DPDA that I have in mind would now be in a state with priorityk”.

62 Decision Problems forω-DPDAs

This game can be formalized as a game over a pushdown graph (basically, the configuration graph
of A enriched by the bounded number of choices for Classifier). The winning condition states that an
infinite play is won by classifier if, and only if, the two priority sequences, one induced by the config-
urations chosen by Automaton, the other given by the choicesof Classifier, are either both accepting or
both rejecting. We refer to this game as the classification game forA andP. The following result can
be shown based on results for computing winning strategies in pushdown games [22].

Lemma 1. Classifier has a winning strategy in the classification game for A and P if, and only if, there
is P-parity DPDA accepting Lω(A).

For the proof it suffices to observe the following things. If there is aP-parity DPDAB accepting
Lω(A), then Classifier can simulate the run ofB on the inputs played by Automaton, and always choose
the priority of the current state ofB. This obviously defines a winning strategy becauseA andB accept
the same language. For the other direction one uses the fact that a winning strategy for Classifier can
be implemented by a pushdown automaton that reads the moves of Automaton and outputs the moves of
Classifier [22, 7]. This pushdown automaton for the strategycan easily be converted intoP-parity DPDA
for Lω(A).

For a given parity DPDA there are only finitely many setsP with less priorities thanA uses. Since it
is decidable which player has a winning strategy in the classification game [22], we obtain an algorithm
for solving the parity index problem for DPDAs.

Theorem 4. There is an algorithm solving the parity index problem for parity DPDAs.

Stair Parity Index

We now turn to the stair parity index problem for stair parityDVPAs. In fact, it is possible to use the same
game-based approach because pushdown games with stair conditions can be solved algorithmically [11].
However, for stair parity VPAs one can also adapt the much simpler solution for computing the parity
index of finite parity automata. Note that in the example fromFigure 1 the “critical” stateq1 can never
occur on a step (moving out ofq1 requires to read a return and thus to pop a symbol). Thus, the priority
of q1 is not important in a stair parity acceptance condition. It turns out that this is not a coincidence.
The result presented below has been obtained in collaboration with Philipp Stephan, see [18].

Consider the transformation graph of a stair parity DVPAA defined as follows. The vertices are the
states ofA . An edge fromq1 to q2 indicates thatq1 andq2 can occur on successive steps in a run of
A . An input connecting two successive steps of a run is either an internal symbol or a minimally well-
matched word. Therefore, this transformation graph can be computed inductively based on the definition
of well-matched words from Section 2. One starts with the graph containing only the edges for the
internal symbols. In each iteration one computes the transitive closure of the current graph. Denote this
transitive closure byT. Then one checks whether there are transitionsδ (q,c) = (q′,Z) andδ (p′, r,Z) = p
for a callc, a returnr, and a stack symbolZ, such that(q′, p′) ∈ T. In this case we add the edge(q, p) to
the graph. We repeat this procedure until no more edges are added.

The paths through the transformation graph correspond to the possible sequences of states on steps
in runs ofA . We now use the algorithm from [4] to compute the minimal number of priorities required
on this transformation graph, simply by viewing it as the transition graph of a finite state deterministic
parity automaton. The resulting assignment of priorities is then also minimal for the stair parity DVPA
A .

Theorem 5. The stair parity index problem for stair parity DVPAs can be solved in polynomial time.

C. Löding 63

5 Removing the Stair Condition

The goal is to decide for a given stair parity DVPA whether there is an equivalent parity DVPA and to
construct one if it exists. We show how to decide this problemin general for stair Büchi DVPAs. We
comment on the full class of stair parity DVPAs at the end of this section.

In Section 2 we described the languageLsu of strictly unbounded words over〈{c}, /0,{r}〉, containing
all words with an infinite number of unmatched calls. This language can be accepted by a stair Büchi
DVPA but not by a parity DVPA [1]. We show that a languageL accepted by a stair Büchi DVPA can

• either be accepted by a parity DVPA, or

• L is at least as complex asLsu.

To formalize the notion of “as complex asLsu”, we need to introduce some terminology and results
concerning the topological complexity ofω-languages.

We can viewAω as a topological space by equipping it with the Cantor topology, where the open sets
are those of the formLAω for L ⊆ A∗. Starting from the open sets one defines the finite Borel hierarchy
as a sequenceΣ1,Π1,Σ2,Π2, . . . of classes ofω-languages as follows (we omit the finite and only refer
to this hierarchy as Borel hierarchy in the following):

• Σ1 consists of the open sets.

• Πi consists of the complements of the languages inΣi .

• Σi+1 consists of countable unions of languages inΠi .

If we denote byB(Σi) the closure ofΣi under finite Boolean combinations, then we obtain the following
relation between the classes of the Borel hierarchy, where an arrow indicates strict inclusion of the
corresponding classes:

Σ1

Π1

B(Σ1)

Σ2

Π2

B(Σ2)

Σ3

Π3

B(Σ3) · · ·

The above statement of a languageL being at least as complex asLsu refers to the topological complexity.
It is known that languages accepted by deterministic automata (independent of the specific automaton
model) with a parity condition are included inB(Σ2), and in [11] it is shown that languages accepted by
stair parity DVPAS are inB(Σ3). Furthermore, it is known thatLsu is a trueΣ3-set (it is complete forΣ3

for the reduction notion introduced below) [3]. In particular, it is not contained inB(Σ2).
In our decidability proof we show that specific patterns in a stair parity DVPA induce a high topolog-

ical complexity of the accepted language (namely being at least as complex asLsu). On the other hand
side, the absence of these patterns allows for the construction of an equivalent parity DVPA.

Before we introduce these patterns, we define the reducibility notion. Originally, it is defined using
continuous functions. For our purposes it is easier to work with a different definition based on the Wadge
game [21] (see also [3]).

Consider two alphabetsA1,A2 and letL1 ⊆ Aω
1 andL2 ⊆ Aω

2 . The Wadge gameW(L1,L2) is played
between Players I and II as follows. In each round Player I plays an element ofA1 and Player II replies
with a finite word fromA∗

2 (the empty word is also possible). In the limit, Player I plays an infinite word
x over A1, and Player II a finite or infinite wordy over A2. Player II wins ify is infinite andx∈ L1 iff
y∈ L2.

We write L1 ≤W L2 if Player II has a winning strategy inW(L1,L2). The following theorem is a
consequence of basic properties of≤W.

64 Decision Problems forω-DPDAs

Theorem 6([21]). If L1 ≤W L2, then each class of the Borel hierarchy that contains L2 also contains L1.

We use the following consequence of Theorem 6 and the properties ofLsu.

Lemma 2. If Lsu≤W L, then L cannot be accepted by a parity DVPA.

Proof. As mentioned above, the languages that can be accepted by parity DPDAs are contained inB(Σ2).
We sketch the proof of this folklore result for completeness: We apply Theorem 6 using the following
argument. LetA be a parity DPDA and letP be the set of priorities used byA . Let LP ⊆ Pω be
the sequences of priorities that satisfy the parity condition. ThenLω(A) ≤W LP because in the Wadge
game Player II can simply keep track of the run ofA on the word played by Player I, and play the
corresponding priorities of the states ofA . Then clearly the word played by I is inLω(A) iff the
priority sequence of II satisfies the parity condition. Now,LP is easily seen to be a Boolean combination
of Σ2-sets.

SinceLsu is not contained inB(Σ2) [3], we conclude from Theorem 6 thatLsu≤W L implies thatL
cannot be accepted by a parity DVPA.

Forbidden patterns. Fix a stair Büchi DVPAA = (Q,A,Γ,q0,δ ,F) and letL = Lω(A). Recall that
L does not contain words with unmatched returns. We assume that all states ofA are reachable.

For an input wordu, statesq,q′, and stack contentsσ ,σ ′ we write(q,σ)
u−→ (q′,σ ′) if there is a run

for the inputu from (q,σ) to (q′,σ ′). The notation(q,σ)
u−→
F

(q′,σ ′) means that at least one state fromF

occurs on a step in this run (for steps to be defined we assume that all prefixes ofu are of non-negative
stack height). Dual to that we write(q,σ)

u−−→
/∈F

(q′,σ ′) to indicate that no state fromF occurs on a step

in this run. If we omit the input wordu then this means that there exists some input word.
It is not difficult to see thatLsu ≤W L if there are wordsu and u′, a stack contentσ , and a state

q∈ Q\F such that

(q,⊥)
u−→
F

(q,σ)
u′−→ (q,⊥)

and no final state occurs on steps in this run (in a run that starts and ends in the empty stack, the steps
are the configurations with empty stack). To proveLsu ≤W L, the corresponding winning strategy for
Player II in the Wadge game is:c 7→ u andr 7→ u′.

Unfortunately, the above condition is not necessary forLsu≤W L. Consider the stair Büchi DVPAA
shown in Figure 2 with one call symbolc and two return symbolsr1, r2 (the initial state does not matter).
In this automaton the simple pattern described above cannotoccur because the only non-final states are
q andq′. For these two states, wordsu andu′ as required in the pattern cannot exist for the following
reasons:

• The stateq can only be reached via calls and therefore(q,⊥) is not reachable from(q,⊥).

• Fromq′ the symbolZ′ is pushed onto the stack. Butq′ can only be reached on poppingZ. Therefore
(q′,⊥) is not reachable from(q′,⊥).

However, the example automatonA contains an extended pattern that guarantees thatLsu≤W Lω(A),
as defined below and illustrated in Figure 3.

Formally, we callq,q′ ∈ Q\F , q′′ ∈ Q, u,v,w,x,y,z∈ A∗, andσ ,σ ′ ∈ Γ∗ a forbidden pattern ofA if
uvwxyz∈ Lmwm and

(q,⊥)
u−→
F

(q,σ), (q,⊥)
v−−→
/∈F

(q′,⊥), (q′,⊥)
w−−→
/∈F

(q,σ ′),

(q,⊥)
x−→ (q′′,⊥), (q′′,σ ′)

y−→ (q′′,⊥), (q′′,σ)
z−→ (q′,⊥).

C. Löding 65

q

q′′

q′

c/Z

c/Z

r1/Z,r1/Z′

r2/Z

c/Z′

Figure 2: A stair Büchi DVPA illustrating the definition of forbidden pattern

q

q

σ

q′

σ

q

σ

σ ′

q′′

σ

σ ′
q′′

σ
q′

u
F

v
/∈F

w
/∈F

x

y

z

Figure 3: Forbidden pattern

Note thatσ ′ might be empty. Sinceq is a non-final state, and we require that a final state is seen ona step
on the path fromq to q, the stack contentσ cannot be empty. Further note that this pattern subsumes the
first simple pattern: chooseq= q′ = q′′, v= w= x= y=⊥, andu′ = z.

The example automaton from Figure 2 contains such a pattern for q,q′,q′′. the wordsu= cc, v= cr2,
w= c, x= cr1, y= r1, z= r1r2, and the stack contentsσ = ZZ, σ ′ = Z′.

Lemma 3. If A has a forbidden pattern, then Lsu≤W Lω(A).

Proof. We describe a winning strategyf for Player II in the Wadge game. The basic idea is to playu
whenever Player I playsc, and to match the last openu with zwhenever Player I playsr. However, after
playingz, the automatonA is in stateq′ (compare Figure 3). Hence, to playu again, we first have to play
w to reachq, producing aσ ′ on the stack. Therefore, it can happen that we first have remove theseσ ′

from the stack before we can match the last openu with z. To keep track of this, we use words over{0,1}
as memory forf representing an abstraction of the stack ofA (0 corresponds toσ and 1 corresponds
to σ ′).

To simplify the description off , we construct the moves such thatA is always inq′ after reading
a finite word generated byf . We also assume thatq′ is the initial state ofA . If this is not the case,
Player II can simply prepend to the first move a word leadingA to stateq′.

Let η ∈ {0,1}∗ be the current memory content (the initial content beingε). Then the strategyf
works as follows:

• If Player I playsc, then playwuvand update the memory to 01η .

• If Player I playsr, then leti ≥ 0 be such thatη is of the form 1i0η ′. In this case, playwxyyiz and
update the memory toη ′.

Let |η |0 denote the number of 0 occurring inη and letk be the number of final states seen on steps in
the run(q,⊥)

u−→ (q′,σ). Note thatk≥ 1 by definition of forbidden pattern. By induction one shows that

66 Decision Problems forω-DPDAs

q

p

σ

p′

σ

p

σ

σ ′

p′′

σ

σ ′
p′′

σ
q′

u
F

/∈F
/∈F

z

Figure 4: The relation(p, p′)≺ (q,q′)

1. after each move of Player II the number of open calls in the word played by Player I corresponds
to |η |0,

2. the number of final states seen on steps whenA reads a finite word produced byf is k · |η |0.

This implies thatA accepts the infinite word produced by Player II according tof iff the infinite word
produced by Player I contains an unbounded number of unmatched calls.

Complexity of state pairs. We now show that the absence of forbidden patterns allows to construct
a parity DVPAA ′ that is equivalent toA . In order to find an upper bound on the number of required
priorities, we start by defining a measure for the complexityof pairs of non-final states. The pair(q,q′)
from Figure 3 would be of infinite complexity. If we now replace the statesq andq′ in the upper part
of Figure 3 by statesp and p′, then this indicates that the possible runs betweenq andq′ are at least as
complex as those betweenp and p′. This situation is shown in Figure 4. Sinceq′′ is just an auxiliary
state and not of particular importance, we replaced it byp′′ to obtain a more consistent naming scheme.
We show that this relation indeed defines a strict partial order on pairs of non-final states in the case that
A does not contain forbidden patterns.

For p, p′,q,q′ ∈ Q\F define(p, p′) ≺ (q,q′) iff there existsp′′ ∈ Q and stack contentsσ ,σ ′ such
that (see Figure 4 for an illustration):

(q,⊥)
u−→
F

(p,σ), (p,⊥)−−→
/∈F

(p′,⊥), (p′,⊥)−−→
/∈F

(p,σ ′),

(p,⊥)−→ (p′′,⊥), (p′′,σ ′)−→ (p′′,⊥), (p′′,σ)
z−→ (q′,⊥),

anduz∈ Lmwm. The wordsv,w,x,y from the definition of forbidden pattern are not made explicit in this
definition because we never need to refer to them. As for forbidden patterns,σ ′ might be empty butσ
must be non-empty.

Lemma 4. If A does not have a forbidden pattern, then≺ is a strict partial order on pairs of states.

Proof. We have to show that≺ is transitive and irreflexive (asymmetry follows from thesetwo). The
relation is obviously irreflexive because of the absence of forbidden patterns. Transitivity is illustrated in
Figure 5 for(r, r ′)≺ (p, p′)≺ (q,q′) (the stack contents are omitted). The shown pattern is obtained from
(r, r ′)≺ (p, p′)≺ (q,q′). The configurations with a frame lead to a pattern witnessing(r, r ′)≺ (q,q′).

For A without forbidden patterns, we assign to each pair of statesa number according to its height
in the partial order, i.e.,ht : Q2 → N is a mapping satisfying

ht(q,q′) = max({0}∪{ht(p, p′) | (p, p′)≺ (q,q′)})+1.

We need the following simple observation.

C. Löding 67

q

p

r r ′

r r ′′

r ′′

p′

p p′′

p′′

q′
F

F

/∈F
/∈F

/∈F

Figure 5: Transitivity of≺

Lemma 5. Let q1,q′1,q2,q′2 ∈ Q\ F. If there is a stack contentσ such that(q2,⊥)
u−→ (q1,σ) and

(q′1,σ)
v−→ (q′2,⊥) with uv∈ Lmwm, then ht(q2,q′2)≥ ht(q1,q′1).

Proof. The condition(q2,⊥)
u−→ (q1,σ) and(q′1,σ)

v−→ (q′2,⊥) with uv∈ Lmwm implies that whenever
(q,q′)≺ (q1,q′1), then also(q,q′)≺ (q2,q′2). Thus,ht(q2,q′2)≥ ht(q1,q′1) by definition ofht.

To make use of≺ andht in the construction ofA ′ we need the following lemma. Note that this
statement does not assume thatA as no forbidden patterns.

Lemma 6. The relation≺⊆ (Q\F)2 can be computed in time polynomial in the size ofA .

Proof. In [6] it is shown that for a given configurationpσ of A one can compute in polynomial time the
setpre∗(qσ) of configurations from which there is a run topσ , and the setpost∗(qσ) of configurations
that are reachable frompσ by a run. These sets of configurations are sets of words overΓ, starting with
a symbol fromQ, and can be represented by finite automata.

The algorithms from [6] can be modified to consider only runs that either see a final state on a step
or do not see a final state on a step, resulting in the setspre∗F(qσ), pre∗/∈F(qσ), and similarly forpost.

For checking whether(p, p′)≺ (q,q′) it is sufficient to check for eachp′′ if there are runs as required
in the definition of≺. This can be done by a suitable combination of the above mentioned algorithms.
For example, the stack contentσ would be obtained by finding aσ such thatpσ ∈ post∗F(q⊥), and
p′′σ ∈ pre∗(q′⊥). Similarly for σ ′.

All these computations can be done in polynomial time, and there are only polynomially many com-
binations of states that have to tested.

Informal description of the parity DVPA. In a Büchi stair condition, a final state visited in a run is
“erased” (in the sense that it is not considered for acceptance), if it is not on a step. If we construct a
parity DVPA, then we cannot erase states like this. Instead,we use the mechanisms of different priorities
to simulate erasing a state. Roughly, final states of the stair Büchi automaton are translated into even
priorities. If a final state is erased, then this is compensated by visiting a higher odd priority. For the
choice of the correct priorities we use the functionht.

In the description below, we use the terminology of “A closing a pair(q,q′) of states”. This means
thatA was in stateq at some position and after reading a wordLmwm it reached stateq′, i.e.,A was in
stateq before reading a call and reachedq′ after the matching return.

As mentioned above, we somehow need to determine a priority for the final states that are visited.
Assume that the automaton is in configuration(q,β) and reads a word that increases the stack height

68 Decision Problems forω-DPDAs

q

p p′

p p′′

p′′

F

/∈F
/∈F

Figure 6: The pattern for determining the priority of the states withht(p, p′) = i

q

p1 p′1

p2 p′2

· · ·

pm p′m

p′′2

p′′1
F

/∈F

/∈F

Figure 7: Detecting that each pair withq is of height at leasti.

leading to some configuration(p,σβ) and visiting some final states on steps during this run. We do not
know if these final states remain on steps or will be erased at some point. But if we knew, e.g., that
whenever we come back to the stack contentβ with, say, stateq′, that the pair(q,q′) is of height at least
i, then we could signal priority 2i for the final states that we have seen after(q,β) and signal priority
2i +1 if we indeed close a pair(q,q′) on the level ofβ , and thus erasing all the final states.

Assume that we have already seen the pattern shown in Figure 6, where(p, p′) is a pair of height
i −1. Thenht(q,q′) ≥ i for every stateq′ that we could reach when coming back to the stack height of
the configuration withq at the beginning of this pattern. In particular, ifh is the maximal height of a pair
of states, and(p, p′) are of heighth, then we know that the final states betweenq and p cannot all be
deleted because this would require closing a pair of heighth+1.

By a simple combinatorial argument, one can see that such a pattern as shown in Figure 6 must
occur if A , before returning to the stack height ofq, has successively closedm := |Q|3 + 1 pairs
(p1.p′1), . . . ,(pm.p′m) of height i − 1 without visiting final states on steps in between, as illustrated in
Figure 7 (in the picture the pairs are closed on increasing stack levels, however, they can also be on the
same stack level). If we denote byp′′i the states ofA the next time it reaches the stack level of(pi , p′i)
(indicated by the dotted line in the picture), then one such triple of states must occur twice, giving rise to
a pattern witnessing thatht(q,q′)≥ i.

To detect such situations,A ′ maintains a counter with range from 0 tom for each possible height of
state pairs, and roughly behaves as follows:

• Whenever a pair of heighti is closed byA , then counteri is increased by one (and for technical
reasons counter number 0 is increased wheneverA visits a non-final state after reading a call or
an internal symbol). To detect the closed pairs,A ′ stores the states ofA on the stack, and the
height of state pairs can be computed by Lemma 6.

C. Löding 69

• There is an additional flag for eachi ∈ {0, . . . ,h} indicating whether counter numberi was reset
because a final state ofA has been visited (the flag is set to 1), or because it reached its maximal
valuem (the flag is set to 0).

• When counter numberi reaches valuem (if several counters reachm at the same time we take the
maximal suchi), then the automaton signals priority 2i +2 if the flag numberi is set, and 2i +1 if
the flag is not set. In the next transition the counter is reset.

Formal description of the parity DVPA. Recall thatm := |Q|3+1 and thath is the maximal height
of a pair of states fromQ\F.

• The states ofA ′ are of the form(q,χ , f), whereq∈ Q is a state ofA , χ : {0, . . . ,h} → {0, . . . ,m}
represents the counters mentioned above, andf : {0, . . . ,h}→ {0,1} represents the flag mentioned
in the informal description.

• The stack symbols ofA ′ are of the form[Z,(q,χ , f)], whereZ is a stack symbol ofA and(q,χ , f)
is a state ofA ′.

• We now define whenA ′ can move from state(q,χ , f) to state(q′,χ ′, f ′), depending on whether it
reads a call, an internal action, or a return. In all cases,q′ is the next state ofA , i.e.,A ′ simulates
A in its first component. Ifq′ ∈ F, thenχ ′ = 0 and f ′ = 1, i.e., the constant functions mapping
everything to 0 and 1, respectively. The other cases forδ ′ are listed below:

Call: (q,χ , f)
c−→ (q′,χ ′, f ′)

[Z,(q,χ , f)]
if δ (q,c) = (Z,q′), q′ /∈ F, and

χ ′(i) =

{
(χ(i) modm)+1 if i = 0,
(χ(i) modm) otherwise,

f ′(i) =

{
f (i) if χ(i)< m,
0 otherwise.

Internal action: (q,χ , f)
a−→ (q′,χ ′, f ′) if δ (q,a) = q′, q′ /∈ F, andχ ′ and f ′ are as in the case of

a call symbol.

Return:
(q,χ , f)

[Z,(q′′,χ ′′, f ′′)]
r−→ (q′,χ ′, f ′) if δ (q,Z, r) = q′, q′ /∈ F, and

χ ′(i) =
{

(χ ′′(i) modm)+1 if q′′ /∈ F andi ≤ ht(q′′,q′),
(χ ′′(i) modm) otherwise,

f ′(i) =

{
f ′′(i) if χ ′′(i)< m,
0 otherwise.

• The priority functionΩ′ of A ′ is defined as follows

Ω′(q,χ , f) =

{
0 if χ(i)< m for all i,
2d+1+ f (d) if d = max{i | χ(i) = m}.

• The initial state is(q0,χ0, f0) with χ0 = 0 and f0 = 1.

Lemma 7. The parity DVPAA ′ is equivalent toA .

Proof. We note the following helpful fact on reachable states(q,χ , f) of A ′:

70 Decision Problems forω-DPDAs

(1) If f (i) = 1 for somei, then f (j) = 1 andχ(i) ≥ χ(j) for all j ≥ i. The initial state satisfies this
property, and if we apply the definition of the transition function to a state satisfying the property,
then one can easily verify that the resulting state also satisfies it.

Now consider an accepting run ofA . We show that the corresponding run ofA ′ is also accepting. Let
thekth state in this run ofA ′ be(qk,χk, fk).

If ℓ is a step in the run andqℓ is a final state ofA , then all flags are set to 1 at this point. From the
definition ofδ ′ follows that these flags can only be set to 0 if the corresponding counter reaches valuem
(we assume that the final state occurs on a step and therefore the run never accesses the stack symbols
below). Now assume thatA ′ signals some odd priority 2i + 1 at some positionk after this final state.
This means thati is maximal withχk(i) = m, and furthermorefk(i) = 0. But if fk(i) = 0, then there must
be somek′ with ℓ < k′ < k such thatfk′(i) = 1 andχk′(i) = m because this is the only situation in which
the flag is set to 0.

From (1) we conclude thatfk′(j) = 1 for all j ≥ i and henceΩ′(qk′ ,χk′ , fk′) is an even priority bigger
than 2i+1. Thus, for each odd priority occurring after a final state ona step there is a bigger even priority
also occurring after this final state. Hence, the run ofA ′ is also accepting.

For the other direction, consider a non-accepting run ofA and as before let(qk,χk, fk) be thekth
state in the corresponding run ofA ′. There is a position such that after this position no final states ofA
occur on a step. From now on we only consider this part of the run.

Consider the sequencek1,k2,k3, . . . of steps. As no final state occurs on a step we have the following
relation between the counter values at two successive steps:

(i) If k j+1 was reached fromk j by reading a call or an internal symbol, then the only change of the
counters isχkj+1(0) = (χkj (0) modm)+1. The other values remain the same.

(ii) If k j+1 was reached fromk j by reading a minimally well-matched word, then the countersare
updated as follows:

χkj+1(i) =

{
(χkj (i) modm)+1 if i ≤ ht(qkj ,qkj+1),

(χkj (i) modm) otherwise.

The flags between two successive steps are updated as follows:

fkj+1(i) =

{
fkj (i) if χkj (i)< m,

0 otherwise.

Now letd be the highest counter that is infinitely often increased on astep (such a counter exists because
counter 0 is increased for each call and each internal symbol). Then the highest priority occurring on
a step is obviously 2d+ 1 because after the first reset of counterd to 0 the flag numberd is 0 on all
following steps.

We have to show that no even priority higher than 2d+1 can occur infinitely often. Restrict the part
of the run under consideration further to the suffix on which no counter higher thand is incremented on
a step. We can conclude that for successive steps connected by a minimally well-matched word we have
thatht(qkj ,qkj+1)≤ d.

We first assume thatd > 0. At the end of the proof we briefly explain the cased = 0.
Pick j such that there isℓ with k j < ℓ< k j+1 andΩ′(qℓ,χℓ, fℓ)= 2i+2 (if no such position exists, then

the run ofA ′ is clearly rejecting). For simplicity let(qkj ,χkj , fkj) = (q,χ , f) and(qkj+1,χkj+1, fkj+1) =
(q′,χ ′, f ′).

C. Löding 71

We now consider the part of the run fromk j to ℓ and show thati < ht(q,q′)≤ d and hence 2i +2<
2d+1.

SinceΩ′(qℓ,χℓ, fℓ) = 2i + 2 we know thatfℓ(i) = 1 andi is maximal withχℓ(i) = m. If i = 0 we
know thati < d by our assumptiond > 0. If i > 0, at positionℓ a pair of states of heighti is closed. From
Lemma 5 we obtain thatd ≥ ht(q,q′)≥ i.

There are two cases to consider. If flag numberi was already set to 1 at positionk j , i.e., f (i) = 1,
then i 6= d (as we only consider the part of the run where the flag ford remains 0 forever on the steps).
Together withd ≥ i we getd > i.

If f (i) = 0, then it must be reset to 1 by visiting a final state. At the same time the counters are reset
to 0. Thenm pairs of heighti have to be closed to reach the valueχℓ(i) = m. Furthermore, these pairs
have to closed at positions that correspond to steps in the part of the run betweenk j andℓ (not steps in the
whole run). Let these pairs be(p1, p′1),(p2, p′2), . . . ,(pm, p′m) (see Figure 7) and the corresponding pairs
of positions be(ℓ1, ℓ

′
1) . . . ,(ℓm, ℓ

′
m). Now consider for eachn the minimal positionℓ′′n with ℓ≤ ℓ′′n ≤ k j+1

such that the stack height atℓ′n andℓ′′n is the same. Letp′′n denote the state at the corresponding position.
By the choice ofm we get that there aren1 6= n2 such that(pn1, p

′
n1
, p′′n1

) = (pn2, p
′
n2
, p′′n2

). Denote the
corresponding triple by(p, p′, p′′). This triple witnesses thatht(q,q′)> ht(p, p′) = i as illustrated in the
following picture:

q

p p′

p p′ p′′

p′′

q′
F

/∈F
/∈F

It remains to consider the cased = 0. Consider only the suffix of the run after the position wherethe flag
for counter 0 remains 0 on all steps and no other counter is increased on a step anymore. Then all pairs
closed on steps are of height 0 and by Lemma 5 pairs closed between two successive steps are also of
height 0. So the maximal priority that we can see on this part of the run would be 2. For this to happen,
the flag for counter 0 must be 1 and counter 0 must have valuem. The flags are only set to 1 if a final state
of A is reached, and at the same time the counters are set to 0. Letq,q′ be the states at two successive
steps, and assume that in between a final state is seen. Letp be the state after the symbol following the
final state. If this symbol is a call or an internal, then(p, p) ≺ (q,q′) (choosingp′′ = p), contradicting
ht(q,q′) = 0. Thus, each final state ofA is immediately followed by a return. Thus, whenever the flag is
set to 1 by a final state, it is immediately reset to 0 in the nexttransition, and thus priority 2 never occurs
(on the considered part of the run).

Combining Lemmas 3 and 7 we obtain the following.

Theorem 7. A stair Büchi DVPAA is equivalent to a parity DVPA if, and only if, it does not contain
any forbidden patterns.

The relation≺ can be computed and checked for irreflexivity in polynomial time. Hence we get the
following corollary.

Corollary 3. For a stair Büchi DVPAA it is decidable in polynomial time if it is equivalent to some
parity DVPA.

A direct consequence of Lemma 7 is:

72 Decision Problems forω-DPDAs

Theorem 8. If a stair Büchi DVPAA is equivalent to some parity DVPA, then we can effectively con-
struct such a parity DVPA.

It seems possible to lift the methods presented in this section to decide for general stair parity DVPAs
whether the stair condition is required. We have, however, not yet worked out the details. A simpler
question can be solved using the game theoretic approach fordeciding the parity index problem for
DPDAs: Given a stair parity DVPAA and a setP of priorities, we can decide whether there is a parity
DVPA using the priorities fromP that acceptsLω(A) by using the classification game. In this case,
the classification game could be formalized using a combination of a classical parity and a stair parity
condition. Pushdown games with such a winning condition canbe solved with the methods from [11].

6 Conclusion

We have considered several decidability questions forω-DPDAs. The regularity and equivalence prob-
lem are still open for the full class ofω-DPDAs. We have sketched some partial results from [12]
showing the decidability for these two problems for the class of weakω-DPDAs by a reduction to the
corresponding problems for DPDAs on finite words. It seems that a decidability result for the full class
of ω-DPDAs requires new ideas.

In the second part we have analyzed the problem of simplifying the acceptance condition ofω-
DPDAs. We have shown that the smallest number of priorities required for accepting the language of a
given parity DPDA can be computed. For the standard parity condition we have used a game approach.
For stair parity DVPAs, this problem can be solved by a much simpler algorithm that uses a reduction to
the computation of the parity index of a finite automaton.

We have also shown that for stair Büchi DVPAs it is decidablewhether the stair condition is required
or whether there exists an equivalent parity DVPA. It seems that the methods used in the proof can be
generalized from stair Büchi conditions to arbitrary stair parity conditions but we have not worked out
the details.

References

[1] Rajeev Alur & Parthasarathy Madhusudan (2004):Visibly pushdown languages. In: STOC ’04: Proceedings
of the thirty-sixth annual ACM symposium on Theory of computing, ACM Press, New York, NY, USA, pp.
202–211, doi:10.1145/1007352.1007390.

[2] Christel Baier & Joost-Pieter Katoen (2008):Principles of Model Checking. MIT Press.

[3] T. Cachat, J. Duparc & W. Thomas (2002):Solving Pushdown Games with aΣ3 Winning Condition. In:
Proceedings of the 11th Annual Conference of the European Association for Computer Science Logic, CSL
2002, Lecture Notes in Computer Science2471, Springer, pp. 322–336, doi:10.1007/3-540-45793-322.

[4] Olivier Carton & Ramón Maceiras (1999):Computing the Rabin Index of a Parity Automaton. ITA 33(6),
pp. 495–506, doi:10.1051/ita:1999129.

[5] Rina S. Cohen & Arie Y. Gold (1978):Omega-Computations on Deterministic Pushdown Machines. JCSS
16(3), pp. 275–300, doi:10.1016/0022-0000(78)90019-3.

[6] Javier Esparza, David Hansel, Peter Rossmanith & StefanSchwoon (2000):Efficient Algorithms for Model
Checking Pushdown Systems. In: CAV, pp. 232–247, doi:10.1007/1072216720.

[7] W. Fridman (2010):Formats of Winning Strategies for Six Types of Pushdown Games. In A. Montanari,
M. Napoli & M. Parente, editors:Proceedings of the First Symposium on Games, Automata, Logic, and

C. Löding 73

Formal Verification, GandALF 2010, 25, Electronic Proceedings in Theoretical Computer Science, pp. 132–
145, doi:10.4204/EPTCS.25.14.

[8] Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors (2002): Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001]. Lecture Notes in Computer
Science2500, Springer, doi:10.1007/3-540-36387-4.

[9] John E. Hopcroft & Jeffrey D. Ullman (1979):Introduction to Automata Theory, Languages, and Computa-
tion. Addison Wesley.

[10] Matti Linna (1977):A Decidability Result for Deterministic omega-Context-Free Languages. Theor. Comput.
Sci.4(1), pp. 83–98, doi:10.1016/0304-3975(77)90058-5.

[11] Christof Löding, Parthasarathy Madhusudan & Oliver Serre (2004):Visibly pushdown games. In: FSTTCS
2004, Lecture Notes in Computer Science3328, Springer, pp. 408–420, doi:10.1007/978-3-540-30538-5 34.

[12] Christof Löding & Stefan Repke (2012):Regularity Problems for Weak Pushdownω-Automata and Games.
In: Mathematical Foundations of Computer Science 2012, Lecture Notes in Computer Science7464, Springer
Berlin / Heidelberg, pp. 764–776, doi:10.1007/978-3-642-32589-266.

[13] Dominique Perrin & Jean-Éric Pin (2004):Infinite words. Pure and Applied Mathematics141, Elsevier.

[14] Stefan Repke (2014):Simplification Problems for Automata and Games. Ph.D. thesis, RWTH Aachen,
Germany.

[15] Géraud Sénizergues (2001):L(A)=L(B)? decidability results from complete formal systems. Theor. Comput.
Sci.251(1-2), pp. 1–166, doi:10.1016/S0304-3975(00)00285-1.

[16] Ludwig Staiger (1983): Finite-State ω-Languages. JCSS 27(3), pp. 434–448. Available at
http://dx.doi.org/10.1016/0022-0000(83)90051-X.

[17] Richard E. Stearns (1967):A Regularity Test for Pushdown Machines. Information and Control11(3), pp.
323–340, doi:10.1016/S0019-9958(67)90591-8.

[18] Philipp Stephan (2006):Deterministic Visibly Pushdown Automata over Infinite Words. Diploma thesis,
RWTH Aachen.

[19] Howard Straubing (1994):Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Basel,
Switzerland, doi:10.1007/978-1-4612-0289-9.

[20] Leslie G. Valiant (1975):Regularity and Related Problems for Deterministic Pushdown Automata. J. ACM
22(1), pp. 1–10. Available athttp://doi.acm.org/10.1145/321864.321865.

[21] William W. Wadge (1984):Reducibility and Determinateness on the Baire Space. Ph.D. thesis, University
of California, Berkeley.

[22] Igor Walukiewicz (2001):Pushdown Processes: Games and Model Checking. Information and Computation
164(2), pp. 234–263, doi:10.1006/inco.2000.2894.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 74–93, doi:10.4204/EPTCS.151.5

c© S. Maneth
This work is licensed under the
Creative Commons Attribution License.

Equivalence Problems for Tree Transducers:
A Brief Survey

Sebastian Maneth
School of Informatics

University of Edinburgh
smaneth@inf.ed.ac.uk

The decidability of equivalence for three important classes of tree transducers is discussed. Each
class can be obtained as a natural restriction of deterministic macro tree transducers (MTTs): (1) no
context parameters, i.e., top-down tree transducers, (2) linear size increase, i.e., MSO definable tree
transducers, and (3) monadic input and output ranked alphabets. For the full class of MTTs, decid-
ability of equivalence remains a long-standing open problem.

1 Introduction

The macro tree transducer (MTT) was invented independently by Engelfriet [20, 29] and Courcelle [13,
14] (see also [37]). As a model of syntax-directed translations, MTTs generalize the attribute grammars
of Knuth [46]. Note that one (annoying) issue of attribute grammars is that they can be circular; MTTs
always terminate. Macro tree transducers are a combination of context-free tree grammars, invented
by Rounds [57] and also known as “macro tree grammars” [34], and the top-down tree transducer of
Rounds and Thatcher [58, 67]: the derivation of the grammar is (top-down) controlled by a given input
tree. In terms of a top-down transducer, the combination is obtained by allowing nesting of state calls in
the rules (similar to the nesting of nonterminals in the productions of context-free tree grammars). Top-
down tree transducers generalize to trees the finite state (string) transducers (also known as “generalized
sequential machines”, or GSMs, see [38, 8]). In terms of formal languages, compositions of MTTs give
rise to a large hierarchy of string languages containing, e.g., the IO and OI hierarchies (at level one they
include the indexed languages of Aho [1]), see [22]. MTTs can be applied in many scenarios, e.g., to type
check XML transformations (they can simulate the k-pebble transducers of Milo, Suciu, and Vianu [51]),
see [23, 49, 50], or to efficiently implement streaming XQuery transformations [42, 52]. In terms of
functional programs, MTTs are particularly simple programs that do primitive recursion over an input
tree and only produce trees as output. Applications in programming languages exist include [68, 69, 52].

Equivalence of nondeterministic transducers is undecidable, already for restricted string transduc-
ers [40]. We therefore only consider deterministic transducers. What is known about the equivalence
problem for deterministic macro tree transducers? Unfortunately not much in the general case. Only a
few subcases are known to be decidable. Here we describe three of them:

(1) top-down tree transducers

(2) linear size increase transducers

(3) monadic tree transducers.

The first one was solved long ago by Esik [30], but was revived through the “earliest canonical normal
form” by Engelfriet, Maneth, and Seidl [26]. The latter implies PTIME equivalence check for total top-
down tree transducers. The second one is solved by the decidability of equivalence for deterministic MSO

S. Maneth 75

tree transducers of Engelfriet and Maneth [25]. The same authors have shown that every MTT of linear
size increase is effectively equal to an MSO transducer [24]. Hence, decidability of equivalence follows
for MTTs of linear size increase. Here we give a direct proof using MTTs. The third result is about MTTs
over monadic trees. These are string transducers with copying. The decidability of their equivalence
problem follows through a relationship with L-systems [28]; in particular, with the sequence equivalence
problem of HDT0L systems. The latter was first proved decidable by Culik II and Karumhäki [18].

2 Preliminaries

We deal with finite, ordered, ranked trees. In such a tree, each node is labeled by a symbol from a ranked
alphabet such that the rank of the symbol is equal to the number of children of the node. Formally, a
ranked alphabet consists of a finite set Σ together with a mapping rankΣ : Σ→ IN associating to each
symbol its rank. We write σ (k) to denote that the rank of σ is equal to k. By Σ(k) we denote the subset of
symbols of Σ that have rank k. Let Σ be a ranked alphabet. The set of all trees over Σ, denoted TΣ, is the
smallest set of strings T such that if k ≥ 0, t1, . . . , tk ∈ T , and σ ∈ Σ(k), then also σ(t1, . . . , tk) ∈ T . For a
tree of the form a() we simply write a. For a set A, we denote by TΣ(A) the set of all trees over Σ∪A such
that the rank of each a ∈ A is zero. Let a1, . . . ,an be distinct symbols in Σ(0) and let t1, . . . , tn ∈ TΣ such
that none of the leaves in t j are labeled by ai for 1≤ i≤ n. Then by [ai← ti | i∈ {1, . . . ,n}] we denote the
tree substitution that replaces each leaf labeled ai by the tree ti. Thus d(a,b,a)[a← c(b),b← a] denotes
the tree d(c(b),a,c(b)).

Let t ∈ TΣ for some ranked alphabet Σ. We denote the nodes of t by their Dewey dotted decimal path
and define the set V (t) of nodes of t as {ε}∪{i.u | 1 ≤ i ≤ k,u ∈ V (ti)} if t = σ(t1, . . . , tk) with k ≥ 0,
σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ. Thus, ε denotes the root node, and u.i denotes the ith child of the node u. For
a node u ∈V (t) we denote by t[u] its label, and, for a tree t ′ we denote by t[u← t ′] the tree obtained from
t by replacing its subtree rooted at u by the tree t ′. The size of t, denoted |t|, is its number |V (t)| of nodes.
The height of t, denoted height(t), is defined as height(σ(t1, . . . , tk)) = 1+max{height(ti) | 1 ≤ i ≤ k}
for k ≥ 0, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ.

We fix the set of input variables X = {x1,x2, . . .} and the set of formal context parameters Y =
{y1,y2, . . .}. For n ∈ IN we define Xn = {x1, . . . ,xn} and Yn = {y1, . . . ,yn}.

A deterministic finite-state bottom-up tree automaton is a tuple A = (Q,Σ,δ ,Q f) where Q is a finite
set of states, Q f ⊆ Q is the set of final states, and for every σ ∈ Σ(k) and k ≥ 0, δσ is a function from Qk

to Q. The transition function δ is extended to a mapping from TΣ to Q in the obvious way, and the set of
trees accepted by A is L(A) = {s ∈ TΣ | δ (s) ∈ Q f }.

3 Macro Tree Transducers

Definition 1 A (deterministic) macro tree transducer M is a tuple (Q,Σ,∆,q0,R) such that Q is a ranked
alphabet of states with Q(0) = /0, Σ and ∆ are ranked alphabets of input and output symbols, respectively,
q0 ∈ Q(1) is the initial state, and for every q ∈ Q(m+1), m ≥ 0, and σ ∈ Σ(k), k ≥ 0, the set of rules R
contains at most one rule of the form

q(σ(x1, . . . ,xk),y1, . . . ,ym)→ t

where t ∈ T∆∪Q(Xk∪Ym) such that if a node in t has its label in Q, then its first child has its label in Xk. A
rule as above is called a (q,σ)-rule and its right-hand side is denoted by rhs(q,σ).

76 Equivalence Problems for Tree Transducers: A Brief Survey

The translation τM : TΣ → T∆ (often just denoted M) realized by an MTT M is a partial function
recursively defined as follows. For each state q of rank m+ 1, Mq : TΣ → T∆(Ym) is the translation of
M starting in state q, i.e., “starting” with a tree q(s,y1, . . . ,ym) where s ∈ TΣ. For instance, for a ∈ Σ(0),
Mq(a) simply equals rhs(q,a). In general, for an input tree s = σ(s1, . . . ,sk), Mq(s) is obtained from
rhs(q,σ) by repeatedly replacing a subtree of the form q′(xi, t1, . . . , tn) with t1, . . . tn ∈ T∆(Ym) by the tree
Mq′(si)[y j← t j | 1≤ j ≤ n]. The latter tree will also be written Mq′(si, t1, . . . , tn). We define τM = Mq0 .

By the definition above, all our MTTs are deterministic and we refer to them as “macro tree trans-
ducers” and denote their class of translations by MTT. An MTT is total if there is exactly one rule of the
above form. If each state of an MTT is of rank one, then it is a top-down tree transducer. The class of
translations realized by (deterministic) top-down tree transducers is denoted by T. In Lemmas 3 and 5
we make use of nondeterministic top-down tree transducers and mark the corresponding class there by
the letter “N”. A transducer is nondeterministic if there are several (q,σ)-rules in R. An MTT is monadic
if its input and output ranked alphabets are monadic, i.e., only contain symbols of rank 1 and 0. An MTT

M is of linear size increase if there is a constant c such that |τM(s)| ≤ c · |s| for every s ∈ TΣ.
As an example, consider the transducer M consisting of the rules in Figure 1. The alphabets of this

q0(d(x1,x2)) → d(q(x1,1(e)),q(x2,2(e)))
q0(a) → a(e)
q(d(x1,x2),y1) → d(q(x1,1(y1)),q(x2,2(y1)))
q(a,y1) → a(y1)

Figure 1: The macro tree transducer M adds reverse Dewey paths to leaves

transducer are Q= {q(1)0 ,q(2)}, Σ= {d(2),a(0)}, and ∆= {d(2),a(1),1(1),2(1),e(0)}. The MTT M translates
a binary tree into the same tree, but additionally adds under each leaf the reverse (Dewey) path of the
node. For instance, s = d(d(a,a),a) is translated into d(d(a(1(1(e))),a(2(1(e)))),a(2(e))) as can be
verified in this computation of M

M(d(d(a,a),a)) =
d(Mq(d(a,a),1(e)),Mq(a,2(e))) =
d(d(Mq(a,1(1(e))),Mq(a,2(1(e)))),a(2(e))) =
d(d(a(1(1(e))),a(2(1(e)))),a(2(e))).

Note that M is not of linear size increase. Hence, it is not MSO definable. Since the translation is neither
top-down nor monadic, it falls into a class of MTTs for which we do not know a procedure to decide
equivalence. As an exercise, the reader may wonder whether there is an MTT that is similar to M, but
outputs Dewey paths below leaves (instead of their reverses). In contrast, consider input trees with only
exactly one a-leaf (and all other leaves labeled differently). Then an MTT of linear size increase can
output under the unique a-leaf its reverse Dewey path, i.e., this translation is MSO definable. Is it now
possible with an MTT to output the non-reversed Dewey path?

One of the most useful properties of MTTs is the effective preservation of regular tree languages by
their inverses. This is used inside the proofs of several results presented here. For instance, to prove that
for every MTT there is an equivalent one which is nondeleting in the parameters (= strict), one can use
the above property as follows: given a state q of rank m+1 and a subset A ⊆ Ym, the language T∆(A) is
regular, and hence M−1

q (T∆(A)) is the regular set of inputs for which q outputs only parameters in the set
A. Thus, by using regular look-ahead we can determine which parameters are used, and can change the

S. Maneth 77

rules to call an appropriate state q′ which is only provided the parameters in A which it uses. Regular
look-ahead is explained in Section 4.1.

The following result is stated in Theorem 7.4 of [29]. A similar proof as below is given at the end
of [23]. A slightly simpler proof, for a slightly larger class, is presented by Perst and Seidl for macro
forest transducers [54].

Lemma 1 Let M be an MTT with output alphabet ∆ and let R⊆ T∆ be a regular tree language (given by
a bottom-up tree automaton B). Then τ−1

M (R) is effectively regular. In particular, the domain dom(τM) is
effectively regular.

Proof. Let M =(Q,Σ,∆,q0,R) and B=(P,∆,δ ,Pf). We construct the new automaton A=(S,Σ,δ ′,S f).
The states of A are mappings α that associate with each state q ∈ Q(m+1) a mapping α(q) : Pm → P.
The set S f consists of all α ∈ S such that α(q0) ∈ Pf . For a ∈ Σ(0) we define δ ′a() = α such that
for every q ∈ Q(m+1) and p1, . . . , pm, (α(q))(p1, . . . , pm) = δ ∗(rhs(q,a)[y j ← p j | j ∈ [m]]). Here, δ ∗
is the extension of δ to trees in T∆(P) by the rule δ (p) = p for all p ∈ P. Now let b ∈ Σ(k) with
k ≥ 1. For α1, . . . ,αk ∈ S we define δ ′b(α1, . . . ,αk) = α where for every q ∈ Q(m+1) and p1, . . . , pm,
(α(q))(p1, . . . , pm) = δ ∗(rhs(q,b)[y j ← p j | j ∈ [m]]). Now, δ ∗ is the extension of δ ∗ of above to sym-
bols q′ ∈ Q(n+1) by δ (q′(xi, p′1, . . . , p′n)) = (αi(q′))(p′1, . . . , p′n) for every p′1, . . . , p′n ∈ P. �

3.1 Bounded Balance

Many algorithms for deciding equivalence of transducers are based on the notion of bounded balance.
Intuitively, two transducers have bounded balance if the difference of their outputs on any “partial” input
is bounded by a constant. For instance, for two D0L systems Gi = (Σ,hi,σ) with i = 1,2, Culik II
defines [16] the balance of a string w ∈ Σ∗ as the difference of the lengths of h1(w) and h2(w). He shows
that equivalence is decidable for D0L systems that have bounded difference. In a subsequent article [17],
Culik II and Fris show that any two equivalent D0L systems in normal form have bounded difference,
thus giving the first solution to the famous D0L equivalence problem.

For a tree transducer M a partial input is an input tree which contains exactly on distinguished leaf
labeled x, and x is a fresh symbol not in Σ. More precisely, a partial input is a tree p = s[u← x] where
s is in the domain of M and u is a node of s. Since the transducer has no rules for x, the computation
on the input p “blocks” at the x-labeled node. Thus, the tree M(p) may contain subtrees of the form
q(x, t1, . . . , tm) where q is a state of rank m+1. For instance, consider the transducer M shown in the left
of Figure 2 and consider the partial input tree s = a(a(x)). Then

M(a(a(x))) = d(M(a(x)),M(a(x))) = d(d(q0(x),q0(x)),d(q0(x),q0(x))).

It should be clear that if we replace each q0(x) by Mq0(s
′) so that s′ ∈ TΣ is a tree with ŝ = s[x← s′] ∈

dom(M), then we obtain the output M(ŝ) of M on input tree ŝ. For instance, we may pick s′ = e above;
then we obtain d(d(e,e),d(e,e)) which indeed equals M(a(a(e))).

Consider the trees M1(p) and M2(p) for two MTTs M1 and M2. What is the balance of these two
trees? There are two natural notions of balance: either we compare the sizes of Mi(p), or we compare
their heights. Given two trees t1, t2 we define their size-balance (for short, s-balance) as ||t1|− |t2|| and
their height-balance (for short, h-balance) as |height(s1)− height(s2)|. Two transducers M1,M2 have
bounded s-balance (resp. h-balance) if there exists a c > 0 such that for any partial input p the s-balance
(resp. h-balance) of M1(p) and M2(p) is at most c. Obviously, bounded h-balance implies bounded
s-balance, but not vice versa.

78 Equivalence Problems for Tree Transducers: A Brief Survey

Let M and N be equivalent MTTs. Do M and N have bounded size-balance? To see that this is in
general not the case, it suffices to consider two simple top-down tree transducers: M translates a monadic
partial input of the form an(x) into the full binary tree of height n containing 2n occurrences of the subtree
q0(x). The transducer N translates an(x) into the full binary tree of height n− 1 with 2n−1 occurrences
of the subtree p(x). The rules of M and N are shown in Figure 2. Clearly, M and N are of bounded

M : q0(a(x1)) → d(q0(x1),q0(x1)) N : p0(a(x1)) → p(x1)
q0(e) → e p0(e) → e

p(a(x1)) → d(p(x1), p(x1))
p(e) → d(e,e)

Figure 2: Equivalent top-down tree transducers M and N with unbounded size-balance

height-balance (with constant c = 1). But, their size-balance is not bounded.
In a similar way it can be seen that equivalent MTTs need not have bounded height-balance. This

even holds for monadic MTTs: Consider the transducers M′ and N′ with rules shown in Figure 3. Their

M′ : q0(a(x1)) → q(x1,q0(x1)) N′ : p0(a(x1)) → p(x1, p(x1, p0(x1)))
q0(e) → e p0(e) → e
q(a(x1),y1) → q(x1,y1) p(a(x1),y1) → p(x1,y1)
q(e,y1) → a(a(y1)) p(e,y1) → a(y1)

Figure 3: Equivalent monadic macro tree transducers M′ and N′ with unbounded height-balance

height-balance on input an(x) is equal to n; for instance, for the tree a(a(x)) we obtain

M′(a(a(x))) = N′(a(a(x))) =
M′q(a(x),M

′(a(x))) = N′p(a(x),N
′
p(a(x),N

′(a(x)))) =
q(x,q(x,q0(x))) p(x, p(x, p(x, p(x, p0(x)))))

which are trees of height 3 and 5, respectively. We may verify that replacing x by e results in equal trees:

M′q(e,M
′
q(e,M(e))) = M′q(e,M

′
q(e,e)) = M′q(e,a(a(e))) = a(a(a(a(e)))).

And for N′ we obtain that

N′p(e,N
′
p(e,N

′
p(e,N

′
p(e,N(e))))) = N′p(e,N

′
p(e,N

′
p(e,N

′
p(e,e)))) = N′p(e,N

′
p(e,N

′
p(e,a(e)))) =

N′p(e,N
′
p(e,a(a(e)))) = N′p(e,a(a(a(e)))) = a(a(a(a(e)))).

Let us now show that equivalent top-down tree transducers have bounded height-balance.

Lemma 2 Equivalent top-down tree transducers effectively have bounded height-balance.

Proof. Let M1,M2 be equivalent top-down tree transducers with sets of states Q1,Q2, respectively.
Note that they have the same domain D. Let s∈D and u∈V (s). Consider the two trees ξi =Mi(s[u← x])
for i = 1,2. Let s′ be a smallest input tree such that s[u← s′] ∈ D. It should be clear that the height of s′

is bounded by some constant d. In fact, let d be the height of a smallest tree in the set (∩q∈Qdom(M1,q)∩
(∩q′∈Q′dom(M2,q′)), for any subsets Q⊆Q1 and Q′ ⊆Q2. Since s′ is in such a set, its height is at most d.

S. Maneth 79

This bound d can be computed because by Lemma 1 the sets dom(M1,q) and dom(M2,q′) are effectively
regular, and regular tree languages are effectively closed under intersection [11]. In fact, it is not difficult
to see that we can choose d = 2|Q1|+|Q2|. Hence, there is a constant c such that height(Mi,qi(s

′)) < c for
any qi ∈Qi appearing in ξi. Clearly we can take c = d ·h, where h is the maximal height of the right-hand
side of any rule of M1 and M2. This means that |height(ξ1)−height(ξ2)| ≤ c because ξ1Θ1 = ξ2Θ2 and
the substitutions Θi = [q(x)←Mi,q(s′) | q ∈ Qi] increase the height of ξi by at most c. �

If the transducers M1,M2 of Lemma 2 are total, then d = 1 and c is the maximal size of the right-hand
side of any rule for an input leaf symbol, i.e., c=max{height(rhs(Mi,qi,a)) | i∈{1,2},qi ∈Qi,a∈Σ(0)}.

Let us consider an example of two equivalent top-down tree transducers M and N with output paths

M : q0(a(x1)) → d(q(x1),q0(x1)) N : p0(a(x1)) → p(x1)
q0(e) → e p0(e) → e
q(a(x1)) → q′(x1) p(a(x1)) → d(a(p′(x1)), p(x1))
q(e) → e p(e) → d(e,e)
q′(a(x1)) → a(a(q(x1))) p′(a(x1)) → a(p′(x1))
q′(e) → a(e) p′(e) → e

Figure 4: Equivalent top-down tree transducers M and N

of different height. The rules of M and N are given in Figure 4. Let us consider the input tree s= aaaa(x).
We omit some parentheses in monadic input trees. We obtain

M(s) = d(Mq(aaax),M(aaax)) = d(Mq′(aax),d(Mq(aax),M(aax))) =

d(a(a(Mq(ax))),d(Mq′(ax),d(Mq(ax),M(ax)))) =

d(a(a(q′(x))),d(a(a(q(x))),d(q′(x),d(q(x),q0(x)))))

Similarly, for the transducer N we obtain

N(s) = Np(aaax) = d(a(Np′(aax)),Np(aax)) = d(a(a(Np′(ax))),d(a(Np′(ax)),Np(ax))) =

d(a(a(a(p′(x)))),d(a(a(p′(x))),d(a(p′(x)), p(x)))).

As the reader may verify, if x is replaced by the leaf e, then indeed the output trees M(aaaae) and
N(aaaae) are the same, i.e., the transducers are equivalent. Let us compare the trees M(aaaax) and
N(aaaax). On the one hand, the transducer M is “ahead” of the transducer N in the output branch 2.2.2.
It has already produced a d-node at that position, while N has not (and is in state p at that position). On
the other hand, N is ahead of M at two other positions in the output: at the node 1.1.1 the transducer N
has produced an a-node already, while M at that node is in state q′, and, at node 2.2.1 the transducer M
has output an a-node, while also here M is in state q′.

4 Decidable Equivalence Problems

4.1 Top-Down Tree Transducers

It was shown by Ésik [30] that the bounded height-difference of top-down tree transducers can be used
to decide equivalence.

80 Equivalence Problems for Tree Transducers: A Brief Survey

Theorem 1 ([30]) Equivalence of top-down tree transducers is decidable.

Proof. We follow the version of the proof given by Engelfriet [20]. Consider two equivalent top-

u
s

M1(s)
= M2(s)

p1

p2

q3

t ′
t

q1 q2

Figure 5: Two equivalent top-down tree transducers

down tree transducers M1 and M2. By Lemma 2 they have bounded height-balance by some constant c.
Consider the trees M1(s[u← x]) and M2(s[u← x]). An “overlay” of these two trees is shown in Figure 5
(this is a copy of Figure 10 of [20]). At the node where M2 is in state p1, the transducer M1 has already
produced the tree t, i.e., at this node M1 is “ahead” of M2 by the amount t. Similarly, at the q3-labeled
node, M2 is ahead of M1 by the amount t ′. Clearly, the height of t and t ′ is bounded by c. Hence, there are
only finitely many such trees t and t ′. We can construct a top-down tree automaton A which in its states
keeps track of all such “difference trees” t and t ′, while simulating the runs of M1 and M2. It checks if
the outputs are consistent, and rejects if either the outputs are different or if the height of a difference
tree is too large. Finally, we check if A accepts the language D = dom(M1) = dom(M2); this is decidable
because D is regular by Lemma 1, and equivalence of regular tree languages is decidable (see [11]). �

Note that Ésik [30] shows that even for single-valued (i.e., functional) nondeterministic top-down
tree transducers, equivalence is decidable. It is open whether or not equivalence is decidable for k-valued
nondeterministic top-down tree transducers (but believed to be decidable along the same lines as for
bottom-up tree transducers [63], cf. the text below Theorem 5). A top-down tree transducer is letter-
to-letter if the right-hand side of each rule contains exactly one output symbol in ∆. It was shown by
Andre and Bossut [6] that equivalence is decidable for nondeleting nondeterministic letter-to-letter top-
down tree transducers. An interesting generalization of Theorem 1 is given by Courcelle and Franchi-
Zannettacci [15]. They show that equivalence is decidable for “separated” attribute grammars which
are evaluated in two independent phases: first a phase that computes all inherited attributes, followed
by a phase that computes all synthesized attributes (top-down tree transducers are the special case of
synthesized attributes only).

Top-down Tree Transducers with Regular Look-Ahead. Regular look-ahead means that the
transducer (MTT or T) comes with a (complete) deterministic bottom-up automaton (without final states),
called the “look-ahead automaton of M”. A rule of the look-ahead transducer is of the form

q(σ(x1, . . . ,xk), . . .)→ t 〈p1, . . . , pk〉

and is applicable to an input tree σ(s1, . . . ,sk) only if the look-ahead automaton recognizes si in state
pi for all 1 ≤ i ≤ k. Given two top-down tree transducers with regular look-ahead M1,M2, we can
transform them into ordinary transducers (without look-ahead) N1,N2 such that the resulting transducers

S. Maneth 81

are equivalent if and only if the original ones are. This is done by changing the input alphabet so that for
every original input symbol σ ∈ Σ of rank k, it now contains the symbols 〈σ , p1, . . . , pk,q1, . . . ,qk〉 for
all possible look-ahead states pi of M1 and qi of M2. Thus, for every σ ∈ Σ(k), the new input alphabet
has |P|k|Q|k-many symbols. It is easy to see that Lemma 2 also holds for transducers with look-ahead,
by additionally requiring that the domain D of the Ni is intersected with all input trees that represent
correct runs of the look-ahead automata. Thus, Theorem 1 also holds for top-down tree transducers with
look-ahead.

Theorem 2 Equivalence of top-down tree transducers with regular look-ahead is decidable.

Canonical Normal Form. Consider two equivalent top-down tree transducers M1,M2 and let D be
their domain. As the example transducers M and N with rules in Figure 4 show, for a partial input tree
s[u← x], there may be positions in the output trees where M1 is ahead of M2, and other positions where
M2 is ahead of M1. Such a scenario is also depicted in Figure 5.

We say that M1 is earlier than M2, if for every s ∈ D and u ∈V (s), the tree M2(s[u← x]) is a prefix
of the tree M1(s[u← x]). A tree t is a prefix of a tree t ′ if for every u ∈ V (t) with t[u] ∈ ∆ it holds that
t ′[u] = t[u]. The question arises whether for every top-down translation there is an equivalent unique
earliest transducer M such that Mq 6= Mq′ for q 6= q′; we call such a transducer a canonical transducer.
The question was answered affirmative by Engelfriet, Maneth, and Seidl [26]. We only state this result
for total transducers.

Theorem 3 Let M be a total top-down tree transducer. An equivalent canonical transducer can be con-
structed in polynomial time.

Proof. The canonical transducers are top-down tree transducers without an initial state, but with an
axiom tree A ∈ T∆∪Q({x0}). This means that the translation on input tree s ∈ TΣ starts with the tree
A[x0← s] (instead of q0(s) for ordinary transducers).

Starting with M, we define its axiom A = q0(x0). In a first step, an earliest transducer is con-
structed: if there is a state q and an output symbol δ (of rank k) such that rhs(q,σ)[ε] = δ for every
input symbol σ , then M is not earliest. Intuitively, the symbol δ should be produced earlier, at each
call of the state q. Thus, the construction replaces q(xi) in all right-hand sides (and in the axiom A) by
δ (〈q,1〉(xi), . . . ,〈q,k〉(xi)) where the 〈q, j〉 are new states. For every σ , rhs(〈q, j〉,σ) is defined as the j-
th subtree of the root of rhs(q,σ) – beware, this right-hand side may have changed due to the replacement
above. Finally we remove q and its rules. This step is repeated until it cannot be applied anymore. In this
case M has become earliest and no q and δ exists such that Mq(s) = δ (. . .) for all input trees s of q. It
should be clear that the earliest step can be carried out in polynomial time. In the second step, equivalent
states are merged to obtain the canonical transducer; the corresponding equivalence relation on states is
computed using fixed point iteration in cubic time (with respect to the size of M). It is computed in such
a way that if q 6= q′, then Mq 6= Mq′ . �

Note that the availability of a canonical (“minimal”) transducer has many advantages. For instance,
it makes possible to formulate a Myhill-Nerode like theorem which, in turn, makes possible Gold-
style learning of top-down tree transducers (in polynomial time), as shown by Lemay, Maneth, and
Niehren [47].

Consider the two transducers M and N with the rules given in Figure 4. To construct a canonical
equivalent transducer for M according to Theorem 3, we observe that state q′ of M is not earliest: the
root equals a for the right-hand sides of all q-rules. We replace q′(x1) by a(〈q′,1〉(x1)) in the (q,a)-rule,

82 Equivalence Problems for Tree Transducers: A Brief Survey

and introduce the two rules 〈q′,1〉(a(x1))→ a(q(x1)) and 〈q′,1〉(e)→ e. We remove q′ and have obtained
an earliest transducer. The canonical transducer is constructed by realizing that the states 〈q′,1〉 and q
are equivalent and hence can be merged. The rules of the canonical transducer can thus be given as

q0(a(x1)) → d(q(x1),q0(x1))
q0(e) → e
q(a(x1)) → a(q(x1))
q(e) → e.

To construct the canonical transducer for N, we observe that state p is not earliest: the root equals d in
both rules. We thus replace p(x1) everywhere by d(p1(x1), p2(x1)) where p1, p2 are new states. After
this replacement, the current (p,a)-rule is:

p(a(x1))→ d(a(p′(x1)),d(p1(x1), p2(x1))).

Thus, new a-rules are p1(a(x1))→ a(p′(x1)) and p2(a(x1))→ d(p1(x1), p2(x1)). The e-rules are p1(e)→
e and p2(e)→ e. The resulting transducer is earliest. We now compute that p1 ≡ p′ and that p2 ≡ p0.
We merge these pairs of states and obtain the same transducer (up to renaming of states) as the canonical
one of M above. Hence, M and N are equivalent.

As a consequence of Theorem 3 we obtain that equivalence of total top-down tree transducers can be
decided in polynomial time.

Theorem 4 Equivalence of total top-down tree transducers can be decided in polynomial time.

The earliest normal form has also certain “disadvantages”. For instance, it does not preserve lin-
earity (or nondeletingness) of the transducer. Consider for Σ = {a(2),e(0)} the rules q(a(x1,x2)) →
d(q(x1),q(x2)) and q(e) → d(e,e). When making earliest, these rules are removed and a rule such
as q1(f (x1))→ q(x1) is replaced by q1(f (x1))→ d(〈q,1〉(x1),〈q,2〉(x1)) which is non-linear. It is also
deleting: 〈q,1〉(a(x1,x2))→ q(x1).

4.2 Bottom-Up Tree Transducers

As a corollary of Theorem 2 we obtain that also for deterministic bottom-up tree transducers, equiva-
lence is decidable. This follows from the fact that every deterministic bottom-up tree transducer can be
transformed into an equivalent deterministic top-down tree transducer with regular look-ahead [19].

Theorem 5 Equivalence of deterministic bottom-up tree transducers is decidable.

Proof. A deterministic bottom-up tree transducer is a tuple B = (Σ,∆,Q,Q f ,R) where Q f ⊆ Q is the
set of final states and R contains for every k ≥ 0, σ ∈ Σ(k), and q1, . . . ,qk ∈ Q at most one rule of the
form σ(q1(x1), . . . ,qk(xk))→ q(t) where t is a tree in T∆(Xk). We construct in linear time a deterministic
bottom-up tree automaton which for every rule as above has the transition δσ (q1, . . . ,qk)→ q. This
automaton serves as the look-ahead automaton of a top-down tree transducer with the unique state p. For
a rule as above, the transducer has the rule

p(σ(x1, . . . ,xk))→ t[xi← p(xi) | i ∈ [k]] 〈q1, . . . ,qk〉.
It should be clear that the resulting top-down tree transducer with look-ahead T (which has only the
single state p) is equivalent to the given bottom-up tree transducer B. �

The equivalence problem for bottom-up tree transducers was first solved by Zachar [70]. It was
shown by Seidl [60] that equivalence can be decided in polynomial time for single-valued (i.e., func-
tional) nondeterministic bottom-up tree transducers. Note that this also follows from Theorem 8 and the

S. Maneth 83

(polynomial time) construction in the proof of Theorem 5. This result was extended to finite-valued non-
deterministic bottom-up tree transducers by Seidl [61]. For nondeterministic letter-to-letter bottom-up
tree transducers, equivalence was shown decidable by Andre and Bossut [5]; such transducers contain
exactly one output symbol in the right-hand side of each rule. They reduce the problem to the equiva-
lence of bottom-up relabelings which was solved by Bozapalidis [9]. For deterministic bottom-up tree
transducers the effective existence of a canonical normal form, similar in spirit to the earliest normal
form of top-down tree transducers, was shown by Friese, Seidl, and Maneth [36]. They show that this
normal form can be constructed in polynomial time, if each state of the given transducer produces either
none or infinitely many outputs; hence, equivalence is decidable in polynomial time for such transducers.
Friese presents in her PhD thesis [35] a Myhill-Nerode theorem for bottom-up tree transducers.

4.3 Linear Size Increase mtts

It was shown by Engelfriet and Maneth [24] that total deterministic mtts of linear size increase char-
acterize the total deterministic MSO definable tree translations. In fact, even any composition of total
deterministic mtts, when restricted to linear size increase, is equal to an MSO definable translation, as
shown by Maneth [48]. The MSO definable tree translations are a special instance of the MSO definable
graph translations, introduced by Courcelle and Engelfriet, see [12]. Decidability of equivalence for de-
terministic MSO graph-to-string translations on a context-free graph language was proved by Engelfriet
and Maneth [25]. It implies decidable equivalence also for MSO tree translations. We present a proof of
the latter here that only uses MTTs and avoids going through MSO.

The idea of the proof stems from Gurari’s proof [41] of the decidability of equivalence for 2DGSM.
In a nutshell: the ranges of all the above translations are Parikh. A language is Parikh if its set of
Parikh vectors is equal to the set of Parikh vectors of a regular language. Let Σ = {a1, . . . ,am} be an
alphabet. The Parikh vector of a string w ∈ Σ∗ is the n-tuple (i1, . . . , im) of natural numbers i j such
that for 1 ≤ j ≤ m, i j equals the number of occurrences of a j in w. For a language that is Parikh, it is
decidable whether or not it contains a string with Parikh vector (n,n, . . . ,n) for some natural number n.
This property is used to prove equivalence as follows. Given two tree-to-string transducers M1,M2 we
first change Mi to produce a new end marker $ at the end of each output string. Then, given the regular
domain language D of M1 and M2, and two distinct output letters a,b we construct the Parikh language

La,b = {ambn | ∃s ∈ D : M1(s)/m = a,M2(s)/n = b}.

Here w/m denotes the m-th letter in the string w. We now decide if there is an n such that anbn ∈ La,b,
using the fact that La,b is Parikh. If such an n exists, then the transducers M1,M2 are not equivalent. If,
for all possible a, b, no such n exists, then we know that the transducers M1,M2 are equivalent.

It was shown by Engelfriet, Rozenberg, and Slutzki in Corollary 3.2.7 of [28] that ranges of nondeter-
ministic finite-copying top-down tree transducers with regular look-ahead (for short, N-TR

fcs) possess the
Parikh property. The nondeterminism of this result is useful for defining the language La,b, because we
need to nondeterministically choose a and b positions m and n of the output strings. A nondeterministic
top-down tree transducer M is finite-copying if there is number c such that for every s ∈ TΣ and u ∈V (s),
the number of occurrences of states (more precisely, subtrees q(x) such that q is a state of M) in the tree
M(s[u← x]) is ≤ c. We denote the class of translations of nondeterministic finite-copying top-down tree
transducers by N-TR

fc.
For a tree t we denote by yt its yield, i.e., the string of its leaf labels from left to right. For a class X of

tree translations we denote by yX the corresponding class of tree-to-yield translations. The tree-to-yield
translations of top-down tree transducers can be obtained by top-down tree-to-string transducers which

84 Equivalence Problems for Tree Transducers: A Brief Survey

have strings over output symbols and state calls q(xi) in the right-hand sides of their rules. We repeat
the argument given in [28]. By REGT we denote the class of regular tree languages, i.e., those languages
recognized by (deterministic) finite-state bottom-up tree automata.

Lemma 3 Languages in yN-TR
fc(REGT) are Parikh.

Proof. Let M be a yN-TR
fc transducer and let R∈ REGT. A top-down transducer is linear if no xi appears

more than once in any of the right-hand sides of its rules. We construct a linear transducer M′ such that
dom(M′) = dom(M) and the string M′(s) is a permutation of the string M(s), for every s ∈ dom(M).
The new transducer computes in its states the state sequences of M, i.e., the sequence of states that are
translating the current input node. Since M is finite-copying, there effectively exists a bound c on the
length of the state sequences. For a new state 〈q1, . . . ,qn〉 with n ≤ c the right-hand side of a rule is
obtained by simply concatenating the right-hand sides of the corresponding rules for qi. It is well known
that linear top-down tree transducers preserve regularity and hence the language M′(R) is in yREGT, i.e.,
it is the yield language of a regular tree language. The latter is obviously a context-free language (cf.
Theorem 3.8 of [67]) which is Parikh by Parikh’s theorem [53]. �

A macro tree transducer M is finite-copying if there exist constants k and n such that

(1) for every input tree s′ = s[u← x] with s ∈ TΣ and u ∈V (s), the number of occurrences of states in
M(s′) is ≤ k and

(2) for every state q of rank m+1, 1≤ j ≤m, and s ∈ TΣ, the number of occurrences of y j in Mq(s) is
≤ n.

Recall that an MTT M is of linear size increase if there is a constant c such that |τM(s)| ≤ c · |s| for
every s ∈ TΣ. We denote the class of translations realized by MTTs of linear size increase by MTTlsi.

Lemma 4 (yMTTlsi)⊆ yTR
fc.

Proof. It was shown in [24] how to construct a finite-copying macro tree transducer with look-ahead,
for a given macro tree transducer of linear size increase. The construction goes through several normal
forms which make sure that the transducer generates only finitely many copies; most essentially, the
“proper” normal form: each state produces infinitely many output trees, and, each parameter is instanti-
ated by infinitely many trees. By using regular look-ahead finitely many different trees can be determined
and outputted directly. The idea of the proper normal form was used already by Aho and Ullmann for
top-down tree transducers [2].

It was shown in Lemmas 6.3 and 6.6 of [21] that M can be changed into an equivalent transducer
which is “special in the parameters”. This means that it is linear and nondeleting in the parameters, i.e.,
each parameter y j of a state q appears exactly once in the right-hand side of each (q,σ)-rule. The idea is
to simply provide multiple parameters, whenever parameters are copied, and to use regular look-ahead
in order to determine which parameters are deleted. This was mentioned above Lemma 1 already. For a
yMTTR transducer that is special in the parameters, it was shown in Lemma 13 of [22] how to construct
an equivalent yTR transducer. The parameters of the yMTT can be removed by outputting the strings
between them directly. Since each parameter appears once, the final string Mq(s) is divided into m+ 1
string chunks w j (where m+ 1 is the rank of q): w0,y1w1, . . . ,ymwm. We leave further details as an
exercise, and suggest to start with the case that all y j appear in strictly increasing order at the leaves of
any Mq(s). It is not difficult to see that the construction preserves finite-copying. �

S. Maneth 85

Lemma 5 Let M1,M2 be yTR
fc transducers with input and output alphabets Σ and ∆, and let a,b ∈ ∆

with a 6= b. Let D ⊆ TΣ be a regular tree language. The language La,b = {am#bn | ∃s ∈ D : M1(s)/m =
a,M2(s)/n = b} is Parikh.

Proof. Let us assume that the state sets Q1,Q2 of the transducers M1,M2 are disjoint. The initial state
of M1,M2 is q0 and p0, respectively. We first construct a yN-TR

fc transducer M′1 such that

M′1(s) = {ua | u ∈ ∆∗,∃v ∈ ∆∗ : uav = M1(s)}.

Its state set is Q0 = Q1∪{qa | q ∈ Q1} and its initial state is q0,a. It has all rules of M1 and, moreover,
for every rule q(σ(x1, . . . ,xk))→ w 〈· · · 〉 of M1, whenever w = uav it has the rule qa(σ(x1, . . . ,xk))→
ua 〈· · · 〉, and whenever w = uq′(xi)v it has the rule qa(σ(x1, . . . ,xk))→ uq′a(xi) 〈· · · 〉. From M′1 one
obtains a yN-TR

fc transducer M′′1 such that

M′′1 (s) = {am |M1(s)/m = a}

by simply changing all symbols of ∆ into a in the rules of M′1. Similarly, one obtains a transducer M′′2
such that M′′2 (s) = {bn | M2(s)/n = b}. Finally, a yN-TR

fc transducer M is defined such that M(s) =
{am#bn |M1(s)/m = a,M2(s)/n = b}. Its state set is {r0}∪Q′1∪Q′2 with initial state r0. The look-ahead
automaton of M is the product automaton of the look-ahead automata of M1 and M2. The set of rules of M
is the union of those of M′′1 and M′′2 , adapted to the new look-ahead appropriately. Moreover, for σ ∈ Σ(k),
k ≥ 0, and rules q0,a(σ(x1, . . . ,xk))→ u 〈q′1, . . . ,q′k〉 and p0,b(σ(x1, . . . ,xk))→ w 〈p′1, . . . , p′k〉, we let

r0(σ(x1, . . . ,xk))→ u#w 〈(q′1, p′1), . . . ,(q
′
k, p′k)〉

be a rule of M. Obviously, M(s) equals the concatenation M′′1 (s)#M′′2 (s), and is finite-copying. Since
M(D) = La,b it follows by Lemma 3 that La,b is Parikh. �

Theorem 6 Equivalence of deterministic macro tree transducers of linear size increase is decidable.

Proof. Let M1,M2 be MTT transducers of linear size increase. We first check that the domains of
Mi coincide. This is decidable because dom(Mi) is effectively regular by Lemma 1. If not then the
transducers are not equivalent and we are finished. Otherwise, let D be their domain. We may consider
Mi as tree-to-string transducers, by considering the tree in the right-hand side of each rule as a string
(which uses additional terminals symbols for denoting the tree structure such as opening and closing
parentheses and commas). Thus, by Lemma 4 (which is effective) we may in fact assume that M1 and M2
are yTR

fc transducers. Let ∆ be the output alphabet of Mi and let $ be a new symbol not in ∆. We change
Mi so that each output string is followed by the $ symbol. This can easily be done by first splitting the
initial state q0 so that it appears in the right-hand side of no rule, and then adding $ to the end of each
q0-rule. It now holds that M1 and M2 are not equivalent if and only if there exist a,b ∈ ∆ with a 6= b,
s ∈ D, and a number n such that M1(s)/n = a and M2(s)/n = b. The latter holds if the intersection of
La,b of Lemma 5 with the language E = {an#bn | n ∈ IN} is nonempty. Since La,b is Parikh by Lemma 5,
we obtain decidability because semilinear sets are closed under intersection [39, 38] and have decidable
emptiness. But, there is a much easier proof: E ∩ L is context-free, because E is (by the well-known
“triple construction”, see, e.g., Theorem 6.5 of [44]), where L is a regular language with the same Parikh
vectors as La,b. The result follows since context-free grammars have decidable emptiness. �

86 Equivalence Problems for Tree Transducers: A Brief Survey

4.4 Monadic mtts

Recall that a macro tree transducer is monadic if both its input and output alphabet are monadic, i.e.,
consist of symbols of rank one and rank zero only. We will reduce the equivalence problem for monadic
MTT transducers to the sequence equivalence problem of HDT0L systems. An MTT is nondeleting if for
every state q of rank m+ 1, 1 ≤ j ≤ m, and input symbol σ , the parameter y j occurs in rhs(q,σ). A
monadic MTT M = (Q,Σ,∆,q0,R) is normalized if

(N0) it is nondeleting

(N1) each state is of rank two or one, i.e., Q = Q(2)∪Q(1) and

(N2) there is only one input and output symbol of rank zero, i.e., Σ(0) = ∆(0) = {⊥}
Note that for total transducers (N1) is a consequence of (N0) because a (q,⊥)-rule can only contain at
most one parameter occurrence.

HDT0L systems An instance of the HDT0L sequence equivalence problem consists of finite alpha-
bets Σ and ∆, two strings w1,w2 ∈ Σ∗, homomorphisms h j,g j : Σ∗→ Σ∗, 1≤ j≤ n, and homomorphisms
h,g : Σ∗→ ∆∗. To solve the problem we have to determine whether or not

h(hik(· · ·hi1(w1) · · ·)) = g(gik(· · ·gi1(w2) · · ·))

holds true for all k ≥ 0, 1≤ i1, . . . , ik ≤ n. This problem is known to be decidable. It was first proven by
Culik II and Karhumäki [18], using Ehrenfeucht’s Conjecture and Makanin’s algorithm. A later proof
of Ruohonen [59] is based on the theory of metabelian groups. Yet another, very short, proof was given
by Honkala [43] which only relies on Hilbert’s Basis Theorem. We now show that the equivalence
problem for total monadic MTT transducers can be reduced to the sequence equivalence problem for
HDT0L systems. For a monadic tree s = a1(· · ·an(e) · · ·) we denote by strip(s) the string a1 · · ·an.

Lemma 6 Equivalence of total monadic normalized MTTs on a regular input language is decidable.

Proof. We first solve the problem without a given input tree language. Let M1 = (Q1,Γ,Π,q0,R1)
and M2 = (Q2,Γ,Π, p0,R2) be total monadic normalized macro tree transducers such that Q1 is dis-
joint from Q2. Let Q = Q1 ∪Q2. We define an instance of the HDT0L sequence equivalence problem.
The string alphabets Σ,∆ are defined as Σ = Π(1) ∪Q and ∆ = Π(1). We define homomorphisms ha,ga

for every input symbol a ∈ Γ(1). For π ∈ Π(1) let ha(π) = ga(π) = π . Let q ∈ Q. If q ∈ Q1 then let
ha(q) = strip(rhsM1(q,a)), and otherwise let ha(q) = q. If q ∈ Q2 then let ga(q) = strip(rhsM2(q,a)),
and otherwise let ga(q) = q. For trees t ∈ TΠ∪Q(Xk ∪Ym) we define the mapping strip by strip(π(t)) =
π · strip(t) for π ∈ Γ(1), strip(q(x1, t)) = q · strip(t) for q ∈ Q(2), strip(q(x1)) = q for q ∈ Q(1), and
strip(⊥) = strip(y1) = ε , where “·” denotes string concatenation. The final homomorphisms h,g are
defined as h(q) = strip(rhsM1(q,⊥)) if q ∈ Q1, and otherwise h(q) = q, and g(q) = strip(rhsM2(q,⊥)) if
q ∈ Q2, and otherwise g(q) = q. Last but not least, let w1 = q0 and w2 = p0. This ends the construc-
tion of the HDT0L instance. Consider an input tree s = a1(· · ·an(⊥) · · ·) ∈ TΓ. It should be clear that
h(han(· · ·ha1(w1) · · ·)) = strip(M1(s)) and that g(gan(· · ·ga1(w2) · · ·)) = strip(M2(s)). Thus, this instance
of the HDT0L sequence equivalence problem solves the equivalence problem of the two transducers M1
and M2.

Let D ⊆ TΓ be a regular input tree language. We wish to decide whether M1(s) = M2(s) for every
s ∈ D. We assume that D is given by a deterministic finite-state automaton A that runs top-down on
the unary symbols in Γ(1). We further assume that A = (R,Γ(1),r0,δ ,R f) is complete, i.e., for every
state r ∈ R and every symbol a ∈ Γ(1), δ (r,a) is defined (and in R). Note that r0 is the initial state and

S. Maneth 87

R f ⊆ R is the set of final states. Let Σ = Π(1) ∪Q as before and define Σ′ = {〈r,b〉 | r ∈ R,b ∈ Σ} and
∆ = Π(1). Our HDT0L instance is over Σ′ and ∆. Let a ∈ Γ(1), r ∈ R, and r′ = δ (r,a). For π ∈ Π(1) let
ha(〈r,π〉) = ga(〈r,π〉) = 〈r′,π〉. Let q ∈ Q1 and p ∈ Q2. Define

ha(〈r,q〉) = strip(rhsM1(q,a))[b← 〈r′,b〉 | b ∈ Σ]
ga(〈r, p〉) = strip(rhsM2(p,a))[b← 〈r′,b〉 | b ∈ Σ].

Let ha(〈r, p〉) = 〈r, p〉 and ga(〈r,q〉) = 〈r,q〉. The final homomorphisms g,h are defined as follows. If
r ∈ R f then let h(〈r,q〉) = strip(rhsM1(q,⊥)), g(〈r, p〉) = strip(rhsM2(p,⊥)), and let h(〈r,b〉) = b and
g(〈r,b〉) = b for the remaining cases. If r 6∈ R f then let h(〈r,b〉) = g(〈r,b〉) = ε for every b ∈ Σ. The
initial strings are defined as w1 = 〈r0,q0〉 and w2 = 〈r0, p0〉.

Consider an input tree s = a1(· · ·an(⊥) · · ·) ∈ TΓ and let 1 ≤ j ≤ n. It should be clear that if
δ ∗(r0,a1 · · ·a j) = r, i.e., A arrives in state r after reading the prefix a1 · · ·a j, then

ha j(· · ·ha1(w1) · · ·) = strip(M1(a1 · · ·a j(x)))[π ← 〈r,π〉 | π ∈ ∆][q← 〈r,q〉 | q ∈ Q1]

and similarly for g and M2. Thus each and every symbol of a sentential form is labeled by the current
state of the automaton A. Hence, if s 6∈ D, then every symbol in u1 = han(· · ·ha1(w1) · · ·) and in u2 =
gan(· · ·ga1(w2) · · ·) is labeled by some state r 6∈ R f . This implies that h(u1) = g(u2) = ε , i.e., the final
strings are equal whenever s 6∈ D. If on the contrary s ∈ D then every symbol in ui is labeled by a final
state and therefore h(ui) = strip(Mi(s)) as before. �

Input and output symbols of rank zero of a given transducer become symbols of rank one in the
corresponding normalized transducer. For a monadic tree t = a1(· · ·an(e) · · ·) we denote by expand(t)
the tree a1(· · ·an(e(⊥)) · · ·).

Lemma 7 For every monadic MTTR transducer M a normalized MTTR transducer N can be constructed
such that τN = {(expand(s),expand(t)) | (s, t) ∈ τM}.

Proof. Using regular look-ahead we first make M nondeleting. As mentioned in the proof of Lemma 4,
this construction was given in the proof of Lemma 6.6 of [21]. Now, every parameter that appears in the
left-hand side of a rule, also appears in the right-hand side. Since the final output tree is monadic, the
resulting transducer satisfies (N1) above. Finally, we define the MTTR transducer N which has input and
output alphabets Σ′ = Σ(1)∪{a′(1) | a ∈ Σ(0)} and ∆′ = ∆(1)∪{a′(1) | a ∈ ∆(0)}. For input symbols in Σ(1)

the transducer N has exactly the same rules as M. Let q ∈ Q and a ∈ Σ(0) such that rhs(q,a) is defined.
Then we let

q(a′(x1))→ rhs(q,a)[b← b′(⊥) | b ∈ ∆(0)].

be a rule of N. Regular look-ahead can be used to ensure that only trees of the form expand(s) are in the
domain of N. �

Obviously, two monadic MTT transducers are equivalent if and only if their normalized versions
are equivalent. Hence, it suffices to consider the equivalence problem of normalized monadic MTT

transducers.

Theorem 7 Equivalence of monadic macro tree transducers with regular look-ahead is decidable.

Proof. Let M1,M2 be monadic macro tree transducers with regular look-ahead and let Σ be their
input alphabet. Let A1,A2 be the look-ahead automata of M1,M2. By Lemma 7 we may assume that

88 Equivalence Problems for Tree Transducers: A Brief Survey

M1 and M2 are normalized. We first check if the domains of M1 and M2 coincide. If not then the
transducers are not equivalent and we are finished. Otherwise, let D be their domain. We define two
total monadic MTTs N1,N2 without look-ahead. Let P1,P2 be the sets of states of A1,A2, respectively.
The input alphabet of Ni is defined as Σ′ = {〈σ , p1, p2〉 | σ ∈ Σ(1), p1 ∈ P1, p2 ∈ P2}. An input symbol
〈σ , p1, p2〉 denotes that the look-ahead automata at the child of the current node are in states p1 and p2,
respectively. Thus, the (q,〈σ , p1, p2〉)-rule of N1 is defined as the (q,σ)-rule with look-ahead 〈p1〉 of
M1, and the (q,〈σ , p1, p2〉)-rule of N2 is defined as the (q,σ)-rule with look-ahead 〈p2〉 of M2. Finally,
we make N1 and N2 total (in some arbitrary way).

For a tree t in TΣ′ we denote by γ(t) the tree in TΣ obtained by changing every label 〈σ , p, p′〉 into the
label σ . Let E ⊆ TΣ′ be the regular tree language consisting of all trees t such that

(1) s = γ(t) is in D,

(2) the second components of the labels in t constitute a correct run of A1 on s, and

(3) the third components of the labels in t constitute a correct run of A2 on s.

Clearly, for the resulting transducers Ni it holds that N1 and N2 are equivalent on E if and only if M1 is
equivalent to M2. Hence decidability of equivalence follows from Lemma 6. �

Note that macro tree transducers with monadic output alphabet are essentially the same as top-down
tree-to-string transducers (see Lemma 7.6 of [21]). For the latter, the equivalence problem was stated
already in 1980 by Engelfriet [20] as a big open problem. This problem remains open, but, as this
section has shown, at least for the restricted case of monadic input, we obtain decidability. Note further
that the connection between L-systems and tree transducers is well known and was studied extensively
in [28].

5 Complexity

In Section 4 we already mentioned one complexity result, viz. Theorem 4, which states that equivalence
can be decided in polynomial time for total top-down tree transducers. How about top-down tree trans-
ducers (Ts) in general? It was mentioned in the Conclusions of [7] that checking equivalence of Ts can
be done in double exponential time, using the procedure of [26].

Without giving details we now present a proof that strengthens both results above (and which also
works for transducers with look-ahead). We show that equivalence for Ts can be decided in EXPSPACE,
and for total Ts in NLOGSPACE. For a top-down tree transducer M and trees s, t with t = M(s), it holds
that each node v in the output tree t is produced by one particular node u in s. The latter is called v’s
origin. It means that M(s[u← x]) does not have a ∆-node v, while v is a ∆ node in M[s← a(x, . . . ,x)]
where a = s[u].

Theorem 8 Equivalence of top-down tree transducers with regular look-ahead is decidable in EXPSPACE,
and for total transducers in NLOGSPACE.

Proof. We sketch the proof for transducers without look-ahead. Since both complexity classes are
closed under complement, it suffices to consider nonequivalence. Consider two top-down tree transduc-
ers M1 and M2. The idea (as in the finite-copying case) is to guess (part of) an input tree s and a node v
of the output trees t1 = M1(s) and t2 = M2(s) such that t1[v] 6= t2[v]. It suffices to guess the two origins of
v with respect to M1 and M2: nodes u1 and u2 of s, respectively. More precisely, it suffices to guess the
paths from the root of s to u1 and u2, and the path from the root of t1 and t2 to v, where we may assume

S. Maneth 89

that all proper ancestors of v have the same label in t1 and t2. When guessing the path from the root of
s to the least common ancestor of u1 and u2, the path in t1 can be ahead of the path in t2, or vice versa,
so the difference between these paths must be stored. But it suffices to keep the length of this difference
to be at most exponential in the sizes of M1 and M2, due to the bounded height-balance of M1 and M2 in
case they are equivalent. In the proof of Lemma 2 the height of the smallest tree s′ is at most exponential,
and hence the height of its translation is at most exponential. Hence the difference between the paths in
t1 and t2 can be stored in exponential space.

If M1 and M2 are total, then the difference between the paths in t1 and t2 is at most a path in a right-
hand side of a rule, which can be kept in logarithmic space. Logarithmic space is also needed to do all
the guesses, of course. The same proof as above also holds for transducers with regular look-ahead. �

Theorem 9 Equivalence of top-down tree transducers is EXPTIME-hard.

Proof. It is well known that testing intersection emptiness of n deterministic top-down tree automata
A1, . . . ,An is EXPTIME-complete. This was shown by Seidl [62], cf. also [11]. Let Σ be the ranked
alphabet of the Ai. We define the top-down tree transducer M1 = ({q0, . . . ,qn},Σ,Σ∪{δ (n)},q0,R). We
consider each Ai as a partial identity transducer with start state qi, and add the corresponding rules to R.
Thus, M1,qi = {(s,s) | s ∈ L(Ai)}. Let σ ∈ Σ be an arbitrary symbol of rank ≥ 1, and let e be an arbitrary
symbol in Σ(0). We add these two rules to R:

q0(σ(x1, . . .)) → δ (q1(x1),q2(x1), . . . ,qn(x1))
q0(e) → e

The transducer M2 = ({p},Σ,Σ, p,{p(e)→ e}) realizes the translation τM2 = {(e,e)}. If the intersection
of the L(Ai) is empty, then there is no tree s ∈ TΣ such that Mqi(s) is defined for all i ∈ {1, . . . ,n},
i.e., the first rule displayed above is never applicable. Hence, in this case also τM1 = {(e,e)}, i.e., the
transducers M1,M2 are equivalent. If the intersection is non-empty, then there is an input tree s such that
M(s) = δ (s,s, . . . ,s). Thus, M1 is equivalent to M2 if and only if the intersection of the L(Ai) is empty.

�

5.1 Streaming Tree Transducers

The (deterministic) streaming tree transducers of Alur and d’Antoni are a new model with the same
expressive power as deterministic MSO tree translations which in turn realize the same translations as
deterministic macro tree translations of linear size increase. The idea of the model is to use a finite set of
variables which hold partial outputs. These variables are updated during a single depth-first left-to-right
traversal of the input tree. It is stated in Theorem 20 of [3] that equivalence of streaming tree transducers
can be decided in exponential time. The idea of the proof is the same as the one in Theorem 6: construct
a context-free language La,b and use its Parikhness to check if anbn is in the language. For them, La,b is
represented by a pushdown automaton A, the number of states of which is exponential in the number of
variables of the given streaming tree transducer. They mention that checking if anbn is in L(A) can be
done in NPTIME using [31, 64].

Theorem 10 ([3]) Equivalence of streaming tree transducers is decidable in CO-NEXPTIME.

For the transducers that map strings to nested strings, that is, for streaming string-to-tree transducers
their construction yields a PSPACE bound (Theorem 21 of [3]).

Theorem 11 ([3]) Equivalence of streaming string-to-tree transducers is decidable in PSPACE.

90 Equivalence Problems for Tree Transducers: A Brief Survey

5.2 Visibly Pushdown Transducers

Visibly pushdown languages were defined by Alur and Madhusudan [4] as a particular subclass of the
context-free languages. In fact, they are just regular tree languages in disguise. Visibly pushdown trans-
ducers were introduced by Raskin and Servais [56]. They translate well-nested input strings into strings,
during one left-to-right traversal of the input. If the output strings are nested as well, then they describe
tree transformations. The expressive power of the resulting tree transformations is investigated by Caralp,
Filiot, Reynier, Servais, and Talbot [10]. Such transducers cannot copy nor swap the order of input trees.
Thus, they are MSO definable. But they are incomparable to the top-down or bottom-up tree translations,
because they can translate a tree into its yield (string of leaf labels from left to right).

Theorem 12 ([32]) Equivalence of functional visibly pushdown transducers is EXPTIME-complete. For
total such transducers the problem is in PTIME.

The EXPTIME-completeness result extends to the case of regular look-ahead, as shown in Section 8.4
of [33, 65]. Staworko, Laurence, Lemay, and Niehren [66] have considered the equivalence problem for
deterministic visibly pushdown transducers and show that it can be reduced in PTIME to the homomor-
phic equivalence problem on context-free grammars. The latter was shown by Plandowski [45, 55] to
be solvable in PTIME. They show in [66] that for several related classes the problem is in PTIME, for
instance, linear and order-preserving deterministic top-down and bottom-up tree transducers.

Theorem 13 ([66]) Equivalence of deterministic visibly pushdown transducers is decidable in PTIME.

6 Conclusion

We discussed the decidability of equivalence for three incomparable subclasses of deterministic macro
tree transducers: top-down tree transducers, linear size increase MTTs, and monadic MTTs. For top-down
tree transducers the proof either uses its bounded height-balance property and constructs an automaton
that keeps track of the balance. Alternatively, such transducers may be transformed into their canonical
normal form and then be checked for isomorphism. For these decision procedures it is not “harmful” that
a top-down tree transducer can copy a lot and be of exponential size increase, because the multiple copies
of equivalent transducers must be well-nested into each other (cf. Figure 5). This nesting property is not
present for MTTs, and in particular the bounded height-balance does not hold for MTTs, even not for
monadic ones. Thus, other techniques are needed in these two cases. For the linear size increase subclass
of MTTs we may use the Parikh property of the corresponding output languages: the two transducers
are merged (“twinned”) to output ambn if, on the same input, one transducer produces at position m
of its output the letter a while the other transducer produces at position n the letter b. Since this output
language is Parikh, we may decide if it contains anbn which implies that the transducers are not equivalent
(because a 6= b). For monadic MTTs we use yet another technique: we simulate the transducers by
HDT0L sequences. Since the sequence equivalence problem for HDT0L systems is decidable (not detailed
here), the result follows. It remains a deep open problem whether or not equivalence is decidable for
arbitrary deterministic macro tree transducers. Even for MTTs with monadic output, which are the same
as deterministic top-down tree-to-string transducers, it is open whether or not equivalence is decidable.
Note that the availability of a canonical normal form is a much stronger result than the decidability of
equivalence: for instance, equivalence is easily decided for top-down transducers with look-ahead, but,
for such transducers we only know a canonical normal form in the total case for a fixed look-ahead
automaton [27]. In fact, even to decide whether or not a given TR is equivalent to a T is a difficult open
problem; it was solved recently for a subclass of TRs [27].

S. Maneth 91

References

[1] A. V. Aho (1968): Indexed Grammars - An Extension of Context-Free Grammars. J. ACM 15(4), pp. 647–
671, doi:10.1145/321479.321488.

[2] A. V. Aho & J. D. Ullman (1971): Translations on a Context-Free Grammar. Information and Control 19(5),
pp. 439–475, doi:10.1016/S0019-9958(71)90706-6.

[3] R. Alur & L. D’Antoni (2011): Streaming Tree Transducers. CoRR abs/1104.2599.

[4] R. Alur & P. Madhusudan (2004): Visibly pushdown languages. In: STOC, pp. 202–211,
doi:10.1145/1007352.1007390.

[5] Y. Andre & F. Bossut (1995): The Equivalence Problem for Letter-to-Letter Bottom-up Tree Transducers is
Solvable. In: TAPSOFT, pp. 155–171, doi:10.1007/3-540-59293-8 193.

[6] Y. Andre & F. Bossut (1998): On the Equivalence Problem for Letter-to-Letter Top-Down Tree Transducers.
Theor. Comput. Sci. 205(1-2), pp. 207–229, doi:10.1016/S0304-3975(97)00080-7.

[7] M. Benedikt, J. Engelfriet & S. Maneth (2013): Determinacy and Rewriting of Top-Down and MSO Tree
Transformations. In: MFCS, pp. 146–158, doi:10.1007/978-3-642-40313-2 15.

[8] J. Berstel (1979): Transductions and context-free languages. Teubner, Stuttgart.

[9] S. Bozapalidis (1992): Alphabetic Tree Relations. Theor. Comput. Sci. 99(2), pp. 177–211,
doi:10.1016/0304-3975(92)90348-J.

[10] M. Caralp, E. Filiot, P.-A. Reynier, F. Servais & J.-M. Talbot (2013): Expressiveness of Visibly Pushdown
Transducers. In: TTATT, pp. 17–26, doi:10.4204/EPTCS.134.3.

[11] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Tison & M. Tommasi (2007):
Tree Automata Techniques and Applications. Available at: http://www.grappa.univ-lille3.fr/tata.

[12] B. Courcelle & J. Engelfriet (2012): Graph Structure and Monadic Second-Order Logic - A Language-
Theoretic Approach. Encyclopedia of mathematics and its applications 138, Cambridge University Press,
doi:10.1017/CBO9780511977619.

[13] B. Courcelle & P. Franchi-Zannettacci (1982): Attribute Grammars and Recursive Program Schemes I. Theor.
Comput. Sci. 17, pp. 163–191, doi:10.1016/0304-3975(82)90003-2.

[14] B. Courcelle & P. Franchi-Zannettacci (1982): Attribute Grammars and Recursive Program Schemes II.
Theor. Comput. Sci. 17, pp. 235–257, doi:10.1016/0304-3975(82)90024-X.

[15] B. Courcelle & P. Franchi-Zannettacci (1982): On the Equivalence Problem for Attribute Systems. Informa-
tion and Control 52(3), pp. 275–305, doi:10.1016/S0019-9958(82)90786-0.

[16] K. Culik II (1976): On the Decidability of the Sequence Equivalence Problem for D0L-Systems. Theor.
Comput. Sci. 3(1), pp. 75–84, doi:10.1016/0304-3975(76)90066-9.

[17] K. Culik II & I. Fris (1977): The Decidability of the Equivalence Problem for D0L-Systems. Information and
Control 35(1), pp. 20–39, doi:10.1016/S0019-9958(77)90512-5.

[18] K. Culik II & J. Karhumäki (1986): A new proof for the D0L Sequence Equivalence Problem and its implica-
tions, doi:10.1007/978-3-642-95486-3 5. In G. Rozenberg & A. Salomaa, editors: The book of L, Springer,
Berlin, pp. 63–74.

[19] J. Engelfriet (1977): Top-down Tree Transducers with Regular Look-ahead. Mathematical Systems Theory
10, pp. 289–303, doi:10.1007/BF01683280.

[20] J. Engelfriet (1980): Some open questions and recent results on tree transducers and tree languages. In R. V.
Book, editor: Formal Language Theory; Perspectives and Open Problems, Academic Press, New York.

[21] J. Engelfriet & S. Maneth (1999): Macro Tree Transducers, Attribute Grammars, and MSO Definable Tree
Translations. Inf. Comput. 154(1), pp. 34–91, doi:10.1137/S0097539701394511.

[22] J. Engelfriet & S. Maneth (2002): Output String Languages of Compositions of Deterministic Macro Tree
Transducers. J. Comput. Syst. Sci. 64(2), pp. 350–395, doi:10.1006/jcss.2001.1816.

92 Equivalence Problems for Tree Transducers: A Brief Survey

[23] J. Engelfriet & S. Maneth (2003): A comparison of pebble tree transducers with macro tree transducers. Acta
Inf. 39(9), pp. 613–698, doi:10.1007/s00236-003-0120-0.

[24] J. Engelfriet & S. Maneth (2003): Macro Tree Translations of Linear Size Increase are MSO Definable.
SIAM J. Comput. 32(4), pp. 950–1006, doi:10.1137/S0097539701394511.

[25] J. Engelfriet & S. Maneth (2006): The equivalence problem for deterministic MSO tree transducers is decid-
able. Inf. Process. Lett. 100(5), pp. 206–212, doi:10.1016/j.ipl.2006.05.015.

[26] J. Engelfriet, S. Maneth & H. Seidl (2009): Deciding equivalence of top-down XML transformations in
polynomial time. J. Comput. Syst. Sci. 75(5), pp. 271–286, doi:10.1016/j.jcss.2009.01.001.

[27] J. Engelfriet, S. Maneth & H. Seidl (2013): Look-Ahead Removal for Top-Down Tree Transducers. CoRR
abs/1311.2400.

[28] J. Engelfriet, G. Rozenberg & G. Slutzki (1980): Tree Transducers, L Systems, and Two-Way Machines. J.
Comput. Syst. Sci. 20(2), pp. 150–202, doi:10.1016/0022-0000(80)90058-6.

[29] J. Engelfriet & H. Vogler (1985): Macro Tree Transducers. J. Comput. Syst. Sci. 31(1), pp. 71–146,
doi:10.1016/0022-0000(85)90066-2.

[30] Z. Ésik (1981): Decidability results concerning tree transducers I. Acta Cybern. 5(1), pp. 1–20.

[31] J. Esparza (1997): Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes. Fundam.
Inform. 31(1), pp. 13–25, doi:10.3233/FI-1997-3112.

[32] E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais & J.-M. Talbot (2010): Properties of Visibly Pushdown
Transducers. In: MFCS, pp. 355–367, doi:10.1007/978-3-642-15155-2 32.

[33] E. Filiot & F. Servais (2012): Visibly Pushdown Transducers with Look-Ahead. In: SOFSEM, pp. 251–263,
doi:10.1007/978-3-642-27660-6 21.

[34] M. J. Fischer (1968): Grammars with Marcro-like Productions. Ph.D. thesis, Harvard University.

[35] S. Friese (2011): On Normalization and Type Checking for Tree Transducers. Ph.D. thesis, Institut für Infor-
matik, Technische Universität München. Available at http://mediatum.ub.tum.de/doc/1078090/1078090.pdf.

[36] S. Friese, H. Seidl & S. Maneth (2011): Earliest Normal Form and Minimization for Bottom-up Tree Trans-
ducers. Int. J. Found. Comput. Sci. 22(7), pp. 1607–1623, doi:10.1142/S012905411100891X.

[37] Z. Fülöp & H. Vogler (1998): Syntax-Directed Semantics - Formal Models Based on Tree Transducers.
Monographs in Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/978-3-642-72248-
6.

[38] S. Ginsburg (1966): The Mathematical Theory of Context-Free Languages. McGraw-Hill.

[39] S. Ginsburg & E. H. Spanier (1964): Bounded ALGOL-like languages. Trans. Amer. Math. Soc 113, pp.
333–368, doi:10.2307/1994067.

[40] T. V. Griffiths (1968): The Unsolvability of the Equivalence Problem for Lambda-Free Nondeterministic
Generalized Machines. J. ACM 15(3), pp. 409–413, doi:10.1145/321466.321473.

[41] E. M. Gurari (1982): The Equivalence Problem for Deterministic Two-Way Sequential Transducers is Decid-
able. SIAM J. Comput. 11(3), pp. 448–452, doi:10.1137/0211035.

[42] S. Hakuta, S. Maneth, K. Nakano & H. Iwasaki (2014): XQuery Streaming by Forest Transducers. In: ICDE,
pp. 417–428.

[43] J. Honkala (2000): A short solution for the HDT0L sequence equivalence problem. Theor. Comput. Sci.
244(1-2), pp. 267–270, doi:10.1016/S0304-3975(00)00158-4.

[44] J. E. Hopcroft & J. D. Ullman (1979): Introduction to Automata Theory, Languages and Computation.
Addison-Wesley.

[45] J. Karhumäki, W. Plandowski & W. Rytter (1995): Polynomial Size Test Sets for Context-Free Languages. J.
Comput. Syst. Sci. 50(1), pp. 11–19, doi:10.1006/jcss.1995.1002.

[46] D. E. Knuth (1968): Semantics of Context-Free Languages. Mathematical Systems Theory 2(2), pp. 127–145,
doi:10.1007/BF01692511.

S. Maneth 93

[47] A. Lemay, S. Maneth & J. Niehren (2010): A learning algorithm for top-down XML transformations. In:
PODS, pp. 285–296, doi:10.1145/1807085.1807122.

[48] S. Maneth (2003): The Macro Tree Transducer Hierarchy Collapses for Functions of Linear Size Increase.
In: FSTTCS, pp. 326–337, doi:10.1007/978-3-540-24597-1 28.

[49] S. Maneth, A. Berlea, T. Perst & H. Seidl (2005): XML type checking with macro tree transducers. In: PODS,
pp. 283–294, doi:10.1145/1065167.1065203.

[50] S. Maneth, T. Perst & H. Seidl (2007): Exact XML Type Checking in Polynomial Time. In: ICDT, pp.
254–268, doi:10.1007/11965893 18.

[51] T. Milo, D. Suciu & V. Vianu (2003): Typechecking for XML transformers. J. Comput. Syst. Sci. 66(1), pp.
66–97, doi:10.1016/S0022-0000(02)00030-2.

[52] K. Nakano & S.-C. Mu (2006): A Pushdown Machine for Recursive XML Processing. In: APLAS, pp.
340–356, doi:10.1007/11924661 21.

[53] R. Parikh (1966): On Context-Free Languages. J. ACM 13(4), pp. 570–581, doi:10.1145/321356.321364.

[54] T. Perst & H. Seidl (2004): Macro forest transducers. Inf. Process. Lett. 89(3), pp. 141–149,
doi:10.1016/j.ipl.2003.05.001.

[55] W. Plandowski (1994): Testing Equivalence of Morphisms on Context-Free Languages. In: ESA, pp. 460–
470.

[56] J.-F. Raskin & F. Servais (2008): Visibly Pushdown Transducers. In: ICALP (2), pp. 386–397,
doi:10.1007/978-3-540-70583-3 32.

[57] W. C. Rounds (1969): Context-Free Grammars on Trees. In: STOC, pp. 143–148,
doi:10.1145/800169.805428.

[58] W. C. Rounds (1970): Mappings and Grammars on Trees. Mathematical Systems Theory 4(3), pp. 257–287,
doi:10.1007/BF01695769.

[59] K. Ruohonen (1986): Equivalence problems for regular sets of word morphisms, doi:10.1007/978-3-642-
95486-3 33. In G. Rozenberg & A. Salomaa, editors: The book of L, Springer, Berlin, pp. 393–401.

[60] H. Seidl (1992): Single-Valuedness of Tree Transducers is Decidable in Polynomial Time. Theor. Comput.
Sci. 106(1), pp. 135–181, doi:10.1016/0304-3975(92)90281-J.

[61] H. Seidl (1994): Equivalence of Finite-Valued Tree Transducers Is Decidable. Mathematical Systems Theory
27(4), pp. 285–346, doi:10.1007/BF01192143.

[62] H. Seidl (1994): Haskell Overloading is DEXPTIME-Complete. Inf. Process. Lett. 52(2), pp. 57–60,
doi:10.1016/0020-0190(94)00130-8.

[63] H. Seidl (2014): Private Communication.

[64] H. Seidl, T. Schwentick, A. Muscholl & P. Habermehl (2004): Counting in Trees for Free. In: ICALP, pp.
1136–1149, doi:10.1007/978-3-540-27836-8 94.

[65] F. Servais (2011): Visibly Pushdown Transducers. Ph.D. thesis, Université Libre de Bruxelles.

[66] S. Staworko, G. Laurence, A. Lemay & J. Niehren (2009): Equivalence of Deterministic Nested Word to
Word Transducers. In: FCT, pp. 310–322, doi:10.1007/978-3-642-03409-1 28.

[67] J. W. Thatcher (1970): Generalized Sequential Machine Maps. J. Comput. Syst. Sci. 4(4), pp. 339–367,
doi:10.1016/S0022-0000(70)80017-4.

[68] H. Vogler (1991): Functional Description of the Contextual Analysis in Block-Structured Programming Lan-
guages: A Case Study of Tree Transducers. Sci. Comput. Program. 16(3), pp. 251–275, doi:10.1016/0167-
6423(91)90009-M.

[69] J. Voigtländer (2005): Tree transducer composition as program transformation. Ph.D. thesis, Technical
University Dresden.

[70] Z. Zachar (1979): The solvability of the equivalence problem for deterministic frontier-to-root tree transduc-
ers. Acta Cybern. 4(2), pp. 167–177.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 94–108, doi:10.4204/EPTCS.151.6

c© M. Barash, A. Okhotin
This work is licensed under the
Creative Commons Attribution License.

Grammars with two-sided contexts∗

Mikhail Barash
Department of Mathematics and Statistics, University of Turku, Turku FI-20014, Finland

Turku Centre for Computer Science, Turku FI-20520, Finland

mikbar@utu.fi

Alexander Okhotin
Department of Mathematics and Statistics, University of Turku, Turku FI-20014, Finland

alexander.okhotin@utu.fi

In a recent paper (M. Barash, A. Okhotin, “Defining contexts in context-free grammars”, LATA
2012), the authors introduced an extension of the context-free grammars equipped with an operator
for referring to the left context of the substring being defined. This paper proposes a more general
model, in which context specifications may be two-sided, that is, both the left and the right contexts
can be specified by the corresponding operators. The paper gives the definitions and establishes the
basic theory of such grammars, leading to a normal form and a parsing algorithm working in time
O(n4), wheren is the length of the input string.

1 Introduction

The context-free grammars are a logic for representing the syntax of languages, in which the properties
of longer strings are defined by concatenating shorter strings with known properties. Disjunction of
syntactic conditions is represented in this logic as multiple alternative rules defining a single symbol.
One can further augment this logic with conjunction and negation operations, leading toconjunctive
grammars[13] and Boolean grammars[15]. These grammars are context-free in the general sense
of the word, as they define the properties of each substring independently of the context, in which it
occurs. Furthermore, most of the practically important features of ordinary context-free grammars, such
as efficient parsing algorithms, are preserved in their conjunctive and Boolean variants [15, 18]. These
grammar models have been a subject of recent theoretical studies [1, 8, 10, 12, 24].

Not long ago, the authors [3, 4] proposed an extension of the context-free grammars with special
operators for expressing the form of theleft context, in which the substring occurs. For example, a rule
A → BC& ✁D asserts that every string representable asBC in a left context of the form described by
D therefore has the propertyA. These grammars were motivated by Chomsky’s [6, p. 142] well-known
idea of a phrase-structure rule applicable only in some particular contexts. Chomsky’s own attempt to
implement this idea by string rewriting resulted in a model equivalent to linear-space Turing machines, in
which the “nonterminal symbols”, meant to represent syntactic categories, could be freely manipulated
as tape symbols. In spite of the name “context-sensitive grammars”, the resulting model was unsuitable
for describing the syntax of languages, and thus failed to represent the idea of a rule applicable in a
context.

Taking a new start with this idea, the authors [4] definedgrammars with one-sided contexts, follow-
ing the logical outlook on grammars, featured in the work of Kowalski [11, Ch. 3] and of Pereira and

∗Supported by the Academy of Finland under grant 257857.

M. Barash, A. Okhotin 95

Warren [19], and later systematically developed by Rounds [21]. A grammar defines the truth value
of statements of the form “a certain string has a certain property”, and these statements are deduced
from each other according to the rules of the grammar. The resulting definition maintains the underlying
logic of the context-free grammars, and many crucial properties of grammars are preserved: grammars
with one-sided contexts have parse trees, can be transformed to a normal form and have a cubic-time
parsing algorithm [4]. However, the model allowed specifying contexts only on one side, and thus it
implemented, so to say, only one half of Chomsky’s idea.

This paper continues the development of formal grammars with context specifications by allowing
contexts in both directions. The proposedgrammars with two-sided contextsmay contain such rules as
A→ BC& ✁D& ✄E, which define any substring of the formBC preceded by a substring of the formD
and followed by a substring of the formE. If the grammar contains additional rulesB→ b, C→ c, D→ d
andE → e, then the above rule forA asserts that a substringbc of a stringw = dbcehas the property
A. However, this rule will not produce the same substringbc occurring in another stringw′ = dbcd,
because its right context does not satisfy the conjunct✄E. Furthermore, the grammars allow expressing
the so-calledextended right context(Qα), which defines the form of the current substring concatenated
with its right context, as well as the symmetrically definedextended left context(Pα).

In Section 2, this intuitive definition is formalized by deduction of propositions of the formA
(
u〈w〉v

)
,

which states that the substringw occurring in the context betweenu andv has the propertyA, whereA is
a syntactic category defined by the grammar (“nonterminal symbol” in Chomsky’s terminology). Then,
each rule of the grammar becomes a schema for deduction rules, and a stringw is generated by the
grammar, if there is a proof of the propositionS

(
ε〈w〉ε

)
. A standard proof tree of such a deduction

constitutes a parse tree of the stringw.
The next Section 3 presents basic examples of grammars with two-sided contexts. These examples

model several types of cross-references, such as declaration of identifiers before or after their use.
The paper then proceeds with developing a normal form for these grammars, which generalizes

the Chomsky normal form for ordinary context-free grammars. In the normal form, every rule is a
conjunction of one or morebase conjunctsdescribing the form of the current substring (either as a
concatenation of the formBC or as a single symbola), with any context specifications (✁D, PE, QF,
✄H). The transformation to the normal form, presented in Section 4, proceeds in three steps. First, all
rules generating the empty string in any contexts are eliminated. Second, all rules with an explicit empty
context specification (✁ε , ✄ε) are also eliminated. The final step is elimination of any rules of the form
A→ B& . . ., where the dependency ofA onB potentially causes cycles in the definition.

Once the normal form is established, a simple parsing algorithm for grammars with two-sided con-
texts with the running timeO(n4) is presented in Section 5. While this paper has been under preparation,
Rabkin [20] has developed a more efficient and more sophisticated parsing algorithm for grammars with
two-sided contexts, with the running timeO(n3).

2 Definition

Ordinary context-free grammars allow using the concatenation operation to express the form of a string,
and disjunction to define alternative forms. In conjunctivegrammars, the conjunction operation may be
used to assert that a substring being defined must conform to several conditions at the same time. The
grammars studied in this paper further allow operators for expressing the form of the left context (✁, P)
and the right context (✄, Q) of a substring being defined.

Definition 1. A grammar with two-sided contexts is a quadruple G= (Σ,N,R,S), where

96 Grammars with two-sided contexts

Figure 1: A substringw of a stringuwv: four types of contexts.

• Σ is the alphabet of the language being defined;

• N is a finite set of auxiliary symbols (“nonterminal symbols”in Chomsky’s terminology), which
denote the properties of strings defined in the grammar;

• R is a finite set of grammar rules, each of the form

A→ α1 & . . .& αk &✁β1 & . . .& ✁βm& Pγ1 & . . .& Pγn &

&Qκ1 & . . .& Qκm′ & ✄δ1 & . . .& ✄δn′ ,
(1)

with A∈ N, k> 1, m,n,m′,n′ > 0 andαi ,βi ,γi ,κi ,δi ∈ (Σ∪N)∗;

• S∈ N is a symbol representing well-formed sentences of the language.

If all rules in a grammar have only left contexts (that is, ifm′ = n′ = 0), then this is a grammar with
one-sided contexts [4]. If no context operators are ever used (m= n= m′ = n′ = 0), this is a conjunctive
grammar, and if the conjunction is also never used (k= 1), this is an ordinary context-free grammar.

For each rule (1), each termαi , ✁βi , Pγi , Qκi and✄δi is called aconjunct. Denote byu〈w〉v
a substringw ∈ Σ∗, which is preceded byu ∈ Σ∗ and followed byv ∈ Σ∗, as illustrated in Figure 1.
Intuitively, such a substring is generated by a rule (1), if

• eachbase conjunctαi = X1 . . .Xℓ gives a representation ofw as a concatenation of shorter sub-
strings described byX1, . . . ,Xℓ, as in context-free grammars;

• each conjunct✁βi similarly describes the form of theleft context u;

• each conjunctPγi describes the form of theextended left context uw;

• each conjunctQκi describes theextended right context wv;

• each conjunct✄δi describes theright context v.

The semantics of grammars with two-sided contexts are defined by a deduction system of elementary
propositions (items) of the form “a stringw∈ Σ∗ written in a left contextu∈ Σ∗ and in a right context
v ∈ Σ∗ has the propertyX ∈ Σ∪N”, denoted byX

(
u〈w〉v

)
. The deduction begins with axioms: any

symbol a ∈ Σ written in any context has the propertya, denoted bya
(
u〈a〉v

)
for all u,v ∈ Σ∗. Each

rule in R is then regarded as a schema for deduction rules. For example, a ruleA→ BC allows making
deductions of the form

B
(
u〈w〉w′v

)
,C

(
uw〈w′〉v

)
⊢G A

(
u〈ww′〉v

)
(for all u,w,w′,v∈ Σ∗),

which is essentially a concatenation ofw andw′ that respects the contexts. If the rule is of the form
A→ BC& ✁D, this deduction requires an extra premise:

B
(
u〈w〉w′v

)
,C

(
uw〈w′〉v

)
,D

(
ε〈u〉ww′v

)
⊢G A

(
u〈ww′〉v

)
.

M. Barash, A. Okhotin 97

And if the rule isA→ BC& QF, the deduction proceeds as follows:

B
(
u〈w〉w′v

)
,C

(
uw〈w′〉v

)
,F

(
u〈ww′v〉ε

)
⊢G A

(
u〈ww′〉v

)
.

The general form of deduction schemata induced by a rule inR is defined below.
Definition 2. Let G= (Σ,N,R,S) be a grammar with two-sided contexts. Define the following deduction
system of items of the form X

(
u〈w〉v

)
, with X ∈ Σ∪N and u,w,v∈ Σ∗. There is a single axiom scheme

⊢G a
(
u〈a〉v

)
, for all a ∈ Σ and u,v∈ Σ∗. Each rule (1) in R defines the following scheme for deduction

rules:
I ⊢G A

(
u〈w〉v

)
,

for all u,w,v∈ Σ∗ and for every set of items I satisfying the below properties:
• For every base conjunctαi = X1 . . .Xℓ, with ℓ > 0 and Xj ∈ Σ∪N, there should exist a partition

w= w1 . . .wℓ with Xj
(
uw1 . . .w j−1〈w j〉w j+1 . . .wℓv

)
∈ I for all j ∈ {1, . . . , ℓ}.

• For every conjunct✁βi = ✁X1 . . .Xℓ there should be such a partition u= u1 . . .uℓ, that
Xj
(
u1 . . .u j−1〈u j〉u j+1 . . .uℓwv

)
∈ I for all j ∈ {1, . . . , ℓ}.

• Every conjunctPγi = PX1 . . .Xℓ should have a corresponding partition uw= x1 . . .xℓ with
Xj
(
x1 . . .x j−1〈x j〉x j+1 . . .xℓv

)
∈ I for all j ∈ {1, . . . , ℓ}.

• For every conjunct✄δi andQκi, the condition is defined symmetrically.
Then the language generated by a symbol A∈ N is defined as

LG(A) = {u〈w〉v | u,w,v∈ Σ∗, ⊢G A
(
u〈w〉v

)
}.

The language generated by the grammar G is the set of all strings with empty left and right contexts
generated by S: L(G) = {w | w∈ Σ∗, ⊢G S

(
ε〈w〉ε

)
}.

The following trivial example of a grammar is given to illustrate the definitions.
Example 1. Consider the grammar with two-sided contexts that defines the singleton language{abca}:

S → aS| Sa| BC

A → a

B → b& ✁A

C → c& ✄A

The deduction given below proves that the stringabcahas the propertyS.

⊢ a
(
ε〈a〉bca

)
(axiom)

⊢ b
(
a〈b〉ca

)
(axiom)

⊢ c
(
ab〈c〉a

)
(axiom)

⊢ a
(
abc〈a〉ε

)
(axiom)

a
(
ε〈a〉bca

)
⊢ A

(
ε〈a〉bca

)
(A→ a)

b
(
a〈b〉ca

)
,A

(
ε〈a〉bca

)
⊢ B

(
a〈b〉ca

)
(B→ b& ✁A)

a
(
abc〈a〉ε

)
⊢ A

(
abc〈a〉ε

)
(A→ a)

c
(
ab〈c〉a

)
,A

(
abc〈a〉ε

)
⊢C

(
ab〈c〉a

)
(C→ c& ✄A)

B
(
a〈b〉ca

)
,C

(
ab〈c〉a

)
⊢ S

(
a〈bc〉a

)
(S→ BC)

a
(
ε〈a〉bca

)
,S
(
a〈bc〉a

)
⊢ S

(
ε〈abc〉a

)
(S→ aS)

S
(
ε〈abc〉a

)
,a
(
abc〈a〉ε

)
⊢ S

(
ε〈abca〉ε

)
(S→ Sa)

98 Grammars with two-sided contexts

Figure 2: A parse tree of the stringabcaaccording to the grammar in Example 1.

Another possible definition of grammars with contexts is by directly expressing them in first-order
logic over positions in a string [21]. Nonterminal symbols becomebinary predicates, with the arguments
referring to positions in the string. Each predicateA(x,y) is defined by a formulaϕA(x,y) that states the
condition of a substring delimilited by positionsx andy having the propertyA. There are built-in unary
predicatesa(x), for eacha∈ Σ, which assert that the symbol in positionx in the string isa, and binary
predicatesx< y andx= y for comparing positions. Arguments to predicates are givenasterms, which
are either variables (t = x) or constants referring to the first and the last positions (t = begin, t = end), and
which may be incremented (t +1) or decremented (t −1). Each formula is constructed from predicates
using conjunction, disjunction and first-order existential quantification.

Example 2. The grammar from Example 1 is expressed by the following formulae defining predicates
S(x,y), B(x,y), A(x,y) andC(x,y).

S(x,y) = (a(x)∧S(x+1,y)) ∨ (S(x,y−1)∧a(y)) ∨ (∃z(x< z< y∧B(x,z)∧C(z,y)))

A(x,y) = a(x)∧x+1= y

B(x,y) = b(x)∧x+1= y∧A(begin,x)

C(x,y) = c(x)∧x+1= y∧A(y,end)

The membership of a stringw is expressed by the statementS(begin,end), which may be true of false.

3 Examples

This section presents several examples of grammars with two-sided contexts generating important syn-
tactic constructs. All examples use ordinary context-freeelements, such as a grammar for{anbn | n> 0},
and combine these elements using the new context operators.This leads to natural specifications of lan-
guages in the style of classical formal grammars.

Consider the problem of checking declaration of identifiersbefore their use: this construct can be
found in all kinds of languages, and it can be expressed by a conjunctive grammar [16, Ex. 3]. The

M. Barash, A. Okhotin 99

variant of this problem, in which the identifiers may be declared before or aftertheir use, is also fairly
common: consider, for instance, the declaration of classesin C++, where an earlier defined method can
refer to a class member defined later. However, no conjunctive grammar expressing this construct is
known.

A grammar with one-sided contexts for declarations before or after use has recently been constructed
by the authors [4]. That grammar used context specifications, along with iterated conjunction, to express
what would be more naturally expressed in terms of two-sidedcontexts. In the model proposed in this
paper, the same language can be defined in a much more natural way.

Example 3(cf. grammar with one-sided contexts [4, Ex. 4]). Consider the language

{u1 . . .un | for everyui , either ui ∈ a∗c, or ui = bkc and there existsj ∈ {1, . . . ,n} with u j = akc}.

Substrings of the formakc represent declarations, while every substring of the formbkc is a reference to
a declaration of the formakc.

This language is generated by the following grammar.

S → AS| CS| DS| ε C → B& PEFc
A → aA | c D → B& QHcE
B → bB | c F → aFb | cE
E → AE | BE | ε H → bHa | cE

The idea of the grammar is thatSshould generate a substringu1 . . .uℓ〈uℓ+1 . . .un〉ε , with 06 ℓ 6 n
andui ∈ a∗c∪b∗c, if and only if every reference inuℓ+1 . . .un has a corresponding declaration somewhere
in the whole stringu1 . . .un. The rules forSdefine all substrings satisfying this condition inductively on
their length, until the entire stringε〈u1 . . .un〉ε is defined. The ruleS→ ε defines the base case: the string
u1 . . .un〈ε〉ε has the desired property. The ruleS→ CSappends a reference of the formb∗c, restricted
by an extended left contextPEFc, which ensures that this reference has a matchingearlier declaration;
hereE represents the prefix of the string up to that earlier declaration, while F matches the symbolsa
in the declaration to the symbolsb in the reference. The possibility of alater declaration is checked
by another ruleS→ DS, which adds a reference of the formb∗c with an extended right contextQHcE,
whereH is used to match thebs forming this reference to theas in the later declaration.

The next example abstracts another syntactic mechanism—function prototypes—found in the C pro-
gramming language and, under the name offorward declarations, in the programming language Pascal.

Example 4. Consider the language

{
u1 . . .un

∣∣ for everyui , either ui = akc and there existsj > i, such thatu j = dkc, (2a)

or ui = bkc and there existsj < i, for whichu j = akc
}
. (2b)

A substring of the formakc represents a function prototype and a substringdkc represents its body.
Calls to functions are expressed as substringsbkc. Condition (2a) means that every prototype must be
followed by its body, and restriction (2b) requires that references are only allowed to declared prototypes.

This language can be generated by the following grammar withtwo-sided contexts.

S → US| VS| DS| ε D → dD | c E → AE | BE | DE | ε
A → aA | c U → A& QHcE H → aHd | cE
B → bB | c V → B& PEFc F → aFb | cE

100 Grammars with two-sided contexts

The rulesS→USandU → A& QHcE append a prototypeakc and the extended right context of the
form akc. . .dkc. . . ensures that this prototype has a matching body somewherelater within the string.
The rulesS→VSandV →B& PEFcappend a referencebkc, and the context specification. . .akc. . .bkc
checks that it has a matching prototypeealier in the string. Function bodiesdkc are added by the rule
S→ DS. Using these rules,Sgenerates substrings of the formu1 . . .uℓ〈uℓ+1 . . .un〉ε , with 06 ℓ6 n and
ui ∈ a∗c∪ b∗c∪ d∗c, such that every prototypeui = akc in uℓ+1 . . .un has a corresponding bodydkc in
ui+1 . . .un and every referenceui = bkc in uℓ+1 . . .un has a corresponding prototypeakc in u1 . . .ui−1.

The next example gives a grammar with contexts that defines reachability on graphs. Sudbor-
ough [22] defined a linear context-free grammar for a specialencoding of the graph reachability problem
on acyclic graphs, in which every arc goes from a lower-numbered vertex to a higher-numbered vertex.
The grammar presented below allows any graphs and uses a direct encoding. This example illustrates
the ability of grammars with contexts to define various kindsof cross-references.
Example 5. Consider encodings of directed graphs as strings of the formbsai1b j1 ai2b j2 . . . ainb jn at , with
s, t > 1, n> 0, ik, jk > 1, where each blockaib j denotes an arc from vertex numberi to vertex numberj,
while the prefixbs and the suffixat marks as the source vertex andt as the target. Then the following
grammar defines all graphs with a path froms to t.

S → FDCA | F
A → aA | c D → B& PBCE | B& QFDCA | B& QF
B → bB | c E → aEb| DCA
C → ABC | ε F → bFa | bCa

The grammar is centered around the nonterminalD, which generates all such substrings
bsai1b j1 . . .aik〈b jk〉aik+1b jk+1 . . .ainb jnat that there is a path fromjk to t in the graph. If this path is empty,
then jk = t. Otherwise, the first arc in the path can be listed either to the left or to the right ofbk. These
three cases are handled by the three rules forD. Each of these rules generatesb jk by the base conjunct
B, and then uses an extended left or right context operator to matchb jk to the tail of the next arc or toat .

The ruleD → B& PBCE considers the case when the next arc in the path is located to the left of
b jk. Let this arc beaiℓb jℓ , for someℓ < k. Then the extended left contextBCE covers the substring
bsai1b j1 . . .aiℓb jℓ . . .aikb jk. The concatenationBC skips the prefixbsai1b j1 . . .aiℓ−1b jℓ−1, and then the non-
terminal E matchesaiℓ to b jk, verifying that iℓ = jk. After this, the ruleE → DCA ensures that the
substringb jℓ is generated byD, that is, that there is a path fromjℓ to t. The concatenationCA skips the
inner substringaiℓ+1b jℓ+1 . . .aik.

The second ruleD→B& QFDCAsearches for the next arc to the right ofb jk . Let this be anℓ-th arc in
the list, withℓ > k. The extended right contextFDCA should generate the suffixb jk . . .aiℓb jℓ . . .ainb jnat .
The symbolF covers the substringb jk . . .aiℓ , matchingb jk to aiℓ . Then,D generates the substringb jℓ ,
checking that there is a path fromjℓ to t. The concatenationCAskips the rest of the suffix.

Finally, if the path is of length zero, that is,jk = t, then the ruleD → B& QF usesF to matchb jk to
the suffixat in the end of the string.

Once the symbolD checks the path from any vertex to the vertext, for the initial symbolS, it is
sufficient to matchbs in the beginning of the string to any arca jkb jk, with jk = s. This is done by the rule
S→ FDCA, which operates in the same way as the second rule forD. The case ofsandt being the same
node is handled by the ruleS→ F.

All the above examples use identifiers given in unary, which are matched by rules of the same kind
as the rules defining the language{anbn | n> 0}. These examples can be extended to use identifiers over
an arbitrary alphabetΣ, owing to the fact that there is a conjunctive grammar generating the language
{w#w | w∈ Σ∗ }, for some separator #/∈ Σ [13, 16].

M. Barash, A. Okhotin 101

4 Normal form

An ordinary context-free grammar can be transformed to the Chomsky normal form, with the rules
restricted toA→ BC andA→ a, with B,C∈ N anda∈ Σ. This form has the following generalization to
grammars with contexts.

Definition 3. A grammar with two-sided contexts G= (Σ,N,R,S) is said to be in the binary normal
form, if each rule in R is of one of the forms

A→ B1C1& . . .& BkCk& ✁D1& . . .& ✁Dm& PE1& . . .& PEn& QF1& . . .& QFn′ & ✄H1& . . .& ✄Hm′,

A→ a& ✁D1& . . .& ✁Dm& PE1& . . .& PEn& QF1& . . .& QFn′ & ✄H1& . . .& ✄Hm′,

where k> 1, m,n,n′,m′ > 0, Bi,Ci,Di ,Ei,Fi ,Hi ∈ N, a∈ Σ.

The transformation to the normal form consists of three stages: first, removing allempty conjunctsε ;
secondly, eliminatingempty contexts(✁ε , ✄ε); finally, getting rid ofunit conjunctsof the formB, with
B∈ N.

The first step is the removal of all rules of the formA → ε & . . ., so that no symbols generateε ,
while all non-empty strings are generated as before. As generation of longer strings may depend on the
generation ofε , already for ordinary context-free grammars, such a transformation requires adding extra
rules that simulate the same dependence without actually generating any empty strings.

Example 6. Consider the following context-free grammar, which definesthe language
{abc,ab,ac,a,bcd,bd,cd,d}.

S → aA | Ad

A → BC

B → ε | b

C → ε | c

SinceB generates the empty string, the ruleA→ BC can be used to generate justC; therefore, once the
rule B → ε is removed, one should add a new ruleA → C, in which B is omitted. Similarly one can
remove the ruleC→ ε and add a “compensatory” ruleA→ B. Since bothB andC generateε , so doesA
by the ruleA→ BC. Hence, extra rulesS→ a andS→ d, whereA is omitted, have to be added.

An algorithm for carrying out such a transformation first calculates the set of nonterminals that
generate the empty string, known as NULLABLE (G)⊆ N, and then uses it to reconstruct the rules of the
grammar.

This set is calculated as a least upper bound of an ascending sequence of sets NULLABLE i(G).
The set NULLABLE 1(G) = {A ∈ N | A → ε ∈ R} contains all nonterminals which directly define the
empty string. Every next set NULLABLE i+1(G) = {A∈ N | A→ α ∈ R, α ∈ NULLABLE ∗

i (G)} contains
nonterminals that generateε by the rules referring to other nullable nonterminals. Thisknowledge is
given by the Kleene star of NULLABLE i(G).

For the grammar in Example 6, the calculation of the set NULLABLE (G) proceeds as follows:

NULLABLE 0(G) = ∅,

NULLABLE 1(G) =
{

B,C
}
,

NULLABLE 2(G) =
{

B,C,A
}
,

102 Grammars with two-sided contexts

and NULLABLE (G) = NULLABLE 2(G).
The same idea works for conjunctive grammars as well [13]. For grammars with contexts [4], the

generation of the empty string additionally depends on the left contexts, in which the string occurs.
This requires an elaborated version of the set NULLABLE (G), formed of nonterminals along with the
information about the left contexts in which they may defineε .

In order to eliminate null conjuncts in case of grammars withtwo-sided contexts, one has to consider
yet another variant of the set NULLABLE (G), which respects both left and right contexts.
Example 7. Consider the following grammar with two-sided contexts, obtained by adding context re-
strictions to the grammar in Example 6; this grammar defines the languageL = {abc,ac,bcd,bd}.

S → aA | Ad

A → BC

B → ε & ✁D | b

C → ε & ✄E | c

D → a

E → d

In this grammar, the nonterminalB generates the empty string only in a left context of the form defined
by D, while C defines the empty string only in a right context of the formE. In those contexts where
both BandC generateε , so canA, by the ruleA→ BC.

The information about the left and right contexts, in which anonterminal generates the empty string,
is to be stored in the set NULLABLE (G), which is defined as a subset of 2N ×N× 2N. An element
(U,A,V) of this set represents an intuitive idea thatA definesε in a left context of the form described by
each nonterminal inU , and in a right context of the form given by nonterminals inV.

For the grammar in Example 7, such a set NULLABLE (G) is constructed as follows.

NULLABLE 0(G) = ∅
NULLABLE 1(G) =

{
({D},B,∅),(∅,C,{E})

}

NULLABLE 2(G) =
{
({D},B,∅),(∅,C,{E}),({D},A,{E})

}

Then NULLABLE (G) = NULLABLE 2(G). The elements({D},B,∅) and (∅,C,{E}) are obtained di-
rectly from the rules of the grammar, and the element({D},A,{E}) represents the “concatenation”BC
in the rule forA. Note the similarity of this construction to the one for the ordinary grammar in Exam-
ple 6: the construction given here is different only in recording information about the contexts.

The above “concatenation” of triples({D},B,∅) and (∅,C,{E}) should be defined to accu-
mulate both left and right contexts. This can be regarded as ageneralization of the Kleene star
to sets of triples, denoted by NULLABLE ⋆(G). Formally, NULLABLE ⋆(G) is the set of all triples
(U1 ∪ . . .∪Uℓ, A1 . . .Aℓ, V1 ∪ . . . ∪Vℓ) with ℓ > 0 and (Ui,Ai ,Vi) ∈ NULLABLE (G). The symbolsAi

are concatenated, while their left and right contexts are accumulated. In the special case whenℓ= 0, the
concatenation of zero symbols is the empty string, and thus∅⋆ =

{
(∅,ε ,∅)

}
.

Before giving a formal definition of the set NULLABLE (G), assume, for the sake of simplicity, that
context operators are only applied to single nonterminal symbols, that is, every rule is of the form

A→ α1 & . . .& αk & ✁D1& . . .& ✁Dm& PE1& . . .& PEn& QF1& . . .& QFm′ & ✄H1& . . .& ✄Hn′ , (3)

with A∈ N, k > 1, m,n,m′,n′ > 0, αi ∈ (Σ∪N)∗ andDi,Ei,Fi ,Hi ∈ N. As will be shown in Lemma 3,
there is no loss of generality in this assumption.

M. Barash, A. Okhotin 103

Definition 4. Let G= (Σ,N,R,S) be a grammar with two-sided contexts with all rules of the form (3).
Construct the sequence of setsNULLABLE i(G)⊆ 2N ×N×2N, for i > 0, as follows.

Let NULLABLE 0(G) = ∅. Every next setNULLABLE i+1(G) contains the following triples:
for every rule (3) and for every k triples(U1,α1,V1), . . . , (Uk,αk,Vk) in NULLABLE ⋆

i (G),
the triple

(
{D1, . . . ,Dm,E1, . . . ,En} ∪ {U1, . . . ,Uk}, A, {F1, . . . ,Fm′ ,H1, . . . ,Hn′} ∪ {V1, . . . ,Vk}

)
is in

NULLABLE i+1(G).
Finally, let NULLABLE (G) =

⋃
i>0 NULLABLE i(G).

The next lemma explains how exactly the set NULLABLE (G) represents the generation of the empty
string by different nonterminals in different contexts.
Lemma 1. Let G= (Σ,N,R,S) be a grammar with contexts, let A∈N and u,v∈Σ∗. Then, u〈ε〉v∈ LG(A)
if and only if there is a triple({J1, . . . ,Js},A,{K1, . . . ,Kt}) in NULLABLE (G), such thatε〈u〉v∈ LG(Ji)
for all i and u〈v〉ε ∈ LG(K j) for all j.

The plan is to reconstruct the grammar, so that for every triple ({J1, . . . ,Js},A,{K1, . . . ,Kt}) in
NULLABLE (G), and for every occurrence ofA in the right-hand side of any rule, the new grammar
contains a companion rule, in whichA is omitted and context operators forJi andKi are introduced.

The following case requires special handling in the new grammar. Assume thatA generatesε in the
empty left context (that is,u= ε in Lemma 1). This is reflected by a triple({J1, . . . ,Js},A,{K1, . . . ,Kt})
in NULLABLE (G), in which all symbolsJi also generateε in the left contextε . The latter generation
may in turn involve some further right context operators. Inthe new grammar, the left context will be
explicitly set to be empty (✁ε), whereas all those right contexts should be assembled together with the
set{K1, . . . ,Kt}, and used in the new rules, whereA is omitted. This calculation of right contexts is done
in the following special variant of the set NULLABLE .
Definition 5. Let G= (Σ,N,R,S) be a grammar. Define sets✁ε-NULLABLE i(G)⊆ N×2N, with i > 0:

✁ε-NULLABLE 0(G) = {(A,V) | (∅,A,V) ∈ NULLABLE (G)},
✁ε-NULLABLE i+1(G) =

{
(A,V ∪V1∪ . . .∪Vs)

∣∣ ({J1, . . . ,Js},A,V) ∈ NULLABLE (G),

∃V1, . . . ,Vs ⊆ N : (Ji ,Vi) ∈✁ε-NULLABLE i(G)
}
.

Let✁ε-NULLABLE (G) =
⋃

i>0✁ε-NULLABLE i(G).
Lemma 2. Let G= (Σ,N,R,S) be a grammar, let A∈ N and v∈ Σ∗. Thenε〈ε〉v∈ LG(A) if and only if
there is a pair(A,{K1, . . . ,Kt}) in ✁ε-NULLABLE (G), such thatε〈v〉ε ∈ LG(Ki) for all i.

There is a symmetrically defined set✄ε-NULLABLE (G)⊆ 2N ×N, which characterizes the genera-
tion of ε in an empty right context.

With the generation of the empty string represented in thesethree sets, a grammar with two-sided
contexts is transformed to the normal form as follows. First, it is convenient to simplify the rules of the
grammar, so that every concatenation is of the formBC, with B,C ∈ N, and the context operators are
only applied to individual nonterminals. For this, base conjunctsα with |α | > 2 and context operators
✁α , Pα , Qα and✄α with |α |> 1 are shortened by introducing new nonterminals.
Lemma 3. For every grammar G0 = (Σ,N0,R0,S0), there exists and can be effectively constructed an-
other grammar G= (Σ,N,R,S) generating the same language, with all rules of the form:

A→ a (4a)

A→ BC (4b)

A→ B1& . . .& Bk & ✁D1& . . .& ✁Dm& PE1& . . .& PEn& QF1& . . .& QFm′ & ✄H1& . . .& ✄Hn′ (4c)

A→ ε , (4d)

with a∈ Σ and A,B,C,Di,Ei,Fi ,Hi ∈ N.

104 Grammars with two-sided contexts

Construction 1. LetG=(Σ,N,R,S) be a grammar with two-sided contexts, with all rules of the form (4).
Consider the sets NULLABLE (G), ✁ε-NULLABLE (G) and✄ε-NULLABLE (G), and construct another
grammar with two-sided contextsG′ = (Σ,N,R′,S), with the following rules.

1. All rules of the form (4a) inRare added toR′.

2. Every rule of the form (4b) inR is added toR′, along with the following extra rules, where a
nullable nonterminal is omitted and the fact that it generatesε is expressed by context operators.

A→ B& PJ1& . . .& PJs& ✄K1& . . .& ✄Kt , for ({J1, . . . ,Js},C,{K1, . . . ,Kt}) ∈ NULLABLE (G)

A→ B& PJ1& . . .& PJs& ✄ε , for ({J1, . . . ,Js},C) ∈✄ε-NULLABLE (G) with s> 1

A→C& ✁J1 & . . .& ✁Js& QK1& . . .& QKt, for ({J1, . . . ,Js},B,{K1, . . . ,Kt}) ∈ NULLABLE (G)

A→C& QK1& . . .& QKt & ✁ε , for (B,{K1, . . . ,Kt}) ∈✁ε-NULLABLE (G) with t > 1

In the first case,C definesε in left contextsJi and right contextsKi, and this restriction is im-
plemented by context operators in the new rule. Since the left context ofC includesB, extended
context operators (PJi) are used on the left, whereas the right context operators are proper (✄Ki).

The second case considers the possibility of a nullable nonterminalC, which definesε in an empty
right context. This condition is simulated by the conjunct✄ε and extended left contextsPJi .

The two last rules handle symmetrical cases, when the nonterminal B defines the empty string.

3. Every rule of the form (4c) is preserved inR′. In the original grammar, this rule (4c) may generate
strings in empty contexts, as long as symbols in the context operators (✁Di, ✄Hi) are nullable.

For any collection of pairs(D1,V1), . . . ,(Dm,Vm) ∈✁ε-NULLABLE (G), with m> 1, add the rule

A→B1& . . .& Bk& E1& . . .& En& QK1& . . .& QKt & QF1& . . .& QFm′ & ✄H1& . . .& ✄Hn′ & ✁ε ,

where{K1, . . . ,Kt}=
⋃m

i=1Vi . NonterminalsD1, . . . ,Dm defineε in the right contexts given in the
set✁ε-NULLABLE (G). This is represented by conjuncts✁ε andQKi. Extended left contextsPEi

are replaced with base conjunctsEi, because in the empty left context they have the same effect.

Symmetrically, if(U1,H1), . . . ,(Un′ ,Hn′) ∈✄ε-NULLABLE (G), with n′ > 1, then there is a rule

A→B1& . . .& Bk& F1& . . .& Fm′ & ✁D1 & . . .& ✁Dm& PE1& . . .& PEn& PK1& . . .& PKt & ✄ε ,

where{K1, . . . ,Kt}=
⋃n′

i=1Ui.

Finally, if with m, n′ > 1 and (D1,V1), . . . , (Dm,Vm) ∈ ✁ε-NULLABLE (G), (U1,H1), . . . ,
(Un′ ,Hn′) ∈✄ε-NULLABLE (G), then the setR′ contains a rule

A→ B1& . . .& Bk& E1& . . .& En& F1& . . .& Fm′ & K1& . . .& Kt & ✁ε & ✄ε ,

where{K1, . . . ,Kt} =
⋃m

i=1Vi ∪
⋃n′

j=1U j . In this case, both left and right contexts of a string
are empty. All the symbolsDi andHi defineε in the contexts specified in✁ε-NULLABLE (G)
and✄ε-NULLABLE (G). These contexts apply to the entire string and are explicitly stated as
K1& . . .& Kt in the new rule. The null contexts✁ε , ✄ε limit the applicability of this rule to the
whole string. Again, as in the two previous cases, the base conjuncts are used instead of extended
context operators.

Lemma 4. Let G= (Σ,N,R,S) be a grammar with two-sided contexts. Then the grammar G′ =
(Σ,N′,R′,S) obtained by Construction 1 generates the language L(G′) = L(G)\{ε}.

M. Barash, A. Okhotin 105

The above construction eliminates the empty string in all base conjuncts, but the resulting grammar
may still contain null context specifications (✁ε and✄ε), which state that the current substring is a prefix
or a suffix of the whole string. These operators are eliminated by the following simple transformation.
First, define a new nonterminal symbolU that generates all non-empty strings in the empty left context.
This is done by the following three rules:

U →Ua (for all a∈ Σ)

U → a& PX (for all a∈ Σ)

X → a (for all a∈ Σ)

Another symbolV generates all non-empty strings in the empty right context;it is defined by symmetric
rules. Then it remains to replace left and right null contextoperators (✁ε ,✄ε) with U andV, respectively.

The third stage of the transformation to the normal form is removing theunit conjunctsin rules of
the formA → B& . . . Already for conjunctive grammars [13], the only known transformation involves
substituting all rules forB into all rules forA; in the worst case, this results in an exponential blowup.
The same construction applies verbatim to grammars with contexts.

This three-stage transformation proves the following theorem.
Theorem 1. For each grammar with two-sided contexts G= (Σ,N,R,S) there exists and can be effec-
tively constructed a grammar with two-sided contexts G′ = (Σ,N′,R′,S) in the binary normal form, such
that L(G) = L(G′)\{ε}.

5 Parsing algorithm

Let G = (Σ,N,R,S) be a grammar with two-sided contexts in the binary normal form, and letw =
a1 . . .an ∈ Σ+, with n> 1 andai ∈ Σ, be an input string to be parsed. For every substring ofw delimited
by two positionsi, j, with 06 i < j 6 n, consider the set of nonterminal symbols generating this substring.

Ti, j =
{

A
∣∣ A∈ N, a1 . . .ai〈ai+1 . . .a j〉a j+1 . . .an ∈ LG(A)

}

In particular, the whole stringw is in L(G) if and only if S∈ T0,n.
In ordinary context-free grammars, a substringai+1 . . .a j is generated byA if there is a ruleA →

BC and a partition of the substring intoai+1 . . .ak generated byB and ak+1 . . .a j generated byC, as
illustrated in Figure 3(left). Accordingly, each setTi, j depends only on the setsTi′, j ′ with j ′− i′ < j − i,
and hence all these sets may be constructed inductively, beginning with shorter substrings and eventually
reaching the setT0,n: this is the Cocke–Kasami–Younger parsing algorithm. For conjunctive grammars,
all dependencies are the same, and generally the same parsing algorithm applies [13]. In grammars with
only left contexts, each setTi, j additionally depends on the setsT0,i andT0, j via the conjuncts of the form
✁D andPE, respectively, which still allows constructing these setsprogressively forj = 1, . . . ,n [4].

The more complicated structure of logical dependencies in grammars with two-sided contexts is
shown in Figure 3(right). The following example demonstrates how these dependencies may form cir-
cles.
Example 8. Consider the grammar with the rules

S→ AB

A→ a& ✄B

B→ b& ✁C

C→ a

106 Grammars with two-sided contexts

i

k

j

0

A∈
?

Ti,j

C∈
?

Tk,j

B∈
?

Ti,k

E∈
?

T0,jD∈
?

T0,i

F∈
?

Ti,n

H∈
?

Tj,n

i

k

j

i k j

0

C∈
?

Tk,j

B∈
?

Ti,k A∈
?

Ti,j

i k j

Figure 3: How the membership ofA in Ti, j depends on other data, for rules (a)A → BC and (b)A →
BC& ✁D& PE& QF & ✄H.

and the input stringw= ab. It is immediately seen thatC ∈ T0,1. From this, one can infer thatB∈ T1,2,
and that knowledge can in turn be used to show thatA∈ T0,1. These data imply thatS∈ T0,2. Thus, none
of the setsT0,1 andT1,2 can be fully constructed before approaching the other.

The proposed algorithm for constructing the setsTi, j works as follows. At the first pass, it makes all
deductions⊢G A

(
a1 . . .ai〈ai+1 . . .a j〉a j+1 . . .an

)
that do not involve any contexts, and accordingly putsA

to the correspondingTi, j . This pass progressively considers longer and longer substrings, as done by the
Cocke–Kasami–Younger algorithm for ordinary grammars. During this first pass, some symbols may
be added to any setsT0, j andTi,n, and thus it becomes known that some contexts are true. This triggers
another pass over all entriesTi, j , from shorter substrings to longer ones, this time using theknown true
contexts in the deductions. This pass may result in adding more elements toT0, j andTi,n, which will
require yet another pass, and so on. Since a new pass is neededonly if a new element is added to any of
2n−1 subsets ofN, the total number of passes is at most(2n−1) · |N|+1.

These calculations are implemented in Algorithm 1, which basically deduces all true statements about
all substrings of the input string. For succinctness, the algorithm uses the following notation for multiple
context operators. For a setX = {X1, . . . ,Xℓ}, with Xi ∈N, and for an operatorQ∈ {✁,P,Q,✄}, denote
QX := QX1& . . .& QXℓ.

Theorem 2. For every grammar with two-sided contexts G in the binary normal form, Algorithm 1, given
an input string w= a1 . . .an, constructs the sets Ti, j and determines the membership of w in L(G), and
does so in timeO(|G|2 ·n4), using spaceO(|G| ·n2).

While this paper was under preparation, Rabkin [20] developed a more efficient and more sophisti-
cated parsing algorithm for grammars with two-sided contexts, with the running timeO(|G| ·n3), using
spaceO(|G| · n2). Like Algorithm 1, Rabkin’s algorithm works by proving all true statements about
the substrings of the given string, but does so using the superior method of Dowling and Gallier [7].
Nevertheless, Algorithm 1 retains some value as the elementary parsing method for grammars with two-
sided contexts—just like the Cocke–Kasami–Younger algorithm for ordinary grammars remains useful,
in spite of the asymptotically superior Valiant’s algorithm [23].

M. Barash, A. Okhotin 107

Algorithm 1. Let G = (Σ,N,R,S) be a grammar with contexts in the binary normal form. Letw =
a1 . . .an ∈ Σ+ (with n> 1 andai ∈ Σ) be the input string. LetTi, j with 06 i < j 6 n be variables, each
representing a subset ofN, and letTi, j =∅ be their initial values.

1: while any ofT0, j (16 j 6 n) or Ti,n (16 i < n) changedo
2: for j = 1, . . . ,n do
3: for all A→ a& ✁D & PE & QF & ✄H ∈ Rdo
4: if a j = a∧ D ⊆ T0, j−1 ∧ E ⊆ T0, j ∧ F ⊆ Tj,n ∧ H ⊆ Ti,n then
5: Tj−1, j = Tj−1, j ∪{A}
6: for i = j −2 to 0do
7: let P=∅ (P⊆ N×N)
8: for k= i +1 to j −1 do
9: P= P∪ (Ti,k×Tk, j)

10: for all A→ B1C1& . . .& BmCm& ✁D & PE & QF & ✄H ∈ Rdo
11: if (B1,C1), . . . ,(Bm,Cm) ∈ P ∧ D ⊆ T0,i ∧ E ⊆ T0, j ∧ F ⊆ Tj,n ∧ H ⊆ Ti,n then
12: Ti, j = Ti, j ∪{A}
13: accept if and only ifS∈ T0,n

6 Conclusion

This paper has developed a formal representation for the idea of phrase-structure rules applicable in a
context, featured in the early work of Chomsky [6]. This ideadid not receive adequate treatment at the
time, due to the unsuitable string-rewriting approach. Thelogical approach, adapted from Rounds [21]
and his predecessors, brings it to life.

There are many theoretical questions to research about the new model: for instance, one can study
the limitations of their expressive power, their closure properties, efficient parsing algorithms and sub-
families that admit more efficient parsing. Another possibility for further studies is investigating Boolean
and stochastic variants of grammars with contexts, following the recent related work [8, 12, 24].

On a broader scope, there must have been other good ideas in the theory of formal grammars that were
inadequately formalized before. They may be worth being re-investigated using the logical approach.

References

[1] T. Aizikowitz, M. Kaminski, “LR(0) conjunctive grammars and deterministic synchronized alternating push-
down automata”,Computer Science in Russia(CSR 2011, St. Petersburg, Russia, 14–18 June 2011), LNCS
6651, 345–358, DOI:10.1007/978-3-642-20712-9_27.

[2] M. Barash, “Programming language specification by a grammar with contexts”, In: S. Bensch, F. Drewes,
R. Freund, F. Otto (Eds.),Fifth Workshop on Non-Classical Models of Automata and Applications(NCMA
2013, Umeå, Sweden, 13–14 August, 2013), books@ocg.at 294, Österreichische Computer Gesellschaft
(2013), 51–67,http://users.utu.fi/mikbar/kieli.

[3] M. Barash, A. Okhotin, “Defining contexts in context-free grammars”,Language and Automata Theory and
Applications(LATA 2012, A Coruña, Spain, 5–9 March 2012), LNCS 7183, 106–118, DOI:10.1007/
978-3-642-28332-1_10.

[4] M. Barash, A. Okhotin, “An extension of context-free grammars with one-sided context specifications”,
Information and Computation, in press, DOI:10.1016/j.ic.2014.03.003.

108 Grammars with two-sided contexts

[5] M. Barash, A. Okhotin, “Linear grammars with one-sided contexts and their automaton representation”,
LATIN 2014: Theoretical Informatics(Montevideo, Uruguay, 31 March–4 April 2014), LNCS 8392, 190–
201, DOI:10.1007/978-3-642-54423-1_17.

[6] N. Chomsky, “On certain formal properties of grammars”,Information and Control, 2:2 (1959), 137–167,
DOI: 10.1016/S0019-9958(59)90362-6.

[7] W. F. Dowling, J. H. Gallier, “Linear-time algorithms for testing the satisfiability of propositional Horn
formulae”,Journal of Logic Programming, 1:3 (1984), 267–284, DOI:10.1016/0743-1066(84)90014-1.

[8] Z. Ésik, W. Kuich, “Boolean fuzzy sets”,International Journal of Foundations of Computer Science, 18:6
(2007), 1197–1207, DOI:10.1142/S0129054107005248.

[9] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal of the ACM, 9 (1962),
350–371, DOI:10.1145/321127.321132.

[10] A. Jeż, “Conjunctive grammars can generate non-regular unary languages”,International Journal of Foun-
dations of Computer Science, 19:3 (2008), 597–615, DOI:10.1142/S012905410800584X.

[11] R. Kowalski,Logic for Problem Solving, North-Holland, Amsterdam, 1979.

[12] V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “Well-founded semantics for Boolean grammars”,Infor-
mation and Computation, 207:9 (2009), 945–967, DOI:10.1016/j.ic.2009.05.002.

[13] A. Okhotin, “Conjunctive grammars”,Journal of Automata, Languages and Combinatorics, 6:4 (2001), 519–
535.

[14] A. Okhotin, “Conjunctive grammars and systems of language equations”,Programming and Computer Soft-
ware, 28:5 (2002), 243–249, DOI:10.1023/A:1020213411126.

[15] A. Okhotin, “Boolean grammars”,Information and Computation, 194:1 (2004), 19–48, DOI:10.1016/j.
ic.2004.03.006.

[16] A. Okhotin, “Conjunctive and Boolean grammars: the true general case of the context-free grammars”,Com-
puter Science Review, 9 (2013), 27–59, DOI:10.1016/j.cosrev.2013.06.001.

[17] A. Okhotin, “Improved normal form for grammars with one-sided contexts”,Descriptional Complexity of
Formal Systems(DCFS 2013, London, Ontario, Canada, 22-25 July 2013), LNCS8031, 205–216, DOI:10.
1007/978-3-642-39310-5_20.

[18] A. Okhotin, “Parsing by matrix multiplication generalized to Boolean grammars”,Theoretical Computer
Science, 516 (2014), 101–120, DOI:10.1016/j.tcs.2013.09.011.

[19] F. C. N. Pereira, D. H. D. Warren, “Parsing as deduction”, 21st Annual Meeting of the Association for Com-
putational Linguistics(ACL 1983, Cambridge, Massachusetts, USA, 15–17 June 1983), 137–144.

[20] M. Rabkin, “Recognizing two-sided contexts in cubic time”, Computer Science—Theory and Applications
(CSR 2014, Moscow, Russia, 6–12 June 2014), LNCS 8476, to appear.

[21] W. C. Rounds, “LFP: A logic for linguistic descriptionsand an analysis of its complexity”,Computational
Linguistics, 14:4 (1988), 1–9.

[22] I. H. Sudborough, “A note on tape-bounded complexity classes and linear context-free languages”,Journal
of the ACM, 22:4 (1975), 499–500, DOI:10.1145/321906.321913.

[23] L. G. Valiant, “General context-free recognition in less than cubic time”,Journal of Computer and System
Sciences, 10:2 (1975), 308–314, DOI:10.1016/S0022-0000(75)80046-8.

[24] R. Zier-Vogel, M. Domaratzki, “RNA pseudoknot prediction through stochastic conjunctive grammars”,
Computability in Europe 2013. Informal Proceedings, 80–89.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 109–123, doi:10.4204/EPTCS.151.7

c© M. Berglund, F. Drewes & B. v.d. Merwe

Analyzing Catastrophic Backtracking Behavior in Practical
Regular Expression Matching

Martin Berglund
Department of Computing Science,

Umeå University,
Umeå, Sweden
mbe@cs.umu.se

Frank Drewes
Department of Computing Science,

Umeå University,
Umeå, Sweden

drewes@cs.umu.se

Brink van der Merwe
Department of Mathematical Sciences,

Computer Science Division,
University of Stellenbosch,
Stellenbosch, South Africa
abvdm@cs.sun.ac.za

We develop a formal perspective on how regular expression matching works in Java1, a popular rep-
resentative of the category of regex-directed matching engines. In particular, we define an automata
model which captures all the aspects needed to study such matching engines in a formal way. Based
on this, we propose two types of static analysis, which take a regular expression and tell whether
there exists a family of strings which makes Java-style matching run in exponential time.

1 Introduction

Regular expressions constitute a concise, powerful, and useful pattern matching language for strings.
They are commonly used to specify token lexemes for scanner generation during compiler construction,
to validate input for web-based applications, to recognize meaningful patterns in natural language pro-
cessing and data mining, for example, locating e-mail addresses, and to guard against computer system
intrusion. Libraries for their use are found in most widely-used programming languages.

There are two fundamentally different types of regex matching engines: DFA (Deterministic Finite
Automaton) and NFA (Non-deterministic Finite Automaton) matching engines. DFA matchers are used
in (most versions of) awk, egrep, and in MySQL, and are based on the NFA to DFA subset conversion
algorithm. This paper deals with NFA engines, which are found in GNU Emacs, Java, many command
line tools, .NET, the PCRE (Perl compatible regular expressions) library, Perl, PHP, Python, Ruby and
Vim. NFA matchers make use of an input-directed depth-first search on an NFA, and thus the matching
performed by NFA engines is referred to as backtracking matching. NFA engines have made it possible
to extend regular expressions with captures, possessive quantifiers, and backreferences.

Theory has however not kept pace with practice when it comes to understanding NFA engines. We
now have NFA matchers that are more expressive and succinct than the originally developed DFA match-
ers, but are also in some cases significantly slower. Although it is known that in the worst case, the
matching time of NFA matchers is exponential in the length of input strings [7], their performance char-
acteristics and operational matching semantics are poorly understood in general. Exponential matching
time, also referred to as catastrophic backtracking (by NFA matchers), can of course be avoided by using
the DFA matchers, but then a less expressive pattern matching language has to be used. Catastrophic
backtracking has potentially severe security implications, as denial-of-service attacks are possible in any
application which matches a regular expression to data not carefully controlled by the application.

This work was motivated by the algorithm presented by Kirrage et. al. in [7], which for regular
expressions with catastrophic backtracking comes up with a family of strings exhibiting this exponential

1Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

110 Catastrophic Backtracking in Regular Expression Matching

matching time behavior. However, they only consider the case where the exponential matching behavior
can be exhibited by strings that are rejected. We investigate the complexity of deciding exponential
backtracking matching on strings that are rejected (which we refer to as deciding exponential failure
backtracking) further, and in addition we consider the general case of exponential backtracking. For
this we introduce prioritized NFA (pNFA), which make non-deterministic choices in an ordered manner,
thus prioritizing some over others in a way very reminiscent of parsing expression grammars (PEGs).
The latter introduce ordered choice to the world of context-free grammars [5]. An interesting algorithm
bridging the two areas is given in [8] by translating extended regular expressions to PEGs.

By linking failure backtracking with ambiguity in NFA, we show that catastrophic failure backtrack-
ing can be decided in polynomial time, and in the case of polynomial failure backtracking, the degree
of the polynomial can be determined in polynomial time. General backtracking is shown decidable in
EXPTIME by associating a tree transducer with the expression and applying a result from [4].

2 Preliminaries

For a set A, we denote by P(A) the power set of A. The constant function f : A→ B with f (a) = b ∈ B
for all a ∈ A is denoted by bA. Also, given any function f : A→ B and elements a ∈ A, b ∈ B, we let fa7→b
denote the function f ′ such that f ′(a) = b and f ′(x) = f (x) for all x ∈ A\{a}. The set of all strings (or
sequences) over A is denoted by A∗. In particular, it contains the empty string ε . To avoid confusion, it is
assumed that ε /∈ A. The length of a string w is denoted by |w|, and the number of occurrences of a ∈ A
in w is denoted by |w|a. The union of disjoint sets A and B is denoted by A]B.

As usual, a regular expression over an alphabet Σ (where ε, /0 /∈ Σ) is either an element of Σ∪{ε, /0}
or an expression of one of the forms (E |E ′), (E ·E ′), or (E∗), where E and E ′ are regular expressions.
Parentheses can be dropped using the rule that ∗ (Kleene closure) takes precedence over · (concatenation),
which takes precedence over | (union). Moreover, outermost parentheses can be dropped, and E ·E ′ can
be written as EE ′. The language L (E) denoted by a regular expression is obtained by evaluating E as
usual, where /0 stands for the empty language and a ∈ Σ∪{ε} for {a}.

A tree with labels in a set Σ is a function t : V → Σ, where V ⊆ N∗+ is a non-empty, finite set of
vertices (or nodes) which are such that (i) V is prefix-closed, i.e., for all v ∈ N∗+ and i ∈ N+, vi ∈ V
implies v ∈V ; and; (ii) V is closed to the left, i.e., for all v ∈N∗+ and i ∈N+, v(i+1) ∈V implies vi ∈V .

The vertex ε is the root of the tree and vertex vi is the ith child of v. We let |t|= |V | denote the size
of t. t/v denotes the tree t ′ with vertex set V ′ = {w ∈ N∗+ | vw ∈V}, where t ′(w) = t(vw) for all w ∈V ′.
If V is not explicitly named, we may denote it by V (t). The rank of a tree t is the maximum number of
children of vertices of t. Given trees t1, . . . , tn and a symbol α , we let α[t1, . . . , tn] denote the tree t with
t(ε) = α and t/i = ti for all i ∈ {1, . . . ,n}. The tree α[] may be abbreviated by α .

Given an alphabet Σ, the set of all trees of the form t : V → Σ is denoted by TΣ. Moreover, if Q is an
alphabet disjoint with Σ, we denote by TΣ(Q) the set of all trees t : V → Σ∪Q such that only leaves may
be labeled with symbols in Q, i.e., t(v) ∈ Q implies that v ·1 /∈V .

A non-deterministic finite automaton (NFA) is a tuple A = (Q,Σ,q0,δ ,F) where Q is a finite set
of states, Σ is an alphabet with ε /∈ Σ, q0 ∈ Q, F ⊆ Q and δ : Q× ({ε}∪Σ)→P(Q) is the transition
function. The fact that p ∈ δ (q,α) may also be denoted by q α−→ p.

A run on a string w ∈ Σ∗ is a sequence p1 · · · pm+1 ∈ Q∗ such that there exist α1, . . . ,αm ∈ Σ∪{ε}
with α1 · · ·αm = w and pi

αi−→ pi+1 for all i ∈ {1, . . . ,m}. Such a run is accepting if p1 = q0 and pm ∈ F .
The string w is accepted by A if and only if there exist an accepting run on w. The set of strings in Σ∗
that are accepted by A is denoted by L (A).

M. Berglund, F. Drewes & B. v.d. Merwe 111

A string-to-tree transducer is a tuple stt = (Q,Σ,Γ,q0,δ), where Σ and Γ are the input and output
alphabets respectively, Q is the finite set of states, q0 ∈ Q is the initial state, and δ : Q×Σ→ TΓ(Q) is
the transition function. When δ (q,α) = t we also write q α−→ t.

For α1, . . . ,αn ∈ Σ, stt(α1 · · ·αn) is the set of all trees t ∈ TΓ such that there exists a sequence of trees
t0, . . . , tn which fulfill the requirement that t0 = q0 and tn = t; and for every i ∈ {1, . . . ,n}, ti is obtained
from ti−1 by replacing every leaf v for which ti−1(v) ∈ Q with a tree in δ (ti−1(v),αi), i.e., it holds that
ti/v ∈ δ (ti−1(v),αi).

3 Regular Expression Matching in Java

Here we will take a look at the algorithm used for matching regular expressions in Java, using the default
java.util.regex package, and describe in pseudocode how matching is accomplished in this package.
The Java implementation is a good representative of the class of NFA search matchers. It is both fairly
typical and very consistent across different versions (Java 1.6.0u27 is used to generate figures here).
Many other implementations behave similarly, e.g. the popular Perl Compatible Regular Expressions
library (PCRE). We try to capture the essence of the Java matching procedure as accurately as possible
while omitting details, add-ons, and tricks that are irrelevant for the purpose of this paper.

Let us first describe the Java matcher in some detail. Readers who are not interested in this de-
scription may skip ahead to the second last paragraph before Algorithm 1. The core of the matcher
is implemented in java.lang.regex.Pattern. Given a regular expression, it constructs an object
graph of subclasses of the class java.lang.regex.Pattern$Node (we briefly call it Node, assuming
all classes to be inner classes of java.lang.regex.Pattern unless otherwise stated). Node objects
correspond to states, encapsulating their transitions in addition, and have one relevant method, boolean
Node.match(Matcher m, int i, CharSequence s), which we will closely mimic later. The im-
plicit this pointer corresponds to the state, s is the entire string, i is the index of the next symbol to
be read. The argument m contains a variety of book-keeping, notably variables corresponding to C in
Algorithm 1 below, as well as after-the-fact information regarding the accepting run found. (In con-
trast, match returns true if and only if the node can, potentially recursively, match the remainder of the
string). Every Node contains at least a pointer next which serves as the “default” next transition out of
the node. Let us look at the object graph on the left in Figure 1. There are quite a few nodes even for a
small expression like ab∗, but most are needed for fairly minor book-keeping, and for features we are not
concerned with here. For example LastNode checks that all symbols are read by the matching, but can
be made to do other things using additional features in java.util.regex which we do not deal with.

The matching starts with a call to match on Begin with the full string (i.e., i set to one and the
string in s). See Figure 2 for pseudo-code for the behavior of Begin, Single and Curly. Begin (and
LastNode) are trivial, they just check that we are in the expected position of the string, and in the case
of Begin calls its next. Single reads a single symbol (equal to its internal variable c) and continues
to next. Accept is even more trivial and always returns true. Curly handles the Kleene closure, and,
since it has to resolve non-determinism (i.e. how many repetitions to perform), it is a bit more complex.
The values type, cmin, and cmax are irrelevant for our concerns, they implement the counted repetition
extension. Note that that line 2 in the right-most code snippet in Figure 2 works by updating values in
the “m” in-out argument, but we leave that unspecific here. Curly starts by trying to match the atom node
atom to a prefix of the string. If it succeeds it calls itself recursively, calling match on this, to process
the remainder. When atom fails to match any further, Curly instead continues to next (backtracking as
needed). In reality Curly uses imperative loops for efficiency, but it only serves to achieve a constant

112 Catastrophic Backtracking in Regular Expression Matching

Begin

Single
c=‘a‘

Curly
type=0
cmin=0
cmax=2147483647

Single
c=‘b‘

LastNode

Accept
next=null

next

next atom

next

next

next

Begin Prolog

Loop
countIndex=1
beginIndex=0
cmin=0
cmax=2147483647

Branch
size=2

array

Single
c=‘a‘

Single
c=‘b‘

LastNode

next

loop

bodynext

atoms

next

next

element 1 element 2

Figure 1: The left diagram shows essentially the complete internal object graph (i.e. internal data-
structure) of subclasses of Node Java constructs for ab∗. On the right we show a simplified version
of the corresponding object graph for (a|b)∗. In the latter all nodes without matching effect (in our
limited expressions) are removed (e.g. the node Accept seen in the more complete example on the left).

1: if i = 0 then
2: return next.match(i,w)
3: else
4: return false
5: end if

1: if αi = c then
2: return next.match(i+1,w)
3: else
4: return false
5: end if

1: if atom.match(i,w) then
2: b := #symbols read above
3: if this.match(i+b,w) then
4: return true
5: end if
6: end if
7: return next.match(i,w)

Figure 2: The code for a call of the form match(i,w = α1 · · ·αn) on a Begin (left), Single (middle) and
Curly (right) node. Single has a member variable c identifying the symbol it should read. Curly tries to
recursively repeat atom, calling next when that fails.

speedup and is as such irrelevant for us. Curly is not used for all Kleene closures, if b = 0 it would loop
forever, so the construction procedure for the object graph only uses Curly when it (with a fairly limited
decision procedure) can tell that the contents looped is of constant non-zero length.

Next we look at the more general example on the right side of Figure 1. Here there are some addi-
tional nodes to consider. Branch implements the union, and Prolog and Loop implement the Kleene
closure (with Prolog calling matchInit on Loop to initialize the loop). Let us look at each function in
Figure 3. In Branch, match starts by letting the first subexpression match, continuing with the second
and so on if the first attempts fail. The symbiotic relationship between Prolog and Loop is trickier.
Where all other nodes calls into Loop with match(i,w) as usual Prolog calls in with matchInit(i,w)
(on the left in Figure 3). This serves only one purpose: it eliminates ε-cycles. That is, it prevents Loop
from recursively matching body to the empty string, making no progress. In matchInit the current
value of i is stored, and in match (in the middle in Figure 3) an attempt to match body will only be made
if at least one symbol has been read since the last attempt.

As an additional example, consider the regular expression (a|a)∗, which has an object graph almost
like on the right of Figure 1, except the second Single also has c set to a. Matching this against aa · · ·ab
will take exponential time in the number of as, as all ways to match each a to each Single in a|a will
be tried as the matching backtracks trying to match the final b. In an experiment on one of the authors’

M. Berglund, F. Drewes & B. v.d. Merwe 113

1: this.sp := i
2: if body.match(i,w) then
3: return true
4: else
5: return next.match(i,w)
6: end if

1: if i > this.sp then
2: if body.match(i,w) then
3: return true
4: end if
5: end if
6: return next.match(i,w)

1: for e ∈ array do
2: if e.match(i,w) then
3: return true
4: end if
5: end for
6: return false

Figure 3: The code for a call of the form match(i,w = α1 · · ·αn) on a Loop (middle), Branch (right)
and, as a special case, the call matchInit(i,w) on Loop on the left. matchInit is called by Prolog in
lieu of match. Notice that the loop in Branch is in array order.

desktop PCs an attempt to match (a|a)∗ to a35b using Java took roughly an hour of CPU time.
The object graph on the right in Figure 1 is, as is noted in the caption, a bit of creative editing of

reality. A number of nodes not affecting the search behavior or matching are removed: the Accept node,
which is just a next placeholder with no effect, GroupHead and GroupTail, which tracks what part of
the match corresponds to a parenthesized subexpression, and finally BranchConn, which is placed in
relation to Branch in the right of Figure 1 and records some information for the optimizer.

In general all nodes have numerous additional features not discussed, and there are many additional
nodes serving similar purposes. For example Single may be replaced with Slice to match multiple sym-
bols at once or BnM to matche multiple symbols using Boyer-Moore matching [2]. However, the opti-
mizations are too minor to matter for our concerns (e.g. using Slice and BnM instead of Single yields at
most a linear speed-up), and the additional features are outside our scope.

Let us take the above together and assemble the snippets of code into a function which takes a regular
expression and a string as input and decides if the expression matches the string. A regular expression
is represented by its parse tree, T : N∗+→ {|, ∗, ∗?, ·,ε}∪Σ, defined in the obvious way with each · and
| having two children, ∗ and ∗? one, and α ∈ Σ∪{ε} zero. The operator ∗? is the lazy Kleene closure,
which is the same as ∗, except that it attempts to make as few repetitions as possible.

We now define a function next : N∗+ → N∗+]{nil} on the nodes of T , where nil is a special value.
Roughly speaking, next(v) is the node at which parsing continues when the subexpression rooted av v
has successfully matched (compare to the cont pointers in Kirrage at al. [7]). Let next(ε) = nil, and

1. if T (v) = | then next(v ·1) = next(v ·2) = next(v);

2. if T (v) = · then next(v ·1) = v ·2 and next(v ·2) = next(v); and

3. if T (v) = ∗ or T (v) = ∗? then next(v ·1) = v.

Then, collapsing the object graph and ignoring precise node choices in Java we get Algorithm 1.

Algorithm 1. Simplified pseudocode of the Java matching algorithm. The implicit regular expression
parse tree is T . The call-by-value input parameters are the node of T currently processed, the remainder
of the input string, and a set of nodes that we should not revisit before consuming the next input symbol.
This prevents ε-cycles as discussed above. The initial call made is MATCH(ε,w, /0).

1: function MATCH(v,w = a1 · · ·an,C)
2: if v = nil then
3: return n = 0
4: else if T (v) = ε then
5: return MATCH(next(v),w,C)
6: else if T (v) ∈ Σ then

7: if n≥ 1∧T (v) = a1 then
8: return MATCH(next(v),a2 · · ·an, /0)
9: end if

10: return false
11: else if T (v) = | then
12: if MATCH(v ·1,w,C) then

114 Catastrophic Backtracking in Regular Expression Matching

13: return true
14: end if
15: return MATCH(v ·2,w,C)
16: else if T (v) = · then
17: return MATCH(v ·1,w,C)
18: else if T (v) = ∗ then
19: if v ·1 /∈C then
20: if MATCH(v ·1,w,C∪{v ·1}) then
21: return true
22: end if
23: end if

24: return MATCH(next(v),w,C)
25: else if T (v) = ∗? then
26: if MATCH(next(v),w,C) then
27: return true
28: else if v ·1 /∈C then
29: return MATCH(v ·1,w,C∪{v ·1})
30: else
31: return false
32: end if
33: end if
34: end function

Notice how the code for the two Kleene closure variants only differs in what they try first: ∗ tries to
repeat its body first, whereas ∗? tries to not repeat the body. Note also how C is used to prevent ε-cycles
in lines 19–20 and 28–29. If the node we would go to is already in C this means that no symbol has been
read since last time we tried this, meaning repeating it would be a loop without progress.

4 Prioritized Non-Deterministic Finite Automata

We now define a modified type of NFA that provides us with an abstract view of the matching procedure
discussed in the previous section. The modifications have no impact on the language accepted, but make
the automaton “run deterministic”. Every string in the language accepted has a unique accepting run,
a property brought about by ordering the non-deterministic choices into a first, second, etc alternative,
and letting the unique accepting run be given by trying, at any given state, alternative i+ 1 only when
alternative i has failed. In our definition, only ε-transitions can be nondeterministic.

Definition 2. A prioritized non-deterministic finite automaton (pNFA) is a tuple A=(Q1,Q2,Σ,q0,δ1,δ2,
F), where Q1 and Q2 are disjoint finite sets of states; Σ is a finite alphabet; q0 ∈ Q1 ∪Q2 is the initial
state; δ1 : Q1×Σ→ (Q1∪Q2) is the deterministic transition function; δ2 : Q2→ (Q1∪Q2)

∗ is the non-
deterministic prioritized transition function; and F ⊆ Q1∪Q2 are the final states.

The NFA corresponding to the pNFA A is given by A = (Q1∪Q2,Σ,q0, δ̄ ,F), where

δ̄ (q,α) =

{
{δ1(q,α)} if q ∈ Q1 and α ∈ Σ,
{q1, . . . ,qn} if q ∈ Q2, α = ε , and δ2(q) = q1 · · ·qn.

The language accepted by A, denoted by L (A), is L (A).

Next, we define the so-called backtracking run of a pNFA on an input string w. This run takes the
form of a tree which, intuitively, represents the attempts a matching algorithm such as Algorithm 1 would
make until accepting the input string (or eventually rejecting it). The definition makes use of a parameter
C whose purpose is to remember, for every state, the highest nondeterministic alternative that has been
tried since the last symbol was consumed. This corresponds to the parameter C in Algorithm 1 and avoids
infinite runs caused by ε-cycles.

Definition 3. Let A = (Q1,Q2,Σ,q0,δ1,δ2,F) be a pNFA, q ∈Q1∪Q2, w = α1 · · ·αn ∈ Σ∗, and C : Q2→
N. Then the (q,w,C)-backtracking run of A is a tree over Q1∪Q2]{Acc,Rej}. It succeeds if and only
if Acc occurs in it. We denote the (q,w,C)-backtracking run by btrA(q,w,C) and inductively define it as
follows. If q ∈ F and w = ε then btrA(q,w,C) = q[Acc]. Otherwise, we distinguish between two cases:2

2For the first case, recall that 0Q2 denotes the function C : Q2→ N such that C(q) = 0 for all q ∈ Q2.

M. Berglund, F. Drewes & B. v.d. Merwe 115

1. If q ∈ Q1, then

btrA(q,w,C) =

{
q[btrA(δ1(q,α1),α2 · · ·αn,0Q2)] if n > 0 and δ1(q,α1) is defined,
q[Rej] otherwise.

2. If q ∈ Q2 with δ2(q) = q1 · · ·qk, let i0 =C(q)+1 and ri = btrA(qi,w,Cq7→i) for i0 ≤ i≤ k. Then

btrA(q,w,C) =

q[Rej] if i0 > k,
q[ri0 , . . . ,rk] if i0 ≤ k but no ri (i0 ≤ i≤ k) succeeds,
q[ri0 , . . . ,ri] if i ∈ {i0, . . . ,k} is the least index such that ri succeeds.

The backtracking run of A on w is btrA(w) = btrA(q0,w,0Q2). If btrA(w) succeeds, then the accepting run
of A on w is the sequence of states on the right-most path in btrA(w).

Notice that the third parameter C in btrA(q,w,C) fulfills a similar purpose as the set C in Algorithm 1.
It is used to track transitions that must not be revisited to avoid cycles.

Clearly, for a pNFA A and a string w, w ∈L (A) if and only if btrA(w) succeeds, if and only if the
accepting run of A on w is an accepting run of the NFA A. Backtracking runs capture the behavior of
the following algorithm which generalizes Algorithm 1 to arbitrary pNFAs to deterministically find the
accepting run of A on w if it exists.
Algorithm 4. Let A = (Q1,Q2,Σ,q0,δ1,δ2,F) be a pNFA. The call MATCH(q0,w,0Q2) of the following
procedure yields the accepting run of A on w if it exists, and⊥ /∈Q1∪Q2 otherwise. The third parameter
is similar to the C in Definition 3. For every state q ∈ Q2 with out-degree d we have C(q) ∈ {0, . . . ,d}.

1: function MATCH(q,w = a1 · · ·an,C)
2: if q ∈ Q1 then
3: if n = 0 then
4: if q ∈ F then
5: return q
6: else
7: return ⊥
8: end if
9: else

10: return q ·MATCH(δ1(q,a1),a2 · · ·an,0Q2)
11: end if
12: else
13: if n = 0∧q ∈ F then

14: return q
15: else
16: q1 · · ·qk := δ2(q)
17: for i =C(q)+1, . . . ,k do
18: r := MATCH(qi,w,Cq7→i)
19: if r 6=⊥ then
20: return q · r
21: end if
22: end for
23: return ⊥
24: end if
25: end if
26: end function

Notice especially line 10 where a symbol is read and C is reset to 0Q2 in the recursive call. The case
for Q2 starts at line 13, the loop at 17 tries all not yet tried transitions for that state. If no transition
succeeds we fail on line 23.

We note here that the running time of Algorithm 4 is exponential in general, just like Algorithm 1.
This can be remedied by means of memoization, but potentially with a significant memory overhead, due
to the fact that memoization needs to keep track of each possible assignment to all C(q) with q ∈ Q2.3

Depending on how one turns a given regular expression into a pNFA, Algorithm 4 will run more
or less efficiently. For example, if the pNFA is built in a way that reflects Algorithm 1, analyzing the
efficiency of Algorithm 4 or, equivalently, the size of backtracking runs, yields a (somewhat idealized)
statement about the efficiency of the Java matcher.

3Apparently, starting from version 5.6, Perl uses memoization in its regular expression engine in order to speed up matching.

116 Catastrophic Backtracking in Regular Expression Matching

4.1 Two Constructions for Turning Regular Expressions into pNFA

In this section we give two examples of constructions that can be used to turn a regular expression E
into a pNFA A such that L (A) = L (E). The first is a prioritized version of the classical Thompson
construction [9], whereas the second follows the Java approach.

Recall that the classical Thompson construction converts the parse tree T of a regular expression E to
an NFA, which we denote by Th(E), by doing a postorder traversal on T . An NFA is constructed for each
subtree T ′ of T , equivalent to the regular expression represented by T ′. We do not repeat this well-known
construction here, assuming that the reader is familiar with it. Instead, we define a prioritized version,
which constructs a pNFA denoted by Thp(E) such that Thp(E) = Th(E).

Just as the construction for Th(E), we define Thp(E) recursively on the parse tree for E. For each
subexpression F of E, Thp(F) has a single initial state with no ingoing transitions, and a single final
state with no outgoing transitions. The constructions of Thp(/0), Thp(ε), Thp(a), and Thp(F1 ·F2), given
that Thp(F1) and Thp(F2) are already constructed, are defined as for Th(E), splitting the state set into
Q1 and Q2 in the obvious way. It is only when we construct Thp(F1|F2) from Thp(F1) and Thp(F2), and
Thp(F∗1) from Th(F1), where the priorities of introduced ε-transitions require attention. We also consider
the lazy Kleene closure F∗?1 , to illustrate the difference in priorities of transitions between constructions
for the greedy and lazy Kleene closure. In each of the constructions below, we assume that Thp(Fi)
(i ∈ {1,2}) has the initial state qi and the final state fi. Furthermore, δ2 denotes the transition function
for ε-transitions in the newly constructed pNFA Thp(E). All non-final states in Thp(E) that are in Thp(Fi)
inherit their outgoing transitions from Thp(Fi).

• If E = F1|F2 then Thp(E) is built like Th(E), thus introducing new initial and final states q0 and f0,
respectively, and defining δ2(q0) = q1q2 and δ2(f1) = δ2(f2) = f0.

• If E = F∗1 then we add new initial and final states q0 and f0 to Q2 and define δ2(q0) = q1 f0 and
δ2(f1) = q1 f0. The case E = F∗?1 is the same, except that δ2(q0) = f0q1 and δ2(f1) = f0q1.

Thus, the pNFA Thp(F∗) tries F as often as possible whereas Thp(F∗?) does the opposite.
The second pNFA construction is the one implicit in the Java approach and Algorithm 1. We denote

this pNFA by Jp(E). The base cases Jp(/0), Jp(ε), Jp(a) are identical to Thp(/0), Thp(ε), Thp(a), respec-
tively. Now, let us consider the remaining operators. Again, we assume that Jp(Fi) (i ∈ {1,2}) has the
initial state qi and the final state fi. Furthermore, δ2 denotes the transition function for ε-transitions in
the newly constructed pNFA Jp(E).

• Assume that E = F1 ·F2. Then Jp(E) is built from Jp(F1) and Jp(F2) by identifying f1 with q2,
adding a new initial state q0 ∈ Q2 with δ2(q0) = q1, and making f2 the final state. Thus, Jp(E) is
built like Thp(E), except that a new initial state is added and connected to the initial state of Jp(F1)
by means of an ε-transition.

• If E = F1|F2 then Jp(E) is constructed by introducing a new initial state q0, defining δ2(q0) = q1q2,
and identifying f1 and f2, the result of which becomes the new final state.

• Now assume that E = F∗1 . Then we add a new final state f0 to Jp(F1), make q0 = f1 the initial state
of JP(E), and set δ2(q0) = q1 f0. The case E = F∗?1 is exactly the same, except that δ2(q0) = f0q1.

Observation 5. Let E be a regular expression and A a pNFA. Then the running time of Algorithm 4 on
w (with respect to E) is Θ(|btrA(w)|).

The two variants of implementing regular expressions by pNFA are closely related. In fact, Kirrage
et al. [7] seem to regard them as being essentially identical and write that their reasons for choosing

M. Berglund, F. Drewes & B. v.d. Merwe 117

E1 E2

E1

E2 E1 E1

E1 E2

E1

E2

E1

E1

Figure 4: Abstract pNFA corresponding to E1 ·E2, E1 |E2, E∗1 and E∗?1 , from which Thp(E) (top row) and
Jp(E) (bottom row) are constructed. The transitions are prioritized in clockwise order, starting at noon.

Jp(E) are “purely of presentational nature”. However, using our notion of pNFA we can show that this
is not always the case. For this, note first that the construction of both Thp(E) and Jp(E) can be viewed
in a top-down fashion, where each operation is represented by an abstract pNFA in which zero, one, or
two transitions are labeled with regular expressions. Replacing such a transition with the corresponding
pNFA yields the constructed pNFA for the whole expression. Figure 4 shows the building blocks for the
operations ·, |, ∗, and ∗? in both cases. Priorities follow the convention that ε-transitions leaving a state
are drawn in clockwise order, starting at noon. Unlabeled edges denote ε-transitions.

Now consider an expression E of the form ((ε|E1) ·ε∗)∗ ·E2. When building Thp(E) and Jp(E), these
correspond to the following abstract pNFA:

E1

E2 and
E2

E1

In Thp(E), when processing an input string w, the run will first choose the prioritized choice of the
union operator (which is ε), iterate the inner loop once, and then return to the initial state of the sub-
pNFA corresponding to ε|E1. Now, the first alternative is blocked, meaning that Algorithm 4 tries to
match E1. Assuming that no failure occurs, it will then proceed by following ε transitions leading to E2.

Now look at Jp(E). Here, the run first bypasses E1, similarly to Thp(E), but this leads to the state
following the start state. As the first alternative of transitions leaving this state has already been used, the
run drops out of the loop and proceeds with E2. E1 will only be tried after backtracking in case E2 fails.

We thus get several cases by appropriately instantiating E1 and E2. Assume first that we choose E1
in such a way that Thp(E1) suffers from exponential backtracking on a set W of input strings over Σ, and
E2 =Σ∗. Then Thp(E) causes exponential backtracking on strings in W whereas Jp(E) does not backtrack
at all. A concrete example is obtained by taking Σ = {a,b}, E1 = (a∗)∗, and W = {anb | n ∈ N}.

Conversely, we may choose E2 = ε |E ′2 so that Jp(E ′2) fails exponentially on W , but E1 = Σ∗. Then
Thp(E) will match strings in W in linear time whereas Jp(E) will take exponential time.

One can easily combine two examples of the types above into one, to obtain an expression such that
Thp(E) shows exponential behavior on a set W of strings on which Jp(E) runs in linear time whereas
Jp(E) shows exponential behavior on another set W ′ of strings on which Thp(E) runs in linear time.

118 Catastrophic Backtracking in Regular Expression Matching

5 Static Analysis of Exponential Backtracking

We now consider the problem of deciding whether a given pNFA causes backtracking matching similar
to Algorithm 1 to run exponentially. More precisely, we ask whether a pNFA has exponentially large
backtracking runs. In the case where the considered pNFA is Jp(E), this yields a statement about the
running time of Algorithm 1. However, we are interested in the problem in general, because other regular
expression engines may correspond to other pNFA. There are two variants of the decision problem, with
very different complexities. Let us start by defining the first.

Definition 6. Given a pNFA A = (Q1,Q2,Σ,q0,δ1,δ2,F), let f (n) = max{|btrA(w)| | w ∈ Σ∗, |w| ≤ n}
for all n ∈ N. We say that A has exponential backtracking if f ∈ 2Ω(n) (or equivalently, if f (n) ∈ 2Θ(n))
and polynomial backtracking of degree k for k ∈ N if f ∈Θ(nk+1).

If the pNFA A f = (Q1,Q2,Σ,q0,δ1,δ2, /0), has exponential backtracking (or polynomial backtrack-
ing), then we say that A has exponential failure backtracking (polynomial failure backtracking, resp.).

Failure backtracking provides an upper bound for the general case. In cases where the worst-case
matching complexity can be exhibited by a family of strings not in L (A), this analysis is precise. This
happens for example if for some $ ∈ Σ, we have w$ 6∈L (A) for all w ∈ Σ∗, or more generally, if for each
w ∈ Σ∗, there is w′ ∈ Σ∗ such that ww′ 6∈L (A). Failure backtracking analysis is of great interest in that
it is more efficiently decidable (being in PTIME) than the general case. It is closely related to the case
considered in e.g. [7], where the matching complexity of the strings not in L (A) is studied.

5.1 An Upper Bound on the Complexity of General Backtracking Analysis

Let us first establish an upper bound on the complexity of general backtracking analysis. We will give an
algorithm which solves this problem in EXPTIME. Afterwards, we will also note some minor hardness
results. The EXPTIME decision procedure relies heavily on a result from [4].

Lemma 7. Given a string-to-tree transducer stt = (Q,Σ,Γ,q0,δ), it is decidable in deterministic expo-
nential time whether the function f (n) = max{|t| | t ∈ stt(s), s ∈ Σ∗, |s| ≤ n} grows exponentially, i.e.
whether f ∈ 2Ω(n).

In short, we will hereafter construct a string-to-tree transducer from a pNFA A which reads an input
string (suitably decorated) and outputs the corresponding backtracking run of A (see Definition 3). In this
way, we model the running of Algorithm 4 on that string. Then Lemma 7 can be applied to this transducer
to decide exponential backtracking. To simplify the construction we first make a small adjustment to the
input pNFA in the form of a “flattening”, which ensures that δ2 maps Q2 to Q∗1. That is, we remove the
opportunity for repeated ε-transitions.

Definition 8. Let A = (Q1,Q2,Σ,q0,δ1,δ2,F) be a pNFA. Define d : (Q1∪Q2)× (Q2→ N)→ Q∗1, and
r̄ : Q∗1→ Q∗1 as follows:

d(q,C) =

{
q if q ∈ Q1,

d(qi+1,Cq7→i+1) · · ·d(qn,Cq7→i+1) if q ∈ Q2, δ2(q) = (q1 · · ·qn) and C(q) = i.

r̄(s) =
{

r̄(uv) if s = uqv for some u,v ∈ Q∗1 and q ∈ Q1 with |u|q ≥ 2
s otherwise.

That is, r̄ removes all repetitions of each state q beyond the first two occurrences.
Now, the δ2-flattening of A is the pNFA A′ = (Q1,Q2,Σ,q0,δ1,δ ′2,F ′) with δ ′2(q) = r̄(d(q,0Q2)) for

all q ∈ Q2, and F ′ = {q ∈ Q1∪Q2 | d(q,0Q2)∩F 6= /0}.

M. Berglund, F. Drewes & B. v.d. Merwe 119

First let us note that the size of A′ in Definition 8 is polynomial in the size of A, as no new states are
added and no right-hand side is greater than polynomial in length (2|Q1| is the maximum length after ap-
plying r̄). Furthermore, the construction itself can be performed in polynomial time in a straightforward
way by computing d incrementally in a left-to-right fashion, and aborting each recursion visiting a state
that has already been seen twice to the left.

Before proving some properties of the above construction we make a supporting observation.
Lemma 9. Let σ be a function on trees such that, for t = f [t1, . . . , tk]

σ(t) =

t if k = 0
f [σ(t1)] if k = 1
f [σ(ti),σ(t j)] otherwise, where ti, t j (i 6= j) are largest among t1, . . . , tk.

Let T0,T1,T2, . . . be sets of trees of rank at most k. Then the function f (n) = max{|t| | t ∈ Tn} grows
exponentially if and only if f ′(n) = max{|σ(t)| | t ∈ Tn} grows exponentially.

We leave out the (rather easy) proof of the lemma due to space limitations.
Lemma 10. Let A = (Q1,Q2,Σ,q0,δ1,δ2,F) be a pNFA and A′ its δ2-flattening. Then A′ can be con-
structed in polynomial time, L (A′) = L (A), and the function f (n) = max{|btrA(w)| | w ∈ Σ∗, |w| ≤ n}
grows exponentially if and only if f ′(n) = max{|btrA′(w)| | w ∈ Σ∗, |w| ≤ n} grows exponentially.

Proof sketch. Let A′ = (Q1,Q2,Σ,q0,δ1,δ ′2,F ′). As noted, A′ can be constructed in polynomial time.
The language equivalence of A and A′ can be established by induction on the accepting runs of A

and A′. δ ′2 is a closure on δ2, such that any accepting run for A of the form p1 · · · pn can be turned into
one for A′ by replacing each maximal subsequence pk · · · pk+i ∈ Q∗2 with just pk. The function d in the
construction of δ2 will ensure that pk is accepting if this was at the end of the run, and that pk can go
directly to the following Q1 state. The converse is equally straightforward, as a suitable sequence from
Q2 can be inserted into an accepting run for A′ to create a correct accepting run for A.

Finally, we argue that A′ exhibits exponential backtracking behavior if and only if A does. By the
construction of A′, we have btrA′(w) ≤ btrA(w). Hence, f grows exponentially if f ′ does. It remains
to consider the other direction. Thus, assume that f (n) grows exponentially. We have to show that
f ′(n) grows exponentially as well. Let A′′ be the pNFA generated by δ2-flattening A without apply-
ing r̄. Let t = btrA(w) and t ′′ = btrA′′(w) for some input string w. Then t ′′ is obtained from t by
repeatedly replacing subtrees of the form q[s1, . . . ,sk,q′[t1, . . . , tl],sk+1, . . . ,sm], where q,q′ ∈ Q2, by
q[s1, . . . ,sk, t1, . . . , tl,sk+1, . . . ,sm]. Since Definition 3 prevents repeated ε-cycles, this process removes
only a constant fraction of the nodes in t.4 Hence, f ′′(n) = max{|btrA′′(w)| | w ∈ Σ∗, |w| ≤ n} grows
exponentially. Now, compare t ′′ with t ′ = btrA′(w). If a node of t ′′ has m children with the same state
q ∈ Q2 in their roots, by the definition of backtracking runs the m subtrees rooted at those nodes will be
identical. This is the case since the run for each subtree starts in the same state and string position, and
the application of d in the partial flattening ensures that C is made irrelevant by an immediately following
δ1 transition resetting it to 0Q2 . The application of r̄ to A′′ means that, in effect, the first two copies of
these m subtrees are kept in t ′. In particular, the two largest subtrees of the node are kept in t ′. According
to Lemma 9, this means that g′ grows exponentially.

It should be noticed that, for the proof above to be valid, it is important that r̄ preserves the order
of occurrences of states from the left, as a subtree being accepting means that no further subtrees are
constructed to the right of it (ensuring no extraneous subtrees get included).

4The constant may be exponential in the size of A, but for the question at hand this does not matter since the backtracking
behavior in the length of the string is what is considered.

120 Catastrophic Backtracking in Regular Expression Matching

We are now prepared to define the construction which for any δ2-flattened pNFA A produces a string-
to-tree transducer stt such that btrA(w) = t if and only if t ∈ stt(w′). Here, w′ is a version of w decorated
with extra symbols [and $. The former will serve as padding to be read when δ2 transitions are taken,
and $ marks the beginning and the end of the string.

Definition 11. Given a δ2-flattened pNFA A = (Q1,Q2,Σ,q0,δ1,δ2,F) we construct the string-to-tree
transducer stt = (Q,Σ′,Γ,q′0,δ) in the following way. Q = {q′0}∪{aq, fq | q ∈Q1∪Q2}, Σ′ = Σ]{[,$},
and Γ = Q1∪Q2]{Acc,Rej}. Furthermore, δ consists of the following transitions:

1. Let q′0
$−→ aq0 and q′0

$−→ fq0 . For all q ∈ Q let q [−→ q.

2. For all q ∈ Q1 and α ∈ Σ:

(a) If δ1(q,α) = q′ let aq
α−→ q[aq′] and fq

α−→ q[fq′].
(b) If δ1(q,α) is undefined let fq

α−→ q[Rej].

3. For all q ∈ Q2, if q1 · · ·qn = δ2(q), then for all i ∈ {0, . . . ,n−1} let aq
[−→ q[fq1 , . . . , fqi ,aqi+1], and

let fq
[−→ q[fq1 , . . . , fqn].

4. Finally if q ∈ F let aq
$−→ q[Acc], whereas when q /∈ F:

(a) if q ∈ Q1 let fq
$−→ q[Rej], and,

(b) if q ∈ Q2 and q1 · · ·qn = δ2(q), then fq
$−→ q[q1[Rej], . . . ,qn[Rej]].

Definition 12. The string w1α1w2α2 · · ·wnαnwn+1 is a decoration of α1 · · ·αn ∈ Σ∗ if wi ∈ {$, [}∗ for
each i. $[α1[α2 · · ·[αn$ is the correct decoration of α1 · · ·αn, denoted dec(α1 · · ·αn).

Lemma 13. For a δ2-flattened pNFA A, the string-to-tree transducer stt as constructed by Definition 11,
and an input string w = α1 · · ·αn, it holds that stt(dec(w)) = {btrA(w)}. For all u which are decorations
of w either stt(u) = /0 or stt(u) = {btrA(w)}.

Proof sketch. First, notice how A being δ2-flattened impacts btrA. The flattening ensures that there is no
way to take two ε-transitions in a row in A, meaning that every time case 2 of Definition 3 applies, we
have C(q) = 0 since the previous step is either the initial call or a call from case 1 where C gets reset. As
such we will have C = 0Q2 in every recursive call below. Let sttq denote the string-to-tree transducer stt
with the initial state q (instead of q0).

Let v = $[α1[α2[· · ·[αn$. Establishing that stt(dec(w)) = {btrA(w)} merely requires a straight-
forward case analysis the details of which we leave out due to space limitations. Starting with the
case where the backtracking run on w fails, the analysis establishes that for rejecting backtracking runs
t = btrA(q,w,0Q2), we have t ∈ stt fq(v), for all q, where v equals dec(w) with the initial $ removed (we
will deal with this at the end) and, vice versa, t ∈ stt fq(v) is true for exactly one t, so t = btrA(q,w,0Q2).

The proof for the accepting runs follows very similar lines, but with the extra wrinkle of how Q2 rules
are handled when some path accepts. The invariant that t ∈ sttaq(v) is true for at most one t is maintained
however, as is, of course, the parallel to btrA. Again, the proof shows that sttaq(v) outputs precisely one
tree if v is dec(w) with the initial $ removed. That initial $ is now used by the initial rules in stt: q′0

$−→ aq0

and q′0
$−→ fq0 . This means that stt produces exactly one tree for every dec(w), and in both the accepting

and rejecting case it matches the tree from btrA.
Finally, we need to deal with incorrect decorations. Let v be a decoration of w which is not dec(w).

If v has no leading $, or no trailing $, or has a $ in any other position, stt(v) = /0, since stt has no other
possible rules for $. If v contains extraneous [we still have stt(v) = {btrA(w)}, since they will just be
consumed by q [−→ q rules. If some [is “missing” compared to dec(w) this either causes stt(v) = /0, if a
Q2 rule needed it, or stt(v) = {btrA(w)}, if it is just removed by a q [−→ q rule anyway.

M. Berglund, F. Drewes & B. v.d. Merwe 121

Theorem 14. It is decidable in exponential time whether a given pNFA A has exponential backtracking.

Proof. From A, construct the δ2-flattened pNFA A′ according to Definition 8. According to Lemma 10, A′

can be constructed in polynomial time, and it has exponential backtracking if and only if A has. Construct
the transducer stt for A′ according to Definition 11. By Lemma 13 stt outputs exponentially large trees if
and only if A′ has exponential backtracking. The construction of stt can clearly be implemented to run in
polynomial time. Hence, Lemma 7 yields the result.

5.2 Hardness of General Backtracking Analysis

It seems likely that general backtracking analysis is computationally difficult. We cannot prove this yet,
but here we demonstrate that either it is hard to decide if Jp(E) has exponential backtracking or the class
of regular expressions E such that Jp(E) does not have exponential backtracking has an easy universality
decision problem. In the following, we say that E has exponential backtracking if Jp(E) does.

Let us briefly recall the universality problem.

Definition 15. A regular expression E is Σ-universal if Σ∗ ⊆L (E). The input of RE Universality is an
alphabet Σ and a regular expression E over Σ. The question asked is whether L (E) is Σ-universal.

This problem is well-known to be PSPACE-complete. See e.g. [6]. We will now give a simple
polynomial reduction which takes a regular expression E and constructs a new regular expression E ′

such that E ′ has exponential backtracking if E has exponential backtracking or E is not universal.

Lemma 16. Let E be a regular expression over Σ, α ∈ Σ, and Γ = Σ∪{$} for some $ /∈ Σ. If E does not
have exponential backtracking then E ′ = ((E |E$Γ∗) |(Σ∗$(α∗)∗$) has exponential backtracking if and
only if E is not Σ-universal.

Proof. If E does not have exponential backtracking then neither does E$Γ∗, since Γ∗ never fails. Now,
let A = Jp(E ′). For every input string, the backtracking run of A will attempt to match Σ∗$(α∗)∗$ to the
string only if neither E nor E$Γ∗ matches it. If E is universal, i.e. equal to Σ∗, then L (E|(E$Γ∗)) =
L (Σ∗|(Σ∗$Γ∗)) = Γ∗ (since a string in Γ∗ is either in Σ∗ or has a prefix in Σ∗ followed by a suffix in Γ∗
that begins with a $). Hence, in this case E ′ has exponential backtracking if and only if E does.

If we instead assume that E is not universal, then there exists some w ∈ Σ∗ such that w /∈ L (E).
Consider the string w$αn for any n ∈ N. Neither E nor E$Γ∗ matches it, which means that backtracking
will proceed into Σ∗$(α∗)∗$, where 2n backtracking attempts will be made to match the suffix αn$ to the
subexpression (α∗)∗$ (as the final $ keeps failing to match).

The previous lemma yields the following corollary.

Corollary 17. Let E be the set of all regular expressions that do not have exponential backtracking. Then
either RE Universality is not PSPACE-hard for inputs in E , or deciding whether regular expressions have
exponential backtracking is PSPACE-hard.

5.3 The Complexity of Failure Backtracking Analysis

Now we look at the problem to decide whether a given pNFA has exponential failure backtracking (see
Definition 6). For reasons of technical simplicity, assume that parallel ε-transitions are absent from pNFA
in this section. To simplify the exposition in this section, and to obtain a useful notion of ambiguity for
NFA with ε-cycles, we restrict our notion of accepting runs of an NFA, as originally defined in Section 2.
Consider a run p1 · · · pm+1 on an input string w = β1 · · ·βm ∈ Σ∗. This run is called short if there are no

122 Catastrophic Backtracking in Regular Expression Matching

i, j, 1 ≤ i < j ≤ m, such that βi = . . . = β j = ε , pi = p j, and pi+1 = p j+1. Thus, a short run must not
contain any ε-cycle in which an ε-transition appears twice.

First we recall definitions from [1] on ambiguity for NFA, but for NFA with ε-cycles. These def-
initions differ from those in [1], due to the fact that we allow ε-cycles by using short accepting runs.
We define the degree of ambiguity of a string w in N, denoted by da(N,w), to be the number of short
accepting runs in N labeled by w. N is polynomially ambiguous if there exists a polynomial h such that
da(N,w)≤ h(|w|) for all w ∈ Σ∗. The minimal degree of such a polynomial is the degree of polynomial
ambiguity of N. We call N exponentially ambiguous if g(n) =max|w|≤n da(N,w)∈ 2Ω(n) (or equivalently,
if g(n) ∈ 2Θ(n)). It follows from Proposition 1 of [1] that N is either polynomially or exponentially am-
biguous, i.e., there is nothing in between. To be precise, this concerns only NFA without ε-cycles, but as
the proof of the following theorem shows, it extends to our more general case.

Theorem 18. For an NFA N it is decidable in time O(|N|3E) whether N is polynomially ambiguous, where
|N|E denotes the number of transitions of N. If N is polynomially ambiguous, the degree of polynomial
ambiguity can be computed in time O(|N|3E).

Proof. If N is ε-cycle free, the result follows from Theorems 5 and 6 in [1]. Now let N = (Q,Σ,q0,δ ,F)
be an NFA, potentially with ε-cycles, and define the equivalence relation ∼ on Q, where p ∼ q if and
only if they are in the same strongly connected component determined by using only ε-transitions in N.
Let N′ := N/∼ be the quotient of N by ∼, having as states the equivalence classes of ∼.

The correctness of the remainder of the argument requires N not to have equivalence classes with
two elements, say p,q, where both p and q do not have ε self-loops. We briefly argue how equivalences
classes of this form can be removed without changing the ambiguity properties of N. It is tedious, but
straightforward, to verify that this can for example be achieved by replacing p and q (and p ε−→ q, q ε−→ p)
with 6 states and the appropriately defined ε-transitions to model the behavior of short runs in N that
go through one or both consecutively of p and q. Three of the 6 states are used to model incoming
transitions to p in (short) runs that after reaching p do not follow p ε−→ q, or follow only p ε−→ q, or follow
consecutively p ε−→ q and q ε−→ p, and the other 3 states are used for q in a similar way.

N′ could potentially have (parallel) ε self-loops. Let N′′ be N′ with ε self-loops removed. Each state
in N′′ will belong to exactly one of the following categories of equivalence classes: (a) a single state of
N without an ε self-loop in N; (b) a single state of N with an ε self-loop in N; (c) at least two states such
that, in N, there are at least two distinct ε-runs (staying within the equivalence class) between any two
states in the equivalence class (thanks to the modification of N described in the preceding paragraph).

Let Z be the set of states in N′′ having the properties specified in (b) or (c). In N′′ there are two
possibilities. Either (i) there is a (short run which is a) cycle in N′′ having at least one state in Z, or (ii)
each short run in N′′ goes through at most k states in Z (k is bounded by the number of states in N′′). In
case (i), N is exponentially ambiguous, since we have at least two ε-runs in N between any two states in
an equivalence class in Z. In case (ii), the number of accepting runs in N′′ (by definition without ε-cycles)
and number of short accepting runs in N, differ by a constant factor, and we can apply the ε-cycle free
result from [1] to N′′.

Theorem 19. A pNFA A has either polynomial or exponential failure backtracking. It can be decided in
time O(|A|3E) whether A has polynomial failure backtracking, and if so, the degree of backtracking can
be computed in time O(|A|3E).

Proof. Recall that A f denotes the pNFA obtained from A where we change all states of A so that they are
not accepting, and A f denotes the NFA obtained by ignoring priorities on transitions of A f . For an NFA

M. Berglund, F. Drewes & B. v.d. Merwe 123

N, a(N) is obtained from N by adding a new accepting sink state z (having transitions to itself on all input
letters), all other states in N are made non-accepting, and we add ε-transitions from all states in N to z.
Since da(a(A f

),w) = |btrA f (w)|, and thus max{da(a(A f
),w) | w ∈ Σ∗, |w| ≤ n}= max{|btrA f (w)| | w ∈

Σ∗, |w| ≤ n}, the failure backtracking complexity of A is equal to the ambiguity of a(A f
). To complete

the proof, apply Theorem 18 to a(A f
).

6 Conclusion/Future Work

Our prioritized NFA model is the only automata model, that we are aware of, which formalizes back-
tracking regular expression matching. This model is well suited to be extended to describe notions such
as possessive quantifiers, captures and backreferences found in practical regular expressions. Backrefer-
ences have been formalized in [3], but without eliminating ambiguities due to multiple matches. Trying
to improve our current complexity result for deciding backtracking complexity (as in Definition 6), and
secondly, to formalize what is meant by equivalence of a regular expression with a pNFA, will provide
the impetus for future investigations.

Acknowledgment We thank the referees for extensive lists of valuable comments.

References
[1] Cyril Allauzen, Mehryar Mohri & Ashish Rastogi (2008): General Algorithms for Testing the Ambiguity of

Finite Automata. In Masami Ito & Masafumi Toyama, editors: Developments in Language Theory, Lecture
Notes in Computer Science 5257, Springer, pp. 108–120, doi:10.1007/978-3-540-85780-8 8.

[2] Robert S. Boyer & J. Strother Moore (1977): A fast string searching algorithm. Communications of the ACM
20(10), pp. 762–772, doi:10.1145/359842.359859.

[3] Cezar Câmpeanu, Kai Salomaa & Sheng Yu (2003): A Formal Study of Practical Regular Expressions. Interna-
tional Journal of Foundations of Computer Science 14(6), pp. 1007–1018, doi:10.1142/S012905410300214X.

[4] Frank Drewes (2001): The Complexity of the Exponential Output Size Problem for Top-Down and Bottom-Up
Tree Transducers,. Information and Computation 169(2), pp. 264 – 283, doi:10.1006/inco.2001.3039.

[5] Bryan Ford (2004): Parsing Expression Grammars: A Recognition-Based Syntactic Foundation. In Neil D.
Jones & Xavier Leroy, editors: Symposium on Principles of Programming Languages (POPL’04), ACM Press,
pp. 111–122, doi:10.1145/964001.964011.

[6] Michael R. Garey & David S. Johnson (1979): Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA.

[7] James Kirrage, Asiri Rathnayake & Hayo Thielecke (2013): Static Analysis for Regular Expression Denial-
of-Service Attacks. In: Network and System Security, Springer, pp. 135–148, doi:10.1007/978-3-642-38631-
2 11.

[8] Sérgio Medeiros, Fabio Mascarenhas & Roberto Ierusalimschy (2012): From Regexes to Parsing Expression
Grammars. CoRR abs/1210.4992, doi:10.1016/j.scico.2012.11.006.

[9] Ken Thompson (1968): Regular Expression Search Algorithm. Communications of the ACM 11(6), pp. 419–
422, doi:10.1145/363347.363387.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 124–138, doi:10.4204/EPTCS.151.8

c© H. Bordihn, M. Kutrib, A. Malcher

Measuring Communication in
Parallel Communicating Finite Automata

Henning Bordihn
Institut für Informatik, Universität Potsdam,

August-Bebel-Str. 89, 14482 Potsdam, Germany

henning@cs.uni-potsdam.de

Martin Kutrib and Andreas Malcher
Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher}@informatik.uni-giessen.de

Systems of deterministic finite automata communicating by sending their states upon request are
investigated, when the amount of communication is restricted. The computational power and de-
cidability properties are studied for the case of returningcentralized systems, when the number of
necessary communications during the computations of the system is bounded by a function depend-
ing on the length of the input. It is proved that an infinite hierarchy of language families exists,
depending on the number of messages sent during their most economical recognitions. Moreover,
several properties are shown to be not semi-decidable for the systems under consideration.

1 Introduction

Communication is one of the most fundamental concepts in computer science: objects of object-oriented
programs, roles or pools in business processes, concurrentprocesses in computer networks or in infor-
mation or operating systems are examples of communicating agents.

Parallel communicating finite automata systems (PCFA) havebeen introduced in [12] as a simple
automaton model of parallel processes and cooperating systems, see also [1, 2, 4]. A PCFA consists of
several finite automata, the components of the system, that process a joint input string independently of
each other. However, their transitions are synchronized according to a global clock. The cooperation of
the components is enabled by communication steps in which components can request the state reached
by another component. The system can work in returning or non-returning mode. In the former case
each automaton which sends its current state is set back to its initial state after this communication step.
In the latter case the state of the sending automaton is not changed. Recently, these communication pro-
tocols have been refined in [15] and further investigated forthe case of parallel communicating systems
of pushdown automata [14]. There, the communication process is performed in an asynchronous man-
ner, reflecting the technical features of many real communication processes. In the sequel of this paper
and as a first step towards an investigation of the influence ofrestricted communication to parallel com-
municating systems of automata, we stick with the simpler model having synchronized communication
steps.

In a PCFA, one also distinguishes between centralized systems where only one designated automa-
ton, called master, can request information from other automata, and non-centralized systems where
every automaton is allowed to request information from others. Taking the distinction between returning
and non-returning systems into account, we are led to four different working modes. Moreover, one

H. Bordihn, M. Kutrib, A. Malcher 125

distinguishes between deterministic and nondeterministic PCFA. The system is deterministic, if all its
components are deterministic finite automata.

It is known from [2, 4, 12] that deterministic (nondeterministic) non-centralized PCFA are equally
powerful as deterministic (nondeterministic) one-way multi-head finite automata [6], both in returning
and non-returning working modes. Moreover, it is proved in [2] that nondeterminism is strictly more
powerful than determinism for all the four working modes, and that deterministic centralized returning
systems are not weaker than deterministic centralized non-returning ones.

All variants of PCFA accept non-regular languages due to thefeature that communication between
the components of the system is allowed. Thus it is of interest to measure the amount of communication
needed for accepting those languages. Mitrana proposed in [13] a dynamical measure of descriptional
complexity as follows: The degree of communication of a PCFAfor a given word is the minimal number
of communications necessary to recognize the word. Then, the degree of communication of a PCFA is
the supremum of the degrees of communication taken over all words recognized by the system, while the
degree of communication of a language (with respect to a PCFAof typeX) is the infimum of the degrees
of communication taken over all PCFA of typeX that accept the language. Mitrana proved that this
measure cannot be algorithmically computed for languages accepted by nondeterministic centralized or
non-centralized non-returning PCFA. The computability status of the degree of communication for the
other types of PCFA languages as well as for all types of PCFA is stated as open question in [13].

In this paper, we study PCFA where the degree of communication is bounded by a function in the
length of the input word. We restrict ourselves to one of the simplest types of PCFA, namely to determin-
istic centralized returning systems of finite automata. In the next section, the basic definitions and two
examples of languages accepted by communication bounded PCFA are presented. In Section 3, we show
that bounding the degree of communication by logarithmic, square root or linear functions leads to three
different families of languages. For the strictness results, we use similar witness languages and a proof
technique based on Kolmogorov complexity as in [9], where the second and the third author investigated
the computational power of two-party Watson-Crick systems, that is, synchronous systems consisting of
two finite automata running in opposite directions on a shared read-only input and communicating by
broadcasting messages.

In Section 4, non-semi-decidability results are proved fordeterministic returning centralized PCFA
and their languages, thus partially answering questions listed as open in [13]. Similarly to [1] the proofs
rely on properties of one-way cellular automata and their valid computations. Finally, Section 5 refines
the three-level hierarchy from Section 3 to an infinite hierarchy.

2 Preliminaries and Definitions

We write Σ∗ for the set of all words over the finite alphabetΣ, andN for the set{0,1,2, . . .} of non-
negative integers. Theempty wordis denoted byλ . For thelengthof w we write |w|. We use⊆ for
inclusionsand⊂ for strict inclusions.

Next we turn to the definition of parallel communicating finite automata systems. The nondetermin-
istic model has been introduced in [12]. Following [1], the formal definition is as follows.

A deterministic parallel communicating finite automata system of degree k(DPCFA(k)) is a construct
A= 〈Σ,A1,A2, . . . ,Ak,Q,⊳〉, where

1. Σ is the set ofinput symbols,

2. eachAi = 〈Si ,Σ,δi ,s0,i ,Fi〉, 1≤ i ≤ k, is adeterministic finite automatonwith finite state setSi ,
partial transition functionδi : Si × (Σ∪{λ ,⊳})→ Si (requiring thatδi(s,a) is undefined for all

126 Measuring Communication in Parallel Communicating FiniteAutomata

a∈ Σ∪{⊳}, if δi(s,λ) is defined), initial states0,i ∈ Si , and set of accepting statesFi ⊆ Si ,

3. Q= {q1,q2, . . . ,qk} ⊆
⋃

1≤i≤k Si is the set ofquery states, and

4. ⊳ /∈ Σ is theend-of-input symbol.

The single automata are calledcomponentsof the systemA. A configuration(s1,x1,s2,x2, . . . ,sk,xk)
of A represents the current statessi as well as the still unread partsxi of the tape inscription of all
components 1≤ i ≤ k. SystemA starts with all of its components scanning the first square ofthe tape in
their initial states. For input wordw∈ Σ∗, the initial configuration is(s0,1,w⊳,s0,2,w⊳, . . . ,s0,k,w⊳).

Basically, a computation ofA is a sequence of configurations beginning with an initial configura-
tion and ending with a halting configuration, when no successor configuration exists. Each step can
consist of two phases. In a first phase, all components are in non-query states and perform an ordi-
nary (non-communicating) step independently. The second phase is the communication phase during
which components in query states receive the requested states as long as the sender is not in a query
state itself. That is, if a componentAi is in query stateq j , thenAi is set to the current state of compo-
nentA j . This process is repeated until all requests are resolved, if possible. If the requests are cyclic,
no successor configuration exists. For the first phase, we define the successor configuration relation⊢
by (s1,a1y1,s2,a2y2, . . . ,sk,akyk) ⊢ (p1,z1, p2,z2, . . . , pk,zk), if Q∩{s1,s2, . . . ,sk} = /0, ai ∈ Σ∪{λ ,⊳},
pi ∈ δi(si ,ai), andzi = ⊳ for ai =⊳ andzi = yi otherwise, 1≤ i ≤ k. For non-returning communication
in the second phase, we set(s1,x1,s2,x2, . . . ,sk,xk) ⊢ (p1,x1, p2,x2, . . . , pk,xk), if, for all 1 ≤ i ≤ k such
that si = q j andsj /∈ Q, we havepi = sj , and pr = sr for all the otherr, 1≤ r ≤ k. Alternatively, for
returning communication in the second phase, we set(s1,x1,s2,x2, . . . ,sk,xk) ⊢ (p1,x1, p2,x2, . . . , pk,xk),
if, for all 1 ≤ i ≤ k such thatsi = q j andsj /∈ Q, we havepi = sj , p j = s0, j , andpr = sr for all the otherr,
1≤ r ≤ k.

A computationhalts when the successor configuration is not defined for the current situation. In
particular, this may happen when cyclic communication requests appear, or when the transition function
of one component is not defined. The languageL(A) accepted by a DPCFA(k) A is precisely the set
of wordsw such that there is some computation beginning withw⊳ on the input tape and halting with
at least one component having an undefined transition function and being in an accepting state. Let⊢∗

denote the reflexive and transitive closure of the successorconfiguration relation⊢ and defineL(A) as

{w∈ Σ∗ | (s0,1,w⊳,s0,2,w⊳, . . . ,s0,k,w⊳) ⊢∗ (p1,a1y1, p2,a2y2, . . . , pk,akyk),

such thatpi ∈ Fi andδi(pi ,ai) as well asδi(pi ,λ) are undefined for some 1≤ i ≤ k}.

Whenever the degree is missing in the notation DPCFA(k), we mean systems of arbitrary degree.
The absence or presence of an R in the type of the system denotes whether it works innon-returning
communication, that is, the sender remains in its current state, orreturning communication, that is, the
sender is reset to its initial state. If there is just one component, sayA1, that is allowed to query for states,
that is,Si ∩Q= /0, for 2≤ i ≤ k, then the system is said to becentralized. In this case, we refer toA1

as themaster componentand add a C to the notation of the type of the system. Thefamily of languages
acceptedby devices of typeX with arbitrary degree (with degreek) is denoted byL (X) (L (X(k))).

In the following, we study the impact of communication in PCFA. The communication is measured
by the total number of queries sent during a computation. That is, we count the number of time steps
at which a component enters a query state and consider the sumof these numbers for all components.
Let f : N→ N be a mapping. If allw∈ L(A) are accepted with computations where the total number of
queries sent is bounded byf (|w|), thenA is said to becommunication bounded by f .

H. Bordihn, M. Kutrib, A. Malcher 127

We denote the class of devices of typeX (with degreek) that are communication bounded by some
function f by f -X (f -X(k)).

In order to clarify the notation we give two examples. Whenever we refer to a timet of a computation
of a DPCFA, then the configuration reached after exactlyt computation steps is considered.

Example 1 The languageLexpo= {$a20
ba21

b· · ·ba2m
& | m≥ 1} belongs toL (f -DRCPCFA(2)) with

f ∈ O(log(n)). Roughly, the idea of the construction is that the lengths ofadjacenta-blocks (separated
by ab) are compared. To this end, the master reads the left block with half speed, that is, moving one
symbol to the right in every other time step, while the non-master component reads the right block with
full speed, that is, moving one symbol to the right in every time step. If the master reaches ab, it queries
the non-master whether it has also reached ab. If this is true, the comparison of the next twoa-blocks is
started. The input is accepted if the master obtains the symbol & from the non-master component and the
remaining input is ina+&⊳.

Formally, we defineA = 〈{a,b,$,&},A1,A2,{q2},⊳〉 to be a DRCPCFA(2) with master compo-
nentA1 = 〈{s0,1,s1,1,s2,1,s3,1,s4,1,s5,1,sb,s&,q2,accept},{a,b,$,&},δ1,s0,1,{accept}〉, second compo-
nentA2 = 〈{s0,2,s1,2,s2,2,s3,2,sb,s&,s⊳},{a,b,$,&},δ2,s0,2, /0〉, and transition functionsδ1 andδ2 as fol-
lows.

The non-master componentA2:

1. δ2(s0,2,$) = s1,2

2. δ2(s1,2,a) = s2,2

3. δ2(s2,2,b) = s3,2

4. δ2(s3,2,a) = s3,2

5. δ2(s3,2,b) = sb

6. δ2(s3,2,&) = s&

7. δ2(s0,2,a) = s3,2

8. δ2(s0,2,⊳) = s⊳

9. δ2(s⊳,λ) = s⊳

The component reads the input prefix$ab in the first three time steps (rules 1,2,3). Subsequently, itreads
ana-block in states3,2 (rule 4). Whenever it moves on a symbolb it changes into statesb (rule 5). So, it
enters statesb at time step 3 plus the length of the seconda-block plus 1. The component halts in statesb

unless it is reset to its initial state by a query. In this caseit reads the currenta-block and the nextb and
enters statesb again after a number of time steps that is the length of thea-block plus one (rules 7,4,5).
Rule 6 is used when& appears in the input instead ofb. After being reset into the initial state on the
endmarker, the component enters states⊳ and loops withλ -moves.

The master componentA1:

1. δ1(s0,1,$) = s1,1

2. δ1(s1,1,λ) = s2,1

3. δ1(s2,1,λ) = s3,1

4. δ1(s3,1,a) = s4,1

5. δ1(s4,1,λ) = s3,1

6. δ1(s3,1,b) = q2

7. δ1(sb,a) = s4,1

8. δ1(s&,a) = s&

9. δ1(s&,&) = s5,1

10. δ1(s5,1,⊳) = accept

The master reads the input prefix$ab in the first six time steps and enters the query stateq2 (rules 1–6).
Exactly at that time the non-master component enters statesb. Being in statesb received the master
reads the currenta-block and the nextb and enters stateq2 again after a number of time steps that is two
times the length of thea-block plus one (rules 7,4,5,6). Exactly at this time the non-master component
enters statesb again provided that thea-block read by the non-master component is twice as long as the
a-block read by the master. When the master receives states& instead ofsb, it reads the remaining suffix
(rules 8,9), enters the accepting state on the endmarker (rule 10) and halts.

128 Measuring Communication in Parallel Communicating FiniteAutomata

Finally, the length of a wordw∈ Lexpo is |w|= m+2+∑m
i=0 2i = 2m+1+m+1, for somem≥ 1. In

its accepting computation, a communication takes place forevery symbolb and the endmarker. So there
arem+1 communications which is of orderO(log(|w|)). �

The construction of the next example is similar to the one given in Example 1.

Example 2 The languageLpoly = {$aba3ba5b· · ·ba2m+1& | m≥ 0 } belongs toL (f -DRCPCFA(2))
with f ∈ O(

√
n). �

3 Computational Capacity

In this section we consider aspects of the computational capacity of f -DRCPCFA(k). Examples 1 and 2
already revealed that there are non-semilinear languages accepted by systems with two components and
sublinear communication. The next simple result is nevertheless important for the size of representations
that will be used in connection with Kolmogorov arguments toseparate language classes.

Lemma 3 Let k≥ 1 andA be a DRCPCFA(k) with S1,S2, . . . ,Sk being the state sets of the single com-
ponents. Ifw∈ L(A), thenw is accepted after at most|S1| · |S2| · · · |Sk| · (|w|+ 1) time steps, that is, in
linear time.

Proof During a computation some componentAi may be in|Si | different states. So after|S1| · |S2| · · · |Sk|
time steps the whole system runs through a loop if none of the components moves. Therefore, as long
as no halting configuration is reached, at least one component must move after at most|S1| · |S2| · · · |Sk|
time steps. �

The language of the next lemma combines the well-known non-context-free copy language withLexpo

from above. It plays a crucial role in later proofs.

Lemma 4 The language

Lexpo,wbw= {$w1w2 · · ·wmba20
w1w1a21

w2w2 · · ·a2m−1
wmwm& | m≥ 1,wi ∈ {0,1},1≤ i ≤ m}

belongs toL (O(log(n))-DRCPCFA(3)).

Proof A formal construction of aO(log(n))-DRCPCFA(3) acceptingLexpo,wbw is given through the
transition functions below, wheres0,i is the initial state of componentAi, 1≤ i ≤ 3, the sole accepting
state isaccept, andσ ∈ {0,1}.

The second non-master componentA3 initially passes over the$ and, then, it reads a symbol, remem-
bers it in its state, and loops without moving (rules 1,2,3,8,9). Whenever the component is reset into its
initial state after a query, it reads the next symbol, remembers it, and loops without moving (rules 4–11).
This component is used by the master to match thewi from the prefix with thewi from the suffix.

The non-master componentA3:

1. δ3(s0,3,$) = s1,3

2. δ3(s1,3,0) = s0

3. δ3(s1,3,1) = s1

4. δ3(s0,3,0) = s0

5. δ3(s0,3,1) = s1

6. δ3(s0,3,b) = sb

7. δ3(s0,3,a) = sa

8. δ3(s0,λ) = s0

9. δ3(s1,λ) = s1

10. δ3(sb,λ) = sb

11. δ3(sa,λ) = sa

H. Bordihn, M. Kutrib, A. Malcher 129

The first non-master componentA2 initially passes over the prefix$w1w2 · · ·wm (rules 1,2), theb
(rule 3), and the adjacent infixaw1w1aaw2w2 (rules 4–13). On its way it checks whether the neighboring
symbolswi are in fact the same (rules 5–8 and 10–13). If the second checkis successful the component
enters statesww. Exactly at that time it has to be queried by the master, otherwise it blocks the compu-
tation. Subsequently, it repeatedly continues to read the input, where each occurrence of neighboring
symbolswi are checked for equality (rules 14 and 9–13), which is indicated by entering statesww again.
This component is used to verify that all neighboring symbols wi in the suffix are equal and, by the mas-
ter, to check the lengths of thea-blocks in the same way as in Example 1. Note that the component is at
time m+9 on the first symbol afterw2w2. After being reset to its initial state, it takes a number of time
steps equal to the length of the nexta-block plus 2 to get on the first symbol after the nextwiwi .

The non-master componentA2:

1. δ2(s0,2,$) = s1,2

2. δ2(s1,2,σ) = s1,2

3. δ2(s1,2,b) = s2,2

4. δ2(s2,2,a) = s3,2

5. δ2(s3,2,0) = s0
4,2

6. δ2(s3,2,1) = s1
4,2

7. δ2(s0
4,2,0) = s5,2

8. δ2(s1
4,2,1) = s5,2

9. δ2(s5,2,a) = s5,2

10. δ2(s5,2,0) = s0
6,2

11. δ2(s5,2,1) = s1
6,2

12. δ2(s0
6,2,0) = sww

13. δ2(s1
6,2,1) = sww

14. δ2(s0,2,a) = s5,2

15. δ2(s0,2,&) = s&

16. δ2(s&,λ) = s&

17. δ2(s0,2,⊳) = s⊳

18. δ2(s⊳,λ) = s⊳

The master componentA1 initially passes over the prefix$w1w2 · · ·wm (rules 1,2), theb (rule 3), and
the firsta (rules 4–8). Then it reads the first of two adjacent symbolswi and enters the query stateq3

(rule 9) (the equality of the symbolswi has already been checked by componentA2). From component
A3 it receives the information about the matching symbolwi from the prefix. If this symbol is the same
as the next input symbol, then the computation continues (rules 10,11) by entering query stateq2. Note
that this happens exactly at time stepm+9. If the master receives statesww the length of the first two
a-blocks are verified. Now the master repeatedly continues toread the input (rule 12,7,8), where on
each occurrence of neighboring symbolswi the equality with the corresponding symbol in the prefix is
checked by querying componentA3 and the lengths of thea-blocks are compared by querying component
A2. After querying componentA2, it takes a number of time steps equal to the length of the adjacenta-
block (processed by componentA2) plus 2 to get into stateq2 again. Finally, when the master component
has checked the last symbolwm and gets the information thatA2 has read symbol&, it queries component
A3 (rule 13). If it receives ab, the input is accepted (rule 14). In all other cases it is rejected.

The master componentA1:

1. δ1(s0,1,$) = s1,1

2. δ1(s1,1,σ) = s1,1

3. δ1(s1,1,b) = s2,1

4. δ1(s2,1,λ) = s3,1

5. δ1(s3,1,λ) = s4,1

6. δ1(s4,1,λ) = s5,1

7. δ1(s5,1,a) = s6,1

8. δ1(s6,1,λ) = s5,1

9. δ1(s5,1,σ) = q3

10. δ1(s0,0) = q2

11. δ1(s1,1) = q2

12. δ1(sww,a) = s6,1

13. δ1(s&,&) = q3

14. δ1(sb,⊳) = accept

The length of a wordw∈ Lexpo,wbw is |w|= 3m+3+∑m−1
i=0 2i = 2m+3m+2, for somem≥ 1. In its

accepting computation, two communications take place for every wiwi and one more communication on

130 Measuring Communication in Parallel Communicating FiniteAutomata

the endmarker. So there are 2m+1 communications which is of orderO(log(|w|)). �

For the proof of the following theorem we use an incompressibility argument. General information
on Kolmogorov complexity and the incompressibility methodcan be found in [10]. Letw∈ {0,1}+ be
an arbitrary binary string. The Kolmogorov complexityC(w) of w is defined to be the minimal size of
a program describingw. The following key argument for the incompressibility method is well known.
There are binary stringsw of any length so that|w| ≤C(w).

Lemma 5 The languageLwbw= {w1w2 · · ·wmbw1w2 · · ·wm | m≥ 1,wi ∈ {0,1},1 ≤ i ≤ m} is accepted
by someO(n)-DRCPCFA(2) but, for anyk≥ 1, does not belong toL (f -DRCPCFA(k)) if f ∈ n

ω(log(n)) .

Proof First, we sketch the construction of aO(n)-DRCPCFA(2) acceptingLwbw. Initially, the master
component proceeds to the center markerb, while the non-master component reads the first input sym-
bol w1 and remembers this information in its state. Next, the master queries the non-master and matches
the information received with the first symbol followingb, while the non-master reads the next input
symbol and remembers it in its state. Subsequently, this behavior is iterated, that is, the master queries
the non-master again and matches its next input symbol, while the non-master reads and remembers the
next symbol. The input is accepted when the master receives ab at the moment it reaches the right
endmarker. Clearly, the number of communications on input lengthn= 2m+1 ism+1∈ O(n).

Second, we turn to show thatLwbw /∈ L (f -DRCPCFA(k)) if f ∈ n
ω(log(n)) . In contrast to the as-

sertion, we assume thatLwbw is accepted by somef -DRCPCFA(k) A = 〈Σ,A1,A2, . . . ,Ak,Q,⊳〉 with
f (n) ∈ n

ω(log(n)) . Let z= wbw, for somew ∈ {0,1}+, andK0 ⊢ ·· · ⊢ Kacc be the accepting computation
on inputz, whereK0 is the initial configuration andKacc is an accepting configuration.

Next, we consider snapshots of configurations at every time step at which the master component
queries some other component or at which a component enters the middle markerb. For every such con-
figuration, we take the time stepti , the current statess(i)1 ,s(i)2 , . . . ,s(i)k , and the positionsp(i)1 , p(i)2 , . . . , p(i)k

of the components. Thus, theith snapshot is represented by the tuple(ti ,s
(i)
1 , p(i)1 ,s(i)2 , p(i)2 , . . . ,s(i)k , p(i)k).

Since there are altogether at mostf (2|w|+1) communications, the list of snapshotsΛ contains at most
f (2|w|+1)+k entries.

We claim that each snapshot can be represented by at mostO(log(|w|)) bits. Due to Lemma 3
acceptance is in linear time and, therefore, each time step can be represented by at mostO(log(|w|)) bits.
Each position of a component can also be represented by at most O(log(|w|)) bits. Finally, each state can
be represented by a constant number of bits. Altogether, each snapshot can be represented byO(log(|w|))
bits. So, the listΛ can be represented by(f (2|w|+1)+k) ·O(log(|w|)) = |w|

ω(log(|w|)) ·O(log(|w|)) = o(|w|)
bits.

Now we show that the listΛ of snapshots together with a snapshot ofKacc and the knowledge ofA
and|w| is sufficient to reconstructw. The reconstruction is implemented by the following algorithm P.
First,P sequentially simulatesA on all 2|w| inputsxbxwhere|x|= |w|. Additionally, it is checked whether
the computation simulated has the same snapshots as in the list Λ and the accepting configuration. In
this way, the stringw can be identified. We have to show that there is no other stringw′ 6= w which can
be identified in this way as well. Let us assume that such aw′ exists. Then all snapshots of accepting
computations on inputwbwandw′bw′ are identical. This means that both computations end at the same
time step and all components are in the same state and position. Additionally, in both computations
communications take place at the same time steps, all components are in the same state and position
at that moment. Moreover, the right half of the respective words is entered in the same states and in

H. Bordihn, M. Kutrib, A. Malcher 131

the same time steps on both input wordswbw andwbw′. So, both computations are also accepting on
input wbw′ which is a contradiction.

Thus,w can be reconstructed given the above programP, the list of snapshotsΛ, the snapshot of the
accepting configuration,A, and|w|. Since the sizes ofP andA are bounded by a constant, the size ofΛ is
bounded byo(|w|), and|w| as well as the size of the remaining snapshot is bounded byO(log(|w|)) each,
we can reconstructw from a description of total sizeo(|w|). Hence, the Kolmogorov complexityC(w),
that is, the minimal size of a program describingw is bounded by the size of the above description, and
we obtainC(w) ∈ o(|w|). On the other hand, we know that there are binary stringsw of arbitrary length
such thatC(w)≥ |w|. This is a contradiction forw being long enough. �

The language of the next lemma is used in later proofs.

Lemma 6 The language

Lpoly,wbw = {$w1w2 · · ·wmba1w1w1a3w2w2a5w3w3 · · ·a2m−1wmwm& | m≥ 1,wi ∈ {0,1},1≤ i ≤ m}

is accepted by someO(
√

n)-DRCPCFA(3) but, for anyk ≥ 1, does not belong toL (f -DRCPCFA(k))
if f ∈ O(log(n)).

Proof Using the construction idea of Lemma 4, one showsLpoly,wbw∈ L (O(
√

n)-DRCPCFA(3)).
The claimed non-containment is shown similarly to Lemma 5: in contrast to the assertion, we assume

thatLpoly,wbw is accepted by somef -DRCPCFA(k) A= 〈Σ,A1,A2, . . . ,Ak,Q,⊳〉 with f (n) ∈ O(log(n)).
Let

z= $w1w2 · · ·wmba1w1w1a3w2w2a5w3w3 · · ·a2m−1wmwm& ∈ Lpoly,wbw,

wherew = w1w2 · · ·wm, andK0 ⊢ ·· · ⊢ Kacc be the accepting computation on inputz, whereK0 is the
initial configuration andKacc is an accepting configuration.

We use again an incompressibility argument and write down the list of snapshots of configurations
in which communication takes place and the accepting configurationKacc, and descriptions ofA and|w|.
Similar to the proof of Lemma 5, a programP can be described which reconstructsw uniquely from the
information given.

Next, we determine the size of such a description. ProgramP and the systemA can be represented
by a constant number of bits. The length|w| can be described by log(|w|) ∈ O(log(m)) bits. Since
|z|= 3m+3+∑m

i=12i−1= 3m+3+m2 and acceptance is in linear time (Lemma 3), each time step can
be represented byO(log(|z|)) = O(log(m2)) bits. Moreover, thek states can be described byO(1) bits,
and thek positions byk · log(|z|) = k · log(m2+3m+3) ∈ O(log(m)) bits. So, altogether one snapshot
can be represented byO(log(m)) bits. Since at mostf (|z|) ∈ O(log(|z|)) = O(log(m)) snapshots have
to be listed, the list of all snapshots can be described byO((log(m))2) bits. Therefore, the total size of
a description ofw is bounded byO((log(m))2) as well. Thus, the Kolmogorov complexityC(w) of w
is bounded byO((log(m))2). On the other hand, there are binary stringsw of arbitrary length such that
C(w)≥ |w|= m. This is a contradiction forw being long enough. �

The previous theorems showed that there are proper inclusions

L (O(log(n))-DRCPCFA(k))⊂ L (O(
√

n)-DRCPCFA(k))

for everyk≥ 3, and

L (O(
√

n)-DRCPCFA(k))⊂ L (O(n)-DRCPCFA(k))

132 Measuring Communication in Parallel Communicating FiniteAutomata

for everyk≥ 2.
Later, we will prove an infinite hierarchy in between the classesL (O(log(n))-DRCPCFA(k)) and

L (O(
√

n))-DRCPCFA(k), for everyk≥ 4.

4 Decidability and Undecidability Results

4.1 Undecidability of Emptiness and Classical Questions

First, we show undecidability of the classical questions for models with a logarithmic amount of com-
munication. To this end, we adapt the construction given in [1] which is based on the valid computations
of one-way cellular automata(OCA), a parallel computational model (see, for example, [7, 8]). More
precisely, the undecidability is shown by reduction of the corresponding problems for OCA which are
known not even to be semi-decidable [11]. To this end, histories of OCA computations are encoded in
single words that are calledvalid computations(cf., for example, [5]).

A one-way cellular automaton is a linear array of identical deterministic finite automata, sometimes
called cells. Except for the leftmost cell each one is connected to its nearest neighbor to the left. The
state transition depends on the current state of a cell itself and the current state of its neighbor, where
the leftmost cell receives information associated with a boundary symbol on its free input line. The state
changes take place simultaneously at discrete time steps. The input mode for cellular automata is called
parallel. One can suppose that all cells fetch their input symbol during a pre-initial step.

More formally, an OCA is a systemM = 〈S,#,T,δ ,F〉, whereS is the nonempty, finite set of cell
states,# /∈ S is the boundary state,T ⊆ S is the input alphabet,F ⊆ S is the set of accepting cell states,
andδ : (S∪{#})×S→ S is the local transition function.

A configuration of an OCA at some time stept ≥ 0 is a description of its global state, which
is formally a mappingct : {1,2, . . . ,n} → S, for n ≥ 1. The initial configuration at time 0 on input
w= x1x2 . . .xn is defined byc0,w(i) = xi , 1≤ i ≤ n. Let ct , t ≥ 0, be a configuration withn≥ 2, then its
successorct+1 is defined as follows:ct+1(1) = δ (#,ct(1)) andct+1(i) = δ (ct(i −1),ct(i)), 2≤ i ≤ n.

An input is accepted if at some time step during its computation the rightmost cell enters an ac-
cepting state. Without loss of generality and for technicalreasons, one can assume that any accepting
computation has at least three steps.

Now we turn to the valid computations of an OCAM = 〈S,#,T,δ ,F〉. The computation of a suc-
cessor configurationct+1 of a given configurationct is written down in a sequential way as follows.
Assumect+1 is computed cell by cell from left to right. That is, we are concerned with subconfigurations
of the formct+1(1) · · ·ct+1(i)ct(i +1) · · ·ct(n), wheren is the length of the input. For technical reasons,
in ct+1(i) we have to store both the successor state, which is entered intime stept+1 by celli, and its for-
mer state. In this way, the computation of the successor configuration ofM can be written as a sequence
of n subconfigurations, and configurationct+1 can be represented byw(t+1) = w(t+1)

1 · · ·w(t+1)
n such that

w(t+1)
i ∈ #S∗(S×S)S∗, for 1≤ i ≤ n, with w(t+1)

i = #ct+1(1) · · ·ct+1(i −1)(ct+1(i),ct(i))ct(i +1) · · ·ct(n).
The valid computations VALC(M) are now defined to be the set of words of the formw(0)w(1) · · ·w(m),
wherem≥ 3, w(t) ∈ (#S∗(S×S)S∗)+ are configurations ofM, 1≤ t ≤ m, w(0) is an initial configuration
having the form#(T ′)+, whereT ′ is a primed copy of the input alphabetT with T ′ ∩S= /0, w(m) is an
accepting configuration of the form(#S∗(S×S)S∗)∗#S∗(F ×S), andw(t+1) is the successor configuration
of w(t), for 0≤ t ≤ m−1.

For the constructions of DRCPCFA accepting the set VALC(M), we provide an additional tech-
nical transformation of the input alphabet. LetS′ = S∪ T ′ and A = {#} ∪ S′ ∪ S′2 be the alphabet

H. Bordihn, M. Kutrib, A. Malcher 133

over which VALC(M) is defined. We consider the mappingf : A+ → (A×A)+ which is defined for
words of length at least two byf (x1x2 · · ·xn) = [x1,x2][x2,x3] · · · [xn−1,xn]. From now on we consider
VALC(M)⊆ (A×A)+ to be the set of valid computations to whichf has been applied. The set ofinvalid
computationsINVALC (M) is then the complement of VALC(M) with respect to the alphabetA×A.

The following example illustrates the definitions.

Example 7 We consider the following computation of an OCAM over the input alphabet{c,d}. The
initial configuration isc0 = (c,d,d). Let the successor configurations bec1 =(p1, r1,s1), c2 = (p2, r2,s2),
andc3 = (p3, r3,s3). Furthermore, lets3 be an accepting state, that is,cdd is an accepted input. These
configurations are written down as sequences of subconfigurations as follows.

w(0) = #c′d′d′

w(1) = #(p1,c)dd#p1(r1,d)d#p1r1(s1,d)

w(2) = #(p2, p1)r1s1#p2(r2, r1)s1#p2r2(s2,s1)

w(3) = #(p3, p2)r2s2#p3(r3, r2)s2#p3r3(s3,s2)

Then,

f (w(0)w(1)w(2)w(3)) = [#,c′][c′,d′][d′,d′][d′,#][#,(p1,c)][(p1,c),d][d,d][d,#]

[#, p1][p1,(r1,d)][(r1,d),d][d,#][#, p1][p1, r1][r1,(s1,d)][(s1,d),#][#,(p2, p1)]

[(p2, p1), r1][r1,s1][s1,#][#, p2][p2,(r2, r1)][(r2, r1),s1][s1,#][#, p2][p2, r2]

[r2,(s2,s1)][(s2,s1),#][#,(p3, p2)][(p3, p2), r2][r2,s2][s2,#][#, p3][p3,(r3, r2)]

[(r3, r2),s2][s2,#][#, p3][p3, r3][r3,(s3,s2)]

is a valid computation ofM.

The length of a valid computation can be easily calculated.

Lemma 8 Let M be an OCA on inputw1w2 · · ·wn which is accepted aftert time steps. Then the length
of the corresponding valid computation isn+(n+1) ·n· t.

The next lemma is the key tool for the reductions.

Lemma 9 Let M be an OCA. Then language

VALC ′(M) = {$1x1x2 · · ·xm$2a20
bba21

bb· · ·bba2m−1
bb& | m≥ 1,x1x2 · · ·xm ∈ VALC(M)}

belongs toL (O(log(n))-DRCPCFA(4)).

Proof In [1] a O(n)-DRCPCFA(3) is constructed that accepts VALC(M). Basically, the master com-
ponentA1 and componentA2 are used to verify that after every subconfiguration the correct successor
subconfiguration is given, whereas componentA3 is used to check the correct format of the input. This
construction can be implemented identically for the present construction if we interpret$2 as the right
endmarker. Additionally, componentA4 is used in the same way as componentA3 in the construction
of Lemma 4, that is, initially it reads$1 andx1, storesx1 in its state, and waits at position 2 until it is
queried. After being reset to its initial state, it again reads the next input symbol, stores it, and waits.

Whenx1x2 · · ·xm ∈ VALC(M) is tested, the masterA1 and componentA2 are both located at$2. The
second part of the input is now tested along the line of the construction given in the proof of Lemma 4,

134 Measuring Communication in Parallel Communicating FiniteAutomata

where the master plays the role of the master, componentA2 the role of componentA2, and componentA4

the role of componentA3.
The length of a wordw∈ VALC ′(M) is |w|= 3m+3+∑m−1

i=0 2i = 2m+3m+2, for somem≥ 1. The
test whetherx1x2 · · ·xm belongs to VALC(M) requiresO(m) communications. For the remaining tests
additionalO(m) communications are necessary as the proof of Lemma 4 shows. So, altogether,O(m)
communications are sufficient which is of orderO(log(|w|)). �

The set ofinvalid computationsINVALC ′(M) is simply defined to be the complement of VALC′(M)
with respect to the alphabet{a,b,$1,$2,&}∪ (A×A).

Lemma 10 Let M be an OCA. Then language INVALC′(M) belongs toL (O(log(n))-DRCPCFA(4)).

Proof To accept the set of invalid computations INVALC′(M) almost the same construction as for
Lemma 9 can be used. The only adaption concerns acceptance and rejection. Since the only possibility
to accept is that the master halts in stateacceptwhile the other components are non-halting, accepting
computations can be made rejecting by sending the master into a halting non-accepting statere ject
instead. In order to make rejecting computations accepting, it is now sufficient to send the components
into some halting accepting state whenever they would halt rejecting. �

Theorem 11 For any degreek ≥ 4, emptiness, finiteness, infiniteness, universality, inclusion, equiva-
lence, regularity, and context-freeness are not semi-decidable forO(log(n))-DRCPCFA(k).

Proof All these problems are known to be non-semi-decidable for OCA [11]. By standard techniques
(cf., for example, [1]) the OCA problems are reduced toO(log(n))-DRCPCFA(k) via the valid and
invalid computations and Lemmas 9 and 10. �

4.2 Undecidability of Communication Boundedness

This subsection is devoted to questions concerning the decidability or computability of the communica-
tion bounds. In principle, we deal with three different types of problems. The first type is to decide for a
given DRCPCFA(k) A and a given functionf whether or notA is communication bounded byf . The next
theorem solves this problem negatively for all non-trivialcommunication bounds and all degreesk≥ 3.

Theorem 12 Let k≥ 3 be any degree,f ∈ o(n), andA be a DRCPCFA(k). Then it is not semi-decidable
whetherA is communication bounded byf .

Proof Let A be a DRCPCFA(k) with k ≥ 3 accepting some languageL(A) ⊆ Σ∗. We take two new
symbols{a,$}∩Σ = /0 and construct a DRCPCFA(k) A′ accepting languagea∗$L(A). The idea of the
construction is that, initially, all components move synchronously across the leadinga-block. During
this phase, the master component queries one of the non-master components in every time step. When
all components have read the separating symbol$, they enter the initial state of the corresponding com-
ponent ofA. Subsequently,A is simulated, thus testing whether the remaining input belongs toL(A). So,
on inputan$w with n≥ 1 andw∈ L(A), A′ performs at leastn communications. In particular, forn≥ |w|
we obtain words that show thatA′ is not communication bounded by any functionf ∈ o(n), unlessL(A)
is empty. So,A′ is a f -DRCPCFA(k) if and only if L(A) = /0.

Since in [1] it has been shown that emptiness is not semi-decidable for DRCPCFA with at least three
components, the theorem follows. �

H. Bordihn, M. Kutrib, A. Malcher 135

Mitrana considers in [13] thedegree of communicationof parallel communicating finite automata
systems. The degree of communication of an accepting computation is defined as the number of queries
posed. The degree of communicationComm(x) of a nondeterministic PCFAA on inputx is defined as
the minimal number of queries posed in accepting computations onx. The degree of communication
Comm(A) of a PCFAA is then defined as sup{Comm(x) | x ∈ L(A)}. Here we have the second type
of problems we are dealing with. Mitrana raised the questionwhether the degree of communication
Comm(A) is computable for a given nondeterministic PCFA(k) A. SinceComm(A) is either finite or
infinite, in our terms the question is to decide whether or notA is communication bounded by some
function f ∈ O(1) and, if it is, to compute the precise constant. The next theorem solves the problem.

Theorem 13 Let k ≥ 3 be an integer. Then the degree of communicationComm(A) is not computable
for DRCPCFA(k).

Proof For a given DRCPCFA(k) A and new input symbolsa and$, we construct a DRCPCFA(k) A′

accepting the languagea∗$L(A) as in the proof of Theorem 12.
Now, we claim thatComm(A′) = 0 if and only if L(A) = /0. If L(A) is empty, thenA′ accepts the

empty set and, thus,Comm(A′) = 0. On the other hand, ifL(A) is not empty, thenComm(A′) > 0 by
construction ofA′. Since emptiness is not semi-decidable for DRCPCFA(k) with k≥ 3 [1], the theorem
follows. �

Now we turn to the last type of problems we are dealing with in this section. The question is now
whether the degree of communication is computable for thelanguageaccepted by a given nondeter-
ministic PCFA(k) A. In [13] the degree of communicationCommX(L) of a languageL is defined as
inf{Comm(A) | A is device of typeX andL(A) = L}. Mitrana showed in [13] thatCommCPCFA(L(A))
for some nondeterministic CPCFAA is not computable. He leaves as an open question whether the de-
gree is computable for RCPCFA. Here we are going to show that the degree is not even computable for
deterministic RCPCFA.

Lemma 14 Let k ≥ 3 be an integer. Then the degree of communicationCommDRCPCFA(k)(L(A)) is not
computable.

Proof For a given DRCPCFA(k) A over alphabetΣ and new input symbolsb,0,1,$1,$2, we construct a
DRCPCFA(k) A′ accepting the language

{w1w2 · · ·wmbw1w2 · · ·wm | m≥ 1,wi ∈ {0,1},1≤ i ≤ m}$1$2L(A).

We present the construction fork= 3. The generalization to largerk is straightforward.
The idea of the construction is that in a first phase master componentA1 and a non-master compo-

nentA2 check the correctness of the prefixw1w2 · · ·wmbw1w2 · · ·wm. This is done as in the construction
of Lemma 5. ComponentA3 checks the correct format of the input up to the separating symbol $1 and
waits on symbol$2 until it is queried. At the end of this phase, the master is on the$1 and componentA2

stays on the symbolb.
In a second phase, the master component stays on$1 and repeatedly queries componentA2 until this

one has read$1 and, thus, stays on$2. Now the master reads$1 and queries componentA2. After being
reset to its initial state, componentA2 reads$2 and performs oneλ -step. Then it changes to the initial
state ofA2 in A. During thisλ -step, the master component reads$2 and queries componentA3. Then it
changes to the initial state of the master ofA. Finally, after being reset to its initial state, componentA3

reads$2 and changes into the initial state ofA3 in A.

136 Measuring Communication in Parallel Communicating FiniteAutomata

Now, all components are in their initial states on the first symbol of the input ofA and in a third
phaseA is simulated. We claim thatComm(L(A′)) = 0 if and only ifL(A) = /0. If L(A) is empty, thenA′

accepts the empty set andComm(L(A′)) =Comm(/0) = 0. If L(A) is not empty, we fix somex∈ L(A).
Assume contrarily thatComm(L(A′)) = 0. Then there exists a DRCPCFA(k) B acceptingL(A′) such
thatComm(B) = 0. FromB a DRCPCFA(k+1) B′ is constructed by providing an additional component
which checks whether the suffix is preciselyx, and halts non-accepting if an error is found. So,B′ accepts
the language

{w1w2 · · ·wmbw1w2 · · ·wm | m≥ 1,wi ∈ {0,1},1≤ i ≤ m}$1$2x

and we still haveComm(B′) = 0. Similar as in the proof of Lemma 5, it follows by an incompressibility
argument that this conclusion leads to a contradiction.

Since emptiness is not semi-decidable for DRCPCFA(k) with k≥ 3 [1], the degree of communication
CommDRCPCFA(k)(L(A)) is not computable. �

5 An Infinite Hierarchy

In this section, we are going to show that there is an infinite strict hierarchy of language classes in
betweenL (O(log(n))-DRCPCFA(k)) andL (O(

√
n)-DRCPCFA(k)), for anyk ≥ 4. To this end, we

consider functionsf : N→N that are time-computable by one-way cellular automata. That means, given
any unary input of lengthn≥ 1, sayan, the rightmost cell has to enter an accepting state exactly after f (n)
time steps and never before. Time-computable functions in OCA have been studied in [3], where it is
shown that, for anyr ≥ 1, there exists an OCA-time-computable functionf ∈ Θ(nr). We will use this
result in the sequel. So, letMr be an OCA that time-computesf ∈ Θ(nr), for r ≥ 1. We will use

Lr = {$1x1x2 · · ·xℓ$2w′
1w′

2 · · ·w′
mwm+1 · · ·wℓ$3w′

1w′
2 · · ·w′

mwm+1 · · ·wℓ$4a20
bba21

bb· · ·a2m−1
bb& |

m≥ 1,x1x2 · · ·xℓ is the valid computation ofMr on inputam,

w′
i ∈ {0′,1′},1≤ i ≤ m, wi ∈ {0,1},m+1≤ i ≤ ℓ}

as witness languages for the infinite hierarchy.

Lemma 15 Let r ≥ 1 be an integer. Then languageLr belongs toL (O(log(n)r+2)-DRCPCFA(4)).

Proof An O(log(n)r+2)-DRCPCFA(4)) A acceptingLr works in five phases.
As mentioned before, in [1] anO(n)-DRCPCFA(3) is constructed that accepts VALC(M), where the

master componentA1 and componentA2 are used to verify the subconfigurations, and componentA3 is
used to check the correct format of the input. In the first phase,A simulates this behavior where$2 plays
the role of the endmarker. Whenx1x2 · · ·xℓ ∈VALC(M) has been tested, the masterA1 and componentA2

are both located on the symbol after$2, that is, onw′
1. Additionally, componentA4 initially reads$1 and

waits onx1 to be queried. The total number of communications in this phase is of orderO(ℓ).
In the second phase, it is verified that there are as many symbols in between$1 and$2 as in be-

tween$2 and$3, that is, the lengthℓ is matched. Furthermore, it is checked whether there are exactly m
symbols of the second infix primed. Sincex1x2 · · ·xℓ describes an OCA computation on some unary
input am, the initial configuration of the OCA is of the form #(a′)m. Therefore, the valid computation
begins with[#,a′][a′,a′]m−1[a′,#] followed by symbols not containing primed versions of othersymbols.
As in the constructions before, the masterA1 moves to the right while querying componentA4 in every
step. Whenever componentA4 is reset to its initial state, it reads the next input symbol,remembers it,

H. Bordihn, M. Kutrib, A. Malcher 137

and waits. In this way, componentA4 is tracked over the valid computations. Moreover, the master A1

receives information about the symbols read byA4 and can check the number of primed symbols to bem.
The phase ends successfully whenA1 has read$3 and receives the information thatA4 has read$2 in this
moment, that is, both infixes have the same lengthℓ. This phase takesO(ℓ) communications. At its end,
the masterA1 is located on the symbol after$3 and componentsA2 andA4 are both located on the symbol
after$2.

The third phase is used to compare the word in between$2 and$3 with the word in between$3

and$4. Similar as in the phase before, to this end, the masterA1 moves to the right while querying
componentA2 in every step. Whenever componentA2 is reset to its initial state, it reads the next input
symbol, remembers it, and waits. So,A1 can check whether the currently read symbols are identical.
The phase ends successfully whenA1 has read$4 and receives the information thatA2 has read$3 in
this moment. Now, the masterA1 is located on the symbol after$4, A2 is located on the symbol after$3,
andA4 still on the symbol after$2. The total number of communications in this phase is of orderO(ℓ).

The fourth phase is used to track componentA2 to the position ofA1. So, the masterA1 loops on its
position while it queriesA2 in every step. In this way,A2 moves to the right. The phase ends whenA1

receives the information thatA2 has read$4. At this time step the masterA1 and componentA2 are located
on the symbol after$4 andA4 still on the symbol after$2. During this phaseO(ℓ) communications take
place.

The fifth and final phase is to check the suffix. The master knowsthat this phase starts and changes
into some appropriate state in aλ -step. The situation is similar for componentA2. It is in its initial
state on a symbola for the first time. So, both synchronously start the phase. Basically, here we can
use again the construction of the proof of Lemma 9. That is, the master component and componentA2

check that the lengths ofa-blocks are doubling. Communication takes place at both symbolsb. Reading
the firstb, componentA4 is queried and forced to proceed one input symbol in order to check the correct
numberm of a-blocks. Since componentA4 is tracked over an infix whose firstm symbols are primed
this can be done almost as before. Reading the secondb, the master queries componentA2 to ensure that
thea-blocks ended correctly. The total number of communications in this phase is of orderO(m). This
concludes the construction ofA.

The lengthℓ of the valid computation ofMr on input am is of order Θ(m2 · mr) = Θ(mr+2) by
Lemma 8. The length of an input isn= 3ℓ+2m−1+2m+5∈ Θ(2m). The total number of communi-
cations is of orderO(ℓ)+O(ℓ)+O(ℓ)+O(ℓ)+O(m)= O(mr+2). So, the number of communications is
of orderO(log(n)r+2). �

Lemma 16 Let r ≥ 1 be an integer. Then languageLr does not belong toL (O(log(n)r)-DRCPCFA(4)).

Proof The proof is along the line of the proof of Lemma 6. By way of contradiction, we assume thatLr

is accepted by someO(log(n)r)-DRCPCFA(4).
Let zbe a word inLr whose infixx= x1x2 · · ·xℓ is the valid computation ofMr on inputam. Then|z| is

of orderΘ(2m) andℓ is of orderΘ(mr+2). We will use an incompressibility argument and choose a string
w = w1w2 · · ·wℓ ∈ {0,1}∗ so that the Kolmogorov complexity isC(w) ≥ |w| = ℓ ∈ Θ(mr+2). Then the
word z′ = $1x$2w′

1w′
2 · · ·w′

mwm+1 · · ·wℓ$3w′
1w′

2 · · ·w′
mwm+1 · · ·wℓ$4a20

bba21
bb· · ·a2m−1

bb& belongs toLr

as well.
With the help of the accepting computation onz′ we write down a program that uniquely recon-

structsw. The order of magnitude of the size of the program is given by the product of the size of one
snapshot and the number of all snapshots. Since one snapshotcan be described byO(m) bits and the
number of snapshots is bounded byO(mr), we derive thatC(w) is of orderO(mr+1), a contradiction. �

138 Measuring Communication in Parallel Communicating FiniteAutomata

Combining Lemma 15 and Lemma 16 the desired infinite hierarchy of the next theorem follows.

Theorem 17 Let r ≥ 1 be an integer. Then the classL (O(log(n)r)-DRCPCFA(4)) is properly included
in the classL (O(log(n)r+2)-DRCPCFA(4)).

Since the proofs of Lemma 15 and Lemma 16 do not rely on a specific number of components as long
as at least four components are provided, the hierarchy follows for any number of componentsk≥ 4.

Corollary 18 Let k ≥ 4 and r ≥ 1 be two integers. Then the classL (O(log(n)r)-DRCPCFA(k)) is
properly included in the classL (O(log(n)r+2)-DRCPCFA(k)).

References

[1] Henning Bordihn, Martin Kutrib & Andreas Malcher (2011): Undecidability and Hierarchy Re-
sults for Parallel Communicating Finite Automata. Int. J. Found. Comput. Sci.22, pp. 1577–1592,
doi:10.1142/S0129054111008891.

[2] Henning Bordihn, Martin Kutrib & Andreas Malcher (2012): On the Computational Capac-
ity of Parallel Communicating Finite Automata. Int. J. Found. Comput. Sci.23, pp. 713–732,
doi:10.1142/S0129054112500062.

[3] Thomas Buchholz & Martin Kutrib (1998):On time computability of functions in one-way cellular automata.
Acta Inform.35, pp. 329–352, doi:10.1007/s002360050123.

[4] Ashish Choudhary, Kamala Krithivasan & Victor Mitrana (2007):Returning and non-returning parallel com-
municating finite automata are equivalent. RAIRO Inform. Théor.41, pp. 137–145, doi:10.1051/ita:2007014.

[5] John E. Hopcroft & Jeffrey D. Ullman (1979):Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley.

[6] Oscar H. Ibarra (1973):On Two-way Multihead Automata. J. Comput. System Sci.7, pp. 28–36,
doi:10.1016/S0022-0000(73)80048-0.

[7] Martin Kutrib (2008):Cellular Automata – A Computational Point of View. In: New Developments in Formal
Languages and Applications, chapter 6, Springer, pp. 183–227, doi:10.1007/978-3-540-78291-96.

[8] Martin Kutrib (2009):Cellular Automata and Language Theory. In: Encyclopedia of Complexity and System
Science, Springer, pp. 800–823, doi:10.1007/978-0-387-30440-354.

[9] Martin Kutrib & Andreas Malcher (2011): Two-Party Watson-Crick Computations. In: Im-
plementation and Application of Automata (CIAA 2010), LNCS 6482, Springer, pp. 191–200,
doi:10.1007/978-3-642-18098-921.

[10] Ming Li & Paul M. B. Vitányi (1993): An Introduction to Kolmogorov Complexity and Its Applications.
Springer, doi:10.1007/978-1-4757-3860-5

[11] Andreas Malcher (2002):Descriptional Complexity of Cellular Automata and Decidability Questions. J.
Autom., Lang. Comb.7, pp. 549–560.

[12] Carlos Martı́n-Vide, Alexandru Mateescu & Victor Mitrana (2002):Parallel Finite Automata Systems Com-
municating by States. Int. J. Found. Comput. Sci.13, pp. 733–749, doi:10.1142/S0129054102001424.

[13] Victor Mitrana (2000):On the Degree of Communication in Parallel Communicating Finite Automata Sys-
tems. J. Autom., Lang. Comb.5, pp. 301–314.

[14] Friedrich Otto (2013):Asynchronous PC systems of pushdown automata. In: Language and Automata Theory
and Applications (LATA 2013), LNCS 7810, Springer, pp. 456–467, doi:10.1007/978-3-642-37064-9 40.

[15] Marcel Vollweiler (2013):Asynchronous systems of parallel communicating finite automata. In: Fifth Work-
shop on Non-Classical Models for Automata and Applications(NCMA 2013), books@ocg.at294, Austrian
Computer Society, Vienna, pp. 243–257.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 139–150, doi:10.4204/EPTCS.151.9

c© K. Břinda
This work is licensed under the
Creative Commons Attribution License.

Languages of lossless seeds

Karel Břinda
Laboratoire d’Informatique Gaspard Monge

Université Paris-Est Marne-la-Vallée
Paris, France

karel.brinda@univ-mlv.fr

Several algorithms for similarity search employ seeding techniques to quickly discard very dissimilar
regions. In this paper, we study theoretical properties of lossless seeds, i.e., spaced seeds having full
sensitivity. We prove that lossless seeds coincide with languages of certain sofic subshifts, hence
they can be recognized by finite automata. Moreover, we show that these subshifts are fully given by
the number of allowed errorsk and the seed marginℓ. We also show that for a fixedk, optimal seeds

must asymptotically satisfyℓ ∈ Θ(m
k

k+1).

1 Introduction

The annual volume of data produced by the Next-Generation Sequencing technologies has been rapidly
increasing; even faster than growth of disk storage capacities. Thus, new efficient algorithms and data-
structures for processing, compressing and storing these data, are needed.

Similarity search represents the most frequent operation in bioinformatics. In huge DNA databases,
a two-phase scheme is the most widely used approach to find alloccurrences of a given string up to
some Hamming or Levenshtein distance. First of all, most of dissimilar regions are discarded in a fast
filtration phase. Then, in averification phase, only “hot candidates” on similarity are processed by
classical time-consuming algorithms like Smith-Waterman[23] or Needleman-Wunsch [17].

Algorithms for the filtration phase are often based on so-called seed filterswhich make use of the
fact that two strings of the same lengthm being in Hamming distancek must necessarily share some
exact patterns. These patterns are represented as strings over the alphabet{#,-} calledseeds, where the
“matching” symbol# corresponds to a matching position and the “joker” symbol- to a matching or a
mismatching position.

For instance, for two strings of length 15, matching within two errors, shared patterns are, e.g.,
##-#--##-# or #####. For illustration, if we consider that two strings match as===X=====X=====

(where the symbols= andX represent respectively matching and mismatching positions), then the corre-
sponding seed positions can be following:

===X=====X=====

.##-#--##-#....

....#####......

As the second seed is the longest possible contiguous seed inthis case, we observe the main advantage of
spaced seeds in comparison to contiguous seeds: for the sametask, there exist spaced seeds with higher
number of#’s (so-calledweight).

Two basic characteristics of every seed areselectivityandsensitivity. Selectivity measures restric-
tivity of a filter created from the seed. In general, higher weight implies better selectivity of the filter.
Lossless seedsare those seeds having full sensitivity. They are easier to handle mathematically on one

140 Languages of lossless seeds

hand, but attain lower weight on the other hand.Lossy seedsare employed for practical purposes more
since a small decrease in sensitivity can be compensated by considerable improvement of selectivity.

Nevertheless, only lossless seeds are considered in this paper. For a given lengthm of strings to be
compared and a given number of allowed mismatchesk (such setting is called(m,k)-problem), the aim
is to design fully sensitive seeds with highest possible weight.

1.1 Literature

The idea of lossless seeds was originally introduced by Burkhardt and Karkkäinen [3, 4]. Let us remark
that lossy spaced seed were used in the same time in the PatternHunter program [16]. Generalization of
lossless seeds was studied by Kucherov et al. [11]. given seed are required (the pattern is shared at more
positions). The authors also proved that, for a fixed numberk of mismatches,optimal seeds(i.e., seeds
with the highest possible weight among all seeds solving thegiven problem) must asymptotically satisfy
m−w(m) ∈ Θ(m

k
k+1), wherew(m) denotes the maximal possible weight of a seed solving the(m,k)-

problem. They also started a systematic study of seeds created by repeating of short patterns. Afterwards,
the results on asymptotic properties of optimal seeds were generalized by Farach-Colton et al. [10].
Computational complexity of optimal seed construction wasderived by Nicolas and Rivals [18, 19].

Further, the theory on lossless seed was significantly developed by Egidi and Manzini. First, they
studied seeds designed from mathematical objects called perfect rulers [6, 9]. The idea of utilization of
some type of “rulers” was later independently extended by KB[2] (cyclic rulers) and, again, Edigi and
Manzini [8] (difference sets). In [8], these ideas were extended also to seed families. Cyclic rulers and
difference sets mathematically correspond to each other. Edigi and Manzini [7] also showed possible
usage of number-theoretical results on quadratic residuesfor seed design.

In practice, seeds often find their use in short-read mappersimplementing hash tables (for more
details on read mapping, see, e.g., [12, 22]). ZOOM [13] and PerM [5] are examples of mappers utilizing
lossless seeds.

A list of papers on spaced seed is regularly maintained by No´e [20].

1.2 Our object of study

One of the most important theoretical aspects of lossless seeds are their structural properties. Whereas
good lossy seeds usually show irregularity, it was observedthat good lossless seeds are often repetitions
of short patterns ([11, 5, 2, 8]). The question whether optimal seeds can be constructed in all cases
by repeating patterns, which would be short with respect to seed length, remains open (see [2, Conjec-
ture 1]). Its answering would have practical impacts in development of bioinformatical software tools
since the search space of programs for lossless seeds designcould be significantly cut and also indexes
in programs using lossless seeds for approximate string matching could be more memory efficient (like
[5]).

1.3 Paper organization and results

In this paper, we follow and further develop ideas from [2]. We concentrate on a parameterℓ called seed
margin, which is the difference between the sizemof compared strings and the length of a seed.

In Section 2 we recall the notation used in combinatorics on words and symbolic dynamics. In Sec-
tion 3 we formally define seeds and(m,k)-problems. Then we transform the problem of seed detection

K. Břinda 141

into another criterion (Theorem 1) and also show asymptoticproperties ofℓ for optimal seeds (Proposi-
tion 1). In Section 4 we prove that sets of seeds, obtained by fixing the parametersk andℓ, coincide with
languages of some sofic subshifts. Therefore, those sets of seeds are recognized by finite automata. In
Section 5 we show applications of obtained results for seed design. These results provide a new view on
lossless seeds and explain their periodic properties.

2 Preliminaries

Throughout the paper, we use a standard notation of combinatorics on words and symbolic dynamics.

2.1 Combinatorics on words

An alphabetA = {a0, . . . ,am−1} is a finite set of symbols calledletters. In this paper, we will work
exclusively with the alphabet{#,-} A finite sequence of letters fromA is called afinite word(overA).
The setA∗ of all finite words (including the empty wordε) provided with the operation of concatenation
is a free monoid. The concatenation is denoted multiplicatively. If w = w0w1 · · ·wn−1 is a finite word
overA, we denote its length by|w|= n. We deal also with bi-infinite sequences of letters fromA called
bi-infinite wordsw = · · ·w−2w−1|w0w1w2 · · · overA. The sets of all bi-infinite words overA is denoted
by AZ.

A finite word w is called afactor of a wordu (u being finite or bi-infinite) if there exist wordsp
ands (finite or one-side infinite) such thatu = pws. For given indexesi and j, the symbolu[i, j] denotes
the factoruiui+1 · · ·u j if i ≤ j, or ε if i > j. A concatenation ofk wordsw is denoted bywk. The set of
all factors of a wordu (u being finite or bi-infinite) is called the language ofu and denoted byL(u). Its
subsetL(u)∩An containing all factors ofu of lengthn is denoted byLn(u).

Let us remark that this notation will be used extensively in the whole text. For instancew[2,5]-4

denotes the word created by concatenation of the factorw2w3w4w5 of a bi-infinite wordw and the word
----. Similarly, for a finite wordv of lengthn, by · · ·--|v-- · · · we denote the bi-infinite wordu such
that for all i ∈ {0, . . . ,n− 1}(ui = wi) and for all i ∈ Z \ {0, . . . ,n− 1}(ui = -). For more information
about combinatorics on words, we can refer to Lothaire I [15].

2.2 Symbolic dynamics

Consider an alphabetA. On the setAZ of bi-infinite words overA, we define a so-called Cantor metricd
as

d(u,v) =

{
0 if u = v,

2−s if u 6= v, wheres := min
{
|i|

∣∣ ui 6= vi
}
.

We define ashift operationσ as[σ(u)]i = ui+1 for all i ∈ Z. The mapσ is invertible, and the powerσ k is
defined by composition for allk∈ Z. The mapσ is continuous onAZ, therefore,(AZ,σ) is a dynamical
system, which is called afull shift.

A bi-infinite wordu ∈AZ avoidsa set of finite wordsX if L(u)∩X = /0. By SX we denote the set of
all bi-infinite words that avoidX and we call it asubshift. If X is a regular language,SX is calledsofic
subshift; if X is finite,SX is called asubshift of finite type. ThelanguageL(S) of a subshiftS is the union
of languages of all bi-infinite words fromS. By Ln(S) we denote the setL(S)∩An. It holds that a set
S⊆ AZ is a subshift if and only if it is invariant under the shift mapσ (that meansσ(S) = S) and it is
closed with respect to the Cantor metric. A general theory ofsubshifts is well summarized in [14].

142 Languages of lossless seeds

3 Lossless seeds

In this section, we introduce basic definition formalizing lossless seeds. Then we introduce a parameterℓ
called seed margin and show its asymptotic properties for optimal seeds. Let us recall thatmdenotes the
length of strings to be compared andk denotes the number of allowed mismatches.

Definition 1. The binary alphabetA= {#,-} is calledseed alphabet. Every finite word over this alpha-
bet is aseed. Theweightof a seed Q is the number of occurrences of the letter# in Q.

Definition 2. Let m and k be positive integers. Every set{i1, . . . , ik} ⊆ {0, . . . ,m− 1} is called error
combinationof k errors.

Consider a seed Q such that|Q| < m and denoteℓ := m−|Q|, which is the so-calledseed margin.
Then Qdetectsan error combination{i1, . . . , ik} ⊆ {0, . . . ,m− 1} at position t∈ {0, . . . , ℓ} if for all
j ∈ {0, . . . , |Q|−1} it holds(Q j = # =⇒ j + t 6∈ {i1, . . . , ik}) .

The seed Q is said tosolvethe(m,k)-problem if every error combination{i1, . . . , ik} ⊆ {0, . . . ,m−1}
of k errors is detected by Q at some position t∈ {0, . . . , ℓ}.

Many combinatorial properties of seeds can be studied from the perspective of bi-infinite words.
First, we need a seed analogy of the logical functionOR applied on bi-infinite words and producing,
again, a bi-infinite word.

Definition 3. Consider k bi-infinite wordsu(1), . . . ,u(k) overA. We define a k-nary operation⊕ as

∀i ∈ Z : (⊕(u(1), . . . ,u(k)))i =

{
if (u(j))i = # for some j∈ {1, . . . ,k}
- otherwise

The following theorem will be crucial for seed analysis in the rest of the text. It is mainly a translation
of basic definitions to the formalism of shifts and logical operations, but it enables us to easily observe
on which parameters (and how) the structure of lossless seeds really depends.

Theorem 1. Let m and k be positive integers and Q be a seed such that|Q|<m. Denoteℓ := m−|Q| and
w := · · ·--|-ℓQ-- · · · . Then Q detects an error combination{i1, . . . , ik} ⊆ {0, . . . ,m− 1} at a position
t ∈ {0, . . . , ℓ} if and only if (

⊕(σ i1(w), . . . ,σ ik(w)
)
ℓ−t

= -. (1)

Proof. Qdetects{i1, . . . , ik} at positiont if ∀ j ∈ {0, . . . , |Q|−1}
(
Q j = # =⇒ j + t 6∈ {i1, . . . , ik}

)
. This

is equivalent to∀p∈ {i1, . . . , ik}(wp−t+ℓ = -), which is equivalent to (1).

Corollary 1. Q does not detect a combination{i1, . . . , ik} at any position t∈ {0, . . . , ℓ} if and only if
(⊕(σ i1(w), . . . ,σ ik(w))[0, ℓ] = #ℓ+1.

Let us mention that in the case of two errors, Corollary 1 corresponds to the Laser method [2, Sec-
tion 4.1] (a JavaScript implementation is available at [1])as we illustrate in the following example.

Example 1. Consider a seed Q= ##-#-----#-## of length14 and the(19,2)-problem. In Figure 1
we show a corresponding schematic table. Denotew := · · ·--|-5Q-- · · · . The words⊕(σi(w),σ j(w))
occur diagonally. It is easily seen from Corollary 1 that Q does not detect the error combination{5,13}
sinceℓ= 5 and

(
⊕(σ5(w),σ13(w))

)
[0,5] = #ℓ+1.

K. Břinda 143

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- # - - - - - - # - #

0 - - - - - # # - # - - - - - - # - # # - - - - -

1 - - - - - # # - # - - - - - - # - # # - - - - -

2 - - - - - # # - # - - - - - - # - # # - - - - -

3 - - - - - # # - # - - - - - - # - # # - - - - -

4 - - - - - # # - # - - - - - - # - # # - - - - -

5 #

6 #

7 - - - - - - # # - # - - - - - - # - # # - - - - -

8 #

9 - - - - - - # # - # - - - - - - # - # # - - - - -

10 - - - - - - # # - # - - - - - - # - # # - - - - -

11 - - - - - - # # - # - - - - - - # - # # - - - - -

12 - - - - - - # # - # - - - - - - # - # # - - - - -

13 - - - - - - # # - # - - - - - - # - # # - - - - -

14 - - - - - - # # - # - - - - - - # - # # - - - - -

15 #

16 - - - - - - # # - # - - - - - - # - # # - - - - -

17 #

18 #

- - - - - # # - # - - - - - - # - # # - - - - -

- - - - - # # - # - - - - - - # - # # - - - - -

- - - - - # # - # - - - - - - # - # # - - - - -

- - - - - # # - # - - - - - - # - # # - - - - -

- - - - - # # - # - - - - - - # - # # - - - - -

Figure 1: The Laser method for the(19,2)-problem and the seedQ= ##-#------#-## in Example 1.

Even though the basic parameters in the concept of(m,k)-problems arem andk; as follows from
Theorem 1, the parameters determining structure of seeds are ℓ andk. Therefore, in the next section, we
will fix them and study seedsQ solving(|Q|+ ℓ,k)-problems. Hence, when increasingm, the seed must
be extended in order to keepℓ constant.

To complete this section, we show the asymptotic relation ofm, ℓ, andk for optimal seeds. Let us
fix the parameterk. Let w(m) denote the maximal weight of a seed solving the(m,k)-problem. It was

proved in [11, Lemma 4] thatm−w(m)∈ Θ(m
k

k+1). We show thatℓ has the same asymptotic behavior.

Proposition 1. Let k be a fixed positive integer and w(m) denote the maximal weight of a seed solving the
(m,k)-problem. Let H(m) be the set of all seeds with weight w(m) solving the(m,k)-problem. For every
positive m, setℓ(m) := m−|Q|, where Q is an arbitrary seed from H(m). Thenℓ(m) ∈ Θ(m−w(m)).

Proof. Sincem≥ ℓ(m) +w(m), we get trivially the upper bound asℓ(m) ∈ O(m−w(m)). Now let

us prove the lower bound. Letk be fixed. Sincem− w(m) ∈ Θ(m
k

k+1) for optimal seeds, it also
holds that(m− w(m))k+1 ∈ O(mk). From combinatorial considerations on seed detection, we get(m

k

)
≤

(m−w(m)
k

)
(ℓ+ 1). By combining the last two formulas, we obtainℓ(m) ∈ Ω(m−w(m)), which

concludes the proof.

144 Languages of lossless seeds

4 Seed subshifts

In this section, we show the relation between lossless seedsand subshifts. First, we denote sets of seeds
obtained by fixing the parametersℓ andk. Afterwards, we prove that they coincide with languages of
certain sofic subshifts. After defining functions checking the criterion given by Corollary 1 globally on
bi-infinite words, we show that the subshift are exactly the sets of bi-infinite words, for which these
functions have the upper boundℓ.

Definition 4. Let ℓ and k be positive integers. The set of all seeds such that eachseed Q solves the
(|Q|+ ℓ,k)-problem is denoted bySeedℓk.

Example 2. Seed32 = {ε ,#,-,#-,-#,--,#--,-#-,--#,---,#--#,#---,-#--,--#-,---#,----, . . .}.

4.1 Functionsshk and (ℓ,k)-valid bi-infinite words

Definition 5. Consider a positive integer k. We define a functionshk : (AZ)k → N0∪{+∞} as:

shk(u(1), . . . ,u(k)) = sup
i1,...,ik∈Z

sup
p∈N0

{
p | v[0, p−1] = #p, wherev =⊕

(
σ i1(u(1)), . . . ,σ ik(u(k))

)}
. (2)

We extend the range of the functionshk(·, . . . , ·) to (A∗)k. Finite words w are transformed into bi-
infinite wordsv asv := · · ·--|w-- · · · .

Informally said,shk(u(1), . . . ,u(k)) is equal to

• a finites∈N0 if after arbitrary “aligning” of the words followed by the logicalOR operation (in the
Laser method the diagonal bi-infinite words), each run of#’s has length at mosts and the values
is attained for some “alignment”;

• +∞ if there exists an “alignment” with run of infinitely many#’s (e.g., sh2(· · ·vv|vv· · · , · · ·ww|ww· · ·)
with v= ##- andw= #--).

Every functionshk is symmetric and shift invariant with respect to all variables. The following
observations show how to estimate their values for givenk bi-infinite words.

Observation 1(Lower estimate). Letu(1), . . . ,u(k) be bi-infinite words. If⊕(σ i1(u(1)), . . . ,σ ik(u(k))) has
a factor#p for some i1, . . . , ik; thenshk(u(1), . . . ,u(k))≥ p.

Observation 2 (Upper estimate). Let u(1), . . . ,u(k),v(1), . . . ,v(k) be bi-infinite words such thatu(1) �
v(1), . . . ,u(k) � v(k), where� is a relation defined as

u � v ⇐⇒ (ui = # =⇒ vi = #) holds for all i∈ Z. (3)

Thenshk(u(1), . . . ,u(k))≤ shk(v(1), . . . ,v(k)).

Bi-infinite words for which theshk function is bounded by someℓ, will be the “bricks” of our sub-
shifts. Their factorsQ are exactly those seeds solving(|Q|+ ℓ,k)-problems.

Definition 6. A bi-infinite wordu satisfyingshk(u, . . . ,u) ≤ ℓ is called an(ℓ;k)-valid bi-infinite word.
For fixed positive integersℓ and k, we denote the set of all(ℓ;k)-valid words byV ℓ

k.

Lemma 1. A seed Q solves the(|Q|+ℓ,k)-problem if and only if it is a factor of an(ℓ,k)-valid bi-infinite
word.

Proof. =⇒ : The wordw := · · ·--|-ℓQ-- · · · must be(ℓ,k)-valid since otherwiseQ would not solve the
(|Q|+ ℓ,k)-problem by Corollary 1.

K. Břinda 145

⇐= : For a contradiction assume that there exists a factorQ of a bi-infinite wordu, which does not
solve the(|Q|+ ℓ,k)-problem. Let the non-detected error combination be{i1, . . . , ik}. Denote
w = · · ·--|-ℓQ-- · · · .
We use shift invariance of shk and Observation 2 to get

shk(w, . . . ,w)≤ shk(u, . . . ,u)≤ ℓ. (4)

SinceQ does not detect the error combination{i1, . . . , ik}, it follows from Corollary 1 that

(⊕(σ i1(w), . . . ,σ ik(w))[0, ℓ] = #ℓ+1.

Nevertheless, this gives us a lower estimate on shk(w, . . . ,w), which is contradicting (4).

4.2 Subshifts of(ℓ,k)-valid words

The property of(ℓ,k)-validity is preserved under the shift operation. Moreover, the sets Vℓk of (ℓ,k)-
valid words are subshifts. To prove it, we need to find a criterion for verifying (ℓ,k)-validity based on
comparing finite factors of a given bi-infinite word.

Lemma 2. Let u be a bi-infinite word over the seed alphabetA. Then the following statements are
equivalent:

1. u is (ℓ;k)-valid;

2. ∀v(1), . . . ,v(k) ∈ Lℓ+1(u)
(
shk(v(1), . . . ,v(k))≤ ℓ

)
;

3. ∀w(1), . . . ,w(k) ∈ Lℓ+1(u)
(
⊕(w(1), . . . ,w(k)) 6= #ℓ+1

)
.

Proof. We prove three implications.

1=⇒ 2: Consider any such factorsv(1), . . . ,v(k). Find their positionsi1, . . . , ik in u. It holds that

· · ·--|v(1)-- · · · � σ i1(u), . . . , · · ·--|v(k)-- · · · � σ ik(u),

where� is the relation defined by (3). By combining the assumption, shift invariance of shk,
and Observation 2, we obtain shk(v(1), . . . ,v(k))≤ shk(u, . . . ,u)≤ ℓ.

2=⇒ 3: It is an easy consequence of the definition of the shk function.

3=⇒ 1: For a contradiction assume thatu is not(ℓ,k)-valid. Then there exist integersi1, . . . , ik such that
⊕(σ i1(u), . . . ,σ i1(u))[0, ℓ] = #ℓ+1.

The main consequence of Lemma 2 is the fact that every seed must be constructed from reciprocally
compatible tiles of lengthℓ+1. To describe this property, we define a relation of compatibility on the
setAℓ+1.

Definition 7. For given positive integersℓ and k, we define the k-narycompatibility relation Cℓk onAℓ+1

as
Cℓ

k(v
(1), . . . ,v(k)) ⇐⇒ shk(v

(1), . . . ,v(k))≤ ℓ.

Corollary 2. Letu be a bi-infinite word over the seed alphabetA. The wordu is (ℓ,k)-valid if and only
if ∀v(1), . . . ,v(k) ∈ Lℓ+1(u)

(
Cℓ

k(v
(1), . . . ,v(k))

)
.

Now let us prove that(ℓ,k)-valid words really form subshifts. We only need to show that(ℓ,k)-valid
words are exactly those words, which can be created from compatible “tiles”.

146 Languages of lossless seeds

Lemma 3. Let ℓ and k be positive integers. The setV ℓ
k of all (ℓ,k)-valid words is a subshift.

Proof. We prove the lemma by construction of a setX of forbidden words (as they are introduced in 2.2).
Take

X :=
{

x∈ A∗ | ∃v(1), . . . ,v(k) ∈ Lℓ+1(x)
(
¬Cℓ

k(v
(1), . . . ,v(k))

)}
.

The setX contains all possible finite words having some factors, which are “incompatible” with respect
to the givenℓ andk. Hence, the subshiftSX contains exactly all bi-infinite wordsu satisfying∀v1, . . . ,vk ∈
Lℓ+1(u)

(
Cℓ

k(v1, . . . ,vk)
)

and we obtainSX = V ℓ
k by Corollary 2.

Example 3. Even though both of the seeds Q(1) = ##-#-- and Q(2) = --#-## solve the(11,2)-problem,
the seed Q= Q(1)--Q(2) does not solve the(19,2)-problem as we have seen in Example 1. Since Q(1)⊕
Q(2) = #6, any seedQ̃ of the formQ̃= Q(1)-pQ(2) cannot solve the(|Q̃|+5,2)-problem.

It follows from the last example that the subshift V5
2 of all (5,2)-valid words is not of finite type.

Nevertheless, every subshift Vℓk must be a union of subshifts of finite type, which can be constructed
from so-called(ℓ,k)-generating sets.

Definition 8. For given positive integersℓ and k, a subset G ofAℓ+1 is called(ℓ,k)-generating setif the
following conditions are satisfied:

1. for all v(1), . . . ,v(k) ∈ G, it holdsCℓ
k(v

(1), . . . ,v(k));

2. it is maximal possible (i.e., it cannot contain any other word fromAℓ+1).

Observation 3. Let us take a word from an(ℓ,k)-generating set G. If we remove the last or the first
letter and concatenate the letter- to the beginning or to the end of the word, we obtain again a word
from G. Therefore, every(ℓ,k)-generating set G must contain, e.g., the word-ℓ+1.

Every generating setG fully determines a subshift of finite type, we will denote it by S(G). This
subshift contains all bi-infinite wordsu such thatLℓ+1(u)⊆ G.

Definition 9. Consider a seed Q and an(ℓ,k)-generating set G. By S(G), we denote the subshift SX of
finite type given by X=Aℓ+1\G. We say that a seed Q isgeneratedby G if Q∈ L(S(G)).

In other words, a seedQ satisfying|Q| ≥ ℓ+1 is generated byG if Lℓ+1(Q)⊆G. A seedQ such that
|Q|< ℓ+1 is generated byG if ∃w∈ G

(
Q∈ L(w)

)
. We can also observe that every(ℓ,k)-valid word is

generated by some(ℓ,k)-generating set.

Observation 4. For every(ℓ,k)-valid bi-infinite wordu, there exists an(ℓ,k)-generating set G such that
u ∈ S(G).

Example 4. Continue with the setting from Example 2. Consider the only one(3,2)-generating set G=
{#--#,#---,-#--,--#-,---#,----}. Since S(G) is of finite type, it follows from theory of symbolic
dynamics that there exists a strongly connected labeled graph H such that S(G) coincide with labels of all
bi-infinite paths in H (for details, see [14]). This graph also determines a finite automaton recognizing
the setL(S(G)), i.e., the set of labels of finite paths in H. Such automaton can be created from a de-Bruijn
graph. However, it would not be minimal as it is shown in Figure 2.

Theorem 2. Let k andℓ be positive integers. The setSeedℓk is a regular language.

Proof. There can be only finite number of(ℓ,k)-generating sets; denote themG1, . . . ,Gd. It follows from
Observation 4 thatS(G1)∪ . . .∪S(Gd) = V ℓ

k and, from Lemma 1, we know thatL(V ℓ
k) = Seedℓk.

For everyi ∈ {1, . . . ,d}, the setS(Gi) is a subshift of finite type, so every setL(S(Gi)) is a regular
language. Since the set Seedℓ

k is a union of finitely many regular languages, it is a regular language.

K. Břinda 147

#--- ---#

-#-- --#-

#--#

-

#

-

-

#

-

-

#

-

(a) A graph created as a de-Bruijn graph from
the set of verticesG.

1

23

#

-

-

-

(b) The previous graph after minimization.

Figure 2: Labeled graphsH for the subshiftS(G) in Example 4.

5 Application for seed design

In this section, we describe how to design seeds with knowledge of an(ℓ,k)-generating set. Then we
show how to search(ℓ,1) and(ℓ,2)-generating sets.

5.1 Seed design using generating sets

Let us have an(ℓ,k)-generating setG and let us consider a task of designing a seedQ of lengths, which
would solve the(ℓ+ s,k)-problem. Ifs≤ ℓ+1, we can take an arbitrary factor of lengths of any word
from G.

If s> ℓ+ 1, we need to construct the seed ins− ℓ steps by extending letter by letter. In the first
step, we take an arbitrary wordw∈ G and setQ := w. In every other step, we take any wordw from G
such that the lastℓ letters ofQ are equal toℓ first letters ofw and concatenate the last letter ofw to Q.
Existence of such wordw is guaranteed since we can use at least the letter- in every step.

5.2 Generating sets fork= 1

As a simple consequence of Corollary 1, we get a full characterization of all seeds solving(m,1)-
problems ([2, Theorem 5]).

Proposition 2. Seedℓ1 = {Q∈ A∗ | #ℓ+1 is not a factor of Q}

Proof. Denotev = · · ·--|-ℓQ-- · · · andℓ = m−|Q|. Then from Corollary 1 follows that:Q solves the
(m,1)-problem ⇐⇒ ∀i ∈ Z

(
(σ i(v))[0, ℓ] 6= #ℓ+1

)
⇐⇒ Q does not contain#ℓ+1.

Thus, for every positiveℓ, the only(ℓ,1)-generating set isAℓ+1\{#ℓ+1}, i.e., the set of all words of
lengthℓ+1 except#ℓ+1.

148 Languages of lossless seeds

P1 P2

P3

P5

P4

P6

P0

Figure 3: The simplified graph of sets of equivalent seeds for(5,2)-generating sets search in Example 6.

5.3 Generating sets fork= 2

Let k= 2 andℓ be an arbitrary fixed positive integer. We can derive all(ℓ,2)-generating sets using graph
theoretical methods by transformation to independent setssearch. LetV := {w(1), . . . ,w(q)} denote the
set of all seeds of lengthℓ+1 solving the(2ℓ+1,2)-problem. Consider a graphRgiven by the adjacency

matrix (MR)i, j =

{
0 if C ℓ

2(w
(i),w(j)),

1 otherwise.
Then the generating sets are “maximal” independent sets (maximal with respect to inclusion) in the

graphR. We require maximality here since it is already required by the second property in Definition 8.

We can partially simplify the graphR. We say that two verticesv andw in this graph are equivalent if
∀x∈V

(
Cℓ

k(x,v) ⇐⇒ Cℓ
k(x,w)

)
. Then we can put all equivalent vertices into one vertex, i.e., every vertex

will contain a set of words instead of only one word. The step with searching “maximal” independent
sets stays unchanged.

Example 5. Let k= 2. For everyℓ ∈ {1, . . . ,4}, all seeds solving the(ℓ+ 1,2)-problem are mutually
compatible, which means that there exists a unique(ℓ,2)-generating set. We list them out in the following
table.

ℓ G
1 {--}
2 {#--,-#-,--#,---}
3 {#--#,#---,-#--,--#-,---#,---}
4 {##---,-##--,--##-,---##,#-#--,-#-#-,--#-#,#--#-,-#--#,#---#,

#----,-#---,--#--,---#-,----#,-----}

Example 6. Let k= 2 andℓ = 5. We find the graph R by the procedure above. After its simplification,
we obtain the graph in Figure 3, where

P0 = {------ ; -----# , ----#- , ---#-- , --#--- , -#---- , #----- ;

----## , ---##- , --##-- , -##--- , ##---- ;

---#-# , --#-#- , -#-#-- , #-#--- ;

--#--# , -#--#- , #--#-- ; -#---# , #---#- ;

#---## ; ##---# ; #----#},
P1 = {#--#-#}, P2 = {--##-# , -##-#- , ##-#--},
P3 = {-##--# , ##--#-}, P4 = {-#--## , #--##-},
P5 = {--#-## , -#-##- , #-##--}, P6 = {#-#--#}.

K. Břinda 149

By finding “maximal” independent sets in the graph in Figure 3, we get all(5,2)-generating sets:

G1 = P0∪P1∪P3∪P5, G2 = P0∪P1∪P3∪P6,

G3 = P0∪P2∪P4∪P6, G4 = P0∪P1∪P4∪P6.

To conclude the section, let us remark that a similar derivation can be done using hypergraphs also
for k> 2.

6 Conclusion

In this paper, we have studied lossless seeds from the perspective of symbolic dynamics. We have
concentrated on the seed marginℓ defined as a difference of the lengthm of compared strings and the
length of a seed. We have derived asymptotic behavior ofℓ for optimal seeds (Proposition 1), which
must satisfyℓ ∈ Θ(m

k
k+1) = Θ(m−w(m)). We have shown another criterion for errors detection by seeds

(Theorem 1). From this criterion we have proved that lossless seeds coincide with languages of certain
sofic subshifts, therefore, they are recognized by finite automata (Theorem 2). We have presented that
these subshifts are fully given by the number of allowed errors k and the seed marginℓ and that they can
be further decomposed into subshifts of finite type.

These facts explain why periodically repeated patterns often appear in lossless seeds. This is caused
by the fact that these patterns correspond to cycles in recognizing automata (which correspond to seeds
for cyclic (m,k)-problems in [11]). Nevertheless, it remains unclear what is the upper bound on the
length of cycles to obtain at least some optimal seeds. In thecase casek = 2, it was conjectured in [2,
Conjecture 1] that it is sufficient to consider patterns having length at mostℓ+1 to obtain some of optimal
seeds.

Acknowledgements. The author is supported by the ABS4NGS grant of the French government
(programInvestissement d’Avenir). He is grateful to Gregory Kucherov and Karel Klouda for helpful
ideas. He also thanks three anonymous referees for valuablecomments.

References

[1] Karel Břinda (2013):Laser method on-line. Available athttp://brinda.cz/laser-method/.

[2] Karel Břinda (2013): Lossless seeds for approximate string matching. Master’s the-
sis, FNSPE Czech Technical University in Prague, Czech Republic. Available at
http://brinda.cz/publications/diplomka.pdf.

[3] Stefan Burkhardt & Juha Kärkkäinen (2001):Better Filtering with Gapped q-Grams. In: Proceedings of
the 12th Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes in Computer Science2089,
Springer, pp. 73–85, doi:10.1007/3-540-48194-X6.

[4] Stefan Burkhardt & Juha Kärkkäinen (2002):Better filtering with gapped q-grams. Fundamenta Informaticae
56(1-2), pp. 51–70.

[5] Yangho Chen, Tate Souaiaia & Ting Chen (2009):PerM: efficient mapping of short sequencing reads with pe-
riodic full sensitive spaced seeds. Bioinformatics25(19), pp. 2514–2521, doi:10.1093/bioinformatics/btp486.

[6] Lavinia Egidi & Giovanni Manzini (2011):Spaced Seeds Design Using Perfect Rulers. In: Proceedings
of the 18th International Symposium on String Processing and Information Retrieval (SPIRE), Pisa (Italy),
Lecture Notes in Computer Science7024, Springer, pp. 32–43, doi:10.1007/978-3-642-24583-1 5.

150 Languages of lossless seeds

[7] Lavinia Egidi & Giovanni Manzini (2013):Better spaced seeds using quadratic residues. Journal of Com-
puter and System Sciences79(7), pp. 1144–1155, doi:10.1016/j.jcss.2013.03.002.

[8] Lavinia Egidi & Giovanni Manzini (2014):Design and analysis of periodic multiple seeds. Theoretical
Computer Science522, pp. 62–76, doi:10.1016/j.tcs.2013.12.007.

[9] Lavinia Egidi & Giovanni Manzini (2014):Spaced Seeds Design Using Perfect Rulers. Fundamenta Infor-
maticae131(2), pp. 187–203, doi:10.3233/FI-2014-1009.

[10] Martin Farach-Colton, Gad M. Landau, Süleyman Cenk Sahinalp & Dekel Tsur (2007):Optimal spaced
seeds for faster approximate string matching. Journal of Computer and System Sciences73(7), pp. 1035–
1044, doi:10.1016/j.jcss.2007.03.007.

[11] Gregory Kucherov, Laurent Noé & Mikhail A. Roytberg (2005): Multiseed lossless filtration.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 2(1), pp. 51–61,
doi:10.1109/tcbb.2005.12.

[12] Heng Li & Nils Homer (2010):A survey of sequence alignment algorithms for next-generation sequencing.
Briefings in bioinformatics11(5), pp. 473–83, doi:10.1093/bib/bbq015.

[13] Hao Lin, Zefeng Zhang, Michael Q. Zhang, Bin Ma & Ming Li (2008):ZOOM! Zillions Of Oligos Mapped.
Bioinformatics24(21), pp. 2431–2437, doi:10.1093/bioinformatics/btn416.

[14] Douglas Lind & Brian Marcus (1995):An Introduction to Symbolic Dynamics and Coding. Cambridge
University Press, doi:10.1017/CBO9780511626302.

[15] M. Lothaire (1983): Combinatorics on Words. Encyclopedia of Mathematics and its Applications17,
Addison-Wesley Publishing Co., Reading, Mass., doi:10.1017/CBO9780511566097. Reprinted in the Cam-
bridge University Press, Cambridge, UK, 1997.

[16] Bin Ma, John Tromp & Ming Li (2002):PatternHunter: Faster and more sensitive homology search. Bioin-
formatics18(3), pp. 440–445, doi:10.1093/bioinformatics/18.3.440.

[17] Saul B Needleman & Christian D Wunsch (1970):A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. Journal of Molecular Biology48(3), pp. 443–453,
doi:10.1016/0022-2836(70)90057-4.

[18] François Nicolas &Éric Rivals (2005): Hardness of Optimal Spaced Seed Design. In A. Apostolico,
M. Crochemore & K. Park, editors:Proceedings of the 16th Annual Symposium on Combinatorial Pat-
tern Matching (CPM), Jeju Island (Korea), Lecture Notes in Computer Science3537, Springer, pp. 144–155,
doi:10.1007/b137128.

[19] François Nicolas &́Eric Rivals (2008):Hardness of Optimal Spaced Seed Design. Journal of Computer and
System Sciences74(5), pp. 831–849, doi:10.1016/j.jcss.2007.10.001.

[20] Laurent Noé (2014): Spaced seeds bibliography. Available at
http://www.lifl.fr/~noe/spaced_seeds.html.

[21] Laurent Noé & Gregory Kucherov (2005):YASS: enhancing the sensitivity of DNA similarity search. Nucleic
Acids Research33(suppl. 2), pp. W540–W543, doi:10.1093/nar/gki478.

[22] Paolo Ribeca (2012):Short-Read Mapping. In Naiara Rodrı́guez-Ezpeleta, Michael Hackenberg & Ana M.
Aransay, editors:Bioinformatics for High Throughput Sequencing, Springer New York, pp. 107–125,
doi:10.1007/978-1-4614-0782-97.

[23] Temple F. Smith & Michael S. Waterman (1981):Identification of common molecular subsequences.Journal
of molecular biology147(1), pp. 195–7, doi:10.1016/0022-2836(81)90087-5.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 151–161, doi:10.4204/EPTCS.151.10

Maximally Atomic Languages∗

Janusz Brzozowski
David R. Cheriton School of Computer Science, University ofWaterloo

Waterloo, ON, Canada N2L 3G1

brzozo@uwaterloo.ca

Gareth Davies
Department of Pure Mathematics, University of Waterloo

Waterloo, ON, Canada N2L 3G1

gdavies@uwaterloo.ca

The atoms of a regular language are non-empty intersectionsof complemented and uncomplemented
quotients of the language. Tight upper bounds on the number of atoms of a language and on the
quotient complexities of atoms are known. We introduce a newclass of regular languages, called the
maximally atomic languages, consisting of all languages meeting these bounds. We provethe follow-
ing result: IfL is a regular language of quotient complexityn andG is the subgroup of permutations
in the transition semigroupT of the minimal DFA ofL, thenL is maximally atomic if and only ifG
is transitive onk-subsets of{1, . . . ,n} for 0≤ k≤ n andT contains a transformation of rankn−1.

Keywords: atom, átomaton, finite automaton, quotient complexity, regular language, set-transitive
group, state complexity, transition semigroup

1 Introduction

Thestate/quotient complexityof a regular language is the number of states in the minimal deterministic
finite automaton (DFA) of the language, or equivalently, thenumber of left quotients of the language. An
atomof a regular language is a non-empty intersection of the language’s left quotients, some of which
may be complemented. Brzozowski and Tamm have found tight upper bounds on the number of atoms
of a language [4] and on the quotient complexities of atoms [3]. This lets us define a new class of regular
languages which we callmaximally atomic: these are regular languages whose atoms meet these bounds.

The transition semigroupof a DFA is the semigroup of transformations induced by the transition
function of the DFA on its set of states. Our main result (stated formally in Section 3) is the following
relationship between maximally atomic languages and transition semigroups:

A regular language with quotient complexity n is maximally atomic if and only if the transition
semigroup of its minimal DFA contains permutations that canmap any subset of{1, . . . ,n} to any other
subset of the same size, as well as at least one transformation with an image of size n−1.

In the process of proving this, we establish several other relationships between transition semigroups
and atoms; in particular, we give sufficient conditions for alanguage to have the maximal number of
atoms, and necessary and sufficient conditions for certain individual atoms to have maximal complex-
ity. We also derive a general formula for the transition functions of “átomata” (nondeterministic finite
automata whose states correspond to the atoms of the language they recognize).

∗This work was supported by the Natural Sciences and Engineering Research Council of Canada under grant
No. OGP0000871.

152 Maximally Atomic Languages

2 Definitions and Terminology

2.1 Partially Ordered Sets

A partially ordered set(poset) is a pair(S,≤) whereS is a set and≤ is a partial order onS. A subposet
of (S,≤) is a poset(T,≤) such thatT ⊆ S. We often abbreviate(S,≤) to simplyS.

If T is a subposet ofS, then fora,b∈ S, theinterval of T betweena andb, denoted[a,b]T , is the set
of all t ∈ T such thata≤ t andt ≤ b. Note that ifb< a, then the interval[a,b]T is empty.

Let Qn = {1,2, . . . ,n}, let P= (2Qn,⊆), and letX be a subposet ofP. For each non-empty interval
[V,U]X , define thetypeof [V,U]X to be the pair of integers(|⋂[V,U]X | , |

⋃
[V,U]X |). Let the type of the

empty interval be(−1,−1).

2.2 Transformations

A transformationof a setX is a mappingt : X → X. Since we deal only with finite sets, we assume
without loss of generality thatX = Qn for somen. A permutationis an invertible (one-to-one and onto)
transformation. Asingular transformationis a non-invertible transformation.

If a transformationt mapsi to j, we say theimageof i undert is j and writet(i) = j. The image of
S⊆ Qn is t(S) = {t(i) | i ∈ S}. The image oft itself is imt = t(Qn). Thecoimageof t is coimt = im t,
whereS=Qn\S. Thepreimageof an elementi undert is t−1(i) = { j | t(j) = i}. The preimage ofS⊆Qn

undert is t−1(S) =
⋃

i∈St−1(i). The rank of a transformation is| im t|. Thecompositionor productof
two transformationssandt is s◦ t, defined by(s◦ t)(i) = s(t(i)).

A transposition(i, j) for i 6= j is a transformation such thatt(i) = j, t(j) = i, andt(ℓ) = ℓ for all
ℓ 6∈ {i, j}. A permutation isevenif it can be written as a product of an even number of transpositions and
it is oddotherwise. Aunitary transformation, denoted by(i→ j) (with i 6= j), is a transformation such
thatt(i) = j andt(ℓ) = ℓ for all ℓ 6= i.

2.3 Semigroups, Monoids, and Groups

A semigroupis a pair(S, ·), whereS is a non-empty set and· is an associative binary operation. We often
abbreviate(S, ·) to S. A monoid M= (M, ·,e) is a semigroup with identitye, and agroup G= (G, ·,e)
is a monoid in which each element has an inverse. Asubsemigroupof (S, ·) is a semigroup(T, ·) where
T ⊆ S. If (S, ·,e) and(M, ·,e) are monoids withM ⊆ S, thenM is asubmonoidof S. A subgroupof S is
a submonoidG of Ssuch thatG is a group.

The full transformation semigroupof degreen, denotedTn, is the set of all transformationst : Qn→
Qn under the binary operation◦. Note thatTn is a monoid, since the identity transformation ofQn acts as
the identity element. Thesymmetric groupof degreen, denoted bySn, is the subgroup of permutations
in Tn. A transformation semigroupof degreen is a subsemigroup ofTn, and apermutation groupof
degreen is a subgroup ofSn. A conjugateof a permutation groupG of degreen is a group of the form
{p◦g◦ p−1 | g∈G}, wherep∈ Sn.

Let G be a permutation group of degreen and letX be a set. Forx∈ X, theorbit of x underG is the
set{g(x) | g∈G}. We say thatG acts transitivelyor is transitiveon a setX if for all x,y∈ X there exists
g∈ G such thatg(x) = y, or equivalently, ifG has only one orbit when it acts onX. We sayG is k-set-
transitive if it is transitive on the set ofk-subsets (subsets of cardinalityk) of Qn. If G is k-set-transitive
for 0≤ k≤ n, we sayG is set-transitive.

J. Brzozowski & G. Davies 153

The set-transitive permutation groups have been fully classified by Beaumont and Peterson [1]. In
general, a set-transitive group is either the symmetric group Sn or the alternating groupAn (the subgroup
of even permutations inSn). Whenn is small there are four exceptions (up to conjugation):

Proposition 1. A set-transitive permutation group of degree n is Sn or An or a conjugate of one of the
following permutation groups:

1. For n= 5, the affine general linear groupAGL(1,5).

2. For n= 6, the projective general linear groupPGL(2,5).

3. For n= 9, the projective special linear groupPSL(2,8).

4. For n= 9, the projective semilinear groupPΓL(2,8).

2.4 Finite Automata

A nondeterministic finite automaton(NFA) is a tupleN = (Q,Σ,η , I ,F), whereQ is a finite, non-empty
set ofstates, Σ is a finite, non-emptyalphabet, η : Q×Σ→ 2Q is a transition function, I ⊆Q is a set of
initial states, andF ⊆ Q is a set offinal states. We extendη to η : 2Q×Σ∗→ 2Q as follows: forS⊆ Q
andw= xa, x∈ Σ∗, a∈ Σ, we defineη(S,w) inductively byη(S,ε) = Sandη(S,xa) = η(η(S,x),a) =⋃

s∈η(S,x) η(s,a). We defineηw : 2Q→ 2Q by ηw(S) = η(S,w).
A word w is acceptedby N if ηw(I)∩ F 6= /0. The language accepted byN is the set of all

words accepted byN . The language of a state q∈ Q is the language accepted by the modified NFA
Nq = (Q,Σ,η ,{q},F). For S,T ⊆ Q, we sayS is reachable from Tin N if there existsw ∈ Σ∗ such
that ηw(T) = S. If S is reachable fromI , we simply sayS is reachablein N . An NFA that accepts a
languageL is minimal if the number of states is minimal among all NFAs that acceptL.

A deterministic finite automaton(DFA) is a tupleD = (Q,Σ,δ ,q1,F), whereQ, Σ andF have the
same meaning as in an NFA,δ : Q×Σ→Q is a transition function, andq1 ∈Q is an initial state. Since
DFAs are special cases of NFAs, all the definitions above apply also to DFAs. While minimal NFAs need
not be unique, there is a unique (up to isomorphism) minimal DFA for each regular language.

For allw∈ Σ∗, δw : Q→Q is a transformation of the set of states ofD ; we call this thetransformation
induced by win D . The transition semigroupof D is the semigroup(T,◦), whereT = {δw | w∈ Σ+}.
This is the semigroup of transformations ofQ induced by non-empty words overΣ in D .

For an NFAN = (Q,Σ,η , I ,F), define thereverseof N to be the NFAN R = (Q,Σ,ηR,F, I),
whereηR(q,a) = {p∈ Q | q∈ η(p,a)}. Note that ifN = D is a DFA with transition functionδ , then
δw is a transformation and we haveδ R

w = δ−1
w . Define thedeterminizationof an NFAN to be the DFA

N D = (Q′,Σ,ηD, I ,F ′), whereQ′ = {S∈ 2Q | S is reachable inN }, F ′ = {S∈ Q′ | S∩F 6= /0}, and
ηD(S,a) =

⋃
s∈Sη(s,a).

2.5 Languages, Quotients, and Atoms

Let L be a regular language over the alphabetΣ and letD = (Qn,Σ,δ ,q1,F) be the minimal DFA of
L. The left quotient(or simply quotient) of L by the wordw ∈ Σ∗ is w−1L = {x | wx∈ L}. There is a
one-to-one correspondence between quotients ofL and states of the minimal DFA ofL: the languages
of distinct states ofD are distinct quotients ofL. We use the following convention when discussing
quotients ofL: the set of quotients is{K1,K2, . . . ,Kn}, whereKi is the language of statei of D . Due
to the one-to-one correspondence between states and quotients, thecomplexityof L can be equivalently
defined as the number of states in the minimal DFA ofL (state complexity) or the number of distinct
quotients ofL (quotient complexity).

154 Maximally Atomic Languages

From now on we deal with non-empty languages only. Denote thecomplement of a languageL by
L = Σ∗ \ L. For S⊆ Qn, let AS denote the intersection

⋂
i∈SKi ∩

⋂
i∈SKi. If AS is non-empty, thenAS

is called anatomof L. Let A be the set of all atoms ofL. The atom mapφ : A → 2Qn is defined by
φ(AS) = S. This map is well-defined, since for each atomA there is precisely one subsetS of Qn such
thatAS= A. Thebasisof an atomA is B(A) = {Ki | i ∈ φ(A)}.

The átomatonof L is the NFAA = (A,Σ,η , I ,F), whereη(Ai,a) = {A j | aAj ⊆ Ai}, I = {A∈ A |
q1 ∈ φ(A)}, andF = {A∈ A | ε ∈ A}. Note that the initial atoms are those that containL in their bases.
Also, there is precisely one final atom: the atom for which allthe quotients in its basis containε and all
other quotients do not. The language of stateA of A is the atomA [4].

Theatomic posetof L is φ(A) = (φ(A),⊆); this is the set of all subsetsSof Qn such thatAS is an
atom. Anatomic intervalof L is an interval inφ(A), that is, an interval of the form[V,U]φ(A). We denote
an atomic interval using double brackets, since this makes the notation cleaner: we write[[V,U]] instead
of [V,U]φ(A). Sinceφ(A) is a subposet of(2Qn,⊆), any two subsets ofQn can act as endpoints of an
atomic interval. Furthermore, every atomic interval[[V,U]] has an associated type(v,u), as defined in
the section on posets.

Note that, if[[V,U]] contains both of its endpoints (i.e.,V,U ∈ [[V,U]]), then the type of[[V,U]] is
(|V|, |U |). However, we cannot always use the sizes of the endpoints to determine the type of an interval,
since there may be multiple ways to choose the endpoints of aninterval. For example, ifA{1} is an atom
but A/0 andA{1,2} are not, then[[{1},{1}]] = [[/0,{1}]] = [[{1},{1,2}]] = {{1}}. But this interval has
type(1,1), not (0,1) or (1,2).

Some basic facts about atoms and átomata follow. The following proposition, proved in [3], shows
that we may view the states ofA as subsets ofQn:

Proposition 2. Let L be a regular language with́atomatonA and minimal DFAD . Then the atom map
φ is an NFA isomorphism betweenA andDRDR.

The next proposition relates the number of atoms ofL to the complexity of the reverseLR. The proof
follows easily from Proposition 2.

Proposition 3 (Number of Atoms). Let L be a regular language with complexity n, and let the minimal
DFA of L beD = (Qn,Σ,δ ,q1,F). Then for S⊆ Qn, the intersection AS is an atom of L if and only if S
is reachable inDR, i.e, if and only if there exists w∈ Σ∗ such thatδ−1

w (F) = S. Thus there is a bijection
between atoms of L and states ofDRD, the minimal DFA of LR.

It is well-known that if the complexity ofL is n, then the complexity ofLR is at most 2n, and for
n≥ 2 this bound is tight. Thus 2n is also a tight bound on the number of atoms of a regular language
whenn≥ 2.

In [3], a tight upper bound on the complexity of individual atoms was derived and a formula for the
bound was given. We give a different (but equivalent) formula below:

Proposition 4 (Complexity of Atoms). Let L be a regular language with complexity n. Define the
functionΨ as follows:

Ψ(n,k) =

{
2n−1, if k = 0 or k= n;

1+∑k
v=1 ∑n−1

u=k

(n
u

)(u
v

)
, if 1≤ k≤ n−1.

If AS is an atom of L,Ψ(n, |S|) is a tight upper bound on the complexity of AS.

With these bounds established, we can formally define the class of maximally atomic languages.
A non-empty regular languageL of complexityn is maximally atomicif it has the maximal number of
atoms (1 ifn= 1, 2n if n≥ 2) and if for each atomAS of L, AS has the maximal complexityΨ(n, |S|).

J. Brzozowski & G. Davies 155

3 Main Results

Note that whenn = 1, the only nonempty language overΣ is Σ∗, and it is maximally atomic. The
following proposition characterizes the maximally atomiclanguages of complexityn= 2:

Proposition 5. Let L be a regular language of complexity2 and letD be its minimal DFA with state set
Q2. Let T be the transition semigroup ofD . Then:

• There are four transformations of Q2: the identity transformation, the transposition(1,2), and the
unitary transformations(1→ 2) and(2→ 1).

• T contains all four transformations of Q2 if and only if T contains(1,2) and at least one unitary
transformation.

• All subsets of Q2 are reachable inDR (and hence L has all22 atoms) if and only if T contains all
four transformations of Q2.

• Each atom of L has maximal complexity if and only if T containsall four transformations of Q2.

• Thus, L is maximally atomic if and only if T contains all four transformations of Q2.

The computations required to prove this proposition can be easily done by hand. Henceforth we will
be concerned only with languages of complexityn≥ 3.

Our main theorem is the following:

Theorem 1. Let L be a regular language overΣ with complexity n≥ 3, and let T be the transition semi-
group of the minimal DFA of L. Then L is maximally atomic if andonly if the subgroup of permutations
in T is set-transitive and T contains a transformation of rank n−1.

In view of this, let us consider how the class of maximally atomic languages relates to other lan-
guage classes. LetFTS denote the class of languages whose minimal DFAs have thefull transformation
semigroupas their transition semigroup, letSTSdenote the class whose minimal DFAs have transition
semigroups with aset-transitive subgroupof permutations and a transformation of rankn−1, letMAL
denote the class ofmaximally atomic languages, letMNA denote the class of languages with themaximal
number of atoms, and letMCR denote the class of languages with amaximally complex reverse.

1. FTS is properly contained inSTS, by Proposition 1.

2. STS is equal toMAL , by Theorem 1.

3. MAL is contained inMNA . Figure 1 in [2] shows the containment is proper.

4. MNA is equal toMCR , by Proposition 3.

To summarize, we have:FTS⊂ STS= MAL ⊂MNA = MCR .
The proof of Theorem 1 relies on two intermediate results. The first gives a condition that is sufficient

(but not necessary) forL to have 2n atoms:

Theorem 2. Let L be a regular language overΣ with complexity n≥ 3, and let T be the transition
semigroup of the minimal DFA of L. If T contains all unitary transformations, then L has2n atoms.

The second result establishes Theorem 1 in all but a few cases; it gives necessary and sufficient
conditions for individual atoms ofL to have maximal complexity, but only when the bases of the atoms
are in a certain size range.

Theorem 3. Let L be a regular language overΣ with complexity n≥ 3, and let T be the transition
semigroup of the minimal DFA of L. Let AS be an atom of L and suppose that either n≥ 4 and 2≤
|S| ≤ n− 2, or n= 3 and 1≤ |S| ≤ 2. Then AS has maximal complexity if and only if the subgroup of
permutations in T is|S|-set-transitive and T contains a transformation of rank n−1.

156 Maximally Atomic Languages

The rest of the paper consists of the proofs of these three theorems. Shortly before the deadline for
this paper, we were informed that the proof of our main resultcan be simplified by replacing the átomaton
with a different construction [5]. Below we present our original proofs, which use the átomaton.

4 Proof of Theorem 2

Let L be a language of complexityn≥ 3 and letD = (Qn,Σ,δ ,q1,F) be its minimal DFA. LetT be
the transition semigroup ofD and assume it contains all unitary transformations. By Proposition 3,
L has 2n atoms if and only if for allS⊆ Qn, S is reachable inDR, i.e., there existsw ∈ Σ∗ such that
δ R

w(F) = δ−1
w (F) = S.

SupposeX ⊆Qn, with 1≤ |X| ≤ n−1. Lett = (i→ j) ands= (i→ k) for i ∈Qn, j ∈ X, k 6∈ X; then
t−1(X) = X∪{i} ands−1(X) = X \{i}. SinceT contains all unitary transformations, it containst ands.
Thus for every non-emptyX ⊂Qn and everyi ∈Qn, there are wordsw,x∈ Σ∗ such thatδ−1

w (X) =X∪{i}
andδ−1

x (X) = X \{i}.
In other words, from any non-empty proper subsetX of Qn, we can reach (inDR) all subsets that

differ from X by the addition or removal of a single element. Repeatedly applying this fact, we see that
from X we can reach any subsetSof Qn: shrinkX to a singleton{i} ⊆ X, expand{i} to {i, j} for j ∈ S,
shrink again to{ j} ⊆ S, and then expand toS(or shrink to /0 forS= /0).

Now, if |F | = 0 thenL = /0, and if |F | = n thenL = Σ∗; sinceD is minimal, n = 1 in either case.
Sincen≥ 3, we have thatF is a non-empty proper subset ofQn. Thus by the argument above, we can
reach all subsets ofQn in DR; henceL has 2n atoms.

5 Proof of Theorem 3

5.1 TheÁtomaton and Minimal DFAs of Atoms

In this section we prove the⇒ direction of Theorem 3. Two results on átomata and atoms areneeded for
this. We first describe the transition function of the átomaton, in the case where the states are viewed as
subsets ofQn. Define∆w : 2Qn → 2Qn by ∆w(S) = δw(S) = Qn\δw(Qn\S).

Lemma 1. Let L be a regular language overΣ. LetD = (Qn,Σ,δ ,q1,F) be the minimal DFA of L. Let
A be theátomaton of L with transition functionη . If [[V,U]] is an atomic interval of L and a set of states
of A , then for all w∈ Σ∗, we haveηw([[V,U]]) = [[δw(V),∆w(U)]].

Proof. It was shown in [3] thatηa(S)= {T |AT is an atom ofL, T ⊇ δa(S) andδa(S)∩T = /0}. If δa(S)∩
T = /0, thenT ⊆ δa(S) = ∆a(S). Thusηa(S) is the set ofT ⊆ Qn such thatAT is an atom ofL and
δa(S) ⊆ T ⊆ ∆a(S), which is precisely[[δa(S),∆a(S)]]. One verifies that this can be extended to words,
giving ηw(S) = [[δw(S),∆w(S)]].

Next, we want to showηw([[V,U]]) = [[δw(V),∆w(U)]]. For T ∈ [[V,U]], considerηw(T). Since
V ⊆ T, δw(V)⊆ δw(T). SinceT ⊆U , we haveT ⊇U , and thusδw(T)⊇ δw(U). It follows that∆w(T)⊆
∆w(U). Henceηw(T) = [[δw(T),∆w(T)]]⊆ [[δw(V),∆w(U)]], andηw([[V,U]]) ⊆ [[δw(V),∆w(U)]].

For containment in the other direction, suppose thatT is in [[δw(V),∆w(U)]]; then δw(V) ⊆ T ⊆
∆w(U) and AT is an atom. LetS= δ−1

w (T); then we claimS∈ [[V,U]]. SinceT ⊇ δw(V), we have
δ−1

w (T) = S⊇V. If i ∈ T ⊆ ∆w(U), theni 6∈ δw(U). Henceδ−1
w (i) is disjoint fromU for all i ∈ T, and

so δ−1
w (T) is disjoint fromU . It follows thatδ−1

w (T) = S⊆U . It remains to showAS is an atom; but

J. Brzozowski & G. Davies 157

sinceAT is an atom, by Proposition 3, there existsx ∈ Σ∗ such thatδ−1
x (F) = T. ThusS= δ−1

w (T) =
δ−1

w (δ−1
x (F)) = δ−1

xw (F), so by Proposition 3,AS is also an atom.
HenceS∈ [[V,U]], and it follows thatηw(S) = [[T,∆w(S)]] ⊆ ηw([[V,U]]). To complete the proof,

we must showηw(S) is non-empty (and thus containsT) by showing thatT ⊆ ∆w(S) = δw(δ−1
w (T)).

Observe that ifi ∈ T, thenδ−1
w (i)⊆ δ−1

w (T). Thusδ−1
w (i)∩δ−1

w (T) = /0, and soi 6∈ δw(δ−1
w (T)), which

givesi ∈ ∆w(S) as required. ThusT ∈ ηw(S) = [[T,∆w(S)]], and it follows that ifT ∈ [[δw(V),∆w(U)]],
thenT ∈ ηw([[V,U]]). This proves that the two intervals must be equal.

Table 1:D .

δ a

→ 1 2

← 2 3

← 3 4

4 4

Table 2:DR.

δ R a

← 1

→ 2 {1}
→ 3 {2}

4 {3,4}

Table 3:DRD.

δ RD a

→ {2,3} {1,2}
← {1,2} {1}
← {1} /0

/0 /0

Table 4:A .

η a

← {2,3}
→ {1,2} {{2,3}}
→ {1} {{1,2}}

/0 { /0,{1}}

Example1. The minimal DFAD of Table 1 accepts the language{a,aa}. The NFADR is in Table 2 and
the DFADRD, in Table 3. The átomatonA is in Table 4. In NFAsDR andA , a blank in an entry(q,a)
indicates that there is no transition fromq undera. However, when determinization is used in Table 3,
the empty set of states ofDR becomes a state of the resulting DFADRD. A right arrow (→) indicates an
initial state and a left arrow (←) indicates a final state.

Consider the atomic interval[[/0,{1,2}]] = { /0,{1},{1,2}}; we haveδa(/0) = /0, and∆a({1,2}) =
δa({1,2}) = δa({3,4}) = {4} = {1,2,3}. Thus to determine the result ofηa([[/0,{1,2}]]), we take the
interval [/0,{1,2,3}]2Q4 = { /0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} and we remove the sets that
do not represent atoms. After this removal, we get{ /0,{1},{1,2},{2,3}}. Henceηa({ /0,{1},{1,2}}) =
ηa([[/0,{1,2}]]) = [[/0,{1,2,3}]] = { /0,{1},{1,2},{2,3}}. �

Remark1. If we treat the set of states ofA as a subset of 2Qn, then it is possible that the empty set is a
state ofA , as in Example 1. Since we use the same symbol forη and its extension to subsets of states,
an ambiguity arises whenη is applied to the empty set. Specifically,ηw(/0) may mean “ηw applied to
the state /0∈ 2Qn”, in which caseηw(/0) = ηw([[/0, /0]]) = [[/0,coimδw]], or it may mean “ηw applied to
the empty subset of states /0⊆ 2Qn”, in which caseηw(/0) = /0. We avoid this ambiguity by adopting the
convention thatηw(/0) always means “ηw applied to /0⊆ 2Qn” and ηw([[/0, /0]]) has the other meaning.

A corollary of this is that every reachable subset of states in the átomatonA = (A,Σ,η , I ,F)
is an atomic interval ofL. The same holds for every reachable subset of states in the NFA AS =
(A,Σ,η ,{S},F) recognizing the atomAS. Since the determinizationA D

S is the minimal DFA ofAS [3],
it follows that the states of minimal DFAs of atoms of L may be represented as atomic intervals of L.

If AS is an atom ofL with maximal complexity, certain restrictions apply to thetypesof the atomic
intervals inA D

S . ForS⊆Qn, define anS-typeto be a pair of integers(v,u) satisfying:

1. If |S|= 0, thenv= 0 and 0≤ u≤ n−1.

2. If |S|= n, then 1≤ v≤ n andu= n.

3. If 1≤ |S| ≤ n−1, then 1≤ v≤ |S| and|S| ≤ u≤ n−1.

158 Maximally Atomic Languages

A non-empty interval that has anS-type is called anS-interval. The empty interval is a special case: it is
anS-interval if and only if 1≤ |S| ≤ n−1. The significance ofS-types andS-intervals is as follows:

Lemma 2. Let L be a regular language with complexity n and let AS be an atom of L. If AS has maximal
complexityΨ(n, |S|), then the set of states ofA D

S equals the set of atomic S-intervals of L.

Proof. A simple counting argument shows that the number of intervals of type(v,u) in a subposet of
P = (2Qn,⊆) is bounded from above by

(n
u

)(u
v

)
. Combining this fact with the definition of anS-type

gives thatΨ(n, |S|) is an upper bound on the number ofS-intervals in a subposet ofP. Now, we know
thatA D

S has exactlyΨ(n, |S|) states; if we show that these states are all atomicS-intervals ofL, then this
implies the state set ofA D

S contains exactlyΨ(n, |S|) distinct atomicS-intervals ofL, and nothing else.
Since the atomic poset ofL is a subposet ofP, there can be no more thanΨ(n, |S|) atomicS-intervals of
L, and this proves the result. Thus we just need to show that every state ofA D

S is anS-interval.
Let [[V,U]] be a state ofA D

S and suppose[[δw(S),∆w(S)]] = [[V,U]]. If [[V,U]] is the empty interval,
then it is automatically anS-interval for 1≤ |S| ≤ n−1, by definition. For|S| = 0 or |S|= n, the empty
interval is not anS-interval, but this does not matter since it is not reachablein A D

S . In the|S|= 0 case,
a state ofA D

S has the form[[δw(/0),∆w(/0)]] = [[/0,coimδw]], which always contains /0 (sinceAS= A/0 is
an atom); thus every state ofA D

S is a non-empty interval. For|S|= n, a similar argument works.
Next, suppose[[V,U]] is non-empty. For this case, some setup is needed. Define the set XS =

{[δw(S),∆w(S)]P | w∈ Σ∗} of intervals inP. One can verify that(|δw(S)|, |∆w(S)|) is anS-type for allS
andw, and thusXS is a set ofS-intervals ofP. This means|XS| is bounded from above byΨ(n, |S|). Now,
let YS = {[[δw(S),∆w(S)]] | w ∈ Σ∗}; this is just the set of states ofA D

S , and thus it has sizeΨ(n, |S|).
Defineα : XS→YS by α([X,Y]P) = [[X,Y]]; this is clearly a surjection, and thus|XS| ≥ |YS|= Ψ(n, |S|).
Since we also have|XS| ≤Ψ(n, |S|), we get|XS|= |YS|= Ψ(n, |S|) and henceα is a bijection.

Now, assume without loss of generality that the type of[[V,U]] is (|V|, |U |). Suppose for a contra-
diction that|V| > |S|. Then since[[V,U]] = [[δw(S),∆w(S)]], we haveδw(S) ⊂ V. We can find a setX
such that|X| = |S| andδw(S) ⊆ X ⊂V. Now, sinceδw(S) ⊆ X ⊆ ∆w(S), we haveX ∈ [[δw(S),∆w(S)]]
if and only if AX is an atom. ButX 6∈ [[V,U]] sinceX ⊂V, and thusAX is not an atom. It follows that
the interval[[X,X]] is empty. If|S|= 0 or |S|= n, then in fact|S|= |X| and[[S,S]] is clearly non-empty,
a contradiction. If 1≤ |S| ≤ n− 1, observe thatα([X,X]P) = [[X,X]] = /0. But /0∈ XS since /0 is an
S-interval ofP for 1≤ |S| ≤ n−1, so alsoα(/0) = /0. This is a contradiction, sinceα is a bijection. Thus
for Sof any size, we always have|V| ≤ |S|. A similar argument to the above shows that|U | ≥ |S|.

Thus, if |S| = 0 we have|V| = 0 and 0≤ |U | ≤ |∆w(S)| = n−1. If |S| = n we have 1≤ |δw(S)| ≤
|V| ≤ n and|U |= n. If 1 ≤ |S| ≤ n−1, then 1≤ |V| ≤ |S| and|S| ≤ |U | ≤ n−1. Thus we have proved
(|V|, |U |) is anS-type. Hence every state[[V,U]] of A D

S is an atomicS-interval ofL, and the number of
states equals the upper boundΨ(n, |S|) on the number of atomicS-intervals ofL, proving the lemma.

Lemma 2 has two particularly useful consequences. LetAS be an atom of maximal complexity, and
supposeV,U ⊆Qn are sets such that(|V|, |U |) is anS-type. Then:

1. [[V,U]] has type(|V|, |U |). In particular, this means[[V,U]] contains its endpointsV andU .

2. [[V,U]] is a state ofA D
S .

(1) follows since(|V|, |U |) is anS-type, and so if[[V,U]] does not have type(|V|, |U |), the number of
atomicS-intervals of type(|V|, |U |) is not maximal and henceAS is not maximally complex. (2) follows
since if[[V,U]] has theS-type(|V|, |U |), it is an atomicS-interval and thus a state ofA D

S .
These facts are sufficient to prove one direction of Theorem 3:

J. Brzozowski & G. Davies 159

Theorem 3 (⇒ Direction). Let L be a language of complexityn≥ 3, letT be the transition semigroup of
the minimal DFA ofL, and letAS be an atom ofL. Suppose eithern= 3 and 1≤ |S| ≤ 2, or n≥ 4 and
2≤ |S| ≤ n−2. We prove that ifAS has maximal complexity, then the subgroup of permutations in T is
|S|-set-transitive andT contains a transformation of rankn−1.

The minimal DFA ofAS is A D
S , and its initial state is[[S,S]]. For all X ⊆ Qn with |X| = |S|,

(|X|, |X|) is anS-type. Thus by Lemma 2,[[X,X]] is a state ofA D
S of type(|X|, |X|). Thusηw([[S,S]]) =

[[δw(S),∆w(S)]] = [[X,X]] for somew∈Σ∗. Applying Lemma 2 again gives(|δw(S)|, |∆w(S)|)= (|X|, |X|).
Hence|X|= |δw(S)|= |S|, and soδw ∈ T is a permutation. It follows for allX ⊆Qn with |X|= |S|, there
is a permutation that sendsSto X; thus the subgroup of permutations inT is |S|-set-transitive.

Now, let δw ∈ T have rankn− k and consider[[δw(S),∆w(S)]]. By Lemma 2 this interval has type
(|δw(S)|, |∆w(S)|), so it is a non-empty interval. This impliesδw(S) andδw(S) are disjoint. It follows that
| imδw|= |δw(Qn)|= |δw(S)|+ |δw(S)|. Since the rank ofδw is n−k, |δw(S)| = (n−k)−|δw(S)|. Thus
|∆w(S)|= n− (n−k−|δw(S)|) = |δw(S)|+k, which gives|∆w(S)|− |δw(S)|= k.

Consider[[S,S∪{i}]] for i 6∈ S. Since(|S|, |S|+1) is anS-type, by Lemma 2 this interval is reachable
in A D

S . Thus there is aδw ∈ T such that(|δw(S)|, |∆w(S)|) = (|S|, |S|+1). By the argument above, this
δw must have rankn− (|∆w(S)|− |δw(S)|) = n−1. HenceT contains a transformation of rankn−1.

5.2 Semigroups and Groups

To prove the other direction of Theorem 3, we use some resultsfrom semigroup and group theory. The
first is a result of Livingstone and Wagner [6]:

Proposition 6. Let G be a permutation group of degree n≥ 4. If 2≤ k≤ n
2, then the number of orbits

when G acts on k-subsets of Qn is at least the number of orbits when G acts on(k−1)-subsets of Qn.

Using this proposition, we can easily prove

Lemma 3. Let G be a k-set-transitive permutation group of degree n≥ 4 and suppose2≤ k≤ n
2. Then:

1. G is(n−k)-set-transitive.

2. G isℓ-set-transitive for eachℓ such that0≤ ℓ≤ k or n−k≤ ℓ≤ n.

Proof. (1): SupposeG is k-set-transitive. IfU andV are (n− k)-subsets ofQn, thenU andV arek-
subsets, and there exists a permutationp∈ G mappingU to V. But if p mapsU to V, then it mapsU to
V; thusG can map any(n−k)-subset to any other(n−k)-subset, and so is(n−k)-set-transitive.

(2): SupposeG is k-set-transitive and 2≤ k≤ n
2. Then there is one orbit whenG acts onk-subsets.

By Proposition 6, there is one orbit whenG acts on(k− 1)-subsets. This impliesG is (k− 1)-set-
transitive. Repeating this argument we conclude thatG is ℓ-set-transitive for 0≤ ℓ≤ k. By (1), G is also
ℓ-set-transitive forn−k≤ ℓ≤ n.

Note that forn= 3, a permutation group of degree 3 is set-transitive if and only if it is transitive.
The second result we use is a theorem of Ruškuc, published byMcAlister [7]:

Proposition 7. Let G be a permutation group of degree n≥ 3 and let t: Qn→ Qn be a unitary trans-
formation. Let T be the transformation semigroup generatedby G∪{t}. Then T contains all singular
transformations if and only if G is 2-set-transitive.

We can use this to prove the following lemma:

Lemma 4. Let G be a 2-set-transitive permutation group of degree n≥ 3 and let t: Qn→ Qn be a
transformation of rank n− 1. Then the transformation semigroup T generated by G∪{t} contains all
singular transformations.

160 Maximally Atomic Languages

Proof. By Proposition 7, ifG is 2-set-transitive andt is a unitary transformation, thenT contains all
singular transformations. Thus it suffices to show that ift is any transformation of rankn− 1, then
G∪{t} generates a unitary transformation.

For each transformations: Qn→ Qn, we define a set of tuples calleds-paths. For k ≥ 2, a tuple
(i1, . . . , ik) of distinct elements ofQn is ans-path of length kif s(i j) = i j+1 for 1≤ j < k ands(ik) = iℓ for
someℓ < k. An s-path(i1, . . . , ik) is incompleteif there existsa in Qn such that(a, i1, . . . , ik) is ans-path,
andcompleteotherwise. Ans-path(i1, . . . , ik) is cyclic if s(ik) = i1 andacyclicotherwise. The element
i1 of the acyclics-path(i1, . . . , ik) is called thehead.

Let t be a transformation of rankn−1, and consider thet-paths. If at-path is complete and acyclic,
its head must be an element of coimt. Sincet has rankn−1, |coimt| = 1, and so there is precisely one
complete acyclict-path. Let(a1, . . . ,ak) be that complete acyclict-path, and supposet(ak) = aℓ.

SinceG is 2-set-transitive, it is 1-set-transitive by Lemma 3. Thus there exists a permutationp∈ G
with p(a1) = aℓ−1. Let pt = p◦ t, and considerpt-paths. Sincept has rankn− 1, there is only one
complete acyclicpt-path; the head of this path must beaℓ−1, since coimpt = {aℓ−1}. Observe that
pt(ak) = p(t(ak)) = p(aℓ) = p(t(aℓ−1)) = pt(aℓ−1); it follows that(aℓ−1, p(aℓ), pt(p(aℓ)), . . . ,ak) is the
complete acyclicpt-path.

Now, let n be the product of the lengths of all the complete cyclicpt-paths and the incomplete
cyclic pt-path(p(aℓ), pt(p(a, ℓ)), . . . ,ak). Then we have(pt)n = (aℓ−1→ (pt)n(aℓ−1)), where(pt)n is
pt composed with itselfn times. This proves thatT must contain all singular transformations, since it is
2-set-transitive and contains a unitary transformation.

These results are sufficient to prove the other direction of Theorem 3:

Theorem 3 (⇐ Direction). Let L be a language of complexityn≥ 3, letT be the transition semigroup of
the minimal DFA ofL, and letAS be an atom ofL. Suppose eithern= 3 and 1≤ |S| ≤ 2, or n≥ 4 and
2≤ |S| ≤ n−2. We prove that if the subgroup of permutations inT is |S|-set-transitive andT contains a
transformation of rankn−1, thenAS has maximal complexity.

By Lemmas 3 and 4,T contains all singular transformations. By Theorem 2,L has 2n atoms. From
the proof of Lemma 2,Ψ(n, |S|) is a tight bound on the number ofS-intervals in the atomic poset ofL.
SinceL has 2n atoms (the maximal possible), the number of atomicS-intervals ofL meets the bound
Ψ(n, |S|). It remains to show that all these intervals are reachable inthe minimal DFAA D

S of AS. From
the inital state[[S,S]] of A D

S , we can reach the empty interval by(i→ j) wherei ∈ Sand j 6∈ S; thus it
suffices to consider non-empty intervals.

Let [[V,U]] be a non-empty atomicS-interval ofL with type(|V|, |U |). By the definition of an atomic
S-interval, 1≤ |V| ≤ |S| and|S| ≤ |U | ≤ n−1 andV ⊆U . Thus there exists a setX such that|X|= |S|
andV ⊆ X ⊆U . Since the subgroup of permutations inT is |S|-set-transitive, there is a permutation
δw ∈ T that sendsS to X; thusηw([[S,S]]) = [[X,X]]. If V = X =U , we are done, so assume thatV ⊂ X
or X ⊂U . If V ⊂ X and |V| ≥ 2, we can shrink the lower bound of[[X,X]] as follows: select distinct
i, j ∈Qn such thati ∈X\V and j ∈V. SinceT contains all unitary transformations, there is aδx∈ T such
thatδx = (i→ j). Sincei 6∈X, δx(X) =X and thus∆x(X) =X. It follows thatηx([[X,X]]) = [[X\{i},X]].
Repeating this process, we can reach[[V,X]] for all V with 1≤ |V| ≤ |S|. By a similar process, we can
repeatedly enlarge the upper bound of[[V,X]] to reach[[V,U]]. Thus allΨ(n, |S|) atomicS-intervals ofL
are reachable inA D

S . By Lemma 2,AS has maximal complexity.

Remark2. The proof above works for the|S|= 1 and|S| = n−1 cases if we assume thatT contains all
unitary transformations, rather than only assuming it contains some transformation of rankn−1.

J. Brzozowski & G. Davies 161

6 Proof of Theorem 1

Having proved Theorems 2 and 3, we need only a bit more work to prove our main theorem.
Let L be a language with complexityn≥ 3 and letT be the transition semigroup of the minimal

DFA of L. If L is maximally atomic, then by Theorem 3 and Lemma 3, the subgroup of permutations
in T is k-set-transitive for 1≤ k≤ n−1, and hence is set-transitive; also, by Theorem 3,T contains a
transformation of rankn−1. This proves one direction of the theorem.

For the other direction, suppose the subgroup of permutations in T is set-transitive and contains a
transformation of rankn−1. By Theorem 2,L has 2n atoms. By Theorem 3, ifn≥ 4 and 2≤ |S| ≤ n−2
or n = 3 and 1≤ |S| ≤ 2, thenAS has maximal complexity. By Lemma 4,T contains all singular
transformations and hence all unitary transformations; soby Remark 2,AS has maximal complexity if
|S|= 1 or |S|= n−1. The only remaining cases are|S|= 0 and|S|= n.

Let A D
S be the minimal DFA ofAS. By Lemma 2, to show thatAS has maximal complexity, it suffices

to show that all atomicS-intervals ofL are reachable inA D
S . If |S| = 0, thenS= /0, and the atomic /0-

intervals ofL are those with type(0, i) where 0≤ i ≤ n− 1. The initial state ofA D
/0 is [[/0, /0]]; thus a

reachable state looks like[[δw(/0),∆w(/0)]] = [[/0,coimδw]] for somew∈ Σ∗.
SinceT contains all singular transformations, for allU ⊂Qn, there existst ∈ T such that coimt =U .

Hence for allU ⊂ Qn, [[/0,U]] is reachable inA D
/0 . Thus all intervals of type(0, i) are reachable, for

0≤ i ≤ n−1. By Lemma 2,A/0 has maximal complexity. By a similar argument, when|S|= n, the atom
AQn has maximal complexity. Thus all 2n atoms have maximal complexity; this completes the proof.

7 Conclusions

We have defined a new class of regular languages – the maximally atomic languages – and proven that
a language of complexityn is maximally atomic if and only if the transition semigroup of its minimal
DFA is set-transitive and contains a transformation of rankn− 1. Since the set-transitive groups have
been fully classified, it is easy to construct examples of maximally atomic languages and study them. We
have also derived a formula for the transition functions of ´atomata and minimal DFAs of atoms.

Acknowledgements:We thank a referee for giving many suggestions to improve ourproofs.

References

[1] Ross A. Beaumont & Raymond P. Peterson (1955):Set-transitive permutation groups. Canadian Journal of
Mathematics7, pp. 35–42, doi:10.4153/CJM-1955-005-x.

[2] Janusz Brzozowski & Gareth Davies (2013):Maximal Syntactic Complexity of Regular Languages Implies
Maximal Quotient Complexities of Atoms. Available athttp://arxiv.org/abs/1302.3906.

[3] Janusz Brzozowski & Hellis Tamm (2013):Complexity of Atoms of Regular Languages. Int. J. Found. Comput.
Sci.24(7), pp. 1009–1027, doi:10.1142/S0129054113400285.

[4] Janusz Brzozowski & Hellis Tamm (2014): Theory of Átomata. Theoret. Comput. Sci.,
doi:10.1016/j.tcs.2014.04.016. In press.

[5] Szabolcs Iván (2014):Handle Atoms with Care. Available athttp://arxiv.org/abs/1404.6632.

[6] Donald Livingstone & Ascher Wagner (1965):Transitivity of finite permutation groups on unordered sets.
Mathematische Zeitschrift90(5), pp. 393–403, doi:10.1007/BF01112361.

[7] Donald B. McAlister (1998):Semigroups generated by a group and an idempotent. Communications in
Algebra26(2), pp. 243–254, doi:10.1080/00927879808826145.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 162–173, doi:10.4204/EPTCS.151.11

c© Cezar Câmpeanu
This work is licensed under the
Creative Commons Attribution License.

Simplifying Nondeterministic Finite Cover Automata

Cezar Câmpeanu
Department of Computer Science and Information Technology,

The University of Prince Edward Island, Canada

ccampeanu@upei.ca

The concept of Deterministic Finite Cover Automata (DFCA) was introduced at WIA ’98, as a more
compact representation than Deterministic Finite Automata (DFA) for finite languages. In some
cases representing a finite language, Nondeterministic Finite Automata (NFA) may significantly re-
duce the number of states used. The combined power of the succinctness of the representation of
finite languages using both cover languages and non-determinism has been suggested, but never sys-
tematically studied. In the present paper, for nondeterministic finite cover automata (NFCA) and
l -nondeterministic finite cover automaton (l -NFCA), we show that minimization can be as hard as
minimizing NFAs for regular languages, even in the case of NFCAs using unary alphabets. More-
over, we show how we can adapt the methods used to reduce, or minimize the size of NFAs/DFCAs/l -
DFCAs, for simplifying NFCAs/l -NFCAs.

1 Introduction

The race to find more compact representation for finite languages was started in 1959, when Michael O.
Rabin and Dana Scott introduced the notion of Nondeterministic Finite Automata, and showed that the
equivalent Deterministic Finite Automaton can be, in termsof number of states, exponential larger than
the NFA. Since, it was proved in [25] that we can obtain a polynomial algorithm for minimizing DFAs,
and in [16] was proved that anO(nlogn) algorithm exists. In the meantime, several heuristic approaches
have been proposed to reduce the size of NFAs [2, 18], but it was proved by Jiang and Ravikumar [19]
that NFA minimization problems are hard; even in case of regular languages over a one letter alphabet,
the minimization is NP-complete [10, 19].

On the other hand, in case of finite languages, we can obtain minimizing algorithms [22, 26] that are
in the order ofO(n), wheren is the number of states of the original DFA. In [4, 6, 21] it hasbeen shown
that using Deterministic Finite Cover Automata to represent finite languages, we have minimization
algorithms as efficient as the best known algorithm for minimizing DFAs for regular languages.

The study of the state complexity of operations on regular languages was initiated by Maslov in 1970
[22, 23], but has not become a subject of systematic study until 1992 [27]. The special case of state
complexity of operations on finite languages was studied in [5].

Nondeterministic state complexity of regular languages was also subject of interest, for example in
[12, 13, 14, 15]. To find lower bounds for the nondeterministic state complexity of regular languages,
the fooling set technique, or the extended fooling set technique may be used [3, 9, 10].

In this paper we show that NFCA state complexity for a finite languageL can be exponentially lower
than NFA or DFCA state complexity of the same language. We modify the fooling set technique for cover
automata, to help us prove lower bounds for NFCA state complexity in section 3. We also show that the
(extended) fooling set technique is not optimal, as we have minimal NFCAs with arbitrary number of
states, and the largest fooling set has constant size. In section 4 we show that minimizing NFCAs is
hard, and in section 5 we show that heuristic approaches for minimizing DFAs or NFAs need a special

Cezar Câmpeanu 163

treatment when applied to NFCAs, as many results valid for the DFCAs are no longer true for NFCAs.
In section 6, we formulate a few open problems and future research directions.

2 Notations and definitions

The number of elements of a setT is denoted by #T. In caseΣ is an alphabet, i.e, finite non-empty
set, the free monoid generated byΣ is Σ∗, and it is the set of all words overΣ. The length of a word
w= w1w2 . . .wn, n≥ 0, wi ∈ Σ, 1≤ i ≤ n, is |w|= n. The set of words of length equal tol is Σl , the set
of words of length less than or equal tol is denoted byΣ≤l . In a similar fashion, we defineΣ≥l , Σ<l , or
Σ>l . A finite automaton is a structureA= (Q,Σ,δ ,q0,F), whereQ is a finite non-empty set called the
set of states,Σ is an alphabet,q0 ∈ Q, F ⊆ Q is the set of final states, andδ is the transition function. For
delta, we distinguish the following cases:

• if δ : Q×Σ ◦−→ Q, the automaton is deterministic; in caseδ is always defined, the automaton is
complete, otherwise it is incomplete;

• if δ : Q×Σ −→ 2Q, the automaton is non-deterministic.

The language accepted by an automaton is defined by:L(A) = {w ∈ Σ∗ | δ ({q0},w)∩F 6= /0}, where
δ (S,w) is defined as follows:

δ (S,ε) = S,

δ (S,wa) =
⋃

q∈δ (S,w)
δ ({q},a).

Of course,δ ({q},a) = {δ (q,a)} in case the automaton is deterministic, andδ ({q},a) = δ (q,a), in case
the automaton is non-deterministic.

Definition 1 Let L be a finite language, and l be the length of the longest word w in L, i.e., l= max{|w| |
w∈ L}1. If L is a finite language, L′ is a cover language for L if L′∩Σ≤l = L.

A cover automaton for a finite language L is an automaton that recognizes a cover language, L′, for
L. An l-NFCA A is a cover automaton for the language L(A)∩Σ≤l .

One could plainly see that any automaton that recognizesL is also a cover automaton.
The level of a states∈ Q in a cover automatonA= (Q,Σ,δ ,q0,F) is the length of the shortest word

that can reach the states, i.e., levelA(s) = min{|w| | s∈ δ (q0,w)}.
Let us denote byxA(s) the smallest wordw, according to quasi-lexicographical order, such that

s∈ δ (q0,w), see [6] for a similar definition in case of DFCA. Obviously,levelA(s) = |xA(s)|.
For a regular languageL, ≡L denotes the Myhil-Nerode equivalence of words [17].
The similarity relation induced by a finite languageL is defined as follows[6]:x ∼L y, if for all

w ∈ Σ≤l−max{|x|,|y|}, xw ∈ L iff yw∈ L. A dissimilar sequence for a finite languageL is a sequence
x1, . . . ,xn such thatxi 6∼L x j , for all 1≤ i, j ≤ n andi 6= j.

Now, we need to define the similarity for states in an NFCA, since it was the main notion used for
DFCA minimization.

Definition 2 In an NFCA A= (Q,Σ,δ ,q0,F), two states p,q∈Q are similar, written s∼A q, if δ (p,w)∩
F 6= /0 iff δ (q,w)∩F 6= /0, for all w ∈ Σ≤l−max{level(p),level(q)} .

1 We use the convention thatmax/0= 0.

164 Simplifying NFCA

In case the NFCAA is understood, we may omit the subscriptA, i.e., we writep ∼ q instead of
p∼A q, also we can writelevel(p) instead oflevelA(p).

We consider only non-trivial NFCAs forL, i.e., NFCAs such thatlevel(p)≤ l for all statesp. In case
level(p)> l , p can be eliminated, and the resulting NFA is still a NFCA forL. In this case, ifp∼ q, then
eitherp,q∈ F, or p,q∈ Q\F, because|ε | ≤ l −max{level(p), level(q)}.

Deterministic state complexity of a regular languageL is defined as the number of states of the
minimal deterministic automaton recognizingL, and it is denoted bysc(L):

sc(L) = min{#Q | A= (Q,Σ,δ ,qo,F), deterministic, complete, andL = L(A)}.

Non-deterministic state complexity of a regular languageL is defined as the number of states of the
minimal non-deterministic automaton recognizingL, and it is denoted bynsc(L):

nsc(L) = min{#Q | A= (Q,Σ,δ ,qo,F), non-deterministic andL = L(A)}.

For finite languagesL, we can also define deterministic cover state complexitycsc(L) and non-
deterministic cover state complexityncsc(L):

csc(L) = min{#Q | A= (Q,Σ,δ ,qo,F), deterministic, complete, and

L = L(A)∩Σ≤l},
ncsc(L) = min{#Q | A= (Q,Σ,δ ,qo,F), non-deterministic, and

L = L(A)∩Σ≤l}.

Obviously,ncsc(L) ≤ nsc(L) ≤ sc(L), but alsoncsc(L) ≤ csc(L) ≤ sc(L). Thus, non-deterministic
finite cover automata can be considered to be one of the most compact representation of finite languages.

3 Lower-bounds and Compression Ratio for NFCAs

We start this section analyzing few examples where nondeterminism, or the use of cover language, reduce
the state complexity. Let us first analyze the type of languages where non-determinism, combined with
cover properties, reduce significantly the state complexity.

We choose the languageLFm,n = {a,b}≤ma{a,b}n−2, wherem,n∈N. In Figure 1 we can see an NFA
recognizingL with m+n states. We must note that the longest word in the language hasm+n−1 letters.
Let us analyze if the automaton in Figure 1 is minimal. The fooling set technique, introduced in [7] and
[8], and used to prove the lower-bound for state complexity of NFAs, is stated in [3, 7] as follows:

Lemma 1 Let L⊆ Σ∗ be a regular language, and suppose there exists a set of pairsS= {(xi ,yi) | 1≤
i ≤ n}, with the following properties:

1. If xiyi ∈ L, for 1≤ i ≤ n and xiy j /∈ L, for all 1≤ i, j ≤ n, i 6= j, then nsc(L)≥ n. The set S is called
a fooling setfor L.

2. If xiyi ∈ L, for 1 ≤ i ≤ n and for1 ≤ i, j ≤ n, if i 6= j, implies either xiy j /∈ L or x jyi /∈ L, then
nsc(L)≥ n. The set S is calledan extended fooling setfor L.

Now consider the following set of pairs of words:S = {(bmabj ,bn−2− j) | 0 ≤ j ≤ n− 2} ∪
{(ai ,bm−iabn−2) | 0≤ i ≤ m}= {(xk,yk) | 1≤ k≤ m+n}.

For (xk,yk) ∈ S, we have that

Cezar Câmpeanu 165

1. xkyk = bmabj bn−2− j = bmabn−2 ∈ L, or

2. xkyk = aibm−iabn−2 ∈ L.

Let us examine for each 1≤ k,h≤ m+n, k 6= h if the wordsxkyh andxhyk are also inL. We have the
following possibilities:

1. Case I

(a) xkyh = bmabibn−2− j /∈ L, and

(b) xhyk = bmabjbn−2−i /∈ L.

2. Case II

(a) xkyh = aibm− jabn−2 ∈ L, if i < j, but

(b) xhyk = a jbm−iabn−2 /∈ L, if i < j (because|a jbm−iabn−2|= m+n−1+ j − i > m+n−1).

3. Case III

(a) xkyh = bmabj bm−iabn−2 /∈ L (because|bmabjbm−iabn−2| = m+1+ j +m+1+n−2> m+
n−1), or

(b) xhyk = aibn−2− j ∈ L if n−2− j +1+ i > n, or xhyk = aibn−2− j /∈ L n−2− j +1+ i < n.

From the statement 2. of Lemma 1, it follows that the NFA is minimal. We must note the following:

1. we cannot use the weak form 1 to prove the lower-bound;

2. when proving the lower-bound, we concatenate words to obtain a word of length greater than the
maximum length of the words in the language, and that’s whyxiy j is rejected. Since in case of
cover automata such words will be automatically rejected, there is no doubt that any fooling set
type technique we may use to prove the lower-bound for NFCAs must consider the length, and we
should ignore the cases when the length exceeds the maximal one.

Hence, the fooling set technique introduced in [7] and [8], and used to prove the lower-bound for
state complexity of NFAs, can be modified to prove a lower-bound for minimal NFCAs, and it can be
formulated for cover languages as an adaptation of Theorem 1in [10].

Lemma 2 Let L⊆ Σ≤l be a finite language such that the longest word in L has the length l, and suppose
there exists a set of pairs S= {xi ,yi) | 1≤ i ≤ n}, with the following properties:

1. If xiyi ∈ L for 1 ≤ i ≤ n and for1 ≤ i, j ≤ n, i 6= j, and xiy j ∈ Σ≤l , we have that xiy j /∈ L, then
ncsc(L) ≥ n.

The set S is calleda fooling setfor L.

2. If xiyi ∈ L, for 1 ≤ i ≤ n and for1 ≤ i, j ≤ n, if i 6= j, implies either xiy j ∈ Σ≤l and xiy j /∈ L, or
x jyi ∈ Σ≤l and xjyi /∈ L for all, then ncsc(L) ≥ n.

The set S is calledan extended fooling setfor L.

Proof Assume there exists an NFCAA=(Q,Σ,δ ,q0,F), with mstates acceptingL. For eachi, 1≤ i ≤ n,
xiyi ∈ L, therefore we must have a statesi ∈ δ (q0,xi) andδ (si ,yi)∩F 6= /0. In other words, there exists a
state fi ∈ F and fi ∈ δ (si ,yi).

1. We claimsi /∈ δ (q0,x j) for all j 6= i. If si ∈ δ (q0,x j), then fi ∈ δ (si ,yi)⊆ δ (q0,x jyi), and because
|x jyi | ≤ l , it follows thatx jyi ∈ L, a contradiction.

166 Simplifying NFCA

2. We consider the functionf : {1, . . . ,n} −→ Q defined byf (i) = si , si as above. We claim thatf
is injective. If f (i) = f (j), thenδ (f (i),yi) = δ (f (j),yi), alsoδ (f (j),y j) = δ (f (i),y j). Because
δ (f (i),yi)∩F 6= /0, we also have thatδ (f (j),yi)∩F 6= /0, and because|xiy j | ≤ l , it follows that
xiy j ∈ L, a contradiction. If|x jyi | ≤ l , using the same reasoning, will follow thatx jyi ∈ L. In both
cases we have a contradiction, thusQ must have at leastn elements.�

For the example above, we discover that we cannot have more than one pair of the form
(ai ,bm−iabn−2), thus, applying the extended fooling set technique for NFCAs, the minimum number
of states in a minimal NFCA is at leastn− 2+ 1+ 1 = n. This proves that the NFCA presented in
Figure 2 is minimal.

It is easy to check that any two distinct wordsw1,w2 ∈ Σ≤n−1, w1 6= w2, are not similar with respect
to ∼L. It follows that for the language presented in Figure 1,csc(L) ≥ 2n−1. One can also verify that
for two distinct wordsuay andwax, if |y| 6= |x|, |x|, |y| ≤ n− 2, they are distinguishable; also, in case
|x| = |y| ≤ n− 2, the wordan−2−|x| will distinguish between all the words for which|u| < n− 2− |x|
or |w| < n− 2− |x|, thus the number of states in the minimal DFA is even larger than csc(L). In case
m= 2 andn= 4, the minimal DFCA is presented in Figure 3. A simple computation shows us that the
corresponding minimal DFA has 15 states.

☛✡ ✟✠0

☛✡ ✟✠−1 ✛a,b

❄a,b
❍❍❍❍❥

a
✲a ☛✡ ✟✠1

☛✡ ✟✠−2 ✛a,b

❄
a

☛✡ ✟✠−m✛✛a,b✘✘✘✘✘✘✘✘✘✘✾
a

✲a,b ☛✡ ✟✠2 ✲a,b ✲a,b ☛✡ ✟✠n−2 ✲a,b ☛✡ ✟✠n−1
✎✍ ☞✌

Figure 1: An NFA withm+n states for the languageLFm,n = {a,b}≤ma{a,b}n−2.

✲
☛✡ ✟✠0

☛ ✟
❇❇ ✂✂✌

a,b

✲a ☛✡ ✟✠1 ✲a,b ☛✡ ✟✠2 ✲a,b ✲a,b ☛✡ ✟✠n−2 ✲a,b ☛✡ ✟✠n−1
✎✍ ☞✌

Figure 2: An NFCA withn states for the languageLFm,n = {a,b}≤ma{a,b}n−2, that is the same as the
one in Figure 1. In casem= 2 andn= 4, the language is the same as the one described in Figure 3.
An equivalent minimal NFA hasm+n states.

This language example shows that NFCAs may be a much more compact representation for finite
languages than NFAs, or even DFCAs, and motivates the study of such objects. In terms of compression,
clearly the number of states in the NFCA is exponentially smaller than the number of states in the DFA,
and in some cases, even exponentially smaller than in an NFA.

Let’s setΣ = {a}, l > k≥ 2, and choose the following language:

Ll ,k = a(Σ≤l −{(ak)n | n≥ 0}). (1)

In Figure 4, the NFCAAk accepts the languageLl ,k, thereforencsc(Ll ,k) ≤ csc(Ll ,k) ≤ sc(Ll ,k) ≤
min(l +1,k+1) = k+1. It is known [7, 13, 24] that the automatonAk is minimal NFA for

⋃

l∈N
Ll ,k, if k is

Cezar Câmpeanu 167

☛✡ ✟✠0 ✲b

✡ ✠❆❑✁
a

☛✡ ✟✠1
✁
✁✕a

☛✡ ✟✠2 ✲b✝ ✆✻a,b

�
�✒

a

☛✡ ✟✠4
☛✡ ✟✠✬

❄

a,b ☛✡ ✟✠✎✍☞✌5

✲b ☛✡ ✟✠3 ✲b ☛✡ ✟✠7
✎✍☞✌✻a,b

☛✡ ✟✠6
✎✍☞✌❅

❅■ a,b

Figure 3: A minimal DFCA with 8 states for the languageLF2,4 = {a,b}≤2a{a,b}2, l = 5.
The equivalent minimal DFA has 15 states.

✲
☛✡ ✟✠0 ✲a ☛✡ ✟✠1

✻

✲a
☛✡ ✟✠✎✍☞✌2 ✲a ✲a

☛✡ ✟✠✎✍ ☞✌k−1 ✲a ☛✡ ✟✠✎✍ ☞✌k✒ ✑a

Figure 4: An NFA/NFCAAk for Ll ,k.

a prime number. However, this may not be a minimal NFCA, as illustrated by the example in Figure 5,
whereA7 is not minimal forL9,7, even if it is minimal NFA for the cover language.

We apply the extended fooling set technique for the languageLl ,k. Because the alphabet is unary, all
the words in an extended fooling setSare powers ofa: S⊇ {(ai1,a j1),(ai2,a j2),(ai3,a j3), . . . ,(air ,a jr)},
for somer ∈ N. A simple computation shows that ifi1, . . . , ir > 1, andi1+ j2 = z12k+1 andi1+ j3 =
z13k+ 1 for somez12,z13 ∈ N, then i2 + j3 6= z23k+ 1 andi3 + j2 6= z32k+ 1, for anyz23,z32 ∈ N. It
follows thatr ≤ 3.

Let A be an NFA acceptingL ⊇ Lk, and we can consider that it is already in Chrobak normal form,
as it is ultimately periodic. Thus, for eachL, nsc(L) ≥ p1+ . . . ps, wherepi are primes, and each cycle
haspki

i states, 1≤ i ≤ s. Now, let us prove thatAk is minimal for some languageLl ,k, l ≥ k.
Assume there exists an automatonB= (QB,Σ,δB,q0,B,FB) with mstates,m≤ k+1 such thatL(B) =

Ll ,k. It follows that the languageL(B) will contain words with a lengthx+hy for x,y≤ k, and allh∈N.
For h large enough, one of these words will be of length multiple ofk plus 1, therefore, for large enough
l , i.e., greater than somel0, Ll ,k 6= L(B). Thus, the number of states inB is at leastk. Ak is also a minimal
NFCA for languagesLl ,k, l ≥ l0, hence it follows that Theorem 7 in [10] is also valid for cover automata:

Theorem 1 There is a sequence of languages(Ll ,k)k≥2 such that the nondeterministic cover complexity

✲☛✡✟✠0 ✲a�
�
�✒a

☛✡✟✠3 ✲a ☛✡✟✠☛✡ ✟✠4 ✲a ☛✡✟✠☛✡ ✟✠5

☛ ✟a
❄

☛✡✟✠1
✻

✲a ☛✡✟✠☛✡ ✟✠2✡ ✠a

✲☛✡✟✠0 ✲a ☛✡✟✠1
✻

✲a ☛✡✟✠☛✡ ✟✠2 ✲a ✲a ☛✡✟✠☛✡ ✟✠6✡ ✠a

Figure 5: A minimal NFCA forL9,7, left, and a minimal NFA for a cover language, right.

168 Simplifying NFCA

of Ll ,k is at least k, but the extended fooling set for Ll ,k is of size c, where c is a constant.

Now, we are ready to check how hard is to obtain this minimal representation of a finite language.

4 Minimization Complexity

In this section we show that minimizing NFCAs is hard, and we’ll show it with the exact same arguments
from [11], used to prove that minimizing NFAs is hard. We willdescribe the construction from [8,
11], showing that we can also use it with only a minor additionfor cover NFAs. To keep the paper
self contained, we include a complete description, and emphasize the changes required for the cover
automata, rather than just presenting the differences.

Let us consider a logical formulaF ∈ 3SAT, in the conjunctive normal form, i.e.,F =
m∧

i=1

Ci, where

each clauseCi , 1≤ i ≤ m, is defined using variablesx1, . . . ,xn, Ci = u1∨u2∨u3, and eachu j , 1≤ j ≤ 3
are eitherxi or ¬xi. Let p1, p2, . . . , pn be distinct prime numbers such thatp1 < p2 < .. . < pn. We set
k=∏n

i=1 pi , and using Chinese Remainder Theorem [20]2, it follows that the functionf :Zk −→∏n
i=1Zpi

is bijective. We need to define a languageLF and a natural numberl such thatLF = {a}∗, if and only if
F is unsatisfiable, therefore, the finite languageLF ∩Σ≤l has{a}∗ as a cover language. We can construct
an automatonBi in O(pn) in a similar fashion as we build automataAk that recognizes the language
L(Bi) = {an | nmodpi /∈ {0,1}}. Let B be an automaton recognizing

⋃n
i=1L(Bi). It is clear that it can

be constructed inO(n· pn) time. For each clauseCi such thata1,a2,a3 is an assignment of its variables
for which Ci is not satisfied, we defineLCi = ∩3

i=1{an | nmodpi = ai}. An automatonCi acceptingLCi

can be constructed inO(p3
n) time3. SettingLF =

⋃m
i=1LCi ∪ L(B), it follows that LF = {a}∗ iff F is

satisfiable. Moreover,LF is a cyclic language with period at mostk, thus settingl = k, we have that
LF ∩{a}≤l has{a}∗ as a cover language iffF is satisfiable. Since according to [1], primality test can be
done in polynomial time, we can find the firstn prime numbers in polynomial time, which means that
our NFA construction can also be done in polynomial time. IfF is unsatisfiable, thenncsc(L) = 1, if F
is satisfiable, then the minimal period ofLF is l

2, according to [7, 8], and the minimal number of states
in an NFA is at least equal to the largest prime number dividing its period, which ispn. Using the same
argument as in [11], it follows that the existence of a polynomial algorithm to decide ifncsc(L) = o(n)
implies thatnsc(L) = o(n), therefore we can solve 3SATin polynomial time, i.e.,P=NP. Consequently,
we proved that

Theorem 2 Minimizing either NFCAs or l-NFCAs is at least NP-hard.

5 Reducing the Number of States of NFCAs

Assume the DFAA = (Q,Σ,δ ,q0,F) is minimal for L, and the minimal NFA isA′ = (Q′,Σ,δ ′,q0,F),
whereQ′ = Q−{d}, δ ′(s, p) = δ (s, p), if δ (s, p∈ Q′) andδ ′(s, p) = /0 if δ (s, p) = d. In other words,
the minimal NFA is the same as the DFA, except that we delete the dead state. We may have a minimal
DFCA asA, andA′ as a minimal NFA, but not as a minimal NFCA, as illustrated byA7 andL9,7.

We need to investigate if classical methods to reduce the number of states in an NFA or DFA/DFCA
can also be applied to NFCAs, thus, we first analyze the state merging technique. For NFAs, we dis-
tinguish between two main ways of merging states: (1) a weak method, where two states are merged

2Theorem I.3.3, page 21
3Using Cartesian product construction, for example.

Cezar Câmpeanu 169

by simply collapsing one into the other, and consolidate alltheir input and output transitions, and (2), a
strong method, where one state is merged into another one by redirecting its input transitions toward the
other state, and completely deleting it and all its output transitions. The same methods are considered for
NFCAs.

Definition 3 Let A= (Q,Σ,δ ,q0,F) be a NFCA for the finite language L.

1. We say that the state q isweakly mergiblein state p if the automaton A′ = (Q′,Σ,δ ′,q0,F ′), where
Q′ = Q−{q}, F′ = F ∩Q′, and

δ (s,a) =

δ (s,a), if δ (s,a) ⊆ Q′ and s6= p,
(δ (s,a)\{q})∪{p}, if q ∈ δ (s,a) and s6= p,
(δ (s,a)∪δ (q,a))\{q}, if s= p

is also a NFCA for L. In this case we write pw q.

2. We say that the state q isstrongly mergiblein state p, if the automaton A′ = (Q′,Σ,δ ′,q0,F ′),
where Q′ = Q−{q}, F ′ = F ∩Q′, and

δ (s,a) =
{

δ (s,a), if δ (s,a) ⊆ Q′

(δ (s,a)\{q})∪{p}, if q ∈ δ (s,a),

is also a NFCA for L. In this case we write p- q.

In casepw q, (LL
pLR

p∪LL
pLR

q ∪LL
qLR

p∪LL
qLR

q)∩Σ≤l ⊆ L and in casep- q, LL
qLR

q ∩Σ≤l ⊆ (LL
pLR

p∪LL
qLR

p)∩
Σ≤l ⊆ L, where fors∈ Q LL

s = {w∈ Σ∗ | s∈ δ (q0,w)} andLR
s = {w∈ Σ∗ | δ (s,w)∩F 6= /0}.

For the case of DFCAs, ifA is a DFCA forL and two states are similar with respect to the similarity
relation induced byA, then all the words reaching these states are similar. Moreover, if two words of
minimal length reach two distinct states in a DFCA, and the words are similar with respect toL, then the
states in the DFCA must be similar with respect to the similarity relation induced byA. These results
are used for DFCA minimization, and we need to verify if they can be used in case of NFCAs. In the
following lemmata we show that the corresponding results are no longer true.

Lemma 3 Let A= (Q,Σ,δ ,q0,F) be a NFCA for the finite language L. It is possible that xA(s)∼L xA(q),
but s and q are not mergible.

Proof For the automaton in Figure 5, left,xA(3) = xA(1), but the states 1 and 3 are not mergible, as the
resulting automaton would not rejecta7.

Lemma 4 Let A= (Q,Σ,δ ,q0,F) be a NFCA for the finite language L, and p,q∈Q, p 6= q. It is possible
to have x,y∈ Σ∗, p∈ δ (q0,x), q∈ δ (q0,y), p∼ q, and x6∼L y.

Proof Consider the languageL = L(A)∩{a,b}≤14, whereA is depicted in Figure 5.
We have that:

• aa 6∼L ba, becauseaaa /∈ L, butbaa∈ L;

• 2∈ δ (0,ba), 7∈ δ (0,aa), and

• 2 ∼A 7, becauseδ (2,a2k) = {2} ⊆ F, δ (2,a2k+1) = {1} ∩ F = /0, δ (7,a2k) = {7} ⊆ F,
δ (7,a2k+1) = {6}∩F = /0, andδ (2,w) = δ (7,w) = /0, for all w∈ Σ∗−{a}∗.�

Let us verify the case when two statesp,q are similar, or we can distinguish between them.

170 Simplifying NFCA

☛✡ ✟✠0 �
��✒b
✲b

❅
❅❅❘a

☛✡ ✟✠1
☛✡ ✟✠✎✍☞✌2

✓ ✏
❄

a

✲a

☛✡ ✟✠3 ✲a ☛✡ ✟✠✎✍☞✌4 ✲a ☛✡ ✟✠✎✍☞✌5

✞ ☎
❄ a

☛✡ ✟✠6 ✲a ☛✡ ✟✠✎✍☞✌7✡ ✠✻
a

Figure 6: An example wherep∼A q, x 6∼L y, but p∈ δ (q0,x) andq∈ δ (q0,y), aa 6∼L ba, 2∈ δ (0,ba),
7∈ δ (0,aa), and 2∼A 7.

Lemma 5 Let A= (Q,Σ,δ ,q0,F) be a NFCA for the finite language L, p,q ∈ Q, p 6= q, and either
p,q∈ F, or p,q /∈ F. Assume r∈ δ (p,a) and s∈ δ (q,a).

1. If r ∼A s, for all possible choices of r and s, then p∼A q.

2. The converse is false, i.e., we may have r6∼A s, for some r and s, and p∼A q.

Proof Assumep 6∼A q, and letw ∈ Σ≤l−max{level(p),level(q)} ∩Σ+. Because eitherp,q ∈ F, or p,q /∈ F,
we have thatδ (p,aw)∩F 6= /0 andδ (q,aw)∩F = /0, or δ (p,aw)∩F = /0, andδ (q,aw)∩F 6= /0. If
δ (p,aw)∩F 6= /0 andδ (q,aw)∩F = /0, it follows that we have two statesr ∈ δ (p,a) ands∈ δ (q,a)
such thatδ (r,w)∩F 6= /0, andδ (s,w)∩F = /0. This proves that the first implication is true. For the
second implication, consider the automaton depicted in Figure 5 with l = 14, and the following states
p,q, r,s: p= q= 0, r = 1, s= 3, and the letterb. We have thatp∼ q, 1,3∈ δ (p,b) = δ (q,b) = δ (0,b),
but r 6∼ s, becauseδ (1,a)∩F = /0 andδ (3,a)∩F = {4} 6= /0.�

This result contrasts with the one for the deterministic case for cover automata, and the main reason
is the nondeterminism, not the fact that we work with cover languages.

Next, we would like to verify if similar states can be merged in case of NFCAs, also to check which
type of merge works. In case we have two similar states, we canstrongly merge them as shown below.
In the case of DFCAs, if two states are similar, these can be merged. We must ensure that the same result
is also true for NFCAs, and the next theorem shows it.

Theorem 3 Let A= (Q,Σ,δ ,q0,F) be an NFCA for L, and p,q∈ Q such that p6= q, and p∼ q. Then
we have

1. if levelA(p)≤ levelA(q), then p- q.

2. It is possible that p6w q.

Proof For the first part, letA′ be the automaton obtained fromA by strongly mergingq in p. We need
to show thatA′ is a cover NFCA forL. Let w= w1 . . .wn be a word inΣ≤l , n∈ N andwi ∈ Σ for all i,
1≤ i ≤ n. We now prove thatw∈ L iff δ ′(q0,w)∩F ′ 6= /0.

If we can find the states{q0,q1, . . . ,qn} such thatq1 ∈ δ (q0,w1), q2 ∈ δ (q1,w2), . . . , qn ∈
δ (qn−1,wn), qn ∈ F andq /∈ {q0,q1, . . . ,qn}, thenq1 ∈ δ ′(q0,w1), q2 ∈ δ ′(q1,w2), . . . ,qn ∈ δ ′(qn−1,wn),
qn ∈ F ′, i.e.,δ ′(q0,w)∩F ′ 6= /0. Assumeq= q j , and j is the smallest with this property. Ifj = n, then
q ∈ F, which implies p ∈ F , thenq1 ∈ δ ′(q0,w1), q2 ∈ δ ′(q1,w2), . . . , qn ∈ δ ′(p,wn), which means
δ ′(q0,w)∩F ′ 6= /0.

Cezar Câmpeanu 171

✲
☛✡ ✟✠0 ✲a

❅
❅
❅❘

a ☛✡ ✟✠5 ✲a ☛✡ ✟✠✎✍☞✌6

☛✡ ✟✠1 ✲a ☛✡ ✟✠2 ✲a ☛✡ ✟✠3 ✲a

☛ ✟
✂✂❇❇◆

a ☛✡ ✟✠✎✍☞✌4
✲

☛✡ ✟✠0 ✲a

❅
❅❅❘

a ☛✡ ✟✠3,5✛ ✲a ☛✡ ✟✠✎✍☞✌6

☛✡ ✟✠1 ✲a ☛✡ ✟✠2
✟✟✟✟✙

a
a

✡ ✠❇❇✂✂✍ a

☛✡ ✟✠✎✍☞✌4

Figure 7: Example for weakly merging failure and similar states.

✲
☛✡ ✟✠0 ✲a

❅
❅❅❘a ☛✡ ✟✠5 ✲a ☛✡ ✟✠✎✍☞✌6

☛✡ ✟✠1 ✲a ☛✡ ✟✠2
✟✟✟✟✙

a

Figure 8: Example for strongly merging similar states for the example presented in Figure 7.

Assume the statements hold for|w j . . .wn| < l ′ for l ′ < l − |w| (l − |w1...w j | ≤ l − level(q)),
and consider the case when|w j−1w j . . .wn| = l ′. If for every non-empty prefix ofw j+1 . . .wn,
w j−1 . . .wh, q /∈ δ (p,w j−1 . . .wh), thenδ (p,w j+1 . . .wn) ∈ F −{q} iff δ (q,w j+1 . . .wn) ∈ F −{q} , i.e.,
δ ′(p,w j+1 . . .wn)∩F ′ 6= /0 iff δ (q,w j+1 . . .wn)∩F 6= /0.

Otherwise, leth be the smallest number such thatq∈ δ (q,w j+1 . . .wh. Then|wh+1 . . .wn| < l ′ (and
p∈ δ ′(p,w j . . .wh)). By induction hypothesis,δ ′(p,wh+1 . . .wn)∩F ′ 6= /0 iff δ (q,wh+1 . . .wn)∩F 6= /0.
Therefore,δ (p,w j+1 . . .whwh+1 . . .wn)∩F ′ 6= /0 iff δ (q,w j+1 . . .whwh+1 . . .wn)∩F 6= /0, proving the first
part. For the second part, consider the automaton in Figure 7as a NFCA forL = {a2,a4}. We have that
l = 4 and 3∼ 5, becauselevel(3) = 3, andδ (3,ε)∩F = δ (5,ε)∩F = /0 δ (3,a)∩F = {4}, δ (5,a)∩F =
{6}. We cannot weakly merge state 3 with state 5, as we would recognize a3 /∈ L. In Figure 8 we have
the result for strongly merging state 3 in state 5.

We can observe that strongly merging states does not add words in the language, while weakly
merging may add words. Because any DFCA is also a NFCA, then some smaller automata can be
obtained from larger ones without using state merging technique, and the following lemma presents such
a case. Also, the automaton in Figure 2 is obtained from automaton in Figure 1 by strongly merging
states 0, . . .−m+1 into state−m.

Lemma 6 Let A=(Q,Σ,δ ,q0,F) be an NFCA for L, and consider the reduced sub-automaton generated
by state p, A= (QR,Σ,δR, p,F), i.e., QR contains only reachable and useful states, andδR is the induced
transition function. Ifδ (s,a)∩QR = /0, for all s∈ (Q\QR), we can find two regular languages L1,L2

such that

• Lp = (L1∪L2)∩Σ≤l−level(p), and

• nsc(L1)+nsc(L2)< #QR+1,

then A is not minimal.

Proof Let Ai = (Qi ,Σ,δi ,q0,i ,Fi), i = 1,2 be two NFAs forL1 andL2, andLp = (L1∪L2)∩Σ≤l−level(p).
We define the automatonB= ((Q\QR)∪{p}∪Q1∪Q2,Σ,δB,q0,FB) as follows:F = (F \QR)∪F1∪
F2, in casep /∈ F, andF = (F \QR)∪F1 ∪ F2 ∪ {p} in casep ∈ F. For the transition function, we

172 Simplifying NFCA

haveδB(s,a) = δ (s,a) if s∈ (Q\QR), δB(s,a) = δi(s,a) if s∈ Qi , i = 1,2, andδB(p,a) = δ1(q0,1,a)∪
δ2(q0,2,a)∪ δ (p,a) \QR, if p /∈ δ (p,a), andδB(p,a) = δ1(q0,1,a)∪ δ2(q0,2,a)∪ δ (p,a) \QR∪{p}, if
p∈ δ (p,a). Obviously, the automatonB recognizes the cover language forL, and its state complexity is
lower.

This technique was used to produce the minimal NFCA forL9,7 in Figure 5.

6 Conclusion

In this paper we showed that NFCAs are a more compact representation of finite languages than both
NFAs and DFCAs, therefore it is a subject worth investigating. We presented a lower-bound technique
for state complexity of NFCAs, and proved its limitations. We showed that minimizing NFCAs has
at least the same level of difficulty as minimizing general NFAs, and that extra information about the
maximum length of the words in the language does not help reducing the time complexity. We checked
if some of the results involving reducing the size of automata for NFAs and DFCAs are still valid for
NFCAs, and showed that most of them are no longer valid. However, the method of strong merging states
still works in case of NFCAs, and we showed that there are alsoother methods that could be investigated.

As future research, below is a list of problems we consider worth investigating:

1. check if the bipartite graph lower-bound technique can beapplied for NFCAs;

2. find bounds for nondeterministic cover state complexity;

3. investigate the problem of magic numbers for NFCAs. In this case, we can relate either to DFCAs,
or DFAs.

References

[1] M. Agrawal, N. Kayal & N. Saxena (2004):PRIMES is in P.Annals of mathematics, pp. 781–793. Available
athttp://dx.doi.org/10.4007/annals.2004.160.781.

[2] J. Amilhastre, P. Janssen & M-C. Vilarem (2001):FA Minimisation Heuristics for a Class of Finite Lan-
guages. Lecture Notes in Computer Science2214, pp. 1 – 12. Available athttp://dx.doi.org/10.1007/
3-540-45526-4_1.

[3] J.-C. Birget (1992):Intersection and union of regular languages and state complexity. Information Process-
ing Letters43, pp. 185–190. Available athttp://dx.doi.org/10.1016/0020-0190(92)90198-5.

[4] C. Câmpeanu, A. P˘aun & S. Yu (2002):An Efficient Algorithm for Constructing Minimal Cover Automata
for Finite Languages. International Journal of Foundations of Computer Science13(1), pp. 83 – 97. Available
athttp://dx.doi.org/10.1142/S0129054102000960.

[5] C. Câmpeanu, K. Culik II, K. Salomaa & S. Yu (2001):State complexity of basic operations on finite lan-
guages. Lecture Notes in Computer Science2214, pp. 60–70. Available athttp://dx.doi.org/10.1007/
3-540-45526-4_6.

[6] C. Câmpeanu, N. Santean & S. Yu (1986):Minimal cover-automata for finite languages. The-
oretical Computer Science267(1-2), pp. 3–16. Available athttp://dx.doi.org/10.1016/
S0304-3975(00)00292-9.

[7] M. Chrobak (1986):Finite Automata and Unary Languages. Theoretical Computer Science47(2), pp. 149–
158. Available athttp://dx.doi.org/10.1016/0304-3975(86)90142-8.

[8] G.Gramlich (2003):Probabilistic and Nondeterministic Unary Automata. Lecture Notes in Computer Sci-
ence2747, pp. 460 – 469. Available athttp://dx.doi.org/10.1007/978-3-540-45138-9_40.

Cezar Câmpeanu 173

[9] I. Glaister & J. Shallit (1996): A lower bound technique for the size of nondeterministic finite au-
tomata. Information Processing Letters59, pp. 75 – 77. Available athttp://dx.doi.org/10.1016/
0020-0190(96)00095-6.

[10] H. Gruber & M. Holzer (2006):Finding lower bounds for nondeterministic state complexity is hard. Lecture
Notes in Computer Science4036, pp. 363–374. Available athttp://dx.doi.org/10.1007/11779148_
33.

[11] H. Gruber & M. Holzer (2007):Computational Complexity of NFA Minimization for Finite and Unary
Languages. LATA 8, pp. 261–272. Available athttp://www2.tcs.ifi.lmu.de/~gruberh/data/
lata07-submission.pdf.

[12] M. Holzer & M. Kutrib (2003): State complexity of basic operations on nondeterministic finite automata.
Lecture Notes in Computer Science2608, pp. 148–157. Available athttp://dx.doi.org/10.1007/
3-540-44977-9_14.

[13] M. Holzer & M. Kutrib (2003): Unary language operations and their nondeterministic state complexity.
Lecture Notes in Computer Science2450, pp. 162–172. Available athttp://dx.doi.org/10.1007/
3-540-45005-X_14.

[14] M. Holzer & M. Kutrib (2009): Descriptional and computational complexity of finite automata. Lec-
ture Notes in Computer Science5457, pp. 23–42. Available athttp://dx.doi.org/10.1007/
978-3-642-00982-2_3.

[15] M. Holzer & M. Kutrib (2009): Nondeterministic finite automata - recent results on the descriptional and
computational complexity. Int. J. Found. Comput. Sci20(4), pp. 563–580. Available athttp://dx.doi.
org/10.1142/S0129054109006747.

[16] John Hopcroft (1971):An nlogn Algorithm for Minimizing States in a Finite Automaton. In Z. Kohavi &
A. Paz, editors:Theory of Machines and Computations, Academic Press, New York, pp. 189–196.

[17] John E. Hopcroft & Jeffrey D. Ullman (1979):Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley.

[18] L. Ilie, G. Navarro & S. Yu (2004):On NFA reductions. Lecture Notes in Computer Science Volume: Theory
Is Forever Essays Dedicated to Arto Salomaa on the Occasion of His 70th Birthday3113, pp. 112–124.
Available athttp://dx.doi.org/10.1007/978-3-540-27812-2_11.

[19] T. Jiang & B. Ravikumar (1993):NFA minimization problems are hard. SIAM Journal on Computing22(1),
pp. 117–141.

[20] N. Koblitz (1994):A Course in Number Theory and Criptography. Springer. Available athttp://dx.doi.
org/10.1007/978-1-4419-8592-7.

[21] H. Körner (2003):A Time and Space Efficient Algorithm for Minimizing Cover Automata for Finite Lan-
guages. International Journal of Foundations of Computer Science14(6), pp. 1071–1086. Available at
http://dx.doi.org/10.1142/S0129054103002187.

[22] A. N. Maslov (1970):Estimates of the number of states of finite automata. Soviet Mathematics Doklady11,
pp. 1373–1374.

[23] A. N. Maslov (1973):Cyclic shift operation for languages. Probl. Inf. Transm9, pp. 333–338.

[24] F. Mera & G. Pighizzini (2005):Complementing unary nondeterministic automata. Theoretical Computer
Science330, pp. 349–360. Available athttp://dx.doi.org/10.1016/j.tcs.2004.04.015.

[25] E. F. Moore (1956):Gedanken-experiments on sequential machines. Automata studies, Annals of mathemat-
ics studies34, pp. 129–153.

[26] D. Revuz (1992):Minimisation of acyclic deterministic automata in linear time. Theoretical Computer
Science92(1), pp. 181 – 189. Available athttp://dx.doi.org/10.1147/rd.32.0114.

[27] S. Yu, K. Salomaa & Q. Zhuang (1994):The state complexities of some basic operations on regular lan-
guages. Theoretical Computer Science125(2), pp. 315–328. Available athttp://dx.doi.org/10.1016/
0304-3975(92)00011-F.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 174–187, doi:10.4204/EPTCS.151.12

c© Carapelle, Feng, Fernández Gil, Quaas
This work is licensed under the
Creative Commons Attribution License.

On the Expressiveness of TPTL and MTL overω-Data Words

Claudia Carapelle∗, Shiguang Feng∗, Oliver Fernández Gil∗, Karin Quaas†

Institut für Informatik, Universität Leipzig,
D-04109 Leipzig, Germany

{carapelle, shiguang, fernandez, quaas}@informatik.uni-leipzig.de

Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) are prominent ex-
tensions of Linear Temporal Logic to specify properties about data languages. In this paper, we
consider the class of data languages of non-monotonic data words over the natural numbers. We
prove that, in this setting,TPTL is strictly more expressive thanMTL. To this end, we introduce
Ehrenfeucht-Fraı̈ssé (EF) games forMTL. Using EF games forMTL, we also prove that theMTL
definability decision problem (“Given aTPTL-formula, is the language defined by this formula de-
finable inMTL?”) is undecidable. We also define EF games forTPTL, and we show the effect of
various syntactic restrictions on the expressiveness ofMTL andTPTL.

1 Introduction

Recently, verification and analysis of sets ofdata wordshave gained a lot of interest [18, 12, 10, 4, 5,
6, 7]. Here we considerω-words, i.e., infinite sequences overΣ×D, whereΣ is a finite set of labels,
and D is a potentially infinite set ofdata values. One prominent example of data words aretimed
words, used in the analysis of real-time systems [1]. In this paper, we consider data words as behavioral
models of one-counter machines. Therefore, in contrast to timed words, the sequence of data values
within the word may be non-monotonic, and we choose the set ofnatural numbers as data domain. It
is straightforward to adapt our results to the data domain ofintegers. In timed words, intuitively, the
sequence of data values describes the timestamps at which the properties from the labels setΣ hold.
Non-monotonic sequences of natural numbers, instead, can model the variation of an observed value
during a time elapse: we can think of the heartbeat rate recorded by a cardiac monitor, atmospheric
pressure, humidity or temperature measurements obtained from a meteorological station. For example,
let Weather = {sunny,cloudy, rainy} be a set of labels. A data word modeling the changing of the
weather and highest temperature day after day could be:

(rainy,10)(cloudy,8)(sunny,12)(sunny,13) . . .

For reasoning about data words, we consider extensions ofLinear Temporal Logic(LTL, for short).
One of these extensions isFreezeLTL, which extendsLTL with a freeze quantifierthat stores the current
data value in a register variable. One can then check whetherin a later position in the data word the
data value equals the value stored in the register or not. Model checking one-counter machines with this
logic is in general undecidable [12], and so is the satisfiability problem [10]. A good number of recent
publications deal with decidable and undecidable fragments ofFreezeLTL [10, 11, 12, 13].

Originally, the freeze quantifier was introduced inTimed Propositional Temporal Logic(TPTL, for
short) [3]. Here, in contrast toFreezeLTL, a data valued can be compared to a register valuex using

∗The author is supported byDeutsche Forschungsgemeinschaft(DFG), GRK 1763 (QuantLA).
†The author is supported byDFG, project QU 316/1-1.

Carapelle, Feng, Fernández Gil, Quaas 175

linear inequations of the form,e.g., d− x ≤ 2. Another widely used logic in the context of real-time
systems isMetric Temporal Logic(MTL, for short) [16].MTL extendsLTL by constraining the temporal
operators with intervals over the non-negative reals. It iswell known that everyMTL-formula can be
effectively translated into an equivalent formula inTPTL. For the other direction, however, it turns
out that the result depends on the data domain. Formonotonic data wordsover the natural numbers,
Alur and Henzinger [2] proved thatMTL andTPTL are equally expressive. For timed words over the
non-negative reals, instead, Bouyer et al. [8] showed thatTPTL is strictly more expressive thanMTL.

Both logics, however, have not gained much attention in the specification of non-monotonic data
words. Recently we studied the decidability and complexityof MTL, TPTL and some of their fragments
over non-monotonic data words [9], but still not much is known about their relative expressiveness,
albeit they can express many interesting properties. To continue our example, using theMTL-formula
(sunny U[−3,−1] cloudy) over the labels setWeather, we can express the following property: it is sunny
until it becomes cloudy and the highest temperature has decreased of 1 to 3 degrees. The following
TPTL-formula expresses the fact that, at least three days from now, the highest temperature will be the
same as today:x.FFF(x= 0). Over a data word, this formula expresses that there is a point whose data
value is the same as that of the present one after at least three points. The main advantage ofMTL with
respect toTPTL is its concise syntax. It would be practical if we could show that, as in the case of
monotonic data words over the natural numbers,MTL equalsTPTL on data words. The goal of this
paper is to investigate the relative expressiveness ofTPTL andMTL when evaluated over data words.

In this paper, we show as a main result that for data wordsTPTL is strictly more expressive than
MTL. More detailed, we use the formulax.F(b∧F(c∧x ≤ 2)) to separateTPTL andMTL. This is the
same formula used in the paper by Bouyer et al. [8] to separatethese two logics over timed words. We
also show that the simplerTPTL-formulax.FFF(x= 0) is not definable inMTL. Note that this formula
is in the unary fragment ofFreezeLTL, which is very restrictive. The intuitive reason for the difference
in expressiveness is that, using register variables, we canstore data values at any position of a word
to compare them with a later position, and it is possible to check that other properties are verified in
between. This cannot be done using the constrained temporaloperators inMTL. This does not result
in a gap in expressiveness in the monotonic data words setting, because the monotonicity of the data
sequence does not allow arbitrary values between two positions of a data word.

As a main tool for showing this result, we introducequantitativeversions of Ehrenfeucht-Fraı̈ssé (EF)
games forMTL andTPTL. In model theory, EF games are mainly used to prove inexpressibility results
for first-order logic. Etessami and Wilke [14] introduced the EF game forLTL and used it to show that the
Until Hierarchy forLTL is strict. Using our EF games forMTL andTPTL, we prove a number of results
concerning the relation between the expressive power ofTPTL andMTL, as well as between different
fragments of both logics. We investigate the effects of restricting the syntactic resources. For instance,
we show thatTPTL that permits two register variables is strictly more expressive thanTPTL restricted
to one register variable. We also use EF games to show that thefollowing problem is undecidable: given
aTPTL-formulaϕ , is there anMTL-formula equivalent toϕ?

We remark that quantitative EF games provide a very general and intuitive mean to prove results
concerning the expressive power of quantitative logics. Wewould also like to point out that recently an
extension of Etessami and Wilke’s EF games has been defined [17] to investigate relative expressiveness
of some fragments of the real-time version ofMTL overfinite timed words only. The proof of Theorem
1 in [17] relies on the fact that there is an integer bound on the timestamps of a finite timed word to deal
with the potentially infinite number of equivalence classesof MTL formulas. It is not clear how this can
be extended toinfinite timed words. In contrast to this, the results in our paper using EF games can also
be applied tofinite data words.

176 Expressiveness of TPTL and MTL overω-Data Words

2 Metric Temporal Logic and Timed Propositional Temporal Logic

In this section, we define two quantitative extensions ofLTL: MTL andTPTL. The logics are evaluated
overdata words, defined in the following.

We useZ andN to denote the set of integers and the set of non-negative integers, respectively. LetP
be a finite set of propositional variables. Anω-data word, or simplydata word, w is an infinite sequence
(P0,d0)(P1,d1) . . . of pairs in 2P×N. Let i ∈N, we usew[i] to denote the data word(Pi,di)(Pi+1,di+1) . . .
and use(2P×N)ω to denote the set of all data words.

2.1 Metric Temporal Logic

The set of formulas ofMTL is built up fromP by boolean connectives and a constraining version of the
until operator:

ϕ ::= p | ¬ϕ | ϕ1∧ϕ2 | ϕ1UI ϕ2

wherep∈ P andI ⊆ Z is a (half-)open or (half-)closed interval over the integers, possibly unbounded.
We use pseudo-arithmetics expressions to denote intervals, e.g., ≥ 1 to denote[1,+∞). If I = Z, then we
may omit the annotationI onUI .

Formulas inMTL are interpreted over data words. Letw= (P0,d0)(P1,d1) . . . be a data word, and let
i ∈N. We define thesatisfaction relation forMTL, denoted by|=MTL, inductively as follows:

(w, i) |=MTL p iff p∈ Pi, (w, i) |=MTL ¬ϕ iff (w, i) 6|=MTL ϕ ,

(w, i) |=MTL ϕ1∧ϕ2 iff (w, i) |=MTL ϕ1 and(w, i) |=MTL ϕ2,

(w, i) |=MTL ϕ1UI ϕ2 iff ∃ j > i such that(w, j) |=MTL ϕ2, d j −di ∈ I ,

and∀i < k< j,(w,k) |=MTL ϕ1.

We say that a data wordsatisfiesanMTL-formulaϕ , written w |=MTL ϕ , if (w,0) |=MTL ϕ . We use
the following syntactic abbreviations:True := p∨¬p, False := ¬True, XI ϕ := FalseUI ϕ , FI ϕ :=
TrueUI ϕ . Note that the use of thestrict semantics for the until operator is essential to define the next
operatorXI .

Example. The following formula expresses the fact that the weather issunny until it becomes cloudy
and the temperature has decreased from one to three degrees.Furthermore in the future it will rain and
the temperature will increase by at least one degree:

sunny U[−3,−1] (cloudy∧F≥1 rainy). (1)

2.2 Timed Propositional Temporal Logic

Given an infinite countable setX of register variables, the set of formulas ofTPTL is defined as follows:

ϕ ::= p | x∈ I | ¬ϕ | ϕ1∧ϕ2 | ϕ1Uϕ2 | x.ϕ

where p ∈ P, x ∈ X and I is an interval over the integers, defined as forMTL. We will use pseudo-
arithmetic expressions to denote intervals,e.g., x< 0 denotesx∈ (0,−∞). Intuitively, x.ϕ , means that
we areresetting xto the current data value, andx∈ I means that, compared to the last time that we reset
x, the data value has increased or decreased within the margins of the intervalI .

Carapelle, Feng, Fernández Gil, Quaas 177

Formulas inTPTL are interpreted over data words. Aregister valuationν is a function fromX toN.
Let w= (P0,d0)(P1,d1) . . . be a data word, letν be a register valuation, and leti ∈ N. The satisfaction
relation forTPTL, denoted by|=TPTL, is inductively defined in a similar way as forMTL; we only give
the definitions for the new formulas:

(w, i,ν) |=TPTL x∈ I iff di −ν(x) ∈ I ,

(w, i,ν) |=TPTL x.ϕ iff (w, i,ν [x 7→ di]) |=TPTL ϕ ,

(w, i,ν) |=TPTL ϕ1Uϕ2 iff ∃ j> i,(w, j,ν) |=TPTL ϕ2,∀i<k< j,(w,k,ν) |=TPTL ϕ2.

Here,ν [x 7→ di] is the valuation that agrees withν on all y ∈ X\{x}, and mapsx to di . We say that a
data wordw satisfies aTPTL-formulaϕ , written w |=TPTL ϕ , if (w,0, 0̄) |=TPTL ϕ . Here,0̄ denotes the
valuation that maps each register variable tod0. We use the same syntactic abbreviations as forMTL
where the intervalI for the temporal operators is ignored.

In the following, we define some fragments ofTPTL. Givenn≥ 1, we useTPTLn to denote the set
of TPTL-formulas that use at mostn different register variables. Theunary fragment ofTPTL, denoted
by UnaTPTL, is defined by the following grammar:

ϕ ::= p | ¬ϕ | x∈ I | ϕ1∧ϕ2 | Fϕ | Xϕ | x.ϕ

We defineFreezeLTL to be the subset ofTPTL-formulas where the formula ‘x ∈ I ’ is restricted to
be of the form ‘x ∈ [0,0]’. We denote combinations of these fragments in the expectedmanner;e.g.,
UnaFreezeLTL1 denotes the unary fragment ofTPTL in which only one register variable and equality
checks of the form ‘x∈ [0,0]’ are allowed.
Example. TheMTL-formula (1) in the above example is equivalent to theTPTL1-formula

x.[sunny U (x∈ [−3,−1]∧ cloudy∧x.F (x≥ 1∧ rainy))].

The formulasx.((cloudy ∧ x ≤ 2)U sunny) and x.F (cloudy ∧ F (sunny ∧ x ≤ 2)), over the labels set
Weather express the following properties:

1. The weather will eventually become sunny. Until then it iscloudy every day and the temperature
is at most two degrees higher than the temperature at the present day.

2. It will be cloudy in the future, later it will become sunny,and the temperature will have increased
by at most 2 degrees.

2.3 Relative Expressiveness

Let L andL′ be two logics interpreted over elements in(2P ×N)ω , andϕ ∈ L and ϕ ′ ∈ L′ be two
formulas. DefineL(ϕ) = {w∈ (2P×N)ω | w satisfiesϕ}. We say thatϕ is equivalentto ϕ ′ if L(ϕ) =
L(ϕ ′). Given a data languageL ⊆ (2P×N)ω , we say thatL is definable inL if there is a formulaϕ ∈ L
such thatL(ϕ) = L . We say that a formulaψ is definable inL if L(ψ) is definable inL. We say thatL′

is at least as expressive asL, writtenL 4 L′, if each formula ofL is definable inL′. It is strictly more
expressive, writtenL ≺ L′ if, additionally, there is a formula inL′ that is not definable inL. Further,
L andL′ areequally expressive, writtenL ≡ L′, if L 4 L′ andL′ 4 L. L andL′ are incomparable, if
neitherL4 L′ norL′ 4 L.

In this paper we are interested in the relative expressiveness of (fragments of)MTL andTPTL. It
is straightforward to translate anMTL-formula into an equivalentTPTL1-formula. So it can easily be
seen thatTPTL1 is as least as expressive asMTL. However, we will show that there exist someTPTL1-
formulas that are not definable inMTL. For this we introduce the Ehrenfeucht-Fraı̈ssé game forMTL.
Before, we define the important notion ofuntil rank of a formula.

178 Expressiveness of TPTL and MTL overω-Data Words

2.4 Until Rank

Theuntil rank of anMTL-formulaϕ , denoted byUrk(ϕ), is defined by induction on the structure of the
formula:

• Urk(p) = 0 for everyp∈ P,

• Urk(¬ϕ) = Urk(ϕ), Urk(ϕ1∧ϕ2) = max{Urk(ϕ1),Urk(ϕ2)}, and

• Urk(ϕ1UI ϕ2) = max{Urk(ϕ1),Urk(ϕ2)}+1.

We useCons(Z) to denote the set{S∪{−∞,+∞} | S⊆ Z} andFCons(Z) for the subset ofCons(Z)
which contains allfinite sets inCons(Z). Let I ∈ Cons(Z), k∈ N. Define

MTLI = {ϕ ∈MTL | the endpoints ofI in each operatorUI in ϕ are inI},
MTLk = {ϕ ∈MTL | Urk(ϕ)≤ k}, MTLIk =MTLk∩MTLI .

It is easy to check thatMTL =
⋃k∈N

I∈FCons(Z)MTLIk , andMTLI =
⋃I ′⊆I,k∈N

I ′∈FCons(Z)MTLI
′

k for eachI ∈
Cons(Z).
Lemma 1. For eachI ∈ FCons(Z) and k∈ N, there are only finitely many formulas inMTLIk up to
equivalence.

We define a family of equivalence relations over(2P ×N)ω ×N. Let w0,w1 be two data words,
i0, i1 ≥ 0 be positions inw0,w1, respectively. LetI ∈ Cons(Z), and letk ∈ N. We say that(w0, i0) and
(w1, i1) areMTLIk -equivalent, written(w0, i0)≡I

k (w1, i1), if for each formulaϕ ∈MTLIk , (w0, i0) |=MTL

ϕ if and only if (w1, i1) |=MTL ϕ .

3 The Ehrenfeucht–Fräısśe Game for MTL

Next we define the Ehrenfeucht–Fraı̈ssé (EF) game forMTL. Let I ⊆ FCons(Z), k ∈ N, w0,w1 be two
data words andi0, i1 be positions inw0 andw1, respectively. Thek-roundMTL EF game on(w0, i0) and
(w1, i1) with respect toI, denoted by MGIk (w0, i0,w1, i1), is played by two players, called Spoiler and
Duplicator, on the pair(w0,w1) of data words starting from the positionsi0 in w0 andi1 in w1.

In each round of the game, Spoiler chooses a word and a position, and Duplicator tries to find a
position in the respective other word satisfying conditions concerning the propositional variables and the
data values inw0 andw1. We say thati0 and i1 agree in the propositional variablesif (w0, i0) |=MTL p
iff (w1, i1) |=MTL p for eachp ∈ P. We say thatm,n ∈ Z are in the same regionwith respect toI
if (a,b) or [a,a] is the smallest intervalI such thata,b ∈ I and m∈ I , thenn ∈ I . For example, let
I = {−∞,1,3,8,+∞}, 1 and 2 are not in the same region with respect toI, 4 and 5 are in the same
region with respect toI.

MGI
k (w0, i0,w1, i1) is defined inductively as follows. Ifk = 0, there are no rounds to be played,

Spoiler wins ifi0 andi1 do not agree in the propositional variables. Otherwise, Duplicator wins. Ifk> 0,
in the first round,

1. Spoiler wins this round ifi0 and i1 do not agree in the propositional variables. Otherwise, he
chooses a wordwl (l ∈ {0,1}), and a positioni′l > i l in wl .

2. Then Duplicator tries to choose a positioni′(1−l) > i(1−l) in w(1−l) such thati′0 and i′1 agree in the
propositional variables, anddi′0

−di0 anddi′1
−di1 are in the same region with respect toI. If one

of the conditions is violated, then Spoiler wins the round.

Carapelle, Feng, Fernández Gil, Quaas 179

3. Then, Spoiler has two options: either he chooses to start anew game MGIk−1(w0, i′0,w1, i′1); or

4. Spoiler chooses a positioni(1−l) < i′′(1−l) < i′(1−l) in w(1−l). In this case Duplicator tries to respond
by choosing a positioni l < i′′l < i′l in wl such thati′′0 andi′′1 agree in the propositional variables. If
this condition is violated, Spoiler wins the round.

5. If Spoiler cannot win in Step 1, 2 or 4, then Duplicator winsthis round. Then Spoiler chooses to
start a new game MGIk−1(w0, i′′0,w1, i′′1).

We say that Duplicator has awinning strategyfor the game MGIk (w0, i0,w1, i1) if she can win every
round of the game regardless of the choices of Spoiler. We denote this by(w0, i0)∼I

k (w1, i1). Otherwise
we say that Spoiler has a winning strategy. It follows easilythat if (w0, i0)∼I

k (w1, i1), then for allm< k,
(w0, i0)∼I

m (w1, i1).

Theorem 1. For eachI ∈ FCons(Z) and k∈ N, (w0, i0)≡I
k (w1, i1) if and only if(w0, i0)∼I

k (w1, i1).

Theorem 2. LetL be a data language. The following are equivalent:

1. L is not definable inMTL.

2. For eachI ∈ FCons(Z) and k∈ N there exist w0 ∈ L and w1 6∈ L such that(w0,0)∼I
k (w1,0).

4 Application of the EF Game for MTL

4.1 Relative Expressiveness of TPTL and MTL

In this section, we present one of the main results in this paper: Over data words,TPTL is strictly more
expressive thanMTL. Before we come to this result, we show in the following lemmathat in a data word
the difference between data values is what matters, as opposed to the specific numerical value.

Lemma 2. Let w0 = (P0,d0)(P1,d1) . . . and w1 = (P0,d0+c)(P1,d1+c) . . . for some c∈ N be two data
words. Then for every k∈N andI ∈ FCons(Z), (w0,0)∼I

k (w1,0).

Proof. The proof is straightforward. If Spoiler chooses a positionin wl (l ∈ {0,1}), then the duplicator
can respond with the same position inw(1−l).

From now on, we use(wl : i,w(1−l) : j)(l ∈ {0,1}) to denote that Spoiler chooses a wordwl and a
positioni in wl and Duplicator responds with a positionj in w(1−l).

Proposition 1. TheUnaFreezeLTL1-formula x.FFF(x= 0) and theTPTL-formula x.F(b∧F(c∧x≤ 2))
are not definable inMTL.

Proof. To show that the formulaϕ = x.FFF(x= 0) is not definable inMTL, for eachI ∈ FCons(Z) and
k ∈ N, we will define two data wordsw0 andw1 such thatw0 |= ϕ andw1 6|= ϕ , and(w0,0) ∼I

k (w1,0).
Then, by Theorem 2,ϕ is not definable inMTL. So letr,s∈N be such that all numbers inI are contained
in (−r,+r) ands≥ 2r. Intuitively, we chooser in such a way that a jump of magnitude±r in data value
cannot be detected byMTLI , as all constants inI are smaller thanr. Definew0 andw1 as follows:

w0
s s−2r s−r s s+r s+2r s+3r. . .

w1
s s−r s s+r s+2r s+3r s+4r. . .

180 Expressiveness of TPTL and MTL overω-Data Words

There are no propositional variables inw0,w1. We show that Duplicator has a winning strategy for
the game MGIk (w0,0,w1,0). The casek= 0 is trivial. Supposek> 0. Note that after the first round, they
start a new(k− 1)-round game MGIk−1(w0, i0,w1, i1), wherei0, i1 ≥ 1. By Lemma 2, Duplicator has a
winning strategy for this game. So it is sufficient to show that Duplicator can win the first round. In the
following we give the winning strategy for Duplicator in thefirst round.

PPPPPPPPPMove
Case

1 2 3 4

1st
(wl :1,w(1−l) :1),

(l ∈ {0,1}) (w0 :2,w1 :1)
(w0 : i,w1 : i−1),

(i > 2)
(w1 : i,w0 : i+1),

(i ≥ 2)

2nd - -
(w1 : j,w0 : j+1),
(0< j < i−1)

(w0 :1,w1 :1),or
(w0 : j, w1 : j−1),

(2≤ j < i+1)

By the choice of numberr, dw0
1 − dw0

0 (= −2r) is in the same region asdw1
1 − dw1

0 (= −r). It is
easy to check that Duplicator’s responses satisfy the winning condition about the data value. Hence
(w0,0)∼I

k (w1,0).
The proof for the formulax.F(b∧F(c∧x≤ 2)) is similar, we defineI, k, r ands≥ 3r as above. We

leave it to the reader to verify that Duplicator has a winningstrategy for the game MGIk (w0,0,w1,0) on
the following two data words.

w0
s

c

s−3r

b

s−2r

c

s−r

b

s+r

c

s+2r

b

s+3r

. . .

w1
s

c

s−2r

b

s−r

c

s+r

b

s+2r

c

s+3r

b

s+4r

. . .

As a corollary, together with the fact that everyMTL-formula is equivalent to aTPTL1-formula we
obtain the following.

Corollary 1. TPTL1 is strictly more expressive thanMTL.

4.2 The MTL Definability Decision Problem

For many logics whose expressiveness has been shown to be in astrict inclusion relation, the definability
decision problem has been considered. For example, it is well known that Monadic second-order logic
(MSO) defines exactly regular languages. Its first-order fragment (FO) defines the star-free languages
which is a proper subset of regular languages. The problem ofwhether a MSO formula is equivalent to an
FO formula over words is decidable. In our case the problem isstated as follows: Given aTPTL-formula
ϕ , is ϕ definable inMTL? We show in the following, using the EF game method, that thisproblem is
undecidable. First, we prove a Lemma.

Lemma 3. Given an arbitraryI ∈ FCons(Z), let r,s∈ N be such that all numbers inI are contained in
(−r,+r). For each k∈N, if the data word w0 is of the following form:

Carapelle, Feng, Fernández Gil, Quaas 181

w0
P0

s

P0

s+r

P0

s+2r

. . . P0

s+(k+1)r

P1

d0

P2

d1

. . .

k+2︷ ︸︸ ︷

where Pi ⊆ P,di ≥ s+(k+2)r,(i ≥ 0), and w1 is defined by w1 = w0[1], then Duplicator has a winning
strategy on the gameMGI

k (w0,0,w1,0).

Proof. The proof is by induction onk. It is trivial whenk= 0. Suppose the statement holds fork, we must
show that it also holds fork+1, i.e., Duplicator has a winning strategy for the game MGI

k+1(w0,0,w1,0).
We give the winning strategy for Duplicator as follows:

• (wl : 1,w(1−l) : 1),(l ∈ {0,1}). Then, by induction hypothesis, Duplicator has a winning strategy
for the game MGIk (w0,1,w1,1).

• (w0 : i,w1 : i − 1),(i ≥ 2). Then by Lemma 2, Duplicator has a winning strategy for the game
MGI

k (w0, i,w1, i−1). Moreover, for the second move of Spoiler in this round, if(w1 : j,w0 : j +1),
(0< j < i−1), by Lemma 2, Duplicator has a winning strategy for the game MGI

k (w0, j+1,w1, j).

• (w1 : i,w0 : i + 1),(i ≥ 2). Then by Lemma 2, Duplicator has a winning strategy for the game
MGI

k (w0, i +1,w1, i). Moreover, for the second move, if(w0 : 1,w1 : 1), by induction hypothesis,
Duplicator has a winning strategy for the game MGI

k (w0,1,w1,1). Otherwise, if(w0 : j,w1 : j −
1),(1< j < i+1), by Lemma 2, Duplicator has a winning strategy for the game MGI

k (w0, j,w1, j−
1).

This completes the proof.

Theorem 3. The problem, whether a givenTPTL-formula is definable inMTL, is undecidable.

Proof. The recurrent state problem for two-counter machines is defined as follows: given a two-counter
machine M, does there exist a computation of M that visits theinitial instruction infinitely often? Alur
and Henzinger showed that this problem isΣ1

1-hard [3]. We reduce the recurrent state problem to the
MTL definability decision problem in the following way: For eachtwo-counter machine M, we construct
aTPTL-formulaψM such thatψM is definable inMTL iff M is a negative instance of the recurrent state
problem.

We use the fact that for each two-counter machine M there is aTPTL-formulaϕM which is satisfiable
iff M is a positive instance of the recurrent state problem [3]. DefineψM = (x.FFF(x = 0))∧FϕM. If
ϕM is unsatisfiable, thenψM is definable by theMTL-formulaFalse. Otherwise, ifϕM is satisfiable, we
will prove thatψM is not definable inMTL. We show that for eachI ∈ FCons(Z) andk∈ N, there is no
formula inMTLIk that is equivalent toψM.

For an arbitraryI ∈ FCons(Z), let r,s∈ N be such that all numbers inI are contained in(−r,+r)
ands≥ 2r. Supposek≥ 1. By an exploration of the proof in [3] we can find that there isno propositional
variable occurring inϕM, and by Lemma 2, if a data word satisfiesϕM, then the new data word obtained
by adding the same arbitrary value to every data value in the original word still satisfiesϕM. Hence we
can assume that the data wordw satisfyingϕM is of the form:

w
d0 d1 d2 d3 d4 . . .

wheredi ≥ s+(k+1)r for eachi ≥ 0. We define the following two data wordsw0 andw1:

182 Expressiveness of TPTL and MTL overω-Data Words

w0
s s−2r s−r s s+r . . . s+(k−1)r s+kr d0 d1 . . .

w1
s s−r s s+r . . . s+(k−1)r s+kr d0 d1 d2 . . .

Clearly,w0 |=TPTL ψM andw1 6|=TPTL ψM. To show that there is no formula inMTLIk that is equiva-
lent toψM , we prove that Duplicator has a winning strategy for the gameMGI

k (w0,0,w1,0). The winning
strategy for Duplicator in the first round is the same as the one that we give in the proof of Lemma 3. By
Lemma 2 and 3, Duplicator can win the remaining rounds.

SinceMTL=
⋃k∈N

I∈FCons(Z)MTLIk , we know by the argument given above that there is no formula in
MTL that is equivalent toψM if ϕM is satisfiable.

4.3 Effects on the Expressiveness of MTL by Restriction of syntactic Resources

We use the EF game forMTL to show the effects of restricting syntactic resources ofMTL-formulas. We
start with restrictions on the class of constraints occurring in anMTL-formula. For eachn ∈ Z, define
ϕn = F[n,n]True.

Lemma 4. LetI1,I2 ∈ Cons(Z), for each n∈ Z, if n ∈ I1 and n−1,n or n,n+1 are not inI2, thenϕn

is definable inMTLI1 but not inMTLI2.

Let I[n] = {m∈ Z | m≤ n}∪{−∞,+∞}. The expressive power relation4 defines a linear order on
the set{MTLI[n] | n∈ Z} such that ifn1 ≤ n2, thenMTLI[n1] 4MTLI[n2]. We haveMTL=

⋃{MTLI[n] |
n∈ Z}.

Proposition 2. (Linear Constraint Hierarchy ofMTL)
For each n1,n2 ∈ Z, if n1 < n2, thenMTLI[n1] ≺MTLI[n2].

In Proposition 2 we show thatMTLI[n+1] is strictly more expressive thanMTLI[n]. Intuitively, if I2

is a proper subset ofI1, one should expect thatMTLI1 is more powerful thanMTLI2. But in general this
is not true. For example,MTLI1 with I1 = {−∞,0,1,2,+∞} has the same expressive power asMTLI2

whereI2 = I1\{1}, since we can use 0 and 2 to express constraints that use the constant 1. It is natural
to ask, forI ∈ Cons(Z), what is the minimal subsetI ′ of I such thatMTLI

′ ≡MTLI . In the following
we give another constraint hierarchy.

LetEVEN be the subset ofCons(Z) where only even numbers are in consideration. Leteven∈ EVEN
be the set that contains all even numbers. It is easily seen thatMTLeven≡MTL. GivenI1,I2 ∈ EVEN,
if I1 (I2, by Lemma 4, we haveMTLI1 ≺MTLI2. The expressive power relation4 defines a partial
order on the set{MTLI | I ∈ EVEN}.

Proposition 3. (Lattice Constraint Hierarchy ofMTL)〈
{MTLI | I ∈ EVEN},4

〉
constitutes a complete lattice in which

(i) the greatest element isMTLeven,

(ii) the least element isMTL{−∞,+∞},

and for each nonempty subset S⊆ EVEN,

(iii)
∧

I∈SMTLI =MTL
⋂

I∈SI ,

(iv)
∨

I∈SMTLI =MTL
⋃

I∈SI .

Carapelle, Feng, Fernández Gil, Quaas 183

Note that
〈
{MTLI | I ∈ EVEN},4

〉
is isomorphic to the complete lattice〈P(X),⊆〉, whereX is a

countable infinite set,P(X) is the powerset ofX and⊆ is the containment relation.
Next we show that, as forLTL [14], there is a strict until hierarchy forMTL.

Proposition 4. For all k ∈ N, MTLk+1 is strictly more expressive thanMTLk.

Proof. Defineϕ [1] = (p∧Xp) andϕ [k+ 1] = (p∧Xϕ [k]) for everyk ≥ 1. Note that for eachk ≥ 1,
ϕ [k] ∈MTLk. We show that for eachI ∈ FCons(Z),k≥ 0, ϕ [k+1] is not definable inMTLIk . Let r ∈N
be such that all numbers inI are contained in(−r,+r). Define two data wordsw0 andw1 as follows:

w0
p

0

p

r

p

2r

. . . p

(k+1)r

q

(k+2)r

q

(k+3)r

. . .

k+2︷ ︸︸ ︷

w1
p

r

p

2r

. . . p

(k+1)r

q

(k+2)r

q

(k+3)r

q

(k+4)r

. . .

k+1︷ ︸︸ ︷

We see thatw0 |=MTL ϕ [k+ 1] andw1 6|=MTL ϕ [k+ 1]. By Lemma 3 and Theorem 2, there is no
formula in MTLIk that is equivalent toϕ [k+ 1]. SinceMTLk =

⋃
I∈FCons(Z)MTLIk , ϕ [k+ 1] is not

definable inMTLk.

As for theMTL definability decision problem, we can show that theMTLk definability decision
problem which asks whether the data language defined by anMTLk+1-formula is definable inMTLk is
undecidable. As a corollary, we know that whether anMTL-formula is equivalent to anMTLk-formula
is undecidable.

Proposition 5. There exists m∈N such that for every k≥m, the problem whether a formulaϕ ∈MTLk+1

is definable inMTLk is undecidable.

5 The Ehrenfeucht-Fräısśe Game for TPTL

In Proposition 1 we have proved that there is anUnaFreezeLTL1-formula that is not definable inMTL,
and we concluded thatTPTL1 is strictly more expressive thanMTL. A natural question is to ask for the
relation betweenMTL, UnaTPTL andFreezeLTL. For this, we define the EF game forTPTL.

The until rank of a TPTL-formula ϕ , denoted byUrk(ϕ), is defined analogously to that ofMTL-
formulas in Sect. 2.4; we additionally defineUrk(x∈ I)= 0 andUrk(x.ϕ)=Urk(ϕ). LetI ∈Cons(Z),k≥
0,n≥ 1, we define

TPTLI = {ϕ ∈ TPTL | for each subformulax∈ I of ϕ , the endpoints ofI belong toI},
TPTLn = {ϕ ∈ TPTL | the register variables inϕ are from{x1, . . . ,xn}},
TPTLk = {ϕ ∈ TPTL | Urk(ϕ)≤ k}, TPTLn,I

k = TPTLn∩TPTLI ∩TPTLk.

Lemma 5. For eachI ∈ FCons(Z), n≥ 1 and k≥ 0, there are only finitely many formulas inTPTLn,I
k

up to equivalence.

184 Expressiveness of TPTL and MTL overω-Data Words

Let w0,w1 be two data words, andi0, i1 ≥ 0 be positions inw0,w1, respectively, andν0,ν1 be two reg-
ister valuations. We say that(w0, i0,ν0) and(w1, i1,ν1) areTPTLn,I

k -equivalent, written(w0, i0,ν0)≡n,I
k

(w1, i1,ν1), if for each formulaϕ ∈ TPTLn,I
k , (w0, i0,ν0) |=TPTL ϕ iff (w1, i1,ν1) |=TPTL ϕ .

The k-roundTPTL EF game on(w0, i0,ν0) and (w1, i1,ν1) with respect ton and I, denoted by
TGn,I

k (w0, i0,ν0,w1, i1,ν1), is played by Spoiler and Duplicator onw0 andw1 starting fromi0 in w0 with
valuationν0 andi1 in w1 with valuationν1.

We say that(i0,ν0) and(i1,ν1) agree in the atomic formulas inTPTLn,I , if (w0, i0,ν0) |=TPTL p iff
(w1, i1,ν1) |=TPTL p for for eachp∈ P, and(w0, i0,ν0) |=TPTL x∈ I iff (w1, i1,ν1) |=TPTL x∈ I for each
formulax∈ I in TPTLn,I .

Analogously to the EF game forMTL, TGn,I
k (w0, i0,ν0,w1, i1,ν1) is defined inductively. Ifk = 0,

then Spoiler wins if(i0,ν0) and (i1,ν1) do not agree in the atomic formulas inTPTLn,I . Otherwise,
Duplicator wins. Supposek> 0, in the first round,

1. Spoiler wins this round if(i0,ν0) and (i1,ν1) do not agree in the atomic formulas inTPTLn,I .
Otherwise, Spoiler chooses a subsetY (maybe empty) of{x1, . . . ,xn} and setsν ′

l = νl [x := dil (x∈
Y)] for all l ∈ {0,1}. Then Spoiler chooses a wordwl for somel ∈ {0,1} and a positioni′l > i l in
wl .

2. Then Duplicator tries to choose a positioni′(1−l) > i(1−l) in w(1−l) such that(i′0,ν ′
0) and (i′1,ν ′

1)

agree in the atomic formulas inTPTLn,I . If Duplicator fails, then Spoiler wins this round.

3. Then, Spoiler has two options: either he chooses to start anew game TGn,Ik−1(w0, i′0,ν ′
0,w1, i′1,ν ′

1);
or

4. Spoiler chooses a positioni(1−l) < i′′(1−l) < i′(1−l) in w(1−l). Then Duplicator tries to respond by
choosing a positioni l < i′′l < i′l in wl such that(i′′0,ν ′

0) and(i′′1,ν ′
1) agree in the atomic formulas in

TPTLn,I . If Duplicator fails to do so, Spoiler wins this round.

5. If Spoiler cannot win in Step 1, 2 or 4, then Duplicator winsthis round. Then Spoiler chooses to
start a new game TGn,Ik−1(w0, i′′0,ν ′

0,w1, i′′1,ν ′
1).

If Duplicator has a winning strategy for the game TGn,I
k (w0, i0,ν0,w1, i1,ν1), then we denote it by

(w0, i0,ν0)∼n,I
k (w1, i1,ν1).

Theorem 4. For eachI ∈FCons(Z), n≥ 1,k≥ 0, (w0, i0,ν0)≡n,I
k (w1, i1,ν1) if and only if(w0, i0,ν0)∼n,I

k
(w1, i1,ν1).

Theorem 5. Let L be a data language. For eachI ∈ FCons(Z), n≥ 1 and k≥ 0, the following are
equivalent:

1. L is not definable inTPTLn,I
k .

2. There exist w0 ∈ L and w1 6∈ L such that(w0,0, 0̄)∼n,I
k (w1,0, 0̄).

5.1 More on the Relative Expressiveness of MTL and TPTL

We are going to compareMTL with two fragments ofTPTL, namely the unary fragmentUnaTPTL and
the fragmentFreezeLTL. Using the EF game forTPTL we can prove the following results:

Proposition 6. TheMTL-formulaF=1True is not definable inFreezeLTL.

Proposition 7. TheMTL-formula(¬a)Ub is not definable inUnaTPTL.

Carapelle, Feng, Fernández Gil, Quaas 185

We remark that for these results, we have to slightly change the definition of the games to suit to the
fragmentsFreezeLTL andUnaTPTL such that an analogous version of Theorem 4 holds. The preceding
propositions yield another interesting result forMTL and these two fragments ofTPTL.

Corollary 2. 1. MTL andFreezeLTL are incomparable.

2. MTL andUnaTPTL are incomparable.

3. UnaTPTL andFreezeLTL are incomparable.

Analogously to Theorem 3, we can prove that theFreezeLTL (resp.,UnaTPTL) definability problem
is undecidable.

Proposition 8. The problem, whether a givenTPTL-formula is definable inFreezeLTL (resp.,UnaTPTL),
is undecidable.

5.2 Restricting Resources in TPTL

In the following we prove results on the effects of restricting syntactic resources ofTPTL-formulas
similar to those forMTL. For eachn∈ Z, we redefineϕn = x.F(x= n).

Lemma 6. LetI1,I2 ∈ Cons(Z), for each n∈ Z, if n ∈ I1 and n−1,n or n,n+1 are not inI2, thenϕn

is definable inTPTLI1 but not inTPTLI2.

Using this lemma we can prove the following two propositions.

Proposition 9. (Linear Constraint Hierarchy ofTPTL)
The expressive power relation4 defines a linear order on the set{TPTLI[n] | n∈Z} such that if n1 ≤ n2,
thenTPTLI[n1] 4 TPTLI[n2] . Moreover, if n1 < n2, thenTPTLI[n1] ≺ TPTLI[n2].

Proposition 10. (Lattice Constraint Hierarchy ofTPTL)〈
{TPTLI | I ∈ EVEN},4

〉
constitutes a complete lattice in which

(i) the greatest element isTPTLeven(≡ TPTL),

(ii) the least element isTPTL{−∞,+∞}(≡ LTL),

and for each nonempty subset S⊆ EVEN,

(iii)
∧

I∈STPTL
I = TPTL

⋂
I∈SI ,

(iv)
∨

I∈STPTL
I = TPTL

⋃
I∈SI .

In the next proposition we show that the until hierarchy forTPTL is strict.

Proposition 11. TPTLk+1 is strictly more expressive thanTPTLk.

Proof. Let ϕ [k] (k ≥ 1) be as defined in Proposition 4.ϕ [k] is a formula inTPTLk. For everyk ≥ 0.
We can show that(w0,0, 0̄) ∼n,I

k (w1,0, 0̄) on the following two data wordsw0 |=TPTL ϕ [k+ 1] and
w1 6|=TPTL ϕ [k+1].

w0
p

0

p

0

p

0

. . . p

0

q

0

q

0

. . .

k+2︷ ︸︸ ︷

w1
p

0

p

0

. . . p

0

q

0

q

0

q

0

. . .

k+1︷ ︸︸ ︷

186 Expressiveness of TPTL and MTL overω-Data Words

Corollary 3. MTLk+1 andTPTLk are incomparable in expressive power.

Proposition 12. There exists m∈ N such that for every k≥ m, the problem whether a formulaϕ ∈
TPTLk+1 is definable inTPTLk is undecidable.

We have seen in the previous chapters thatTPTL is strictly more expressive thanMTL. The register
variables play a crucial role in reaching this greater expressiveness. In the following we want to explore
more deeply whether the number of register variables allowed in aTPTL formula has an impact on the
expressive power of the logic. We are able to show that there is a strict increase in expressiveness when
allowing two register variables instead of just one. The following results concern the number of register
variables allowed in aTPTL-formula.

Proposition 13. For theUnaTPTL2-formulaϕ = x1.F(x1 > 0∧x2.F(x1 > 0∧x2 < 0)) there is no equiv-
alent formula inTPTL1.

Proof. Let I ∈ FCons(Z) andk≥ 1. Lets, r ∈N be such that all elements inI are contained in(−r,+r)
ands−kr ≥ 0. One can show that(w0,0, 0̄)∼1,I

k (w1,0, 0̄) on the following two data wordsw0 |=TPTL ϕ
andw1 6|=TPTL ϕ .

w0
s s+2r s−kr s−(k−1)r . . . s−r s+r s+3r s+4r s+5r . . .

k+1︷ ︸︸ ︷

w1 s s+2r s−kr s−(k−1)r . . . s−r s+3r s+4r s+5r s+6r . . .

k︷ ︸︸ ︷

Corollary 4. TPTL2 is strictly more expressive thanTPTL1.

It remains open whether we can generalize this result toTPTLn+1 andTPTLn, wheren≥ 2, to get a
complete hierarchy for the number of register variables. Wehave the following conjecture.

Conjecture 1. For each n≥ 1, TPTLn+1 is strictly more expressive thanTPTLn.

6 Conclusion and Future Work

In this paper, we consider the expressive power ofMTL andTPTL on non-monotonicω-data words
and introduce EF games for these two logics. We show thatTPTL is strictly more expressive than
MTL and some other expressiveness results of various syntacticrestrictions. ForTPTL, we examine the
effects of allowing only a bounded number of register variables: We prove thatTPTL2 is strictly more
expressive thanTPTL1, but it is still open ifTPTLn+1 is strictly more expressive thanTPTLn for all
n≥ 1 (Conjecture 1). In future work we want to figure out whether there is a decidable characterization
for the set of data domains for whichTPTL andMTL are equally expressive.

Carapelle, Feng, Fernández Gil, Quaas 187

References

[1] Rajeev Alur & David L. Dill (1994):A Theory of Timed Automata. Theor. Comput. Sci.126(2), pp. 183–235.
Available athttp://dx.doi.org/10.1016/0304-3975(94)90010-8.

[2] Rajeev Alur & Thomas A. Henzinger (1993):Real-Time Logics: Complexity and Expressiveness. Inf. Com-
put.104(1), pp. 35–77. Available athttp://dx.doi.org/10.1006/inco.1993.1025.

[3] Rajeev Alur & Thomas A. Henzinger (1994):A Really Temporal Logic. J. ACM 41(1), pp. 181–204. Avail-
able athttp://doi.acm.org/10.1145/174644.174651.

[4] Mikolaj Bojanczyk, Claire David, Anca Muscholl, ThomasSchwentick & Luc Segoufin (2011):Two-
variable logic on data words. ACM Trans. Comput. Log.12(4), p. 27. Available athttp://doi.acm.
org/10.1145/1970398.1970403.

[5] Benedikt Bollig (2011):An Automaton over Data Words That Captures EMSO Logic. In Katoen & König
[15], pp. 171–186. Available athttp://dx.doi.org/10.1007/978-3-642-23217-6_12.

[6] Benedikt Bollig, Aiswarya Cyriac, Paul Gastin & K. Narayan Kumar (2012):Model Checking Languages of
Data Words. In Lars Birkedal, editor:FoSSaCS, LNCS 7213, Springer, pp. 391–405. Available athttp://

dx.doi.org/10.1007/978-3-642-28729-9_26.

[7] Patricia Bouyer (2002):A logical characterization of data languages. Inf. Process. Lett.84(2), pp. 75–85.
Available athttp://dx.doi.org/10.1016/S0020-0190(02)00229-6.

[8] Patricia Bouyer, Fabrice Chevalier & Nicolas Markey (2010): On the expressiveness of TPTL and MTL. Inf.
Comput.208(2), pp. 97–116. Available athttp://dx.doi.org/10.1016/j.ic.2009.10.004.

[9] Claudia Carapelle, Shiguang Feng, Oliver Fernandez Gil& Karin Quaas (2014):Satisfiability for MTL and
TPTL over Non-monotonic Data Words. In: LATA , pp. 248–259. Available athttp://dx.doi.org/10.
1007/978-3-319-04921-2_20.

[10] Stéphane Demri & Ranko Lazic (2009):LTL with the freeze quantifier and register automata. ACM Trans.
Comput. Log.10(3). Available athttp://doi.acm.org/10.1145/1507244.1507246.

[11] Stéphane Demri, Ranko Lazic & David Nowak (2007):On the freeze quantifier in Constraint LTL: Decid-
ability and complexity. Inf. Comput.205(1), pp. 2–24. Available athttp://dx.doi.org/10.1016/j.ic.
2006.08.003.

[12] Stéphane Demri, Ranko Lazic & Arnaud Sangnier (2008):Model Checking Freeze LTL over One-Counter
Automata. In Roberto M. Amadio, editor:FoSSaCS, LNCS 4962, Springer, pp. 490–504. Available at
http://dx.doi.org/10.1007/978-3-540-78499-9_34.

[13] Stéphane Demri & Arnaud Sangnier (2010):When Model-Checking Freeze LTL over Counter Machines
Becomes Decidable. In C.-H. Luke Ong, editor:FOSSACS, LNCS 6014, Springer, pp. 176–190. Available
athttp://dx.doi.org/10.1007/978-3-642-12032-9_13.

[14] Kousha Etessami & Thomas Wilke (1996):An Until Hierarchy for Temporal Logic. In: LICS, IEEE
Computer Society, pp. 108–117. Available athttp://doi.ieeecomputersociety.org/10.1109/LICS.

1996.561310.

[15] Joost-Pieter Katoen & Barbara König, editors (2011):CONCUR 2011 - Concurrency Theory - 22nd Inter-
national Conference, CONCUR 2011, Aachen, Germany, September 6-9, 2011. Proceedings. LNCS 6901,
Springer. Available athttp://dx.doi.org/10.1007/978-3-642-23217-6.

[16] Ron Koymans (1990):Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems
2(4), pp. 255–299. Available athttp://dx.doi.org/10.1007/BF01995674.

[17] Paritosh K. Pandya & Simoni S. Shah (2011):On Expressive Powers of Timed Logics: Comparing Bound-
edness, Non-punctuality, and Deterministic Freezing. In Katoen & König [15], pp. 60–75. Available at
http://dx.doi.org/10.1007/978-3-642-23217-6_5.

[18] Luc Segoufin (2006):Automata and Logics for Words and Trees over an Infinite Alphabet. In ZoltánÉsik,
editor:CSL, LNCS 4207, Springer, pp. 41–57. Available athttp://dx.doi.org/10.1007/11874683_3.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 188–200, doi:10.4204/EPTCS.151.13

On Determinism and Unambiguity of Weighted Two-way
Automata

Vincent Carnino
LIGM - Laboratoire d’informatique Gaspard-Monge

Université Paris-Est Marne-la-Vallée, France

Vincent.Carnino@univ-mlv.fr

Sylvain Lombardy
LaBRI - Laboratoire Bordelais de Recherche en Informatique

Institut Polytechnique de Bordeaux, France

Sylvain.Lombardy@labri.fr

In this paper, we first study the conversion of weighted two-way automata to one-way automata. We
show that this conversion preserves the unambiguity but does not preserve the determinism. Yet,
we prove that the conversion of an unambiguous weighted one-way automaton into a two-way au-
tomaton leads to a deterministic two-way automaton. As a consequence, we prove that unambiguous
weighted two-way automata are equivalent to deterministicweighted two-way automata in commu-
tative semirings.

1 Introduction

A classical question in automata theory concerns the expressive power of a device and especially the
difference between one-way devices and two-way devices. Itis well known that two-way automata may
be reduced to one-way automata and therefore recognize the same language family [14, 12].

In this paper, we deal with the weighted versions of these twodevices. We describe the conversion
of a two-way automaton over a commutative sering into a one-way automaton. Such an algorithm has
already be stated in [1]; our construction is close, but we are mainly interested here in proving that this
conversion preserves the unambiguity of automata; it does not preserve the determinism.

We then present a construction for the conversion of any unambiguous one-way automaton into a
deterministic two-way automaton; this part does not require that the semiring is commutative.

A consequence of these two procedure is that, on commutativesemirings, opposite to the case of
one-way automata, unambiguous two-way automata are not more powerful than deterministic ones.

2 Weighted Two-way Automata

2.1 Automata and runs

A semiringK is a set endowed with two binary associative operations,⊕ and⊗, such that⊕ is commuta-
tive and⊗ distributes over⊕. The setK contains two particular elements, 0K and 1K that are respectively
neutral for⊕ and⊗; moreover, 0K is an annihilator for⊗.

For every alphabetA, we assume that there exist two fresh symbols⊢ and⊣ that are marks at the
beginning and the end of the tapes of automata. We denoteA⊢⊣ the alphabetA∪{⊢,⊣}. For every word
w in A, w⊢⊣ is the word inA⊢⊣ equal to⊢ w⊣.

One-way and two-wayK-automata share a part of their definition. AK-automaton is a tupleA =
(Q,A,E, I ,T) whereQ is a finite set of states,A is a finite alphabet, andI andT are partial functions
from Q to K. The support ofI , I , is the set of initial states ofA , and the support ofT, T, is the set of
final states ofA .

V. Carnino & S. Lombardy 189

p q r s

b,→| 0
a,→| 0

a,→| 0

⊣,←| 0
b,←| 0

a,←| 1

a,←| 1
b,→| 0
⊢,→| 0

Figure 1: The two-wayN -automatonA1.

The definition of transitions differ. In a two-wayK-automaton,E is a partial function fromQ×
(A⊢⊣×{−1,+1})×Q into K and the support ofE, E, is the set of transitions ofA . Moreover, the
intersection ofE andQ× ({⊢}×{−1}∪{⊣}×{1})×Q must be empty.
Let t be a transition inE; if t = (p,a,d,q), we denoteσ(t) = p, τ(t) = q, λ (t) = a, δ (t) = d. On figures,
the value ofδ is represented by a left (-1) or right (+1) arrow. For instance, if t = (p,a,−1,q) andEt = k,

we drawp
a,←|k−−−−→ q.

In a one-wayK-automaton,E is a partial function fromQ×A×Q into K, and the support ofE, E,
is the set of transitions ofA .
Let t be a transition inE; if t = (p,a,q), we denoteσ(t) = p, τ(t) = q, λ (t) = a.

Example 1. Let A1 be the two-wayN -automaton of Figure 1, whereN = (N∪{∞},min,+) is the
tropical semiring; since the multiplication law in this semiring is the usual sum, the weight of a path in
this automaton is the sum of the weights of its transitions. This automaton is deterministic (cf. Defini-
tion 9) and thus there is only one computation for each accepted word. The behaviour of this automaton
is quite easy. For each block of′a′ it checks through a left-right reading, whether the length of the block
is odd; if it is, a right-left reading computes the length of the block; otherwise the automaton goes to the
next block of′a′.

Definition 1. Let w= w1 . . .wn be a word of A∗, we set w0 = ⊢ and wn+1 = ⊣. A configurationof A on
w is a pair(p, i) where i is in[0;n+1] and p is a state ofA . A computation (or run)ρ of A on w is a
finite sequence of configurations((p0, i0), . . . ,(pk, ik)) such that :

• i0 = 1, ik = n+1, p0 is in I and pk is in T;

• for every j in[0;k−1], there exists tj , such that
σ(t j) = p j , τ(t j) = p j+1, λ (t j) = ai j , and ij+1 = i j +δ (t j).

The weight of such a computation, denoted by|ρ |, is I(p0)⊗
k−1⊗
j=0

E(t j)⊗T(pk). The weight ofw in

A , denoted by〈|A |,w〉, is the addition of the weights of all the runs with labelw in A . Notice that
there may be an infinite number of computations with the same labelw. The definition of the behaviour
of A in this case requires to study the definition of infinite sums.This can be done, like for one-way
K-automata withε-transitions, for instance with complete semirings or topological semirings [11]. This
is not the purpose of this paper, since we mainly deal with two-way automata where the number of
computations is finite for every word.

Example 2. A run of theN -automatonA1 over the word abaaba is represented on Figure 2. The weight
of this run is equal to2.

190 On Determinism and Unambiguity of Weighted Two-way Automata

⊢ a b a a b a ⊣

p q

rs

q p p q p p q

rs

q p

→ |0
← |0

← |1
→ |0

→ |0 → |0 → |0 → |0 → |0 → |0
← |0

← |1
→ |0

→ |0

Figure 2: A run ofA1 over the wordabaaba.

Definition 2. Letρ = ((p0, i0), . . . ,(pk, ik)) be a run over w. If there exists m,n in [1,k], with m< n such
that (pm, im) = (pn, in), then we say that((pm, im), . . . ,(pn, in)) is anunmoving circuitof ρ . If ρ does not
contain any unmoving circuit, it isreduced.

Lemma 1. If a two-wayK-automaton admits a runρ which is not reduced, it admits a reduced run with
the same label.

Proof. We consider a shortest non reduced runρ = ((p0, i0), . . . ,(pm, im), . . . ,(pn, in), . . . ,(tk, ik)), with
(pm, im) = (pn, in).
Then((p0, i0), . . . ,(pm−1, im−1),(pn, in), . . . ,(pk, ik)) is a run; by minimality ofρ , this run is reduced.

Definition 3. A one-way or two-way automatonA is unambiguousif every word labels at most one
computation.

Unambiguous automata have obviously only reduced computations.

2.2 Coverings

We extend here the notion of covering (cf. [13]) to two-way automata.

Definition 4. Let A = (Q,A,E, I ,T) and B = (R,A,F,J,U) be two weighted two-way automata. A
mappingϕ from Q into R is amorphismif,
i) ∀p∈ I , J(ϕ(p)) = I(p);
ii) ∀p∈ T, U(ϕ(p)) = T(p);
iii) ∀t = (p,a,δ ,q) ∈ E, ϕ̃(t) = (ϕ(p),a,δ ,ϕ(q)) ∈ F and F(ϕ̃(t ′)) = E(t).
The morphism is surjective ifϕ(Q) = R,ϕ(I) = J, ϕ(T) =U, andϕ̃(E) = F.

Definition 5. LetA = (Q,A,E, I ,T) andB = (R,A,F,J,U) be two weighted two-way automata.A is
a coveringof B if there exists a surjective morphismϕ fromA ontoB such that

i) ∀r ∈U , ϕ−1(r)⊆ T ii) ∀r ∈ J, ∃!p∈ ϕ−1(r)∩ I

iii) ∀t ∈ F,∀p∈ ϕ−1(σ(t)),∃!t ′ ∈ ϕ̃−1(t),σ(t ′) = p.

V. Carnino & S. Lombardy 191

A is an in-coveringof B is there exists a surjective morphismϕ from A ontoB such that

i) ∀r ∈ J, ϕ−1(r)⊆ I ii) ∀r ∈U , ∃!p∈ ϕ−1(r)∩T

iii) ∀t ∈ F,∀q∈ ϕ−1(τ(t)),∃!t ′ ∈ ϕ̃−1(t),τ(t ′) = q.

Proposition 1. Let A and B be two weighted two-way automata. IfA is a covering (resp. an in-
covering) ofB, the corresponding morphismϕ induces a bijection between computations ofA andB
such that every computation ofA and its image inB have the same label and the same weight.

Proof. Assume thatA is a covering ofB. Letwbe a word and let((p0, i0), . . . ,(pk, ik)) be a computation
on w in A . For every j in [0;k], we setr j = ϕ(p j); by definition of a morphism((r0, i0), . . . ,(rk, ik)) is
a computation onw in B with the same weight. Conversely, let((r0, i0), . . . ,(rk, ik)) be a computation
in B. Let p0 be the unique initial state inϕ−1(r0).For every j in [0;k− 1], let δ j = i j+1− i j ; the
configuration(r j+1, r j+1) is reached from configuration(r j , i j) through the transition(r j ,w j ,δ j , r j+1);
inductively, we definep j+1 as the unique state inϕ−1(r j+1) such that(p j ,w j ,δ j , p j+1) is a transition of
A . Then,((p0, i0), . . . ,(pk, ik)) is a computation onw in A . Hence, every computationρ of B is lift up
in a unique way into a computation ofA whose image byϕ is ρ .

The proof is similar for in-coverings.

This proposition implies that a two-way automaton and its covering (resp. in-covering) are equiva-
lent; moreover, if a two-way automaton is unambiguous, so isevery of its (in-)coverings.

2.3 δ -Locality

Definition 6. Let A be a two-wayK-automaton. If, for each state p ofA , every transition outgoing
from p has the same direction, thenA is δ -local.

If Q is the set of states of a two-wayK-automaton, we denoteQ+ (resp. Q−) the set of statesp such
that, for every transitiont outgoing fromp, δ (t) = +1 (resp. δ (t) = −1); by convention, ifp has no
outgoing transition,p is in Q+. For every statep of Q+ (resp. Q−), we setδ (p) = 1 (resp.δ (p) =−1).

If A is aδ -local automaton,{Q+,Q−} is a partition ofQ.

Proposition 2. Every two-wayK-automaton admits aδ -local in-covering.

Proof. In this proof, we denote± = {−1,+1}. Let A = (R,A,F,J,U) be a two-wayK-automaton and
let P= R\ (R+∪R−) be the set of states inA such that there are at least two transitions with different
direction outgoing from each state. LetP+ andP− be two copies ofP and letQ=R+∪R−∪P+∪P−. Let
ϕ be the canonical mapping fromQ ontoR: it maps every element ofP+ or P− onto the corresponding
element ofP. Let ϕ̃ be the mapping fromQ×A⊢⊣×±×Q into R×A⊢⊣×±×Rdefined byϕ̃(p,a,d,q) =
(ϕ(p),a,d,ϕ(q)).

Let A ′ = (Q,A,E, I ,T) be the automaton defined by:

I = ϕ−1(J); T = ϕ−1(U)\P−;

E = {(p,a,d,q) ∈ ϕ̃−1(F) | (p,d) ∈ (P+∪R+)×{+1}∪ (P−∪R−)×{−1}};
∀p∈ I , I(p) = J(ϕ(p)), ∀p∈ T, T(p) =U(ϕ(p)), ∀t ∈ E, E(t) = F(ϕ̃(p)).

The automatonA ′ is δ -local and it is an in-covering ofA .

192 On Determinism and Unambiguity of Weighted Two-way Automata

p q r

s−

s+

b,→| 0
a,→| 0

a,→| 0

⊣,←| 0
b,←| 0

a,←| 1

a,←| 1
a,←| 1

b,→| 0
⊢,→| 0

Figure 3: Theδ -local two-way distance automatonA ′
1.

Example 3. The automatonA1 of Figure 1 is notδ -local; from state q (resp. s), there are transitions
leaving withδ = 1 and other ones withδ =−1. The automatonA ′

1 of Figure 3 is aδ -local in-covering
of A1. Notice that an in-covering of a deterministic automaton isnot necessarily deterministic.

Actually, onA ′
1, transitions s+

b,→|0−−−−→ q− and s+
⊢,→|0−−−−→ q− do not belong to any computation, since

the label of any trnasition that would follow one of these boths transitions should be the same as the label
of the transition arriving at s− (a), and there is no transition outgoing from q− with label a.

3 Slices

In this section, we describe the conversion of two-way automata over commutative semirings into one-
way automata. We give sufficient conditions to get finite one-way automata.

3.1 The Slice Automaton

Definition 7. Let A = (Q,A,E, I ,T) be a two-wayK-automaton and let w= w1 . . .wk be a word.ρ =
((p0, i0), . . . (pn, in)) be a run over w, and j in[1;k+1]. Let h be the subsequence of all pairs(pr , ir) such
that (ir , ir+1) = (j, j +1) or (ir−1, ir) = (j, j−1). The j-thsliceof ρ is the vector s(j) of states obtained
by the projection of the first component of each pair of h.
ThesignatureS(ρ) of ρ is the sequence of its slices.

The slices we define here are not exactly thecrossing sequencesdefined in [14].

Example 4. The vector

[
q
r
p

]
is the second (and the seventh) slice of the run of Figure 2. The signature

of this run is: (
p
s
q

,
q
r
p
,

p
,

q
,

p
,

p
s
q

,
q
r
p

)
. (1)

The signature of the (unique) run on the word abaaba in the automatonA ′
1 is

(
p

s+
q+

,
q−
r
p

,
p
,

q+ ,
p
,

p
s+
q+

,
q−
r
p

)
. (2)

V. Carnino & S. Lombardy 193

Let A = (Q,A,E, I ,T) be aδ -local two-wayK-automaton. To define a one-wayK-automaton from
slices we consider the setX of subvectors of slices, that are vectorsv in Q∗ with an odd length; letY be
the vectorsv in Q∗ with an even length.

We define inductively two partial functionsθ : X×A×X→K andη : Y×A×Y→K by:

η(ε ,a,ε) = 0K,

∀p,q∈Q, δ (p) = 1=⇒∀u,v∈Y, θ(pu,a,qv) = E(p,a,1,q)+η(u,a,v),

η(u,a, pqv) = E(p,a,1,q)+η(u,a,v),

δ (p) =−1=⇒∀u,v∈ X, θ(pqu,a,v) = E(p,a,−1,q)+θ(u,a,v),
η(qu,a, pv) = E(p,a,−1,q)+θ(u,a,yv).

(3)

SinceA is δ -local, for every triple(u,a,v) in X×A×X, if θ(u,a,v) is defined, it is uniquely defined.
For every vectorpu in X, pu is initial if p is in I and(ε ,⊢,u) is in η; in this case, we setI (pu) =

I(p)+η(ε ,⊢,u). Likewise, every vectorup in X is final if p is in T and(u,⊣,ε) is in η ; in this case, we
setT (up) = η(u,⊣,ε)+T(p).

Example 5. For instance, with slices from automatonA1,

θ

(
p

s+
q+

,a,
q−
r
p

)
=E(p,a,1,q−)+η

(
s+
q+ ,a, r

p

)

=E(p,a,1,q−)+E(r,a,−1,s+)+θ(q+,a, p)
=E(p,a,1,q−)+E(r,a,−1,s+)+E(q+,a,1, p).

(4)

The vector

[
p

s+
q+

]
is initial and

I

(
p

s+
q+

)
= I(p)+E(s+,⊢,1,q+). (5)

Definition 8. Let A = (Q,A,E, I ,T) be a two-wayK-automaton. With the above notations, theslice
automatonof A is the infinite one-wayK-automatonC = (X,A,θ ,I ,T).

Proposition 3. LetK be acommutativesemiring and letA be aδ -local two-wayK-automaton. There
is a bijectionϕ between the computations ofA and the computations of the slice automaton ofA such
that, for every computationρ of A ,
– ρ andϕ(ρ) have the same label and the same weight;
– the signature ofρ is the sequence of states ofϕ(ρ).

Proof. Let C be the slice automaton ofA . Let π be a run inC with label w. Let π(k) be the prefix
of length k of π and let(v(0), . . . ,v(k)) be the sequence of states ofπ(k). We show by induction onk
that fromπ(k), there is a unique way to retrieve the restriction of a run ofA on w to thek first letters.
Moreover, the weight ofπ(k) (including initial weight) is equal to the weight of this restriction. If k= 0,
π(k) is reduced to an initial slice. By Equation 3, the restriction of the path in the two-way automaton is
uniquely defined:v(0)1 is initial with weightI(v(0)1), and for everyr in [1;(v(0)−1)/2], there is a transition

v(0)2r
⊢,→|hr−−−−−→ v(0)2r+1; the weight of this restriction is actually the initial weight of v(0) in C . If k > 0, we

consider the restriction built fork− 1; this restriction corresponds to a disjoint union of partsof the

194 On Determinism and Unambiguity of Weighted Two-way Automata

p q r

0,→| 1/2
1,→| 1/2

1,→| 1
2

0,→| 1
1,→| 1

0,←| 1
1,←| 1

⊣,←| 1

⊢,→| 1

Figure 4: The two-wayQ-automatonA2.

computations and there is only one way to connect them to the states of the slicev(k) (sinceA is δ -
local). The weight of the transition betweenv(k−1) andv(k) is exacltly the sum of the weights of the new
transitions involved in the restriction.

Finally, from the restriction of length|w|, if we considerv(|w|) as a final state ofC , by an argument
similar to the initial state, we obtain that there is one and only one run inA that corresponds to a given
run inC .

3.2 Reduced computations and one-way automata

In unweighted (or Boolean) automata, two-way automata describe exactly the same languages as one-
way automata [14, 12]. It is not always the case with weightedautomata. For instance, letK be the
semiring of languages of the alphabet{x,y}. It is not difficult to design a deterministic two-wayK-
automaton over the alphabet{a} such that the image ofan is xnyn (a first left-right traversal outputs anx
for eacha, then the automaton comes back to the beginning of the word and a second left-right traversal
outputs ay for eacha). This function is obviously not rational and can not be realized by a one-way
K-automaton.

Proposition 4. LetK be acommutativesemiring and letA be aδ -local two-wayK-automaton. There
exists a (finite) one-wayK-automatonB such that there is a bijectionϕ between the reduced computa-
tions ofA and the computations ofB such that, for every reduced computationρ of A ,
– ρ andϕ(ρ) have the same label and the same weight;
– the signature ofρ is the sequence of states ofϕ(ρ).

Proof. Let A = (Q,A,E, I ,T) be a two-wayK-automaton. We consider vectors of elements ofQ such
that no state ofQ appears twice at positions with the same parity. For allk in N, we set

Vk ={v∈Q2k+1 | vi = v j ⇒ i 6= j mod 2}
={v∈Q2k+1 | ∀p∈Q,∀s∈ [0;1], |{i | vi = p andi = s mod 2}| 6 1}

(6)

For everyk larger than|Q|−1,Vk is empty. LetV =
⋃

kVk; we define the one-wayK-automaton with set
of statesV. It is straightforward that a run is reduced if and only if every slice of this run is inV.

By Proposition 3, the restriction of the slice automaton toV gives a finite automaton that fulfils the
proposition.

Actually, the sufficient condition for the finiteness of the trim part of the slice automaton can be
weaken. If the number of slices of a two-way automaton is finite, it is equivalent to a one-way automaton.
Unfortunately, this condition is not easy to check and is nota necessary condition.

Example 6. The two-wayQ-automatonA2 computes for each word w over the alphabet{0,1} the value
x

1−x, where x= ∑i∈[1;|w|]
wi
2i . AlthoughQ is commutative, this two-way automaton is not equivalent toany

one-wayQ-automaton; s2 = |A2| is not a rational series.

V. Carnino & S. Lombardy 195

p q+

p
s+
q+

p
s−
q+

q+
r
p

q−
r
p

b | 0
a | 0

a | 0
b | 0

a | 1
a | 1

b | 0

a | 1

a | 1

a | 1

b | 0

Figure 5: The unambiguous one-way distance automataB1.

p q

p
s
q

q
r
p

b | 0
a | 0

a | 0
b | 0

a | 1

a | 1

b | 0

Figure 6: The unambiguous one-way distance automataB1.

Example 7. Let B′1 be the trim part of the slice automaton ofA ′
1 (Figure 5). In this particular case,

althoughA1 is not δ -local, the slice automatonB1 of A1 (Figure 6) is also unambiguous. It has been
shown in [8] that there is no deterministic one-way distanceautomaton equivalent to these automata.

4 Unambiguity and Determinism

Since every computation in an unambiguous two-way automaton is reduced, Proposition 4 implies the
following statement.

Proposition 5. LetK be a commutative semiring. Every unambiguous two-wayK-automaton is equiva-
lent to an unambiguous one-wayK-automaton.

A unambiguous one-way automaton can obviously be seen as a unambiguous two-way automaton. In
this part, we show that an unambiguous one-way automaton canactually be converted into a determinstic
two-way automaton.

4.1 From Unambiguous one-way to Deterministic two-way Automata

Definition 9. A two-way automaton is deterministic if
i) it has at most one initial state;

196 On Determinism and Unambiguity of Weighted Two-way Automata

ii) for every state p and every letter a, there is at most one transition outgoing from p with label a;
iii) for every final state p, there is no transition outgoing from p with label⊣.

The last condition means that if a final state is reached at theend of the word, there is no nondeter-
ministic choice between ending the computation and readingthe right mark to continue.

Theorem 1. LetK be a semiring. Every unambiguous one-wayK-automaton is equivalent to a deter-
ministic two-wayK-automaton.

This result is an extension of [7], where it is proved that an unambiguous one-way automaton can be
simulated by a deterministic two-way automaton. Our proof is inspired by [3], where it is proven that
any rational function can be realized by a sequential two-way transducer. Other works on the conversion
of two-way transducers to one-way transducers can be found in [5] or in [4].

Proof. Let A = (I ,E,T) an unambiguous one-wayK-automaton with set of statesQ.
We consider the mappingµ from A into theQ×Q Boolean matrices defined by:

∀a∈ A, ∀p,q∈Q, µ(a)p,q = 1⇐⇒ (p,a,q) ∈ E. (7)

The monoid generated by{µ(a) | a∈ A} is thetransitionmonoidM of A . The mappingµ is naturally
extended to a morphism of the monoidA∗ ontoM. Every subset ofQ can be interpreted as a vector in
BQ; for every wordw, Iµ(w) is the set of states accessible from an initial state by a pathwith labelw and
conversely,µ(w)T is the set of states from which a terminal state can be reachedby a path with labelw.

SinceA is unambiguous, for every pair of words(u,v), Iµ(u)∩ µ(v)T has at most one element
(otherwise there would exist several computations accepting uv); likewise, for every letter, there exists at
most one transition(p,a,q) in A with p in Iµ(u) andq in µ(v)T (otherwise there would exist several
computations acceptinguav).

For every wordw= w1 . . .wk, for everyi in [0;k], we set

Xi(w) = Iµ(w1 . . .wi) and Yi(w) = µ(wi+1 . . .wk)T.

We build a deterministic two-wayK-automatonB equivalent toA . B has the following property.
If w is accepted byB, for every i in [1;k], the state reached after the last reading ofwi contains the
information(Xi(w),Yi(w)):

X0,Y0 X1,Y1 Xk,Yk
⊢ w1 wk

From (Xi−1(w),Yi−1(w)) and(Xi(w),Yi(w)), the transition labeled bywi in the run with labelw can be
deduced: it is the only transition(p,wi ,q) with p in Xi−1(w) andq in Yi(w). Likewise(X0,Y0) determines
the initial weight and(Xk,Yk) determines the final weight.

The setXi can easily be deduced fromXi−1 : Xi =Xi−1µ(wi). the computation ofYi fromYi−1 is more
subtle.

Let x andy be two elements ofM. If there existsz in M such thatx = zy, we say thatx6L y; this
relation is a preorder. If there also existst such thattx= y, we say thatx andy are L-equivalent.

Let u be a factor ofw that starts inwi+1. It obviously holdsµ(wiu) 6L µ(u). If µ(wiu) andµ(u)
are L-equivalent, there existsy in M such thatyµ(wiu) = µ(u). In this case, it also holdsyµ(wi . . .wk) =
µ(wi+1 . . .wk) and therefore,Yi = yYi−1. The two-way automaton can perform these computations, since
they lie in the transition monoid, which is finite. The automaton incrementally computes for eachj in [i;k]
the value ofµ(wi+1 . . .w j) until µ(wi . . .w j)<L µ(wi+1 . . .w j) andµ(wi . . .w j+1)≡L µ(wi+1 . . .w j+1). If

V. Carnino & S. Lombardy 197

it reachesj = k, thenYi = µ(wi+1 . . .w j)T, otherwise,Yi = yYi−1 wherey is such thatyµ(wi . . .w j+1) =
µ(wi+1 . . .w j+1).

OnceYi is computed, the automaton must come back to positioni. The automaton is in some
position j such thatµ(wi . . .w j) <L µ(wi+1 . . .w j); a fortiori, for everyr in [i + 1; j], µ(wi . . .w j) <L

µ(wr . . .w j). The automaton therefore spans every position smaller thanj until it arrives to some points
such thatµ(wi . . .w j) = µ(ws. . .w j). It then holdss= i.

Let P be the powerset ofQ. The set of states ofB is the union of five kinds of states:
– Q0 = {i} is the initial state; in this state, the automaton read the input from left to right until it reached
the right mark⊣. It then goes to the stateT in Q1.
– Q1 ⊆P; in this state, the automaton read the inputw from right to left; after reading the suffixv, the
state corresponds toµ(v)T. When the left mark⊢ is reached, the automaton goes to the state(I ,µ(w)T)
in Q2.
– Q2 ⊆P2; these states corresponds to the pairs(Xi,Yi); the incoming transitions on these states cor-
respond to the transition of the one-way automaton; they areweighted by the corresponding weight.
Likewise, a state inQ2 may be terminal if it belongs toP×{T}. When the automaton is in one of these
states, either it stops, or it starts to deal with a new letter; this letter is read and stored in the next state
which belongs toQ3.
– Q3 ⊆ A×M×P2; the automaton stays in statesQ3 as long as it needs to computeYi from Yi−1. It
stores the current lettera as well as the image in the transition monoid of the factoru that followsa and
ends at the current position. If the state storesµ(u) that isL-larger thanµ(au) and the read letterb is
such thatµ(aub) andµ(ub) areL-equivalent, there existsy such thatyµ(aub) = µ(ub); thenYi = yYi−1,
the automaton storesµ(au) and jump to a state inQ4.
– Q4 ⊆ M2×P2; the automaton stays in a state ofQ4 while it reads from right to left the wordu; it
stores the image of the suffixv of u which is read; it holdsµ(v) >L µ(au) until v = u; at this point,
the automaton read the lettera and checks thatµ(av) = µ(au); at this point, it knows bothXi andYi+1,
therefore, it can output the weigth of the unique transitioncompatible witha, Xi andYi+1, and jump to
the state(Xi+1 = Xiµ(a),Yi+1).

F = {i a,→−−−→ i ∈Q0 | a∈ A}

∪{i ⊣,←−−−→ T ∈Q1}
∪{Y a,←−−−→ µ(a)Y ∈Q1 |Y ∈Q1,a∈ A}

∪{Y ⊢,→|Ik−−−−→ (I ,Y) ∈Q2 |Y ∈Q1,k∈ I ∩Y}
∪{(X,Y)

a,→−−−→ (a,1K,X,Y) ∈Q3 | (X,Y) ∈Q2,a∈ A}

∪{(a,x,X,Y)
b,→−−−→ (a,xµ(b),X,Y) ∈Q3 | (a,x,X,Y) ∈Q3,b∈ A,µ(a)xµ(b) <L xµ(b)}

∪{(a,x,X,Y)
b,←−−−→ (µ(a)x,1,X,yY) ∈Q4 | (a,x,X,Y) ∈Q3,b∈ A,y∈M,yµ(a)xµ(b) = xµ(b)}

∪{(a,x,X,Y)
⊣,←−−−→ (µ(a)x,1,X,T) ∈Q4 | (a,x,X,Y) ∈Q3}

∪{(x,y,X,Y)
a,←−−−→ (x,µ(a)y,X,Y) ∈Q4 | (x,y,X,Y) ∈Q4,a∈ A,x<L µ(a)y}

∪{(x,y,X,Y)
a,→|k−−−−→ (Xµ(a),Y) ∈Q2 | (x,y,X,Y) ∈Q4,a∈ A,x= µ(a)y,

∃(p,q) ∈ X×Y,∃p
a|k−−→ q∈A }.

198 On Determinism and Unambiguity of Weighted Two-way Automata

i

a,→
b,→

1
4

2
3

⊣,←
b,←

a,←a,←
b,←

1
3 ,

1
4 ⊢,→ |0
|0

a,1, 1
3 ,

1
4a,→

α ,1, 1
3 ,

2
3

a,←
b,←

2
4 ,

2
3 a,→ |0

a,1, 2
4 ,

2
3

a,→

α ,1, 2
4 ,

1
4

a,←
b,←
⊣,←

a,→ |0

b,1, 1
3 ,

1
4

b,→

β ,1, 1
3 ,

1
4

β ,α ,
1
3 ,

1
4

b,←
⊣,←

b,→ |0

a,←
a,←

b,α ,
1
3 ,

1
4

a,→

a,→

βα ,1, 1
3 ,

2
3

b,←

βα ,α ,
1
3 ,

2
3

a,←

a,←

1
3 ,

2
3

⊢,→ |0
b,→ |0

a,1, 1
3 ,

2
3

a,→

α ,1, 1
3 ,

1
4

a,←
b,←
⊣,←

2
4 ,

1
4

|0

a,→ |1

a,1, 2
4 ,

1
4

a,→

α ,1, 2
4 ,

2
3

a,←
b,←

a,→ |1

b,1, 2
4 ,

1
4

b,→

β ,1, 2
4 ,

1
4

b,←
⊣,←

b,→ |0

β ,α ,
2
4 ,

1
4

a,←
a,←

b,α ,
2
4 ,

1
4

a,→ a,→

βα ,1, 2
4 ,

2
3

b,←

βα ,α ,
2
4 ,

2
3

a,←

a,←
b,→ |0

⊣,←⊣,←

b,1, 2
4 ,

2
3

b,→

b,1, 1
3 ,

2
3

b,→

Figure 7: The deterministic two-way distance automatonD1. The transitions or states in gray are not
accessible. For sake of clearness, transitions outgoing from non accessible states are not drawn. Every
column of numbers is the set of non-zero components of a Boolean vector of size 4. The weights are
only written on transitions where it comes from the weight ofa transition (or from an initial/final weight)
of B1.

For everyX in P, if the state(X,T) belongs toQ2, (X,T) is final with weightTp, wherep is the
unique state inX∩T.

Example 8. Let B1 be the unambiguous one-way automaton of Figure 6. We number the states of this
automaton: [p] = 1, [q] = 2, [p,s,q] = 3 and [q, r, p] = 4. The transition monoid is generated by the
following matrices:

α = µ(a) =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , β = µ(b) =

1 0 1 0
0 0 0 0
0 0 0 0
1 0 1 0

 . (8)

The following identities hold :α2 = 1, β 2 = β , βαβ = β . It then holds1≡L α , αβ ≡L β andαβα ≡L

V. Carnino & S. Lombardy 199

βα , while β <L 1 and βα <L 1. Notice thatβ and βα are uncomparable. We can apply the proof of
Theorem 1 to compute the equivalent deterministic two-way automatonD1 of Figure 7.

Corollary 1. LetK be a commutative semiring. Every unambiguous two-wayK-automaton is equivalent
to a deterministic one.

Remark 1. This conversion can lead to a combinatorial blow-up. For instance, the deterministic two-
way automaton built from the unambiguous one-way automatoB1 (Figure 6 (right)) has 27 states in its
trim part.

A lower bound on the number of states can be computed. Let n be the number of states of the
unambiguous one-way automaton.

• Q0 has one state;

• Q1 has at most2n−1 states;

• Q2 is made of pairs of subset of Q which share exactly one element, hence Q2 has at most n3n−1

states;

• Q3 is made of a pair of Q2 endowed with a letter and an element of the transition monoid(that
may have2n2

elements); hence Q3 has at most|A|n3n−12n2
states;

• Q4 is made of two (non empty) subsets of Q and two elements of the transition monoid; its size is
bounded by22n+2n2

.

References

[1] Marcella Anselmo (1990):Two-way Automata with Multiplicity. In: ICALP’90, Lect. Notes in Comput. Sci.
443, pp. 88–102, doi:10.1007/BFb0032024.

[2] Marie-Pierre Béal, Olivier Carton, Christophe Prieur& Jacques Sakarovitch (2003):Squaring transducers:
an efficient procedure for deciding functionality and sequentiality. Theor. Comput. Sci.292(1), pp. 45–63,
doi:10.1016/S0304-3975(01)00214-6.

[3] Olivier Carton (2012):Two-Way Transducers with a Two-Way Output Tape. In: DLT’12, Lect. Notes in
Comput. Sci.7410, pp. 263–272, doi:10.1007/978-3-642-31653-1_24.

[4] Rodrigo De Souza (2013):Uniformisation of Two-Way Transducers. In: LATA’13 , Lect. Notes in Comput.
Sci.7810, pp. 547–558, doi:10.1007/978-3-642-37064-9_48.

[5] Joost Engelfriet & Hendrik Jan Hoogeboom (2007):Finitary Compositions of Two-way Finite-State Trans-
ductions. Fundam. Inform.80(1-3), pp. 111–123. Available athttp://iospress.metapress.com/
content/143422w0253h8644/.

[6] ZoltánÉsik & Werner Kuich (2009):Handbook of Weighted Automata, chapter Finite Automata, pp. 69–104.
Springer, doi:10.1007/978-3-642-01492-5.

[7] John E. Hopcroft & Jeffrey D. Ullman (1967):An Approach to a Unified Theory of Automata. In: SWAT
(FOCS), IEEE Computer Society, pp. 140–147, doi:10.1109/FOCS.1967.4.

[8] Ines Klimann, Sylvain Lombardy, Jean Mairesse & Christophe Prieur (2004):Deciding unambiguity and
sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput. Sci.327(3), pp. 349–373,
doi:10.1016/j.tcs.2004.02.049.

[9] Daniel Krob (1994):The equality problem for rational series with multiplicities in the tropical semiring is
undecidable. Internat. J. Algebra Comput.4(3), pp. 405–425, doi:10.1142/S0218196794000063.

[10] Sylvain Lombardy & Jean Mairesse (2006):Series which are both max-plus and min-plus rational are un-
ambiguous. RAIRO - Theor. Inf. and Appl.40(1), pp. 1–14, doi:10.1051/ita:2005042.

200 On Determinism and Unambiguity of Weighted Two-way Automata

[11] Sylvain Lombardy & Jacques Sakarovitch (2013):The validity of weighted automata. Internat. J. Algebra
Comput.23, pp. 863–913, doi:10.1142/S0218196713400146.

[12] M. O. Rabin & D. Scott (1959):Finite automata and their decision problems. IBM J. Res. Dev.3(2), pp.
114–125, doi:10.1147/rd.32.0114.

[13] Jacques Sakarovitch (2009):Elements of Automata Theory. Cambridge University Press, doi:10.1017/

CBO9781139195218.

[14] J. C. Shepherdson (1959):The reduction of two-way automata to one-way automata. IBM J. Res. Dev.3(2),
pp. 198–200, doi:10.1147/rd.32.0198.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 201–215, doi:10.4204/EPTCS.151.14

Operations on Automata with All States Final

Kristı́naČevorová
Mathematical Institute,

Slovak Academy of Sciences,
Bratislava, Slovakia

cevorova@mat.savba.sk

Galina Jirásková∗ Peter Mlynárčik Matúš Palmovský
Mathematical Institute,

Slovak Academy of Sciences,
Košice, Slovakia

jiraskov@saske.sk mlynarcik1972@gmail.com matp93@gmail.com

JurajŠebej†

Institute of Computer Science,
Šafárik University,
Košice, Slovakia

juraj.sebej@gmail.com

We study the complexity of basic regular operations on languages represented by incomplete deter-
ministic or nondeterministic automata, in which all statesare final. Such languages are known to
be prefix-closed. We get tight bounds on both incomplete and nondeterministic state complexity of
complement, intersection, union, concatenation, star, and reversal on prefix-closed languages.

1 Introduction

A languageL is prefix-closed ifw∈ L implies that every prefix ofw is in L. It is known that a regular
language is prefix-closed if and only if it is accepted by a nondeterministic finite automaton (NFA) with
all states final [18]. In the minimal incomplete deterministic finite automaton (DFA) for a prefix-closed
language, all the states are final as well.

The authors of [18] examined several questions concerning NFAs with all states final. They proved
that the inequivalence problem for NFAs with all states finalis PSPACE-complete in the binary case,
but polynomially solvable in the unary case. Next, they showed that minimizing a binary NFA with all
states final is PSPACE-hard, and that deciding whether a given NFA accepts a language that is not prefix-
closed is PSPACE-complete, while the same problem for DFAs can be solved in polynomial time. The
NFA-to-DFA conversion and complementation of NFAs with allstates final have been also considered
in [18], and the tight bound 2n for the first problem, and the lower bound 2n−1 for the second one have
been obtained.

The quotient complexity of prefix-closed languages has beenstudied in [5]. The quotient of a lan-
guageL by the stringw is the setLw = {x | wx∈ L}. The quotient complexity of a languageL, κ(L),
is the number of distinct quotients ofL. Quotient complexity is defined for any language, and it is fi-
nite if and only if the language is regular. The quotient automaton of a regular languageL is the DFA
({Lw | w∈ Σ∗},Σ, ·,Lε ,F), whereLw ·a= Lwa, and a quotientLw is final if it contains the empty string.
The quotient automaton ofL is a minimal complete DFA forL, so quotient complexity is the same as the
state complexity ofL which is defined as the number of states in the minimal DFA forL. In [5], the tight
bounds on the quotient complexity of basic regular operation have been obtained, and to prove upper
bounds, the properties of quotients have been used rather than automata constructions.

∗Research supported by grant APVV-0035-10.
†Research supported by grant VEGA 1/0479/12.

202 Operations on Automata with All States Final

Automata with all states final represent systems, for example, production lines, and their intersection
or parallel composition represents the composition of these systems [21]. A question that arises here
is, whether the complexity of intersection of automata withall states final is the same as in the general
case of arbitrary DFAs or NFAs. At the first glance, it seems that this complexity could be smaller.
Our first result shows that this is not the case. We show that both incomplete and nondeterministic state
complexity of intersection on prefix-closed languages is given by the functionmn, which is the same as
in the general case of regular languages.

In the deterministic case, to have all the states final, we have to consider incomplete deterministic
automata because otherwise, the complete automaton with all states final would accept the language
consisting of all the strings over an input alphabet. Noticethat the model of incomplete deterministic
automata has been considered already by Maslov [20]. The same model has been used in the study of
the complexity of the shuffle operation [6]; here, the complexity on complete DFAs is not known yet.

We next study the complexity of complement, union, concatenation, square, star, and reversal on
languages represented by incomplete DFAs or NFAs with all states final. We get tight bounds in both
nondeterministic and incomplete deterministic cases. In the nondeterministic case, all the bounds are the
same as in the general case of regular languages, except for the bound for star that isn instead ofn+1.
However, to prove the tightness of these bounds, we usually use larger alphabets than in the general case
of regular languages where all the upper bounds can be met by binary languages [10, 12].

To get lower bounds, we use a fooling-set lower-bound method[1, 2, 3, 8, 11]. In the case of union
and reversal, the method does not work since it provides a lower bound on the size of NFAs with multiple
initial states. Since the nondeterministic state complexity of a regular language is defined using a model
of NFAs with a single initial state [10], we have to use a modified fooling-set technique to get the tight
boundsm+n+1 andn+1 for union and reversal, respectively.

In the case of incomplete deterministic finite automata, thetight bounds for complement, union,
concatenation, star, and reversal aren+1,mn+m+n,m·2n−1+2n−1, 2n−1, and 2n−1, respectively.
To define worst-case examples, we use a binary alphabet for union, star, and reversal, and a ternary
alphabet for concatenation.

The paper is organized as follows. In the next section, we give some basic definitions and preliminary
results. In Sections 3 and 4, we study boolean operations. Concatenation is discussed in Section 5, and
star and reversal in Section 6. The last section contains some concluding remarks.

2 Preliminaries

In this section, we recall some basic definitions and preliminary results. For details and all unexplained
notions, the reader may refer to [24].

A nondeterministic finite automaton(NFA) is a quintupleA= (Q,Σ,δ , I ,F), whereQ is a finite set
of states,Σ is a finite alphabet,δ : Q×Σ → 2Q is the transition function which is extended to the domain
2Q ×Σ∗ in the natural way,I ⊆ Q is the set of initial states, andF ⊆ Q is the set of final states. The
language accepted byA is the setL(A) = {w∈ Σ∗ | δ (I ,w)∩F 6= /0}.

The nondeterministic state complexityof a regular languageL, nsc(L), is the smallest number of
states in any NFA with asingle initial staterecognizingL.

An NFA A is incomplete deterministic(DFA) if |I | = 1 and|δ (q,a)| ≤ 1 for eachq in Q and each
a in Σ. In such a case, we writeδ (q,a) = q′ instead ofδ (q,a) = {q′}. A non-final stateq of a DFA is
called adeadstate ifδ (q,a) = q for each symbola in Σ.

K. Čevorová, G. Jirásková, P. Mlynárčik, M. Palmovský,J. Šebej 203

The incomplete state complexityof a regular languageL, isc(L), is the smallest number of states in
any incomplete DFA recognizingL. An incomplete DFA is minimal (with respect to the number of states)
if it does not have any dead state, all its states are reachable, and no two distinct states are equivalent.

Every NFA A = (Q,Σ,δ , I ,F) can be converted to an equivalent DFAA′ = (2Q,Σ, ·, I ,F ′), where
R·a= δ (R,a) andF ′ = {R∈ 2Q | R∩F 6= /0}. The DFAA′ is called thesubset automatonof the NFAA.
The subset automaton need not be minimal since some of its states may be unreachable or equivalent.
However, if for each stateq of an NFA A, there exists a stringwq that is accepted byA only from the
stateq, then the subset automaton of the NFAA does not have equivalent states since if two subsets of
the subset automaton differ in a stateq, then they are distinguishable bywq.

To prove the minimality of NFAs, we use a fooling set lower-bound technique, see [1, 2, 3, 8, 11].

Definition A set of pairs of strings{(x1,y1),(x2,y2), . . . ,(xn,yn)} is called afooling setfor a languageL
if for all i, j in {1,2, . . . ,n}, the following two conditions hold:

(F1) xiyi ∈ L, and
(F2) if i 6= j, thenxiy j /∈ L or x jyi /∈ L.

It is well known that the size of a fooling set for a regular language provides a lower bound on the
number of states in any NFA (with multiple initial states) for the language. The argument is simple. Fix
the accepting computations of any NFA on stringsxiyi andx jy j . Then, the states on these computations
reached after readingxi andx j must be distinct, otherwise the NFA accepts bothxiy j andx jyi for two
distinct pairs. Hence we get the following observation.

Lemma 1 ([3, 8, 11]). Let F be a fooling set for a language L. Then every NFA (with multiple initial
states) for the language L has at least|F | states.

The next lemma shows that sometimes, if we insist on having a single initial state in an NFA, one
more state is necessary. It can be used in the case of union, reversal, cyclic shift [15], and AFA-to-NFA
conversion [13]. In each of these cases, NFAs with a single initial state require one more state than NFAs
with multiple initial states. For the sake of completeness,we recall the proof of the lemma here.

Lemma 2 ([14]). LetA andB be sets of pairs of strings and let u and v be two strings such that A ∪B,
A ∪{(ε ,u)}, andB∪{(ε ,v)} are fooling sets for a language L. Then every NFA with a singleinitial
state for the language L has at least|A |+ |B|+1 states.

Proof. Consider an NFA for a languageL, and letA = {(xi ,yi) | i = 1,2, . . . ,m} andB = {(xm+ j ,ym+ j) |
j = 1,2, . . . ,n}. Since the stringsxkyk are inL, we fix an accepting computation of the NFA on each string
xkyk. Let pk be the state on this computation that is reached after reading xk. SinceA ∪B is a fooling set
for L, the statesp1, p2, . . . , pm+n are pairwise distinct. SinceA ∪{(ε ,u)} is a fooling set, the initial state
is distinct from all the statesp1, p2, . . . , pm. SinceB∪{(ε ,v)} is a fooling set, the (single) initial state
is also distinct from all the statespm+1, pm+2, . . . , pm+n. Thus the NFA has at leastm+n+1 states.

Example Let K = (a3)∗ andL = (b3)∗. Then nsc(K) = 3 and nsc(L) = 3, and the languageK ∪ L is
accepted by a 6-state NFA with two initial states. Therefore, we cannot expect that we will be able to
find a fooling set forK ∪ L of size 7. However, every NFA with asingle initial state for the language
K∪L requires at least 7 states since Lemma 2 is satisfied for the languageK∪L with

A = {(a,a2),(a2,a),(a3,a3)},
B = {(b,b2),(b2,b),(b3,b3)},
u= b3, and

v= a3.

204 Operations on Automata with All States Final

If w= uv for stringsu andv, thenu is aprefixof w. A languageL is prefix-closedif w∈ L implies
that every prefix ofw is in L. The following observations are easy to prove.

Proposition 3 ([18]). A regular language is prefix-closed if and only if it is accepted by some NFA with
all states final.

Proposition 4. Let A be a minimal incomplete DFA for a language L. Then the language L is prefix-
closed if and only if all the states of the DFA A are final.

3 Complementation

If L is a language over an alphabetΣ, then the complement ofL is the languageLc = Σ∗ \ L. If L is
accepted by a minimal complete DFAA, then we can get a minimal DFA forLc from the DFAA by
interchanging the final and non-final states. In the case of incomplete DFAs, we first have to add a dead
state, that is, a non-final state which goes to itself on each input, and let all the undefined transitions go
to the dead state. After that, we can interchange the final andnon-final states to get a (complete) DFA
for the complement. This gives the following result.

Theorem 5. Let n≥ 1. Let L be a prefix-closed regular language over an alphabetΣ with isc(L) = n.
Thenisc(Lc)≤ n+1, and the bound is tight if|Σ| ≥ 1.

Proof. For tightness, we can consider the unary prefix-closed language{ai | 0≤ i ≤ n−1}.

If a languageL is represented by ann-state NFA, then we first construct the corresponding subset
automaton, and then interchange the final and non-final states to get a DFA for the languageLc of at
most 2n states. This upper bound on the nondeterministic state complexity of complement on regular
languages is know to be tight in the binary case [12].

For prefix-closed languages, we get the same bound, however,to prove tightness, we use a ternary
alphabet. Whether or not the bound 2n can be met by a binary language remains open.

Theorem 6. Let n≥ 2. Let L be a prefix-closed regular language over an alphabetΣ with nsc(L) = n.
Thennsc(Lc)≤ 2n, and the bound is tight if|Σ| ≥ 3.

Proof. The upper bound is the same as in the general case of regular languages [10]. To prove tightness,
consider the languageL accepted by the NFAN shown in Figure 1, in which staten goes to the empty
set on botha andb, and to{1} on c. Each other statei goes to{i +1} on botha andc, and to{1, i +1}
on b. Our aim is to describe a fooling setF = {(xS,yS) | S⊆ {1,2, . . . ,n}} of size 2n for Lc.

First, let us show that each subset of{1,2, . . . ,n} is reachable in the subset automaton of the NFAN.
The initial state is{1}, and each singleton set{i} is reached from{1} by ai−1. The empty set is reached
from {n} by a. The set{i1, i2, . . . , ik} of sizek, where 2≤ k≤ n and 1≤ i1 < i2 < · · ·< ik ≤ n, is reached
from the set{i2− i1, . . . , ik− i1} of sizek−1 by the stringbai1−1. This proves reachability by induction.
Now, definexS as the string, by which the initial state 1 of the NFAN goes to the setS.

...1 2 n−1 n
b

b b

a,b,c a,b,c a,b,c a,b,cN

c

Figure 1: The NFAN of a prefix-closed languageL with nsc(Lc) = 2n.

K. Čevorová, G. Jirásková, P. Mlynárčik, M. Palmovský,J. Šebej 205

Next, for a subsetSof {1,2, . . . ,n}, define the stringyS as the stringyS = y0y1 · · ·yn−1 of lengthn,
where

yi =

{
a, if n− i ∈ S,

c, if n− i /∈ S.

We claim that the stringyS is rejected by the NFAN from each state inSand accepted from each state
that is not inS. Indeed, if i is a state inS, thenyn−i = a and yS = uav with u = y0y1 · · ·yn−i−1 and
v= yn−i+1yn−i+2 · · ·yn−1. Hence|u| = n− i, which means that the statei goes to{n} by u since botha
andc move each stateq to stateq+1. However, in staten the NFAN cannot reada, and therefore the
stringyS= uav is rejected fromi. On the other hand, ifi /∈ S, thenyn−i = c, and the stringyS= ucvwith
|u|= n− i and|v|= i −1 is accepted fromi through the computationi

u−→ n
c−→ 1

v−→ i.
Now, we are ready to prove that the set of pairs of stringsF = {(xS,yS) | S⊆ {1,2, . . . ,n}} is a

fooling set for the languageLc.
(F1) ByxS, the initial state 1 goes to the setS. The stringyS is rejected byN from each state inS. It

follows that the NFAN rejects the stringxSyS. Thus the stringxSyS is in Lc.
(F2) LetS 6= T. Then without loss of generality, there is a statei such thati ∈ Sandi /∈ T. By xS, the

initial state 1 goes toS, so it also goes to the statei. Sincei /∈ T, the stringxT is accepted byN from i.
Therefore, the NFAN accepts the stringxSyT , and so this string is not inLc.

HenceF is a fooling set forLc of size 2n. By Lemma 1, we have nsc(Lc)≥ 2n.

4 Intersection and Union

In this section, we study the incomplete and nondeterministic state complexity of intersection and union
of prefix-closed languages. If regular languagesK and L are accepted bym-state andn-state NFAs,
respectively, then the languageK ∩ L is accepted by an NFA of at mostmn states, and this bound is
known to be tight in the binary case [10]. Our first result shows that the boundmn can be met by
binary prefix-closed languages. Then, using this result, weget the same bound on the incomplete state
complexity of intersection on prefix-closed languages.

Theorem 7. Let K and L be prefix-closed languages over an alphabetΣ withnsc(K)=m andnsc(L) = n.
Thennsc(K∩L)≤ mn, and the bound is tight if|Σ| ≥ 2.

Proof. The upper bound is the same as for regular languages [10]. Fortightness, consider prefix-closed
binary languagesK = {w ∈ {a,b}∗ | #a(w) ≤ m− 1} andL = {w ∈ {a,b}∗ | #b(w) ≤ n− 1} that are
accepted by anm-state and ann-state incomplete DFAsA andB, respectively, shown in Figure 2.

Consider the set of pairs of stringsF = {(aib j ,am−1−ibn−1− j) | 0≤ i ≤ m−1,0≤ j ≤ n−1} of size
mn. Let us show thatF is a fooling set for the languageK∩L.

a a a a

...

...

b b b b

a a a a

b b b b

A

B

0 1 m−2 m−1

n−2 n−11 0

Figure 2: The incomplete DFAsA andB of prefix-closed languagesK andL with nsc(K∩L) = mn.

206 Operations on Automata with All States Final

(F1) The stringaib j ·am−1−ibn−1− j has exactlym−1 a’s andn−1 b’s. It follows that it is inK∩L.
(F2) Let(i, j) 6= (k, ℓ). If i < k, then the stringakbℓ ·am−1−ibn−1− j containsm−1+(k− i) a’s, and

therefore it is not inK. The case ofj < ℓ is symmetric.
HenceF is a fooling set forK∩L, and the theorem follows.

Theorem 8. Let K and L be prefix-closed languages over an alphabetΣ with isc(K)=m andisc(L) = n.
Thenisc(K∩L)≤ mn, and the bound is tight if|Σ| ≥ 2.

Proof. Let A= (QA,Σ,δA,sA,QA) andB= (QB,Σ,δB,sB,QB) be incomplete DFAs forK andL, respec-
tively. Define an incomplete product automatonM = (QA×QB,Σ,δ ,(sA,sB),QA×QB), where

δ ((p,q),a) =

{
(δA(p,a),δB(q,a)), if both δA(p,a) andδB(q,a) are defined,

undefined, otherwise.

The DFAM accepts the languageK∩L. This gives the upper boundmn. For tightness, consider the same
languagesK andL as in the proof of the previous theorem. Notice thatK andL are accepted bym-state
andn-state incomplete DFAs, respectively. We have shown that nondeterministic state complexity of
their intersection ismn. It follows that the incomplete state complexity is also at leastmn.

Our next result on the incomplete state complexity of union on prefix-closed languages can be derived
from the result on the quotient complexity of union in [5]. For the sake of completeness, we restate it in
terms of incomplete complexities, and recall the proof.

Theorem 9. Let K and L be prefix-closed languages over an alphabetΣ with isc(K)=m andisc(L) = n.
Thenisc(K∪L)≤ mn+m+n, and the bound is tight if|Σ| ≥ 2.

Proof. LetA=({0,1, . . . ,m−1},Σ,δA,0,FA) andB=({0,1, . . . ,n−1},Σ,δB,0,FB) be incomplete DFAs
for the languagesK andL, respectively. To construct a DFA for the languageK ∪ L, we first add the
dead statesm andn to the DFAsA andB, and let go all the undefined transitions to the dead states.
Now we construct the classic product-automaton from the resulting complete DFAs with the state set
{0,1, . . . ,m}×{0,1, . . . ,n}. All its states are final, except for the state(m,n) that is dead, and we do not
count it. Hence we get the upper boundmn+m+n on the incomplete state complexity of union.

b b b b

b b b

b b b b

b b b b

b

b

b

a a a a a

a a a a a

a a a a

a a a a

0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3

Figure 3: The product automaton for incomplete DFAsA andB from Figure 2;m= 3 andn= 4.

K. Čevorová, G. Jirásková, P. Mlynárčik, M. Palmovský,J. Šebej 207

a a a a

...

...

b

c c c c

d

A

B

0 1

0 1

m−2 m−1

n−2 n−1

Figure 4: The NFAsA andB of prefix-closed languagesK andL with nsc(K∪L) = m+n+1.

For tightness, we again consider the languages described inthe proof of Theorem 7. We add the dead
statesm andn and construct the product automaton. The product automatonin the case ofm= 3 and
n= 4 is shown in Figure 3.

Each state(i, j) of the product automaton is reached from the initial state(0,0) by the stringaib j . Let
(i, j) and(k, ℓ) be two distinct states of the product automaton. Ifi < k, then the stringam−kbn is rejected
from (k, ℓ) and accepted from(i, j). If j < ℓ, then the stringbn−ℓam is rejected from(k, ℓ) and accepted
from (i, j). Thus all the states in the product-automaton are reachableand pairwise distinguishable, and
the lower boundmn+m+n follows.

In the nondeterministic case, the upper bound for union on regular language ism+n+1, and it is
tight in the binary case [10]. We get the same bound for union on prefix-closed languages, however, to
define witness languages, we use a four-letter alphabet.

Theorem 10.Let K and L be prefix-closed languages over an alphabetΣ withnsc(K)=m andnsc(L) = n.
Thennsc(K∪L)≤ m+n+1, and the bound is tight if|Σ| ≥ 4.

Proof. The upper bound is the same as for regular languages [10]. To prove tightness, letK andL be the
prefix-closed languages accepted by the NFAsA andB, respectively, shown in Figure 4. Let

A = {(ai ,am−1−ib) | i = 1,2, . . . ,m−1}∪{(am−1b,a)},
B = {(c j ,cn−1− jd) | j = 1,2, . . . ,n−1}∪{(cn−1d,c)}.

Let us show thatA ∪B is a fooling set for the languageK ∪L.
(F1) We haveai ·am−1−ib = am−1b andc j · cn−1− jd = cn−1d. Both these strings are inK ∪ L. The

stringsam−1b·a andcn−1d ·c are inK ∪L as well.
(F2) If 1≤ i < i′ ≤ m−1, then the stringai ·am−1−i′b is not inK sincem−1− (i′− i)< m−1. Next,

if 1 ≤ i ≤ m−1, thenam−1b ·am−1−ib is not inK. The argumentation for two pairs fromB is similar.
If we concatenate the first part of a pair inA with the second part of a pair inB, then we get a string
that either contains all three symbolsa,c,d, or contains both symbolsa andd. No such string is inK∪L.

ThusA ∪B is a fooling set for the languageK∪L. Moreover, the setsA ∪{(ε ,c)} andB∪{(ε ,a)}
are fooling sets forK∪L as well. By Lemma 2, we have nsc(K ∪L)≥ m+n+1.

5 Concatenation

In this section, we deal with the concatenation operation onprefix-closed languages. We start with
incomplete state complexity. We use a slightly different ternary witness language than in [5], and prove
the upper bound using automata constructions.

208 Operations on Automata with All States Final

q0 q1 qm−2 qm−1

...

...

a,b

c c c c
bb

b

a,b a,b a,ba

b,c c c c

A

B 0 1 n−2 n−1

a

Figure 5: The incomplete DFAsA andB of languagesK andL with isc(KL) = m·2n−1+2n−1.

Theorem 11. Let m,n≥ 3. Let K and L be prefix-closed languages over an alphabetΣ with isc(K) = m
and isc(L) = n. Thenisc(KL)≤ m·2n−1+2n−1, and the bound is tight if|Σ| ≥ 3.

Proof. Let A = (QA,Σ,δA,sA,QA) andB = (QB,Σ,δB,sB,QB) be incomplete DFAs with all states final
accepting the languagesK andL, respectively. Construct an NFAN for the languageKL from the DFAs
A andB by adding the transition on a symbola from a stateq in QA to the initial statesB of B whenever
the transition ona in stateq is defined inA. The initial states of the NFAN aresA andsB, and the set of
final states isQB. Each reachable subset of the subset automaton of the NFAN contains at most one state
of QA, and several states ofQB. Moreover, if a state ofQA is in a reachable subsetS, thenSmust contain
the statesB. This gives the upper boundm·2n−1+2n−1 on isc(KL) since the empty set is not counted.

For tightness, consider the prefix-closed languagesK andL accepted by incomplete DFAsA andB,
respectively, shown in Figure 5, in which the transitions are as follows:

on a, stateq0 goes to itself, and each statej goes to(j +1) modn;
on b, each stateqi goes to stateq0, state 0 goes to itself, and statej with 1≤ j ≤ n−2 goes toj +1;
on c, each stateqi with 0≤ i ≤ m−2 goes toqi+1, and each statej goes to itself;

and all the remaining transitions are undefined.
Construct an NFAN for the languageKL as described above. Let us show that the subset automaton

of the NFAN hasm·2n−1+2n−1 reachable and pairwise distinguishable non-empty subsets.
(1) First, let us show that each set{q0}∪S is reachable, whereS⊆ {0,1, . . . ,n−1} and 0∈ S. The

proof is by induction on the size of subsets. The set{q0,0} is the initial subset. The set{q0,0, j1, j2, . . . , jk}
with 1≤ j1 < j2 < · · ·< jk ≤ n−1 is reached from the set{q0,0, j2− j1, . . . , jk− j1} by the stringabj1−1,
and the latter set is reachable by induction.

(2) Now, let us show that each set{qi}∪S, is reachable, where 1≤ i ≤ m−1, S⊆ {0,1, . . . ,n−1}
and 0∈ S. The set{qi}∪S is reached from{q0}∪Sby ci , and the latter set is reachable as shown in (1).

(3) Next, we show that each setS with S⊆ {0,1, . . . ,n− 1} and 0∈ S is reachable. The setS is
reached from{qm−1}∪Sby c, and the latter set is reachable as shown in case (2).

(4) Finally, we show that each non-empty setSwith S⊆ {0,1, . . . ,n−1} and 0/∈ S is reachable. If
S= { j1, j2, . . . , jk} with j1 ≥ 1, thenS is reached from the set{0, j2 − j1, . . . , jk − j1} by a j1, and the
latter set is reachable as shown in case (3).

This proves the reachability ofm·2n−1+2n−1 non-empty subsets.
To prove distinguishability, notice that the stringbn is accepted by the DFAB only from the state 0,

and the stringan−1−iabn is accepted only from the statei (1 ≤ i ≤ n− 1). If S andT are two distinct
subsets of{0,1, . . . ,n−1}, thenSandT differ in a statei. If i = 0, thenbn distinguishesSandT, and if
i ≥ 1, thenan−ibn distinguishesSandT.

K. Čevorová, G. Jirásková, P. Mlynárčik, M. Palmovský,J. Šebej 209

a a a a

...

...

b c

a a a a

b c

A

B 1 0

1 0 m−2 m−1

n−2 n−1

Figure 6: The incomplete DFAs of prefix-closed languagesK andL with nsc(KL) = m+n.

Next, the sets{qi}∪S and{qi}∪T, whereS andT are distinct subsets of{0,1, . . . ,n− 1}, go to
S and T, respectively, bycm. SinceS and T are distinguishable, the sets{qi} ∪S and {qi} ∪ T are
distinguishable as well.

Finally, notice that the stringbnabn is accepted by the NFAN from each stateqi , but rejected from
each statei in {0,1, . . . ,n−1}. Hence the sets{qi}∪SandT, whereSandT are subsets of{0, . . . ,n−1},
are distinguishable. Now let 0≤ i < j ≤ m−1. Then{qi}∪Sand{q j}∪T go to{qi+m− j}∪SandT,
respectively, bycm− j . Since{qi+m− j}∪SandT are distinguishable, the sets{qi}∪Sand{q j}∪T are
distinguishable as well. This proves the distinguishability of all the reachable subsets, and completes the
proof.

In the next theorem, we consider the nondeterministic case.For regular languages, the upper bound
on the nondeterministic state complexity of concatenationis m+ n, and it is tight in the binary case
[10]. For prefix-closed languages, we get the same bound for concatenation. However, we define witness
languages over a ternary alphabet.

Theorem 12. Let m,n≥ 3. Let K and L be prefix-closed languages over an alphabetΣ with nsc(K) = m
andnsc(L) = n. Thennsc(KL)≤ m+n, and the bound is tight if|Σ| ≥ 3.

Proof. The upper bound is the same as for regular languages [10]. Fortightness, consider the ternary
prefix-closed languagesK andL accepted by incomplete DFAsA andB, respectively, shown in Figure 6.
Notice that if a stringw is in KL, thenw is in the languageb∗a∗c∗b∗a∗c∗, and the number ofa’s in w is
at most(n+m−2).

For i = 0,1, . . . ,m+n−1, define the pair(xi ,yi) as follows:

(xi ,yi) = (ai ,am−1−icban−1), for i = 0,1, . . .m−1,

(xm+ j ,ym+ j) = (am−1cbaj ,an−1− j), for j = 0,1, . . .n−1.

Let us show that the set of pairsF = {(xi ,yi) | i = 0,1, . . . ,m+n−1} is a fooling set for the languageKL.
(F1) For eachi, we havexiyi = am−1cban−1. Thusxiyi is in KL sinceam−1c is in K andban−1 is in L.
(F2) Let i < j and (i, j) 6= (m− 1,m). Then the number ofa’s in the stringx jyi is greater than

m+n−2, and therefore the stringx jyi is not inKL. If (i, j) = (m−1,m), thenxmym−1 = am−1cbcban−1.
Thusxmym−1 is not inb∗a∗c∗b∗a∗c∗, and therefore it is not inKL.

Hence the setF is a fooling set for the languageKL, so nsc(KL)≥ m+n.

6 Star and Reversal

We conclude our paper with the star and reversal operation onprefix-closed languages. The star of a
languageL is the languageL∗ =

⋃
i≥0 Li, whereL0 = {ε} andLi+1 = Li ·L.

210 Operations on Automata with All States Final

1 2 3 4 5 6
b b

b

a

a

b

b

a

a

b

A

Figure 7: The incomplete DFAA of a prefix-closed languageL with isc(L∗) = 2n−1; n= 6.

If a regular languageL is accepted by a completen-state DFA, then the languageL∗ is accepted by a
DFA of at most 3/4·2n states, and the bound is tight in the binary case [20, 25].

For prefix-closed languages, the upper bound on the quotientcomplexity for star is 2n−2+1, and it
has been shown to be tight in the ternary case [5]. In the case of incomplete state complexity, we get the
bound 2n−1. For the sake of completeness, we give a simple proof of the upper bound using automata
constructions. Moreover, we are able to define a witness language over a binary alphabet.

Theorem 13. Let n≥ 4. Let L be a prefix-closed regular language over an alphabetΣ with isc(L) = n.
Thenisc(L∗)≤ 2n−1, and the bound is tight if|Σ| ≥ 2.

Proof. Let A= (Q,Σ, ·,s,Q) be an incomplete DFA forL. Construct an NFAA∗ for L∗ from the DFA
A by adding the transition on a symbola from a stateq to the initial states whenever the transitionq·a
is defined. In the subset automaton of the NFAA∗, each reachable set is either empty, or it contains the
initial states. It follows that isc(L∗)≤ 2n−1.

For tightness, consider the binary incomplete DFA with the state set{1,2, . . . ,n}, the initial state
1 and with all states final. The transitions are as follows. Bya, the transitions in states 1 and 2 are
undefined, each odd statei with 3≤ i ≤ n−1 goes toi+1, and each even statei with 3≤ i ≤ n−1 goes
to i −1. By b, there is a cycle(1,2,3), each odd statei with 4≤ i ≤ n−1 goes toi −1, and each even
statei with 4≤ i ≤ n−1 goes toi +1. If n is odd, thenn goes to itself bya, otherwise it goes to itself
by b. The DFA forn= 6 is shown in Figure 7.

Notice that each statei with 3≤ i ≤ n has exactly one in-transition ona and onb. Denote bya−1(i)
the state that goes toi on a, and byb−1(i) the state that goes toi onb.

Construct an NFAA∗ as described above. Let us show that in the subset automaton of the NFA A∗,
all subsets of{1,2, . . . ,n} containing state 1 are reachable and pairwise distinguishable.

We prove reachability by induction on the size of subsets. The basis is|S| = 1, and the set{1} is
reachable since it is the initial state of the subset automaton. Assume that every setScontaining 1 with
|S|= k, where 16 k6 n−1, is reachable. LetS= {1, i1, i2, i3, . . . , ik}, where 26 i1 < i2 < · · ·< ik 6 n,
be a set of sizek+1. Consider three cases:

(i) i1 = 2. TakeS
′
= {1,b−1(i2),b−1(i3), . . . ,b−1(ik)}. Then|S′ |= k, and thereforeS

′
is reachable by

the induction hypothesis. Since we haveS′
b−→ {1,2, i2, . . . , ik}= S, the setS is reachable.

(ii) i1 = 3. TakeS′ = {1,2,b−1(i2),b−1(i3), . . . ,b−1(ik)}. Then|S′|= k+1 andS′ contains states 1 and

2. Therefore, the setS′ is reachable as shown in case(i). Since we haveS
′ b−→{1,2,3, i2, i3, . . . , ik} aa−→

{1,3, i2, i3, . . . , ik}= S, the setS is reachable.

(iii) Let i1 = j ≥ 3, and assume that each set{1, j, i2, . . . , ik} is reachable. Let us show that then also
each set{1, j + 1, i2, . . . , ik} is reachable. Ifj is odd, then the set{1, j + 1, i2, . . . , ik} is reached
from the set{1, j,a−1(i2),a−1(i3), . . . ,a−1(ik)} by a. If j is even, then the set{1, j +1, i2, . . . , ik}
is reached from the set{1, j,b−1(i2),b−1(i3), . . . ,b−1(ik)} by baa.

K. Čevorová, G. Jirásková, P. Mlynárčik, M. Palmovský,J. Šebej 211

This proves reachability. To prove distinguishability, notice that the string(ab)n−2 is accepted by the
NFA A∗ from state 3 since state 3 goes to the initial state 1 by(ab)n−2 through the computation

3
ab−→ 5

ab−→ 7
ab−→ ·· · ab−→ n

a−→ n
b−→ n−1

ab−→ n−3
ab−→ ·· · ab−→ 4

ab−→ 1

if n is odd, and through a similar computation ifn is even. On the other hand, the string(ab)n−2 cannot
be read from any other state 2i with 2≤ i ≤ n/2 since we have

2i
ab−→ {2i −2,1,2} ab−→ {2i −4,1,2} ab−→ ·· · ab−→ {4,1,2} a−→ {3,1} b−→ {1,2} ab−→ /0,

thus 2i goes to the empty set by(ab)i , so also by(ab)n−2. If n is odd, then we have

2i +1
ab−→ {2i +3,1,2} ab−→ {2i +5,1,2} ab−→ ·· · ab−→ {n,1,2} a−→ {n,1} b−→ {n−1,1,2} ab−→

{n−3,1,2} ab−→ ·· · ab−→ {2i,1,2} (ab)i

−−→ /0,

thus 2i + 1 goes to the empty set by(ab)n−i , i ≥ 2, and so also by(ab)n−2. For n even, the argument
is similar. The string(ab)n−2 is not accepted from states 1 and 2. Hence the NFAA∗ accepts the string
(ab)n−2 only from the state 3. Since there is exactly one in-transition onb in state 3, and it goes from state
2, the stringb(ab)n−2 is accepted byA∗ only from state 2. Similarly, the stringbb(ab)n−2 is accepted by
A∗ only from state 1. Next, for similar reasons, the stringa(ab)n−2 is accepted only from 4, the string
ba(ab)n−2 is accepted only from 5, and in the general case, the string(ab)ia(ab)n−2 is accepted only
from 4+2i (i ≥ 0), and the string(ba)i(ab)n−2 is accepted only from 3+2i (i ≥ 1). Hence for each state
q of the NFAA∗, there exists a stringwq that is accepted byA∗ only from the stateq. It follows that all
the subsets of the subset automaton of the NFAA∗ are pairwise distinguishable since two distinct subsets
differ in a stateq, and the stringwq distinguishes the two subsets. This completes the proof.

We did some computations in the binary case. Having the files of n-state minimal binary pairwise
non-isomorphic complete DFAs with a dead state and all the remaining states final, we computed the
state complexity of the star of languages accepted by DFAs onthe lists; here the state complexity of
a regular languageL, sc(L), is defined as the smallest number of states in anycompleteDFA for the
languageL. We computed the frequencies of the resulting complexities, and the average complexity of
star. Our results are summarized in Table 2. Notice that forn= 3,4,5, there is just one language with
sc(L) = n and sc(L∗) = 2. Let us show that this holds for everyn with n≥ 3.

n\sc(L∗) 1 2 3 4 5 6 7 8 9 average

2 - 2 - - - - - - - 2

3 8 1 6 - - - - - - 1.866

4 161 1 48 30 6 - - - - 1.857

5 4177 1 771 275 350 84 84 - 26 1.849

Table 1: The frequencies of the complexities and the averagecomplexity of star on prefix-closed lan-
guages in the binary case;n= 2,3,4,5.

212 Operations on Automata with All States Final

...

d

b b b b

a
a a

a,b

a,b

1 2 n−1n−2

Figure 8: The only binaryn-state complete DFA of a prefix-closed languageL with sc(L∗) = 2.

Proposition 14. Let n≥ 3. There exists exactly one (up to renaming of alphabet symbols) binary prefix-
closed regular language L withsc(L) = n andsc(L∗) = 2.

Proof. Let A= ({0,1},{a,b},δ ,0,F) be a minimal two-state DFA for the languageL∗. SinceL is prefix-
closed, the languageL∗ is prefix-closed as well. It follows that state 0 is final, and state 1 is dead, thus
F = {0} andδ (1,a) = δ (1,b) = 1.

Without loss of generality, state 1 is reached from the initial state 0 bya, thusδ (0,a) = 1.
Sincen≥ 3, the languageL contains a non-empty string. This means that the languageL∗ contains a

non-empty string as well. Therefore, we must haveδ (0,b) = 0, and soL∗ = b∗.
Now let B be the minimaln-state DFA forL. Then all the states ofB are final, except for the dead

state. SinceL∗ = b∗, no a may occur in any string ofL. Hence each non-dead state ofB must go to
the dead state ona. Since all states must be reachable, we must have a path labeled bybn−2 and going
through all the final states. The last final state must go to thedead state onb because otherwise all final
states would be equivalent. The resultingn-state DFAB is shown in Figure 8.

The reversewR of a stringw is defined byεR = ε , and(wa)R = awR for a in Σ andw in Σ∗. The
reverse of a languageL is the languageLR = {wR | w ∈ L}. If a regular languageL is accepted by a
completen-state DFA, then the languageLR is accepted by a complete DFA of at most 2n states [22, 25],
and the bound is tight in the binary case [16, 19].

For prefix-closed languages, the quotient complexity of reversal is 2n−1 [5], and it follows from the
results on ideal languages [4] since reversal commutes withcomplementation, and the complement of a
prefix-closed language is a right ideal; here a languageL is a right ideal ifL = L ·Σ∗.

We restate the result for reversal in terms of incomplete state complexity, and prove tightness using
a slightly different witness language.

Theorem 15. Let n≥ 2. Let L be a prefix-closed regular language over an alphabetΣ with isc(L) = n.
Thenisc(LR)≤ 2n−1, and the bound is tight if|Σ| ≥ 2.

Proof. Let A be an incomplete DFA forL. Construct an NFAAR for the languageLR from the DFAA by
swapping the role of the initial and final states, and by reversing all the transitions. The subset automaton
of the NFAAR has at most 2n−1 non-empty reachable states, and the upper bound follows.

For tightness, consider the incomplete DFAA with all states final, shown in Figure 9. Construct an
NFA AR as described above. In the subset automaton of the NFAAR, the initial state is{1,2, . . . ,n}. If S
is a subset and ifi ∈ S, then the subsetS\{i} is reached fromSby aiban−i . This proves the reachability
of all non-empty subset by odd induction. Since the states ofthe subset automaton of any reversed DFA
are pairwise distinguishable [7, 16, 22], the theorem follows.

Now, let us turn to the nondeterministic case. For regular languages, the tight bound for both star and
reversal isn+1. It is met by a unary language for star [10], and by a binary language for reversal [12].

K. Čevorová, G. Jirásková, P. Mlynárčik, M. Palmovský,J. Šebej 213

AR ...

a

b b b b

aaaaa

...a a a a

a

a

b b b b

A 0 1

0 1 2

2 n−2 n−1

n−2 n−1

Figure 9: The incomplete DFAA of a languageL with isc(LR) = 2n−1, and the NFAAR.

For prefix-closed languages, we get the same bound for reversal. However, for star, the upper bound
is n since every prefix-closed language contains the empty string, and there is no need to add a new initial
state in the construction of an NFA for star. In the followingtheorem, we show that both these bounds
are tight in the binary case.

Theorem 16. Let n≥ 2. Let L be a prefix-closed language over an alphabetΣ with nsc(L) = n. Then
(1) nsc(L∗)≤ n,
(2) nsc(LR)≤ n+1,

and both bounds are tight if|Σ| ≥ 2.

Proof. (1) Let N = (Q,Σ,δ ,s,F) be ann-state NFA forL. SinceL is prefix-closed, the empty string is
in L. Therefore, we can get ann-state NFA for the languageL∗ from the NFAN as follows: for each
stateq and each symbola such thatδ (q,a)∩F 6= /0, we add a transition ona from q to the initial states.
Thus the upper bound isn.

For tightness, consider the prefix-closed languageL accepted by the NFAA shown in Figure 10.
Consider the set of pair of stringsF = {(ai ,an−1−ib) | i = 0,1, . . . ,n−1} of sizen. Let us show thatF
is a fooling set for the languageL∗.

(F1) We haveaian−1−ib= an−1b. Since the stringan−1b is in L, it also is inL∗.

(F2) Let i < j. Thenaian−1− jb= an−1−(j−i)b. Since no stringaℓb with ℓ < n−1 is in L, the string
an−1−(j−i)b is not inL∗.

Hence the setF is a fooling set for the languageL∗, and the lower bound follows.

(2) The upper bound is the same as for regular languages [10].It is shown in [12, Theorem 2] that
this bound is met by the binary prefix-closed languageL accepted by the NFA shown in Figure 10.
The proof in [12] is by a counting argument. Notice that Lemma2 is satisfied for the languageLR

with A = {(bai ,an−1−i) | i = 0,1, . . . ,n−2},B = {(ban−1,ban−1)},u = ban−1, andv= a. This gives
nsc(LR)≥ n+1 immediately.

...a a a aa

b

0 1 2 n−2 n−1

Figure 10: The NFA of a prefix-closed languageL with nsc(L∗) = n and nsc(LR) = n+1.

214 Operations on Automata with All States Final

complement |Σ| intersection |Σ| union |Σ|
isc on prefix-closed n+1 1 mn 2 mn+m+n 2
sc on prefix-closed [5] n 1 mn−m−n+2 2 mn 2
sc on regular [20, 25] n 1 mn 2 mn 2

nsc on prefix-closed 2n 3 mn 2 m+n+1 4
nsc on regular [10, 12] 2n 2 mn 2 m+n+1 2

Table 2: The complexity of boolean operations on prefix-closed and regular languages.

concatenation |Σ| star |Σ| reversal |Σ|
isc on prefix-closed m2n−1+2n−1 3 2n−1 2 2n−1 2
sc on prefix-closed [5] (m+1)2n−2 3 2n−2+1 3 2n−1 2
sc on regular [20, 25] m2n−2n−1 2 2n−1+2n−2 2 2n 2

nsc on prefix-closed m+n 3 n 2 n+1 2
nsc on regular [10, 12] m+n 2 n+1 2 n+1 2

Table 3: The complexity of concatenation, star, and reversal on prefix-closed and regular languages.

7 Conclusions

In this paper we considered operations on languages recognized by incomplete deterministic or non-
deterministic finite automata with all states final. Our results are summarized in Tables 2 and 3. The
results on quotient (state) complexity on prefix-closed languages are from [5], and the results for regular
languages are from [10, 12, 20, 25]. Notice that in the nondeterministic case, our results are the same
as in the general case of regular languages, except for the star operation. However, to prove tightness,
we usually used larger alphabets than in the general case. Whether or not these bounds are tight also for
smaller alphabets remains open.

References

[1] Alfred V. Aho, Jeffrey D. Ullman & Mihalis Yannakakis (1983): On notions of infor-
mation transfer in VLSI circuits. In Johnson et al. [17], pp. 133–139. Available at
http://doi.acm.org/10.1145/800061.808742.

[2] Jean-Camille Birget (1992):Intersection and union of regular languages and state complexity. Inform.
Process. Lett.43(4), pp. 185–190. Available athttp://dx.doi.org/10.1016/0020-0190(92)90198-5.

[3] Jean-Camille Birget (1993): Partial orders on words, minimal elements of regular lan-
guages and state complexity. Theoret. Comput. Sci.119(2), pp. 267–291. Available at
http://dx.doi.org/10.1016/0304-3975(93)90160-U.

[4] Janusz A. Brzozowski, Galina Jirásková & Baiyu Li (2013): Quotient complexity of ideal languages. Theoret.
Comput. Sci.470, pp. 36–52. Available athttp://dx.doi.org/10.1016/j.tcs.2012.10.055.

[5] Janusz A. Brzozowski, Galina Jirásková & Chenglong Zou (2014): Quotient complex-
ity of closed languages. Theory Comput. Syst. 54(2), pp. 277–292. Available at
http://dx.doi.org/10.1007/s00224-013-9515-7.

[6] Cezar Câmpeanu, Kai Salomaa & Sheng Yu (2002):Tight lower bound for the state complexity of shuffle of
regular languages. J. Autom. Lang. Comb.7(3), pp. 303–310.

K. Čevorová, G. Jirásková, P. Mlynárčik, M. Palmovský,J. Šebej 215

[7] J.-M. Champarnaud, A. Khorsi & T. Paranthoën:Split and join for minimizing: Brzozowski’s algorithm.
Available athttp://jmc.feydakins.org/ps/c09psc02.ps.

[8] Ian Glaister & Jeffrey Shallit (1996): A lower bound technique for the size of non-
deterministic finite automata. Inform. Process. Lett. 59(2), pp. 75–77. Available at
http://dx.doi.org/10.1016/0020-0190(96)00095-6.

[9] Edward A. Hirsch, Juhani Karhumäki, Arto Lepistö & Michail Prilutskii, editors (2012):Computer Science
- Theory and Applications - 7th International Computer Science Symposium in Russia, CSR 2012, Nizhny
Novgorod, Russia, July 3-7, 2012. Proceedings. Lecture Notes in Computer Science7353, Springer. Available
athttp://dx.doi.org/10.1007/978-3-642-30642-6.

[10] Markus Holzer & Martin Kutrib (2003): Nondeterministic descriptional complexity of regu-
lar languages. Internat. J. Found. Comput. Sci.14(6), pp. 1087–1102. Available at
http://dx.doi.org/10.1142/S0129054103002199.

[11] Juraj Hromkovic (1997):Communication complexity and parallel computing. Springer. Available at
http://dx.doi.org/10.1007/978-3-662-03442-2.

[12] Galina Jirásková (2005):State complexity of some operations on binary regular languages. Theoret. Comput.
Sci.330(2), pp. 287–298. Available athttp://dx.doi.org/10.1016/j.tcs.2004.04.011.

[13] Galina Jirásková (2012):Descriptional complexity of operations on alternating andboolean automata. In
Hirsch et al. [9], pp. 196–204. Available athttp://dx.doi.org/10.1007/978-3-642-30642-6_19.

[14] Galina Jirásková & Tomáš Masopust (2011):Complexity in union-free regular languages. Internat. J. Found.
Comput. Sci.22(7), pp. 1639–1653. Available athttp://dx.doi.org/10.1142/S0129054111008933.

[15] Galina Jirásková & Alexander Okhotin (2008):State complexity of cyclic shift. RAIRO Theor. Inform. Appl.
42(2), pp. 335–360. Available athttp://dx.doi.org/10.1051/ita:2007038.

[16] Galina Jirásková & JuraǰSebej (2012):Reversal of binary regular languages. Theoret. Comput. Sci.449, pp.
85–92. Available athttp://dx.doi.org/10.1016/j.tcs.2012.05.008.

[17] David S. Johnson, Ronald Fagin, Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch,
Christos H. Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo & Joel I. Seiferas, editors (1983):Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston. ACM.

[18] Jui-Yi Kao, Narad Rampersad & Jeffrey Shallit (2009):On NFAs where all states are fi-
nal, initial, or both. Theoret. Comput. Sci.410(47-49), pp. 5010–5021. Available at
http://dx.doi.org/10.1016/j.tcs.2009.07.049.

[19] Ernst L. Leiss (1981):Succint representation of regular languages by boolean automata. Theoret. Comput.
Sci.13, pp. 323–330. Available athttp://dx.doi.org/10.1016/S0304-3975(81)80005-9.

[20] A. N. Maslov (1970):Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR194, pp.
1266–1268 (Russian). English translation: Soviet Math. Dokl. 11 (1970) 1373–1375.

[21] Tomáš Masopust (2010):Personal communication.

[22] B. G. Mirkin (1970): On dual automata. Kibernetika (Kiev) 2, pp. 7–10 (Russian). Available at
http://dx.doi.org/10.1007/BF01072247. English translation: Cybernetics2, (1966) 6–9.

[23] Narad Rampersad (2006):The state complexity of L2 and Lk. Inform. Process. Lett.98(6), pp. 231–234.
Available athttp://dx.doi.org/10.1016/j.ipl.2005.06.011.

[24] Michael Sipser (1997):Introduction to the theory of computation. PWS Publishing Company.

[25] Sheng Yu, Qingyu Zhuang & Kai Salomaa (1994):The state complexities of some basic op-
erations on regular languages. Theoret. Comput. Sci.125(2), pp. 315–328. Available at
http://dx.doi.org/10.1016/0304-3975(92)00011-F.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 216–230, doi:10.4204/EPTCS.151.15

c© S. Crespi Reghizzi and P. San Pietro
This work is licensed under the
Creative Commons Attribution License.

Commutative Languages and their Composition by
Consensual Methods∗†

Stefano Crespi Reghizzi
Pierluigi San Pietro

DEIB, Politecnico di Milano and CNR-IEIIT

stefano.crespireghizzi@polimi.it pierluigi.sanpietro@polimi.it

Commutative languages with the semilinear property (SLIP)can be naturally recognized by real-time
NLOG-SPACE multi-counter machines. We show that unions andconcatenations of such languages
can be similarly recognized, relying on – and further developing, our recent results on the family of
consensually regular (CREG) languages. A CREG language is defined by a regular language on the
alphabet that includes the terminal alphabet and its markedcopy. New conditions, for ensuring that
the union or concatenation of CREG languages is closed, are presented and applied to the commu-
tative SLIP languages. The paper contributes to the knowledge of the CREG family, and introduces
novel techniques for language composition, based on arithmetic congruences that act as language
signatures. Open problems are listed.

1 Introduction

This paper focuses on commutative languages having the semilinear property (SLIP). We recall that a
language has thelinear property(LIP) if, in any word, the number of letter occurrences (alsonamed
Parikh image) satisfies a linear equation; it has thesemilinear property(SLIP) [5] if the number satisfies
one out of finitely many linear equations. A language iscommutative(COM) if, for every word, all
permutations are in the language; thus, the legality of a word is based only on the Parikh image, not
on the positions of the letters. Here we deal with the subclass of COM languages enjoying the SLIP,
denoted by COM-SLIP, for which we recall some known properties. For a binary alphabet, COM-
SLIP languages are context-free whereas, in the general case, they can be recognized bymulti-counter
machines(MCM), in particular by non-deterministic quasi-real-time blind MCM (equivalent toreversal-
boundedMCM [7]). The COM-SLIP family is closed under all Boolean operations, homomorphism and
inverse homomorphism, but it is not closed under concatenation.

Our contribution is to relate two seemingly disparate language families: on one hand, the COM-
SLIP languages and their closure under union and concatenation (denoted by COM-SLIP∪,·), on the
other hand, the family ofconsensually regularlanguages (CREG), recently introduced by the authors,
to be later presented. We briefly explain the intuition behind it. Given a terminal alphabet, a CREG
language is specified by means of a regular language (thebase) having adoublealphabet: the original
one and adottedcopy. Two or more words in the base languagematch, if they are all identical when
the dots are disregarded and, in every position, exactly oneword has an undotted letter (thus in all
remaining words the same position is dotted). In our metaphor, we say that, position by position, one of
the base words “places” a letter and the remaining words “consent” to it. A word is in the consensual
language if the base language contains a set of matching words, identical to the given word when the

∗Work partially supported byPRIN 2010LYA9RH-006“Automi e linguaggi formali: Aspetti Matematici e Applicativi”.
†The main results have been announced in [15], with preliminary sketchy proofs entirely superseded by the present ones.

S. Crespi Reghizzi and P. San Pietro 217

dots are disregarded. This mechanism somewhat resembles the model of alternating non-deterministic
finite automata, but the criterion by which the parallel computations match is more flexible and produces
a recognition device which is a MCM working in NLOG-SPACE. This MCM can be viewed as a token
or multi-set machine; it has one counter for each state of theDFA recognizing the base language; each
counter value counts the number of parallel threads that arecurrently active in each state. Our main result
is that the COM-SLIP∪,· family is strictly included in CREG; we also prove some non-closure properties
of COM-SLIP∪,· .

To construct the regular language that serves as base for theconsensual definition of a COM-SLIP∪,·

language, we have devised a new method, which may be also useful to study the inclusion in consensual
classes of other families closed union or concatenation. Itis easy to consensually specify a COM-
LIP language by means of a regular base; however, in general,union or concatenation of two regular
bases consensually specifies a larger language than the union or concatenation of the components. To
prevent this to happen, we assign a distinct numeric congruence class to each base, which determines the
positions where a letter may be placed as dotted or as undotted. For a given word, such positions are not
the letter orders, but they are the orders of the letters in the projections of the word on each letter of the
alphabet. The congruence acts as a sort of signature that cannot be mismatched with other signatures.

To hint to a potential application, COM-SLIP∪,· offers a rather suitable schema for certain parallel
computation systems, such as Valiant’s “bulk synchronous parallel computer” [16]. There, when all
threads in a parallel computational phase, which we suggestto model by a commutative language, termi-
nate, the next phase can start; the sequential composition of such phases can be represented by language
concatenation; and the composition of alternative subsystems can be modeled by language union. As
said, such computation schema is not finite-state but it is a MCM.

Paper organization: Sect. 2 contains preliminaries, some simple properties of COM-SLIP∪,· and the
consensual model. Sect. 3 introduces the decomposed form, states and proves the conditions that ensure
union- and concatenation-closure, and details the congruence based constructions. Sect. 4 proves the
main result through a series of lemmas. The last section refers to related work and mentions some
unanswered questions.

2 Preliminary Definitions and Properties

The terminal alphabet is denoted byΣ = {a1, . . . ,ak}, the empty word byε and|x| is the length of a word
x. The projection ofx on ∆ ⊆ Σ is denoted byπ∆ (x); |x|a is shorthand for|π{a} (x) | for a∈ Σ, and|x|∆
stands for|π∆ (x) |. Thei-th letter ofx is x(i) andx(i, j) is the substringx(i) . . .x(j), 1≤ i ≤ j ≤ |x|. The
shuffleoperation is denoted by

∃

.
The Parikh imageor vector of a wordx ∈ Σ∗ is Ψ(x) = [|x|a1, . . . , |x|ak]; it can be naturally extended
to a language. The component-wise addition of two vectors isdenoted by~p′ + ~p′′. The commutative
closureof L ∈ Σ∗ is com(L) = {x ∈ Σ∗ | Ψ(x) ∈ Ψ(L)}. A languageL is commutativeif com(L) = L;
the corresponding language family is named COM. A languageL ⊆ Σ∗ has thelinear property(LIP)
if there existq+ 1 > 0 vectors~c,~p(1), . . . ,~p(q) overNk, (resp. theconstantand theperiods) such that
Ψ(L) =

{
~c+n1 ·~p(1)+ . . .+nq ·~p(q) | n1, . . . ,nq ≥ 0

}
.

A language has thesemilinear property(SLIP) if it is the finite union of LIP languages. The fami-
lies of commutative LIP/SLIP languages are denoted byCOM-LIP/ COM-SLIP, respectively. It is well
known that COM-SLIP is closed under the Boolean operations,inverse homomorphism, homomorphism
and Kleene star, but not under concatenation, which in general destroys commutativity. However, the
concatenation of COM-SLIP languages still enjoys the SLIP.

218 Commutative Languages and their Composition by ConsensualMethods

Let COM-SLIP∪,· be the smallest family including COM-SLIP languages and closed under union and
concatenation. Let BLIND denote the class of languages accepted by nondeterministic, blind multi-
counter machines [7], which, we recall, are restricted to perform a test for zero only at the end of a
computation; they are equivalent to reversal-bounded counter machines. The following facts, although
to our knowledge not stated in the literature, are straightforward.

Proposition 1. Main Properties of COM-SLIP∪,· .

1. Every COM-SLIP∪,· language on a binary alphabet is context-free.

2. COM-SLIP∪,· (BLIND.

3. The COM-SLIP∪,· family is not closed under intersection and Kleene star.

Proof. Let L′ = com((ab)+). Statement (1) is immediate: since all COM-SLIP on a a binaryalpha-
bet are context-free [9, 13], also their union and concatenation is context-free. Statement (2) is also
immediate, since COM-SLIP is clearly included in BLIND, andBLIND is closed by union and concate-
nation. The inclusion is strict since BLIND includes also non-context-free languages on a binary alpha-
bet [7]. To prove non-closure of intersection – Statement (3) – assume by contradiction that the language
L0 = L′∩a+b+ = {anbn | n> 0} is in COM-SLIP∪,· . Hence, also the languagesL1 = {a+bnan | n> 0},
L2 = {ambma+ | m > 0} and L1 ∩ L2 = {anbnan | n > 0} are in COM-SLIP∪,· . But the latter lan-
guage is not context-free, contradicting Statement (1). Tocomplete the proof of Statement (3), if
COM-SLIP∪,· were closed under Kleene star, then languageL3 = (L′c)∗ would be COM-SLIP∪,· , with
c 6∈ {a,b}. However, COM-SLIP∪,· is included in BLIND, which is an intersection-closed full semiAFL
(see Section 5 of [1] and also Theorem 1 of [7]), i.e., BLIND isclosed under intersection, union, arbitrary
homomorphism, inverse homomorphism, and intersection with regular languages. Hence, the language
L4 = L3∩(a+b+c)∗ = {anbnc | n> 0}∗ would be in BLIND. Letterc can be deleted by a homomorphism,
hence also the language{anbn | n> 0}∗, is BLIND, contradicting Corollary 3 of [1] and also Theorem6,
Part (2), of [7].

2.1 Consensual Languages.

We present the necessary elements of consensual language theory [2, 3]. LetΣ̊ be thedotted(or marked)
copy of alphabetΣ. For eacha∈ Σ, ã denotes the set{a, å}. The alphabet̃Σ = Σ∪ Σ̊ is nameddouble(or
internal). To express a sort of agreement between words overthe double alphabet, we introduce a binary
relation, calledmatch, overΣ̃∗.

Definition 1 (Match). The partial, symmetrical, and associative binary operator, calledmatch, @ : Σ̃×
Σ̃ → Σ̃ is defined as follows, for alla∈ Σ:

a@å= å@a= a
å@å= å
undefined in every other case.

The match is naturally extended to strings of equal length, as a letter-by-letter application, by assuming
ε@ε = ε : for everyn> 1, for all w,w′ ∈ Σ̃n, if w(i)@w′(i) is defined for everyi,1≤ i ≤ n, then

w @w′ =
(
w(1)@w′(1)

)
· . . . ·

(
w(n)@w′(n)

)
. In every other case,w@w′ is undefined.

S. Crespi Reghizzi and P. San Pietro 219

Hence, the match is undefined on stringsw,w′ of unequal lengths, or else if there exists a positionj such
that w(j)@w′(j) is undefined, which occurs in three cases: when both characters are inΣ, when both
are inΣ̊ and differ, and when either one is dotted but is not the dottedcopy of the other. Syntactically,
the precedence of the match operator is just under the precedence of the concatenation. The matchw
of two or more strings is further qualified asstrong if w ∈ Σ∗, or asweakotherwise. By Def. 1, if
w= w1@w2@. . .@wm is a strong match ofm≥ 1 wordsw1, . . . ,wm, then in each position 1≤ i ≤ |w|,
exactly one word, saywh, is undotted, i.e.,wh(i) ∈ Σ, andw j(i) ∈ Σ̊ for all j 6= h; we say that wordwh

placesthe letter at positioni and the other wordsconsentto it. Metaphorically, the words that strongly
match provide mutual consensus on the validity of the corresponding word overΣ, thereby motivating
the name “consensual” of the language family.
The match is extended to two languagesB′,B′′ on the double alphabet, asB′@B′′ = {w′ @w′′ | w′ ∈
B′,w′′ ∈ B′′}. The iterated matchBi@ is defined for alli ≥ 0, asB0@= B, Bi@ = B(i−1)@@B, if i > 0.

Definition 2 (Consensual language). Theclosure under match, or @-closure, of a languageB⊆ Σ̃∗ is
B@ =

⋃
i≥0Bi@. Theconsensual language with base Bis defined as C (B) = B@∩Σ∗. The family of

consensually regularlanguages, denoted by CREG, is the collection of all languagesC (B), such that the
baseB is regular.

It follows that a CREG language can beconsensually specifiedby a regular expression overΣ̃.

Example 1. The LIP languageL = {anbncn | n> 0} is consensually specified by the base (that we may
call a “consensual regular expression”) ˚a∗aå∗b̊∗bb̊∗c̊∗cc̊∗. For instance,aabbccis the (strong) match of
åab̊bc̊ candaåb b̊cc̊. The commutative closure ofL is also in CREG, with base:com

(
abc

) ∃ Σ̊∗.
Similarly, the COM-LIP languageL′ = com

(
(ab)+

)
= C (B1), whereB1 = com

(
ab
) ∃ Σ̊∗.

The COM-LIP languageL′′ = com
(
(abb)+

)
is specified by the baseB2 = com

(
abb

) ∃ Σ̊∗.
The languagesL′∪L′′ andL′ ·L′′ are in CREG, but, counter to a naive intuition, they are not specified by
the bases obtained by composition, respectively,B1∪B2 andB1B2. In generalC (B1∪B2) ⊃ C (B1)∪
C (B2): in the examples,C (B1∪B2) contains also undesirable “cross-matching” words, such asababb=
abåb̊b̊@åb̊abb. A systematic compositional technique for obtaining the correct bases for the union and
concatenation is the main contribution of this paper.

Summary of known and relevant CREG properties. Language family comparisons: CREG includes
the regular languages, is incomparable with the context-free and deterministic context-free families, is
included within the context-sensitive family, and it contains non-SLIP languages. CREG strictly includes
the family of languages accepted by partially-blind multi-counter machines that are deterministic and
quasi-real-time, as well as their union [4].
Closure properties:CREG is is closed under marked concatenation, marked iteration, inverse alphabetic
homomorphism, reversal, and intersection and union with regular languages. The marked concatenation
of two languagesL1,L2 ⊆ Σ∗ is the languageL1#L2, where #6∈ Σ, while the marked iteration ofL ⊆ Σ∗

is the language(L#)∗. A language family enjoying such properties is known as apre-Abstract Family
of Languages(see, e.g., [14]). A precise characterization of the bases that consensually specify regular
languages is in [3]; an analysis of the reduction in descriptional complexity of the consensual base with
respect to the specified regular language is in [2].
Complexity:CREG is in NLOGSPACE, i.e., NSPACE(logn) (often called NL): it can be recognized by a
nondeterministic multitape Turing machine working in logn space. The recognizer of CREG languages
is a special kind of nondeterministic, real-time multi-counter machine.

220 Commutative Languages and their Composition by ConsensualMethods

Useful notations for consensual languages.The following mappings will be used:

switching switch: Σ̃ → Σ̃ whereswitch(a) = å, switch(å) = a, for all a∈ Σ
marking dot : Σ̃ → Σ̊ wheredot(x) = x, if x∈ Σ̊, anddot(x) = å, if x= a∈ Σ
unmarking undot : Σ̃ → Σ whereundot(a) = switch(dot(a)), for all a∈ Σ.

These mappings are naturally extended to words and languages, e.g., givenx∈ Σ̃∗, switch(x) is the word
obtained interchanginga andå in x (a sort of “complement”).

In the remainder of the paper, we assume that each base language is a subset of̃Σ∗− Σ̊+, since words
in Σ̊+ are clearly useless in a match. LetB, B′ be languages included iñΣ+− Σ̊+. We say thatB is
unproductiveif C (B) = /0, and that the pair(B,B′) is unmatchableif B@B′ = /0.

3 Consensual specifications composable by union and concatenation

Since it is unknown whether the whole CREG family is closed under union and concatenation, we first
introduce a normal form, named decomposed,1 of the base languages, which is convenient to ensure
such closure properties. Second, we state two further conditions, named joinability and concatenability,
for decomposed forms, and we prove that they, respectively,guarantee closure under union and concate-
nation. Such results hold for every consensual language, but the difficulty remains to find a systematic
method for constructing base languages that meets such conditions. Third, in Sect. 3.1 we introduce an
implementation of decomposed forms, relying on numerical congruences, that will permit us to prove in
Sect. 4 that the (∪, ·)-closure of commutative SLIP languages is in CREG.

Definition 3 (Decomposed form). A baseB⊆ Σ̃∗− Σ̊+ has thedecomposed formif there exist a (disjoint)
partition ofB into two languages, named thescaffold scand thefill f l of B, such thatf l is unproductive,
and the pair(sc,sc) is unmatchable.

The names scaffold and fill are meant to convey the idea of an arrangement superposed just once on
each word of the base and, respectively, of an optional (but repeatable) component to complete the letters
which are dotted in the scaffold. Three straightforward remarks follow. For every baseB there exists a
consensually equivalent decomposed base: it suffices to take as scaffold the language{a dot(y) | ay∈
B,a∈ Σ,y∈ Σ̃∗}, and as fill the language{dot(x)y | x∈ Σ̃,y∈ Σ̃∗,xy∈ B}. For everys⊆ sc, f ⊆ f l , the
bases∪ f is a decomposed form. The scaffold, but not the fill, may include words overΣ.

Consider a wordw ∈ C (B). Since the fill is unproductive, its match closure cannotplace all the
letters ofw and such letters must be placed by the scaffold. Since by definition the match closure of the
scaffold alone is the scaffold itself, the following fundamental lemma immediately holds.

Lemma 1. If B = sc∪ f l is in decomposed form, as in Def. 3, thenC (B) =
(
sc∪ (sc@ f l@)

)
∩Σ∗.

Example 2. The table shows the decomposed bases of languagescom
(
(ab)+

)
and com

(
(abb)+

)
of

Sect. 2.1, considering for brevity only the case that the number of a’s is a multiple of 3. LetL′ =
com

(
{a3nb3n | n≥ 1}

)
, with scaffoldsc′ and fill f l ′, andL′′ = com

(
{a3nb6n | n≥ 1}

)
, with scaffoldsc′′

and fill f l ′′:
scaffold fill a strong match

L′ (aåa)+

∃

(bb̊b)+ (å3)∗ åaå(å3)∗

∃

(b̊3)∗ b̊bb̊(b̊3)∗
a b å a b̊ b∈ sc′

@ å b̊ a å b b̊∈ f l ′

L′′ (åaa)+

∃

(b̊bb)+ (å3)∗aåå(å3)∗

∃

(b̊3)∗ (bb̊b̊)2 (b̊3)∗
å b̊ a a b b b̊ b b∈ sc′

@ a b å å b̊ b̊ b b̊ b̊∈ f l ′

1In [4], we introduced the idea of a decomposed form for certain multi-counter machines, but that definition does not work
for commutative languages.

S. Crespi Reghizzi and P. San Pietro 221

Clearly, every word insc′ is unmatchable with every other word insc′, hencesc′@sc′ = /0. Similarly,
every fill is unproductive. Every word inL′ is the match of exactly one word in the scaffold with one or
more words in the fill. Analogous remarks hold forL′′.

Next, imagine to consensually specify two languages by bases in decomposed formB′ = sc′ ∪ f l ′

andB′′ = sc′′∪ f l ′′. By imposing additional conditions on the bases, we obtain two very useful theorems
about composition by union and concatenation.

Definition 4 (Joinability). Two base languagesB′,B′′ in decomposed form arejoinable if their union
B′∪B′′ is decomposed, with scaffoldsc′∪sc′′ and fill f l ′∪ f l ′′, and the pairs(sc′, f l ′′) and(sc′′, f l ′) are
unmatchable.

Theorem 1 (Union of consensual languages in decomposed form). Let the base languages B′,B′′ be in
decomposed form. If B′ and B′′ are joinable thenC (B′)∪C (B′′) = C (B′∪B′′).

Proof. It suffices to prove the inclusionC (B′ ∪B′′) ⊆ C (B′)∪C (B′′), since the opposite inclusion is
obvious by Def. 2. Letx∈ C (B). SinceB is decomposed, by Lemma 1 it must be eitherx ∈ sc@f l@

or x∈ sc. In the latter case,x is in B′ or in B′′, and the inclusion follows. In the former case, there exist
n≥ 2 wordsw1,w2 . . . ,wn, with n≤ |x|, w1 ∈ sc, w2, . . . ,wn ∈ f l andw1@w2@. . .@wn = x. We claim
that eitherw1 ∈ sc′ and every otherwi ∈ B′, or w1 ∈ sc′′ and every otherwi ∈ B′′, from which the thesis
follows. Assumew1 ∈ sc′ (the casew1 ∈ sc′′ is symmetrical). If there existsj, 2≤ j ≤ n, such that
w j ∈ f l ′′ (with w j 6∈ Σ̊+), thensc′@f l ′′ is not empty (it includes at leastw1@w j), a contradiction with
the hypothesis thatB′ andB′′ are joinable.

Example 3. Returning to Ex. 2, we check that the two bases are joinable. The union of the bases is in
decomposed form:f l ′∪ f l ′′ is unproductive (because letters at positions 3, 6, . . . cannot be placed); the
pair (sc′,sc′′) is unmatchable, hence also(sc′ ∪ sc′′,sc′ ∪ sc′′) is unmatchable. Moreover,(sc′, f l ′′), and
(sc′′, f l ′) are unmatchable. ThereforeL′∪L′′ = C (sc′∪sc′′∪ f l ′∪ f l ′′).

For concatenation, a similar, though more involved, reasoning requires a new technical definition.

Definition 5 (Dot-product⊙ and concatenability). Let B′,B′′ be in decomposed form, and define their
dot-productasB′⊙B′′ = (sc′ · sc′′)∪ f l ′∪ f l ′′. B′ andB′′ areconcatenableif B′⊙B′′ is in decomposed
form, with scaffoldsc′ ·sc′′ and fill f l ′∪ f l ′′, and the next two clauses hold for all wordsw′,w′′ ∈ Σ̃+, y′ ∈
sc′, y′′ ∈ sc′′:

∃x′ ∈ f l ′ : w′ = x′ ·dot(y′′) ∧ x′@y′ is defined if, and only if,w′ ∈ f l ′∧ w′@y′ ·y′′ is defined (1)

∃x′′ ∈ f l ′′ : w′′ = dot(y′) ·x′′ ∧ x′′@y′′ is defined if, and only if,w′′ ∈ f l ′′∧ w′′@y′ ·y′′ is defined (2)

The two clauses are symmetrical. In loose terms, Clause (1) says that the fill f l ′ contains a word
w′ that matchesy′y′′, if, and only if, the word has a prefixx′ , also in f l ′, which matchesy′, hence it is
aligned with the point of concatenation. Therefore, the match w′@y′ ·y′′ does not produce a word that is
illegal for C (B′) ·C (B′′). This reasoning is formalized and proved next.

Theorem 2 (Concatenation of consensual languages in decomposed form). Let the bases B′,B′′ be in
decomposed form. If B′,B′′ are concatenable, thenC (B′) ·C (B′′) = C (B′⊙B′′).

Proof. Let B= B′⊙B′′.
CaseC (B′) · C (B′′)⊆ C (B). If x∈ C (B′) ·C (B′′), thenx= x′x′′ with x′ ∈ C (B′), x′′ ∈ C (B′′). Hence,x′

is the strong match of onew′ ∈ sc′ (resp.w′′ ∈ sc′′) with n≥ 0 wordsw′
1, . . . ,w

′
n ∈ f l ′ ⊆ f l ; analogously,

x′′ is the strong match of onew′′ ∈ sc′′ with m≥ 0 wordsw′′
1, . . .w

′′
m∈ f l ′′. By definition of concatenability,

222 Commutative Languages and their Composition by ConsensualMethods

since for 1≤ i ≤ n, every wordw′
i is in f l ′, then also all wordsw′

1 ·dot(w′′),w′
2 ·dot(w′′), . . . are in f l ′,

hence also inf l . Similarly, alsodot(w′′) ·w′′
1, . . .dot(w′′) ·w′

n are in f l ′′. Sincew′ ·w′′ is in sc′sc′′, it is
possible to define a strong match yieldingx′x′′ = x, namely,

x= w′w′′@
(
w′

1 ·dot(w′′)
)

@
(
w′

2 ·dot(w′′)
)

@. . .
(
dot(w′) ·w′′

1)@(dot(w′) ·w′′
2

)
@. . .

that is the concatenation ofw′@w′
1@. . .@w′

n = x′ with w′′@w′′
1@. . .@w′′

m = x′′.
CaseC (B)⊆C (B′) · C (B′′). Let x∈C (B). Then there existn≥ 1 wordsw1,w2, . . . ,wn, with n≤ |x|,

such thatw1@w2@. . .@wn = x, w1 ∈ sc′ · sc′′ and w2, . . . ,wn ∈ f l ′ ∪ f l ′′. By definition, w1 can be
decomposed intow1 = w′

1w′
2 for somew′

1 ∈ sc′,w′′
2 ∈ sc′′. Let q= |w′

1|. Assume, by contradiction, that
x 6∈ C (B′) · C (B′′). Sincex is the match of wordw1 = w′

1w′
2 and words inf l ′∪ f l ′′, the only possibility

for w not being inC (B′) · C (B′′) is that there existsj,2≤ j ≤ n, such that:

1. w j ∈ f l ′, and the substringw j(1,q) 6∈ f l ′, or

2. w j ∈ f l ′′, and the substringw j (q+1, |x|) 6∈ f l ′′.

We consider only Case (1) since the other is symmetrical. Sincew j ∈ f l ′ andw j@w′
1w

′′
1 is defined, then,

by definition of concatenability, there existsx′ ∈ f l ′ such thatw j = x′ · dot(w′′
1), i.e., w j(1,q) = x′, a

contradiction with the assumption of Case (1).

Example 4. Consider again Ex. 2. It is easy to check that the pair(sc′ · sc′′, sc′ · sc′′) is unmatchable,
for the same reason that(sc′,sc′′) is unmatchable. Then, we check that the basessc′ ∪ f l ′ andsc′′ ∪ f l ′′

are concatenable. We only discuss the case of Clause (1) since Clause (2) is symmetrical. Letw′ ∈ Σ̃+,
y′ ∈ sc′, f l ′′ ∈ sc′′. If there existsx′ ∈ f l ′ such thatw′ = x′dot(y′′), then obviously bothw′ ∈ f l ′ and
w′@y′ ·y′′ are defined.
For the converse case, assume thatw′ ∈ f l ′ andw′@y′ ·y′′ is defined. Consider the projectionsα = πã(w′),
α ′ = πã(y′)∈ (aåa)+ andα ′′ = πã(y′′)∈ (åaa)+. Thenα ∈ (ååå)∗åaå(ååå)∗. Sincew′@y′ ·y′′ is defined,
the factor ˚aaå of α must be matched with a factor ofα ′α ′′: by its form and alignment, the only possibility
is that it is matched with a factor ofα ′. Hence,α has the form(ååå)∗åaå(ååå)∗dot(α ′′). We omit the
analogous reasoning for the projections onb. Sincew′@y′ · y′′ is defined, thenw′ must have the form
x′ ·dot(y′′) for somex′ ∈ f l ′. ThereforeL′ ·L′′ = C (sc′ ·sc′′∪ f l ′∪ f l ′′). For instance

a3b3a3b6 =

aåab̊bb· åaåbbbb̊bb@
åaåb̊bb̊· åååb̊b̊b̊b̊b̊b̊ @
åååb̊b̊b̊·aååbb̊b̊bb̊b̊

This example relies on a numerical congruence with module 3 for positioning the dotted and undotted
letters. We shall see how to generalize this approach to handle words of any congruence class (with
respect to the length of the projections on each letter). Thegeneralization will carry the cost of taking
larger values for the congruence module.

Incidentally, we observe that the theorems of this section may have a more general use than for
commutative languages. Moreover, the theorems do not require the base languages to be regular; in fact,
Def. 2 applies as well to non-regular bases (as a matter of fact [3] studies context-free/sensitive bases).

3.1 A Decomposed Form Relying on Congruences

Having stated some sufficient conditions for ensuring that the union/concatenation of two consensual
languages can be obtained by composing (as described by Th. 1and Th. 2) the corresponding base

S. Crespi Reghizzi and P. San Pietro 223

languages, we design a decomposed form, suitable for supporting joinability and concatenability, that
uses module arithmetic for assigning the positions to the dotted and undotted letters within a wordw over
Σ̃; the preceding examples offered some intuition for the nextformal developments.2 Loosely speaking,
each decomposed base language is “personalized” by a sort ofunique pattern of dotted/undotted letters,
such that, when we want to unite or concatenate two languages, the match of two words with different
patterns is undefined, thus ensuring that the union or catenation of the two decomposed bases specifies
the intended language composition.

For everya∈ Σ, consider the projection ofw on ã= {a, å} and, in there, the numbered positions of
eacha andå. Let mbe an integer. By prescribing that for each base language, each undotted lettera may
only occur in positionsj characterized by a specified value of the congruencej modm, we make the
bases decomposed. We need a new definition.

Definition 6 (Slots and modules). Let m> 3, calledmodule, be an even number. LetR⊆ {1, . . . ,(m/2−
1)} be a nonempty set, called aset of slots of module m. For everya ∈ Σ, define a finite language
Rm(a)⊂ ãm, where only positions 1 andr +1 are dotted:

Rm(a) = {åar−1åam−r−1 | r ∈ R} (3)

The disjoint regular languagessc-Rm,fl-RmΣ̃∗ are defined as:

sc-Rm =
{

x | ∀a∈ Σ,πã(x) ∈ (Rm(a)∪a)∗
}

(4)

fl-Rm = switch(sc-Rm)− Σ̊∗. (5)

The definition offl-Rm is clearly equivalent to
{

x | ∀a∈ Σ,πã(x) ∈ (switch(Rm(a))∪ å)∗
}
− Σ̊∗. It is

fairly obvious thatC (B) = Σ+, sinceΣ+ ⊆ sc-Rm. Also, sc-Rm@sc-Rm = /0 andfl-Rm is unproductive.
The following lemma is also obvious.

Lemma 2. For all even numbers m> 3 and non-empty sets R of slots of module m, every base E⊆
sc-Rm∪fl-Rm is in decomposed form, with scaffold: E∩sc-Rm and fill: E∩fl-Rm.

Example 5. Let m= 6,R= {1,2} andΣ = {a,b}. Then

R6(a) = {ååaaaa, åaåaaa}
sc-R6 = (ååaaaa∪ åaåaaa∪a)∗

∃

(b̊b̊bbbb∪ b̊bb̊bbb∪b)∗

fl-R6 =
(
(aaåååå∪aåaååå∪ å)∗

∃

(bbb̊b̊b̊b̊∪bb̊bb̊b̊b̊∪ b̊)∗
)
−{å, b̊}∗

For clarity, in this example the characters insc-R6 and infl-R6, belonging to factors inR6(a),R6(b), or
switch(R6(a)),switch(R6(b)) respectively, are in bold. Examples of words inC (B) are:

a6b6 ∈ sc-R6, alsoa6b6 =
åaåaaåbbb̊bbb @ in sc-R6

aåaåååbb̊bb̊b̊b̊ in fl-R6

a9b8 ∈ sc-R6, alsoa9b8 =
åaåaaaaaab̊bb̊bbbbb@ in sc-R6

aåaååååååbb̊bb̊b̊b̊b̊b̊ in fl-R6

(ab)4aaabb∈ sc-R6, also(ab)4aaabb=
åb̊abåb̊abaaabb@ in sc-R6

abåb̊abåb̊åååb̊b̊ in fl-R6

2As said, similar ideas have been used for a different language family in [4] and have been sketched for COM-SLIP lan-
guages in our communication [15].

224 Commutative Languages and their Composition by ConsensualMethods

To ensure that a base, included insc-Rm∪fl-Rm, can be used when two such languages are concate-
nated, we need the next simple concept.

Definition 7 (Shiftability). A languageR⊆ Σ̃∗ is shiftableif R= Σ̊∗RΣ̊∗.

This means that any word inR remains legal, when it is padded to the left/right with any dotted words.
Next we show that by taking disjoint sets of slots over the same module, we obtain two bases that are

joinable; if, in addition, the fills are shiftable, the condition for concatenability is satisfied.

Theorem 3. Let m> 3 and let R′,R′′ be two disjoint sets of slots of module m, and let E′ ⊆ sc-R′m∪fl-R′
m

and E′′ ⊆ sc-R′′m∪fl-R′′
m be two bases. Then:

• E′ and E′′ are joinable;

• if the fills of E′ and E′′ are shiftable, then the fills of E′∪E′′ and E′⊙E′′ are also shiftable, and E′

and E′′ are concatenable.

Proof. Let R= R′∪R′′. BasesE′ andE′′ are in decomposed form by Lm. 2. AlsoE′∪E′′ andE′⊙E′′

are in decomposed form, since they are both subsets ofsc-Rm∪fl-R.
Part (1): To show thatE′ andE′′ are joinable, we only need to prove that(fl-R′′

m,sc-R′m) is unmatchable
(the case(fl-R′

m,sc-R′′m) being unmatchable is symmetrical). By contradiction, assume that there exist
x∈ fl-R′′

m andy∈ sc-R′m such thatx@y is defined. Leta∈ Σ be a letter occurring inx 6∈ Σ̊+ and consider
the projectionα = πã(x). By definition offl-R′′

m, there exist a positionq of α and a valuer ∈ R′′ such
that α(q) = α(q+ r ′′) = a. Then, there existsα ′ ∈ πã(y) such thatα@α ′ is defined. But inα ′ for
all positionsp, 1≤ p≤ |α ′|, if α ′(p) = å thenα ′(p+ r ′) = a for all r ′ 6∈ R′. Therefore, ifp= q then
α(p+ r) = α ′(p+ r) = a, which is impossible by definition of matching. The same argument could be
applied to show that also the other two pairs are unmatchable.
Part (2): Define asfl-E′,sc-E′ and asfl-E′′,sc-E′′ the fills and the scaffolds ofE′ andE′′, respectively.
If fl-E′ andfl-E′′ are shiftable, then also the fillfl-E′ ∪ fl-E′′ of both E′ ∪E′′ andE′⊙E′′ is shiftable,
since the union of two shiftable languages is shiftable. We now prove that in this caseE′,E′′ are also
concatenable. Letw′ ∈ fl-E′,y′ ∈ sc-E′,y′′ ∈ sc-E′′. If there existsx′ ∈ fl-E′ such thatx′@y′ is defined
andw′ = x′dot(y′′), then it is obvious thatw′ ∈ fl-E′ = Σ̊∗fl-E′Σ̊∗ and thatw′@(y′ ·y′′) is defined. We are
left to show that:

if w′@(y′ ·y′′) is defined then∃x′ ∈ fl-E′such thatw′ = x′dot(y′′) andx′@y′ is defined. (6)

The proof of Claim (6) requires another technical definition. Given a setR of slots with modulem,
for a ∈ Σ, for everyα ∈ πã(sc-Rm) a restarting pointfor projectionα is a positioni, 1≤ i ≤ |α | −m,
such thatα(i, i +m− 1) ∈ Rm(a). Hence, ati there is a factor inRm(a). A symmetrical definition
holds if α ∈ πã(fl-Rm): factor α(i, i +m− 1) ∈ switch(Rm(a)). A restarting point always exists for all
α ∈ πã(sc-Rm) or α ∈ πã(fl-Rm), provided thatα 6∈ Σ+. We claim that ifs∈ sc-Rm, f ∈ fl-R̂m for some
(possibly equal) sets of slotsR,R̂with modulem, and the matchs@f is defined, then both the following
conditions hold:

R∩ R̂ 6= /0, (7)

∀a∈ Σ, the set of restarting points forπã(f) is included in the set of restarting points forπã(s). (8)

Since f 6∈ Σ̊∗, there exists at least onea∈ Σ such thatπã(f) has a factor inswitch(R̂m(a)) i.e., there exists
a restarting pointp for πã(f). For brevity, letα = πã(f). Hence, 1≤ p≤ |α |−m. Therefore, there exists
r ∈ R̂ such thatα(p) = α(p+ r) = a. Consider nowβ = πã(s). Sinces@f was assumed to be defined,

S. Crespi Reghizzi and P. San Pietro 225

β (p) = β (p+ r) = å. By definition ofsc-Rm, β ∈ (Rm(a)∪a)∗.
There are two possibilities: eitherp is a restarting point also forβ , hencer ∈ R and the above claims
follow, or p is not a restarting point forβ . The latter case is however impossible. In fact, in this case
p+ r would be a restarting point forβ , because of the form ofRm(a). Therefore, sinceβ (p) = å, there
would be a restarting point also at positionp− r ′, for somer ′ ∈ R. However, bothr, r ′, by definition,
are smaller thanm/2, therefore 2≤ r + r ′ ≤ m− 2. Hence, the restarting point atp− r ′ would be at a
distance less thanm from the restarting point atp+ r, which is impossible by definition ofRm(a).

We prove Claim (6) to finish. For everya ∈ Σ, let q′a = |πã(y′)|, and letq′′a = |πã(y′)|. Con-
sider the rightmost restarting pointpa for πã(w′). By definition of fl-E′, there existsr ′ ∈ R′ such that
πã(w

′)(pa, pa +m) = aår ′−1aåm−r ′−1. By Claim (8), pa is also a restarting point forπã(y
′ · y′′): there

existsr ∈ R′ ∪R′′ such thatπã(y′y′′)(pa, pa +m) = åar−1åam−r−1. We claim thatpa ≤ q′a. In fact, if
pa > qa, then pa must be a restarting point fory′′, hencer ∈ R′′: but r = r ′, a contradiction with the
hypothesis thatR′∩R′′ = /0. If pa ≤ q′a thenpa must be a restarting point forπã(y′), hencer = r ′ and ac-
tually pa ≤ qa−m. Sincepa is the rightmost restarting point,πã(w′)(pa−m+1,q′a+q′′a) ∈ Σ̊+. Choose
x′ to be the prefix ofw′ such that such thatw′ = x′dot(y′′).

4 Commutative SLIP languages and their(∪, ·)-closure

This section proves the main result:

Theorem 4(Closure under union and concatenation). The family COM-SLIP∪,· is strictly included in the
family of consensually regular languages: COM-SLIP∪,· ⊂ CREG.

Every language in COM-SLIP∪,· can be defined by an expression that combines finitely many COM-
SLIP languages, using union and concatenation; since COM-SLIP is the finite union of COM-LIP lan-
guages, we may assume that the expression includes only COM-LIP, rather than COM-SLIP, languages.

In the sequel, we prove that every COM-LIP language can be consensually defined in a decomposed
form such that it permits to satisfy the additional assumptions needed for union and concatenation, hence
all COM-SLIP∪,· languages are in CREG.

Decomposed form for COM-LIP languages To expedite handling the constant terms of LIP systems,
we introduce a new operationappendthat combines a language and a commutative language, the latter
penetrating into the former.

Definition 8 (Appending). Let B be a language over the double alphabetΣ̃. Fora∈ Σ, define the (unique)
factorization

B= Bã ·BΣ̃−ã

whereBã ⊆ Σ̃∗ · ã andBΣ̃−ã ⊆
(

Σ̃− ã
)∗

are languages, resp. ending byã, and not using the lettersa, å.

If neithera nor å occurs inB, let Bã = ε . Let A⊆ a+; we define the operation, namedappending A to B,
as follows:

B✁A= Bã · (BΣ̃−ã

∃

A).

Given a commutative languageF ⊆ Σ∗, Σ = {a1, . . . ,ak}, the iterative application of the previous opera-
tion to every letter of the alphabet (in any order) defines theoperation, namedletter-by-letter appending
F to B, as:

B✁F = (. . . (B✁πa1(F))✁πa2(F)) . . .)✁πak(F).

226 Commutative Languages and their Composition by ConsensualMethods

To illustrate, we compute:

{åbåb̊}✁{ac,ca} =
(
{åbåb̊}✁πa{ac,ca}

)
✁πc{ac,ca} =

=
(
{åbåb̊}✁{a}

)
✁{c}=

(
{åbå}(b̊ ∃ a)

)
✁{c}=

= {åbåb̊a, åbåab̊}✁{c}= {åbåb̊a, åbåab̊} ∃ {c}

In the remainder of the Section, letL be a COM-LIP language overΣ = {a1, . . . ,ak}, k> 0, defined
by constant~c and periodsP =

{
~p(1), . . . ,~p(q)

}
, for someq> 0, with the condition that for every~p∈P,

every componentpi is even.
The next definition introduces some sets, calledX,Y,W, to define the COM-LIP languageL with

a baseD in decomposed form. The assumption on eachpi being even will be lifted when defining
COM-SLIP languages.

Definition 9. For all even integersm≥ 4, and for all sets of slotsR of the form{r} with 0< r < m/2,
define the regular languagesX,Y,D ⊆ Σ̃∗ and the finite commutative languageW ⊆ Σ∗, as follows:

X =
⋃

~p∈P

{x∈ fl-Rm | Ψ(πΣ(x)) = ~p} (9)

Y = (Rm(a1))
∗ ∃ . . .

∃

(Rm(ak))
∗ (10)

Ψ(W) =
{
~c+h1 ·~p(1)+ . . .+hq ·~p(q) | 0≤ h1, . . . ,hq < m/2

}
. (11)

D = X ∪ (Y✁W) (12)

It is obvious thatX ⊆ fl-Rm. To see thatY✁W ⊆ sc-Rm, we first describe relevant features of the
formulae. By Eq. (11),W is the finite commutative language having as Parikh image thelinear subspace
included between~c and~c+(m/2−1)~p(1) + . . .+(m/2−1)~p(q). For eachai , the projection onai of a
word inY✁W ends with a tail of undottedai ’s defined by Eq. (11). While the projection onai of sc-Rm

has necessarily length multiple ofm, the tail does not need to comply with such constraint, thus allowing,
in principle, the languageY✁W to contain words whose projections onai has any length greater or equal
to ci (within the specified subspace). The following lemma is immediate:

Lemma 3. Let X,Y,W,D as in Def. 9. Then, D is a decomposed base included in sc-Rm∪ fl-Rm, with
Y✁W ⊆ sc-Rm being the scaffold and X⊆ fl-Rm being the fill; moreover, the fill of D is shiftable, i.e.,
X = Σ̊∗XΣ̊∗.

Example 6. Consider the languageL′′
even= com

(
(a2b4)∗

)
having the periodpa = 2, pb = 4 and null

constant. Notice that to obtain languagecom
(
(ab2)∗

)
, it is enough to apply union toL′′

even and to the
languageL′′

odd = com
(
abb(a2b4)∗

)
, which can be defined with the same periodpa = 2, pb = 4, and with

constantca = 1,cb = 2. If modulem= 6 and set of slotsR= {2} thenR6(a) = åaåa3, R6(b) = b̊bb̊b3.

Also, fl-R6 =
((

aåaå3∪ å
)∗ ∃ (

bb̊bb̊3∪ b̊
)∗)

−{å, b̊}∗. Let

X = {x∈ fl-R6 | Ψ
(
π{a,b}(x)

)
= (2,4)}

=
(
å∗ ·aåaå3 · å∗

) ∃ (
b̊∗ ·bb̊bb̊3 · b̊∗ ·bb̊bb̊3 · b̊∗

)

Y = (R6(a))
∗ ∃ (R6(b))

∗ =
(
åaåa3)∗ ∃ (

b̊bb̊b3
)∗

S. Crespi Reghizzi and P. San Pietro 227

Both X andY satisfy Def. 9. To complete the base of languageL′′
even, we define

W =
⋃

0≤i≤2

com
(
a2ib4i)

The fill {å, b̊}∗X{å, b̊}∗ and the scaffoldY✁W are a decomposed form forL′′
even. Similarly, to define

L′′
odd, we have to define the setsX′,Y′,W′; for X′,Y′ we select as set of slotsR′ = {1}, which satisfies

R′∩R= /0. At last,W′ =
⋃

0≤i≤2 com
(
abba2ib4i

)
.

The important property of the language in Eq. (9) is stated next.

Lemma 4. 1. For all n > 0, for every u∈ Xn@ there exist q≥ 1 integers n1, . . . ,nq ≥ 0 with n=
n1+ . . .+nq such that

Ψ(πΣ (u)) = n1 ·~p(1)+ . . .+nq ·~p(q).

2. For all n,n1, . . . ,nq ≥ 0, with n1+ . . .+nq = n , if

u∈ fl-Rm and Ψ(πΣ (u)) = n1 ·~p(1)+ . . .+nq ·~p(q)

then u∈ Xn@.

Proof. Part (1). By definition ofX, if x∈X, then there exists~p j ∈P, 1≤ j ≤ q, such thatΨ
(
πΣ(x)

)
=~p j .

By definition of match closure, there existsn > 0 wordsx1, . . .xn ∈ X such thatu = x1@x2@. . .@xn.
Then, for all 1≤ i ≤ n, Ψ(πΣ(xi) = ~p ji for somej i , with 1≤ j i ≤ q. Hence,Ψ(πΣ (u)) = ∑1≤i≤n Ψ(πΣ(xi)),
from which the thesis follows immediately. Part (2). By definition of X, for every vector~p j , 1≤ j ≤ q,
languageX includes all wordsx of fl-Rm such thatΨ(πΣ(x)) =

~p j . Hence, one can always selectn1 words

x[1]1 , . . . ,x[1]n1 ∈ X, n2 wordsx[2]1 , . . . ,x[2]n2 ∈ X, etc., such that:

i) Ψ
(

πΣ

(
x[j]i

))
= ~p j , for every 1≤ j ≤ q, 1≤ i ≤ n j ;

ii) x[1]1 @. . .@x[1]n2 @x[2]1 @. . .@x[2]n2 @. . .@x[q]1 @. . .@x[q]nq = u.

Lemma 5. The consensual languageC (D) is commutative.

Proof. We notice first thatY✁W andX obviously verify the following two conditions:

I) Y✁W = πã1(Y✁W)

∃ πã2(Y✁W)

∃

. . .

∃ πãk
(Y✁W);

II) if x∈ X thenπã1(x)

∃ πã2(x)

∃

. . .

∃ πãk
(x)⊆ X.

Let u∈C (D) and letv∈Σ+ be such thatΨ(v) =Ψ(u). Wordu is defined asz@x1@. . .@xn, for somez∈
Y✁W, n> 0 and somex1, . . . ,xn ∈ X. Wordv is a permutation ofu, hence for allai ∈ Σ πai (u) = πai (v).
By Prop. (I) above, there exists a permutationz′ of z, such thatz′ ∈ sc-Rm✁W, with undot(z′) = v.
Similarly, by Prop. (II) above, for all 1≤ j ≤ n, there exists a permutationx′j of x j such that, for all
ai ∈ Σ, πãi (x

′
j) = πãi (x j) and, moreover, such thatz′@x′i is defined, withπãi (z

′@x′i) = πãi (z@xi). Hence,
alsoz′@x′1@. . .@x′n is defined, thereforez′@x′1@. . .@x′n = undot(z′) = v.

Next, Th. 5 shows thatD consensually definesL, with m andr arbitrarily large.

Theorem 5. For all even integers m≥ 4 and for every R of the form{r}, with 1 ≤ r ≤ m/2−1, there
exists a decomposed base D as in Def. 9 such that the COM-LIP language L= C (D) .

228 Commutative Languages and their Composition by ConsensualMethods

Proof. Let m,R,D,X,Y,W be defined as in Def. 9, withk= |Σ|,q= |P|. We first notice that, by defini-
tion of Y✁W and ofX:
(*) if z′ ∈Y then, for everyai ∈ Σ, |z′|ãi is a multiple ofm, |z′|åi = 2· |z|ãi/mand|z′|ai = (m−2) · |z|ãi/m.
Proof of C (D) ⊆ L. Let u ∈ C (D). We show thatΨ(u) ∈ Ψ(L). SinceD is in decomposed form,u
must be the match of a wordz∈ (Y✁W) with h ≥ 0 wordsx1, . . . ,xh ∈ X. Let x = x1@x2@. . .@xh.
Word z has the formz′ ✁w for somez′ ∈ Y and somew ∈ W ⊆ Σ∗. By Lm. 4, Part (1), there exist
d1, . . . ,dq ≥ 0 such thatΨ(πΣ(x)) =~c+ d1 ·~p(1) + . . .+ dq ·~p(q). Also, by definition ofW, there exist
q integers 0≤ h1, . . . ,hq < m/2 such thatΨ(w) =~c+h1 ·~p(1) . . .+hq ·~p(q). Sinceu= (z′✁w)@x is a
strong match,Ψ(u) = Ψ(πΣ(z′))+Ψ(πΣ(x))+Ψ(πΣ(w)). Notice that each component ofΨ(πΣ(x)) must
be even: by(z′✁w)@x being a strong match it follows that|x|ai is equal to|z′|åi , which is even. Again
because(z′✁w)@x is a strong match,Ψ(πΣ(z′)) = (m−2)/2·Ψ(πΣ(x)). Therefore:

Ψ(u) = (m−2) ·Ψ(πΣ(x))/2+Ψ(πΣ(x))+Ψ(w) =
= m·Ψ(πΣ(x))+Ψ(w) =
= m· (d1 ·~p(1)+ . . .+dq ·~p(q))+~c+h1 ·~p(1)+ . . .+hq ·~p(q) =
=~c+(m·d1+h1) ·~p(1)+ . . .+(m·dq+hq) ·~p(q)

Hence,Ψ(u) ∈ Ψ(L).
Proof of L⊆ C (D). For allu∈ L there existq integersn1, . . . ,nq such thatΨ(u) =~c+n1 ·~p(1)+ . . .+

nq ·~p(q). For every j, 1 ≤ j ≤ q, let h j = n j mod(m/2). Let d j = n j − h j if n j p
(j)
i > 0, andd j = 0

otherwise. Then, everyd j andh j are such that 0≤ h j < m/2 andd j is a (possibly zero) multiple of
m/2. By definition ofW, there existsw∈W such thatΨ(w) = h1 ·~p(1)+ . . .+hq ·~p(q). For all ai ∈ Σ,

let zi be the word in(Rm(ai))
∗ such that|zi | = d1p(1)i + · · ·+ dqp(q)i . Such a word does exist, since

eachd j is a (possibly zero) multiple ofm/2, henced1p(1)i + · · ·+ dqp(q)i is a multiple ofm/2; if this
multiple is 0, thenzi = ε . By definition of Rm(ai), word zi (when not empty) has, in every segment
of lengthm belonging toRm(ai), exactly two occurrences of ˚ai , and(m−2) occurrences ofai . Hence,

|zi |åi = 2(d1p(1)i + · · ·+ dqp(q)i)/m and |zi |ai = (m− 2) · (d1p(1)i + · · ·+ dqp(q)i)/m. We claim that there
existsz′ ∈Y such thatΨ(undot(z′)) = d1 ·~p(1)+ . . .+dq ·~p(q). In fact, by Prop. (*) above, there exists
z′ ∈Y such thatπãi (z

′) = zi . Hence,Ψ(πΣ(z′)) = (m−2) · (d1 ·~p(1)+ . . .+dq ·~p(q). By definition ofW,
there existsw∈W such that

Ψ(w) =~c+h1 ·~p(1)+ . . .+hq ·~p(q).
Let z′′ = switch(z′). By Lm. 4, Part (2), there existn= 2d1/m+2d2/m+ · · ·+2dq/mwordsx1, . . . ,xn ∈X
such that

z′′ = x1@. . .@xn, with Ψ(πΣ(z
′′)) = 2· (d1 ·~p(1)+ . . .+dq ·~p(q))/m.

Consider nowxi ✁dot(w). This word is inX, since the fills included inX may end with arbitrarily many
å, for everya∈ Σ. Clearly, fromxi ✁dot(w) one can obtain a strong matchv with z′✁w:

v= (z′✁w)@(x1✁dot(w))@. . .@(xn✁dot(w))

with Ψ(v) = Ψ(πΣ(z
′))+Ψ(πΣ(z

′′))+Ψ(πΣ(w)) = Ψ(u).

Since the languageC (D) is commutative, andv∈ C (D), alsou∈ C (D).

We can now complete the proof of Th. 4. Since a COM-SLIP language is the finite union of COM-
LIP languages, a COM-SLIP∪,· language is the union and concatenation of COM-LIP languages. It can
be assumed that these COM-LIP languages comply with Def. 9 having only even components in every

S. Crespi Reghizzi and P. San Pietro 229

vector of the setP of periods (since otherwise they can be represented as the finite union of COM-LIP
languages with this property). Select the same module and disjoint sets of slots for the decomposed bases
of these COM-LIP languages. By Th. 3, since each COM-LIP is defined by a shiftable base with disjoint
sets of slots, the various bases can be combined with∪ and⊙, resulting in a shiftable base. By Th. 1
and and Th. 2, the result is still a consensual language (witha decomposed base). The inclusion is strict,
since language{ba1ba2ba3 . . .bak | k≥ 1} has a non-SLIP commutative image, but it is in CREG [2].

5 Related Work and Conclusion

By classical results, COM-SLIP∪,· is included in the class of languages recognized byreversal-bounded
multi-counter machines [1, 8] (which is also closed under concatenation). The latter class admits differ-
ent, but equivalent, characterizations: as the class of languages recognized by (nondeterministic)blind
MCMs’ [7], or as the minimal, intersection-closed full semi-AFL including languagecom((ab)∗) [1, 6].
However, the cited papers are not concerned with actual construction methods for the MCMs’.

Although COM-SLIP languages have been much studied, we are not aware of any specific study on
the effect on COM-SLIP of operations such as concatenation.

Concerning the techniques to specify COM-SLIP languages, our specification, using as patterns the
commutative Parikh vectors, bears some similarity to Kari’s [10] “scattered deletion” operation.

It is known that family COM-SLIP, when restricted to a binaryalphabet, is context-free [9, 13], there-
fore it enjoys closure under concatenation and star. On the other hand, we observe that the intersection
I = L′4 ∩ a+L′2b+, whereL′ = com((ab)+), is not context-free, since

I ∩ (a+b+)4
= {anbnanbnanbnanbn | n> 1}.

In [13], the context-free grammar rules for COM-LIP again resemble our consensual specification.
Also, the context-sensitive grammars in [11], obtained by addingpermutative rulesof the formAB→

BA to context-free grammars, include COM-SLIP and of course its closure by concatenation and star,
but not its intersection with regular languages.

Last, the COM-SLIP languages are included in the SLIP language family recognized by a formal
device, based on so called restarting automata, studied in [12], but the grounds covered by CREG and by
that family are quite different. Beyond the mentioned similarities, we are unaware of anything related to
our congruence-based decomposed form.

Unanswered questions This paper has added a piece to our knowledge of the languagesincluded in
CREG; it has introduced a novel compositional constructionfor the union/concatenation, which is very
general and hence likely to be useful for other language subfamilies included in CREG. Some natural
questions concern the closures of COM-SLIP under other basic operations: is the intersection of two
COM-SLIP languages, or the Kleene star of a COM-SLIP language, in CREG?

A different kind of problem is whether the only commutative languages that are in CREG are semilin-
ear; for instance, the nonsemilinear non-commutative language{ba1ba2ba3 . . .bak | k≥ 1} is in CREG,
but, for its commutative closure, we do not know of a consensually regular specification. Last, a more
general problem is whether CREG is closed under union, concatenation, and star. A possible approach is
to investigate whether every CREG language may be defined by abase which is joinable and shiftable,
thus obtaining closure under union and concatenation by virtue of the lemmas presented in this paper.

230 Commutative Languages and their Composition by ConsensualMethods

References

[1] Brenda S. Baker & Ronald V. Book (1974):Reversal-bounded multipushdown machines. Journal of Com-
puter and System Sciences8(3), pp. 315 – 332, doi:10.1016/S0022-0000(74)80027-9.

[2] Stefano Crespi Reghizzi & Pierluigi San Pietro (2011):Consensual languages and matching finite-state
computations. RAIRO - Theor. Inf. and Applic45(1), pp. 77–97, doi:10.1051/ita/2011012.

[3] Stefano Crespi-Reghizzi & Pierluigi San Pietro (2012):Strict Local Testability with Consensus Equals Regu-
larity. In Nelma Moreira & Rogério Reis, editors:CIAA , Lecture Notes in Computer Science7381, Springer,
pp. 113–124, doi:10.1007/978-3-642-31606-7_10.

[4] Stefano Crespi Reghizzi & Pierluigi San Pietro (2013):Deterministic Counter Machines and Parallel Match-
ing Computations. In Stavros Konstantinidis, editor:Impl. and Appl. of Automata - 18th Int. Conf., CIAA
2013, Halifax, Nova Scotia, Canada, July 16-19, 2013., Lecture Notes in Computer Science7982, Springer,
pp. 280–291, doi:10.1007/978-3-642-39274-0_25.

[5] Seymour Ginsburgh (1966):The mathematical theory of context-free languages. McGraw-Hill.

[6] Sheila A. Greibach (1976):Remarks on the complexity of nondeterministic counter languages. Theor. Comp.
Sc.1(4), pp. 269–288, doi:10.1016/0304-3975(76)90072-4.

[7] Sheila A. Greibach (1978):Remarks on Blind and Partially Blind One-Way Multicounter Machines. Theor.
Comput. Sci.7, pp. 311–324, doi:10.1016/0304-3975(78)90020-8.

[8] Oscar H. Ibarra (1978):Reversal-Bounded Multicounter Machines and Their Decision Problems. J. ACM
25(1), pp. 116–133, doi:10.1145/322047.322058.

[9] Michel Latteux (1979):Cônes rationnels commutatifs. J. Comput. Syst. Sci.18(3), pp. 307–333, doi:10.
1016/0022-0000(79)90039-4.

[10] Alexandru Mateescu (1994):Scattered deletion and commutativity. Theor. Comp. Sc.125(2), pp. 361–371,
doi:10.1016/0304-3975(94)90259-3.

[11] Benedek Nagy (2009):Languages Generated by Context-Free Grammars Extended by Type AB -> BA Rules.
Journal of Automata, Languages and Combinatorics14(2), pp. 175–186.

[12] Benedek Nagy & Friedrich Otto (2012):On CD-systems of stateless deterministic R-automata with window
size one. J. Comput. Syst. Sci78(3), pp. 780–806, doi:10.1016/j.jcss.2011.12.009.

[13] Michel Rigo (2003):The commutative closure of a binary slip-language is context-free: a new proof. Discrete
Appl. Math.131(3), pp. 665–672, doi:10.1016/S0166-218X(03)00335-4.

[14] Arto Salomaa (1987):Formal languages. Academic Press, San Diego, CA, USA.

[15] Stefano Crespi Reghizzi & Pierluigi San Pietro (2013):Commutative consensual counter languages.Talk
given at ICTCS 2013,14th Italian Conference on Theoretical Computer Science, Palermo, Italia, Sept. 9-11,
2013.

[16] Leslie G. Valiant (1990):A bridging model for parallel computation. Comm. ACM33(8), p. 103, doi:10.
1145/79173.79181.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 231–245, doi:10.4204/EPTCS.151.16

c© C. F. Du and J. Shallit
This work is licensed under the
Creative Commons Attribution License.

Similarity density of the Thue-Morse word with overlap-free
infinite binary words

Chen Fei Du and Jeffrey Shallit
School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

cfdu@uwaterloo.ca,
shallit@uwaterloo.ca

We consider a measure of similarity for infinite words that generalizes the notion of asymptotic or
natural density of subsets of natural numbers from number theory. We show that every overlap-free
infinite binary word, other than the Thue-Morse wordt and its complementt, has this measure of
similarity with t between1

4 and3
4. This is a partial generalization of a classical 1927 resultof Mahler.

1 Introduction

The Thue-Morse word

t = 01101001100101101001011001101001· · ·

is one of the most studied objects in combinatorics on words.It can be defined in a number of different
ways, such as the fixed point of the morphismµ defined byµ(0) := 01 andµ(1) := 10 beginning with
0, or as the word whosenth position is the number of1s (modulo 2) in the binary representation ofn.

The wordt has a large number of interesting properties, many of which are covered in the survey
[1]. For example,t is overlap-free: it contains no factor of the formaxaxa, wherex is a (possibly empty)
word anda is a single letter. One that concerns us here is the following“fragility” property [4]: if the
bits in anyfinite non-empty set of positions are “flipped” (i.e., changed to their binary complement) in
the Thue-Morse word, the resulting word is no longer overlap-free.1

Of course, this is not true of arbitraryinfinitesets of positions; for example, we can transformt to t by
flipping all the positions. Chao Hsien Lin (personal communication, October 2013) raised the following
natural question.

Problem 1. Is it possible to flip aninfinite, but density 0, set of positions int and still get an overlap-free
word?

Our main result (Theorem 18) solves Problem 1 in the negative. After making precise what we
mean by “density”, we use a certain automaton [10] encoding all the overlap-free infinite binary words
to comparet to all other overlap-free infinite binary words and show thatthey differ from t in at least
density 1

4 of the positions. Furthermore, computational evidence suggests that the true lower bound is
density 1

3. However, we were unable to obtain a proof of this tighter bound. Finally, we consider the
possibility of similar results holding for other words (in place oft) or for larger classes of words (in place
of overlap-free words).

1Note that the “fragility” property does not hold for an arbitrary overlap-free binary word; for example, both0t and1t are
overlap-free. There are even overlap-free words in which blocks arbitrarily far from the beginning may be flipped and still
remain overlap-free [10].

232 Similarity Density

2 Notation

We observe the following notational conventions throughout this paper. We letN := {0,1,2, . . .} denote
the natural numbers. The upper-case Greek lettersΣ,∆,Γ represent finite alphabets. For eachn∈ N, we
let Σn := {0,1,2, . . . ,n−1}.

As usual,Σω denotes the set of all (right-)infinite words overΣ andLω := {x0x1x2 · · · : xi ∈ L\{ε}}
denote the set of all infinite words formed by concatenation from nonempty words ofL. By xω we mean
the infinite periodic wordxxx· · · .

We adopt the convention that, in the context of words, lower-case letters such asx,y,z refer to finite
words (i.e.,x,y,z∈ Σ∗), while boldface lettersx,y,z refer to infinite words (i.e.,x,y,z∈ Σω).

To be consistent with 0∈ N, all words are zero-indexed, i.e., the first letter of the word is in position
0. For x ∈ Σ∗ andm≤ n ∈ N, x[n] denotes the letter at thenth position ofx andx[m. .n] denotes the
subword consisting of the letters from themth throughnth positions (inclusive) ofx. Forx∈ Σ∗

2, x denotes
the binary complement ofx, i.e., the word obtained by changing all0s to1s and vice versa. We use the
same notation just described for infinite words. In addition, for x ∈ Σω andn∈ N, x[n. .∞] denotes the
(infinite) suffix ofx starting from thenth position ofx.

For a morphismg : Σ∗→Σ∗ andn∈N, we letgn denote then-fold composition ofg, andgω : Σ∗→Σω

denote limn→∞ gn if the limit exists. The Thue-Morse morphismµ : Σ∗
2 → Σ∗

2 is defined byµ(0) := 01

andµ(1) := 10. Iterates of the Thue-Morse morphism acting on0 are denoted bytn := µn(0). Note that
t = µω(0).

3 Similarity density of words

Let us express Problem 1 in another way: how similar can an arbitrary overlap-free wordw be tot? For
w a shift of t, this was essentially determined by the following result from a surprisingly little-known
1927 paper of Kurt Mahler on autocorrelation [7].

Theorem 2. For all k ∈ N, the limit

σ(k) := lim
n→∞

1
n

n−1

∑
i=0

(−1)t[i]+t[i+k]

exists. Furthermore, we haveσ(0) = 1, σ(1) =−1
3, and for all n∈ N, σ(2n) = σ(n) andσ(2n+1) =

−1
2(σ(n)+σ(n+1)).

(Also see [11, 12].) Then an easy induction onk gives

Corollary 3. For all k ∈ N\{0}, −1
3 ≤ σ(k)≤ 1

3.

Mahler’s result is not exactly what we want, but we can easilytransform it. Rather than autocorrela-
tion, we are more interested in a quantity we call “similarity density”; it measures how similar two words
of the same length are, with a simple and intuitive definitionfor finite words that generalizes to infinite
words by way of limits.

Definition 4. We interpret the Kronecker delta as a function of two variablesδ : Σ2 → Σ2 as follows.

δ (a,b) :=

{
0, if a 6= b;

1, if a= b.

C. F. Du and J. Shallit 233

Definition 5. Let n∈ N\{0} andx,y∈ Σn. Thesimilarity densityof x andy is

SD(x,y) :=
1
n

n−1

∑
i=0

δ (x[i],y[i]).

Thus, two finite words of the same length have similarity density 1 if and only if they are equal.

Definition 6. Let x,y ∈ Σω . Thelowerandupper similarity densitiesof x andy are, respectively,

LSD(x,y) := lim inf
n→∞

SD(x[0. .n−1],y[0. .n−1]),

USD(x,y) := limsup
n→∞

SD(x[0. .n−1],y[0. .n−1]).

Remark7. Our notion of similarity density is not a new idea. (Similar ideas can be found, e.g., in [8, 6].)
It is inspired by the well-studied number-theoretic notionof asymptoticor natural densityof subsets of
natural numbers. Thelowerandupper asymptotic densitiesof A⊆ N are, respectively,

d(A) := lim inf
n→∞

1
n
|A∩{0, . . . ,n−1}| ,

d(A) := limsup
n→∞

1
n
|A∩{0, . . . ,n−1}| .

Similarity density generalizes asymptotic density in the following way. ForA⊆ N, let χA ∈ Σω
2 denote

the characteristic sequence ofA (i.e., χA[n] = 1 iff n∈ A). Then

d(A) = LSD(χA,1
ω),

d(A) = USD(χA,1
ω).

Mahler’s result can now be restated as follows.

Theorem 8. For all k ∈ N\{0}, 1
3 ≤ LSD(t, t[k. .∞]) = USD(t, t[k. .∞]) ≤ 2

3.

Proof. Note that for alli,k∈N, (−1)t[i]+t[i+k] = 2δ (t[i], t[i+k])−1. Hence, by Definition 6, Theorem 2,
and Corollary 3, we obtain

LSD(t, t[k. .∞]) = USD(t, t[k. .∞]) =
1
2
(σ(k)+1) ∈ 1

2

([
−1

3
,
1
3

]
+1

)
=

[
1
3
,
2
3

]
.

Remark9. There exist overlap-free infinite binary wordsw with LSD(t,w) < USD(t,w). One example
is the wordh = 00100110100101100110100110010110 · · · whosenth position is the number of0s
(modulo 2) in the binary representation ofn. (Note thath[0] = 0 as we take the binary representation of
0 to beε .) We prove in Proposition 17 that LSD(t,h) = 1

3 while USD(t,h) = 2
3. See Figure 1, where this

similarity density is graphed as a function of the length of the prefix.

234 Similarity Density

Figure 1: Similarity density of prefixes oft andh

Our main result (Theorem 18) is that the lower and upper similarity densities oft with anyoverlap-
free infinite binary word other thant andt are bounded below and above as in Theorem 8, but with the
constants1

4 and 3
4 instead of13 and 2

3 respectively. However, computational evidence suggests that the
tighest bounds are indeed1

3 and2
3, which, if true, would fully generalize Theorem 8 from nontrivial shifts

of t to all overlap-free infinite binary words (other thant andt).
The following are basic properties of similarity density that we will use later. Their statements are all

intuitive and their proofs are just basic exercises in algebra. Observation 10 states that similarity density
can be computed using weighted averages. Observation 11 andCorollary 12 explain how complementa-
tion affects similarity density. Observation 13 states that the similarity densities of infinite words depends
only on their tails, so we can ignore arbitrarily long prefixes. Observation 14 states that the similarity
densities of infinite words can be obtained by considering similarity densities of prefixes where the length
of the prefix grows by any constant instead of just by one in each iteration.

Observation 10. Let n,m∈N\{0}, u,v∈ Σn, and x,y∈ Σm. Then

SD(ux,vy) =
n

n+m
SD(u,v)+

m
n+m

SD(x,y).

Proof.

SD(ux,vy) =
1

n+m

n+m−1

∑
i=0

δ ((ux)[i],(vy)[i])

=
1

n+m

(
n−1

∑
i=0

δ (u[i],v[i])+
m−1

∑
i=0

δ (x[i],y[i])

)

=
n

n+m
· 1
n

n−1

∑
i=0

δ (u[i],v[i])+
m

n+m
· 1
m

m−1

∑
i=0

δ (u[i],v[i])

=
n

n+m
SD(u,v)+

m
n+m

SD(x,y).

C. F. Du and J. Shallit 235

Observation 11. For all n ∈ N\{0} and x,y∈ Σn
2,

(i) SD(x,y) = 1−SD(x,y).

(ii) SD(x,y) = SD(x,y).

Proof.

(i) SD(x,y) = 1
n ∑n−1

i=0 δ (x[i],y[i]) = 1
n ∑n−1

i=0 (1−δ (x[i],y[i])) = 1−SD(x,y).

(ii) By (i) and symmetry of SD, we have SD(x,y) = 1−SD(x,y) = 1− (1−SD(x,y)) = SD(x,y).

Corollary 12. For all x,y ∈ Σω
2 ,

(i) LSD(x,y) = 1−USD(x,y) andUSD(x,y) = 1−LSD(x,y).

(ii) LSD(x,y) = LSD(x,y) andUSD(x,y) = USD(x,y).

Proof. Immediate by Definition 6, Observation 11, and basic properties of limits.

Observation 13. Let l ∈ N, u,v∈ Σl andx,y ∈ Σω . ThenLSD(ux,vy) = LSD(x,y) andUSD(ux,vy) =
USD(x,y).

Proof. If l = 0, then the proof is trivial. Ifl > 0, then we have

LSD(ux,vy) = lim inf
n→∞

1
n

n−1

∑
i=0

δ ((ux)[i],(vy)[i])

= lim inf
n→∞

1
n+ l

n+l−1

∑
i=0

δ ((ux)[i],(vy)[i])

= lim inf
n→∞

(
1

n+ l

l−1

∑
i=0

δ (u[i],v[i])
︸ ︷︷ ︸

∈[0, l
n+l]

n→∞−−−→0

+
1

n+ l

n−1

∑
i=0

δ (x[i],y[i])

)

= lim inf
n→∞

(
0+

(
1
n
− l

n(n+ l)

)n−1

∑
i=0

δ (x[i],y[i])

)

= lim inf
n→∞

(
1
n

n−1

∑
i=0

δ (x[i],y[i])− l
n(n+ l)

n−1

∑
i=0

(1−δ (x[i],y[i]))
︸ ︷︷ ︸

∈[0, l
n+l]

n→∞−−−→0

)

= lim inf
n→∞

(
1
n

n−1

∑
i=0

(1−δ (x[i],y[i]))−0

)

= LSD(x,y).

The proof is exactly the same for USD with liminf replaced by limsup.

Observation 14. Let M∈N\{0}. Then

LSD(x,y) = lim inf
n→∞

SD(x[0. .Mn−1],y[0. .Mn−1]),

USD(x,y) = limsup
n→∞

SD(x[0. .Mn−1],y[0. .Mn−1]).

236 Similarity Density

Proof. For anyn∈ N\{0} andk∈ {Mn,Mn+1, . . . ,M(n+1)−2}, by Observation 10, we have

SD(x[0. .k],y[0. .k]) =
Mn

k+1
SD(x[0. .Mn−1],y[0. .Mn−1])

+
k−Mn+1

k+1
SD(x[Mn. .k],y[Mn. .k])

∈
[

Mn
M(n+1)−1

,
Mn

Mn+1

]
SD(x[0. .Mn−1],y[0. .Mn−1])

+

[
1

M(n+1)−1
,

M−1
Mn+1

]
SD(x[Mn. .k],y[Mn. .k]),

so since limn→∞[
Mn

M(n+1)−1,
Mn

Mn+1] = [1,1] = {1} and limn→∞[
1

M(n+1)−1,
M−1
Mn+1] = [0,0] = {0}, all of the

intermediate values SD(x[0. .k],y[0. .k]) for k ∈ {Mn,Mn+ 1, . . ,M(n+ 1)− 2} get arbitrarily close to
SD(x[0. .Mn−1],y[0. .Mn−1]) asn→ ∞. Hence,

liminf
n→∞

SD(x[0. .n−1],y[0. .n−1]) = lim inf
n→∞

SD(x[0. .Mn−1],y[0. .Mn−1]),

limsup
n→∞

SD(x[0. .n−1],y[0. .n−1]) = limsup
n→∞

SD(x[0. .Mn−1],y[0. .Mn−1]).

4 Fife automaton for overlap-free infinite binary words

We recall the so-called “Fife automaton” for overlap-free infinite binary words from [10]. (Note that this
automaton does not appear in the original paper of Fife [5].)

1
0

0

31

0

D

C

F

G

HK

J

I

E

B

A

3

31

3

1

3

3

1

0

3

0

00

0

1

0

24

1

Figure 2: Automaton encoding all overlap-free infinite binary words

Here, infinite paths through the automaton encode all overlap-free infinite binary words, as follows.

C. F. Du and J. Shallit 237

Definition 15. First, each of the edge labels encodes a binary word, viac : Σ5 → Σ∗
2 defined by

c(0) := ε ,
c(1) := 0,

c(2) := 00,

c(3) := 1,

c(4) := 11.

Then, the Fife-to-binary encoding FBE :(Σω
5 \Σ∗

50
ω)∪

(
Σ∗

50
ω ×Σ2

)
→ Σω

2 is defined by

FBE(x) :=
∞

∏
n=0

µn(c(x[n])) for x ∈ Σω
5 \Σ∗

50
ω ;

FBE(x,a) :=

(
∞

∏
n=0

µn(c(x[n]))

)
µω(a) for (x,a) ∈ Σ∗

50
ω ×Σ2.

Note that FBE is well-defined becausec is only erasing for the letter0 and µ is non-erasing, so for
x ∈ Σω

5 , the concatenation∏∞
n=0 µn(c(x[n])) is finite iff x ends in0ω .

We now recall the basic property of the automaton from [10].

Theorem 16. Let w ∈ Σω
2 . Thenw is overlap-free iff there existsx ∈ Σω

5 that encodes a valid path
through the Fife automaton for overlap-free infinite binarywords such thatFBE(x) = w (if x does not
end in0ω) or FBE(x,a) = w (if x ends in0ω) for some a∈ S, where S⊆ Σ2 depends on the eventual
cycle corresponding to the suffix0ω of the path encoded byx: on state A and between states B and D
(S= Σ2), between states G and H (S= {1}), or between states J and K (S= {0}).

Recallh as defined in Remark 9. Note that the definitions ofh andt are very similar. This is related
to the special path that encodesh in the Fife automaton for overlap-free infinite binary words[10]:
h = FBE(2(31)ω). We will see later in our proof of our main result why this pathis special. For now,
we can use this path to compute the following result.

Proposition 17. LSD(h, t) = LSD(h, t) = 1
3 andUSD(h, t) = USD(h, t) = 2

3.

Proof. Note that

h = FBE(2(31)ω) = µ0(p(2))
∞

∏
n=0

(
µ2n+1(p(3))µ2n+2(p(1))

)

= µ0(00)
∞

∏
n=0

(
µ2n+1(1)µ2n+2(0)

)
= 0t0

∞

∏
n=0

(t2n+1t2n+2) = 0
∞

∏
n=0

(t2nt2n+1) ,

and since for eachn∈ N, we have|tn|= 2n and 1+∑n
i=02i = 2n+1, it follows that

h[2n. .2n+1−1] =

{
tn, if n≡ 0 (mod 2);

tn, if n≡ 1 (mod 2).

Note that for eachn∈ N, we havet[2n. .2n+1−1] = tn+1[2n. .2n+1−1] = tn. Hence, for alln∈ N,

h[2n. .2n+1−1] =

{
t[2n. .2n+1−1], if n≡ 0 (mod 2);

t[2n. .2n+1−1], if n≡ 1 (mod 2),

238 Similarity Density

whence

SD(h[2n. .2n+1−1], t[2n. .2n+1−1]) =

{
0, if n≡ 0 (mod 2);

1, if n≡ 1 (mod 2).

If we consider two of these blocks at a time, we obtain, by Observation 10, that for alln∈ N,

SD(h[2n. .2n+2−1], t[2n. .2n+2−1]) =
2n

2n+2n+1 SD(h[2n. .2n+1−1], t[2n. .2n+1−1])

+
2n+1

2n+2n+1 SD(h[2n+1. .2n+2−1], t[2n+1. .2n+2−1])

=

{
2
3, if n≡ 0 (mod 2);
1
3, if n≡ 1 (mod 2).

Iterating Observation 10 finitely many times, we obtain thatfor all n∈ N,

SD(h[1. .22n−1], t[1. .22n−1]) =
2
3
,

SD(h[2. .22n+1−1], t[2. .22n+1−1]) =
1
3
.

Furthermore, applying Observation 10 one letter at a time, we see that fork ∈ [22n − 1,22n+1 − 1],
SD(h[1. .k], t[1. .k]) monotonically decreases (from23), and fork∈ [22n+1−1,22n+2−1], SD(h[1. .k], t[1. .k])
monotonically increases (back to23). Thus,

USD(h[1. .∞], t[1. .∞]) = limsup
n→∞

SD(h[1. .n], t[1. .n]) =
2
3
.

Similarly, for k ∈ [22n+1 −1,22n+2−1], SD(h[2. .k], t[2. .k]) monotonically increases (from13), and for
k∈ [22n+2−1,22n+3−1], SD(h[2. .k], t[2. .k]) monotonically decreases (back to1

3), so

LSD(h[2. .∞], t[2. .∞]) = lim inf
n→∞

SD(h[2. .n+1], t[2. .n+1]) =
1
3
.

Finally, by Observation 13, we conclude that LSD(h, t) = LSD(h[2. .∞], t[2. .∞]) = 1
3 and USD(h, t) =

USD(h[1. .∞], t[1. .∞]) = 2
3, whence by Corollary 12(i), we obtain LSD(h, t)=1−USD(h, t)= 1− 2

3 =
1
3

and USD(h, t) = 1−LSD(h, t) = 1− 1
3 = 2

3.

5 Main result

We now state and prove our main result.

Theorem 18. For all overlap-freew ∈ Σω
2 \{t, t}, 1

4 ≤ LSD(w, t)≤ USD(w, t)≤ 3
4.

Our approach to proving Theorem 18 is to consider each overlap-free infinite binary word in terms
of the path through the Fife automaton that encodes it. We divide the paths into four cases.

(1) ends in0ω .

(2) does not end in0ω , begins with0n2 or 0n4 for somen∈ N, and contains exactlyn 0s.

(3) does not end in0ω , begins with0n2 or 0n4 for somen∈ N, and contains more thann 0s.

C. F. Du and J. Shallit 239

(4) does not end in0ω and begins with0n1 or 0n3 for somen∈N.

Upon closer examination of the Fife automaton, case (2) can be subdivided into two cases:0n2(31)ω and
their complements under FBE,0n4(13)ω . It turns out that we can bootstrap Proposition 17 to obtain the
same bounds for both of these cases. Case (1) follows from Mahler’s theorem 8, but it will also follow
from our own generalized version of it (albeit with weaker bounds). For cases (3) and (4), we observe
that the infinite binary word corresponding to the path eventually “lags behind” the prefixestn of t in
the sense that each successiventh symbol in the path can only generate positions prior to 2n, whence we
can use a technical lemma that bounds the similarity densityof tn with nontrivial subwords oftn+1 to
complete the proof.

Proposition 19. For all n ∈N we haveLSD(FBE(0n2(31)ω), t) = 1
3 andUSD(FBE(0n2(31)ω), t) = 2

3.

Proof. Note that

FBE(0n2(31)ω) =
n−1

∏
k=0

(
µk(p(0))

)
µn(p(2))

∞

∏
k=0

(
µn+2k+1(p(3))µn+2k+2(p(1))

)

=
n−1

∏
k=0

(
µk(ε)

)
µn(00)

∞

∏
k=0

(
µn+2k+1(1)µn+2k+2(0)

)

= tntn
∞

∏
k=0

(tn+2k+1tn+2k+2)

= tn
∞

∏
k=0

(tn+2ktn+2k+1) .

From the proof of Proposition 17, we see that

FBE(0n2(31)ω)[2n. .∞] =

{
h[2n. .∞], if n≡ 0 (mod 2);

h[2n. .∞], if n≡ 1 (mod 2).

Hence, by Observation 13 and Proposition 17, we have

(LSD,USD)(FBE(0n2(31)ω), t) = (LSD,USD)(FBE(0n2(31)ω)[2n. .∞], t[2n. .∞])

=

{
(LSD,USD)(h[2n. .∞], t[2n. .∞]), if n≡ 0 (mod 2);

(LSD,USD)(h[2n. .∞], t[2n. .∞]), if n≡ 1 (mod 2),

=

{
(LSD,USD)(h, t), if n≡ 0 (mod 2);

(LSD,USD)(h, t), if n≡ 1 (mod 2),

=

(
1
3
,
2
3

)
.

240 Similarity Density

Lemma 20. For all n ∈ N and i∈ [1,2n−1],

(a) SD(tn, tn+1[i. .2
n+ i −1]) ∈

{
{1

2}, if i = 2n−1;

[1
4,

3
4], otherwise.

(a) SD(tn, tn+1[i. .2
n+ i −1]) ∈

{
{1

2}, if i = 2n−1;

[1
4,

3
4], otherwise.

(a) SD(tn, tn+1[i. .2
n+ i −1]) ∈

{
{1

2}, if i = 2n−1;

[1
4,

3
4], otherwise.

(a) SD(tn, tn+1[i. .2
n+ i −1]) ∈

{
{1

2}, if i = 2n−1;

[1
4,

3
4], otherwise.

(b) SD(tn, t
2
n[i. .2

n+ i −1]) ∈
{
{0}, if i = 2n−1;

[1
4,

3
4], otherwise.

(b) SD(tn, t
2
n[i. .2

n+ i −1]) ∈
{
{1}, if i = 2n−1;

[1
4,

3
4], otherwise.

(b) SD(tn, tn
2[i. .2n+ i −1]) ∈

{
{1}, if i = 2n−1;

[1
4,

3
4], otherwise.

(b) SD(tn, tn
2[i. .2n+ i −1]) ∈

{
{0}, if i = 2n−1;

[1
4,

3
4], otherwise.

Proof. By induction onn.

• Forn= 0, all eight cases are vacuously true due toi ∈ /0.

• Suppose all eight cases hold for somen∈ N. For i ∈ [1,2n+1−1], using Observation 10 followed
by the induction hypothesis, we calculate

SD(tn+1, tn+2[i. .2
n+1+ i −1])

= SD(tntn,(tntntntn)[i. .2
n+1+ i −1])

=

SD(tntn,(tntntn)[i. .2n+1+ i −1]), if i ∈ [1,2n−1];

SD(tntn, tntn), if i = 2n;

SD(tntn,(tntntn)[i −2n. .2n+ i −1]), if i ∈ [2n+1,2n+1−1],

=

2n

2n+1 SD(tn,(tntn)[i. .2n+ i −1])+ 2n

2n+1 SD(tn,(tntn)[i. .2n+ i −1]), if i ∈ [1,2n−1];
2n

2n+1 SD(tn, tn)+ 2n

2n+1 SD(tn, tn), if i = 2n;
2n

2n+1 SD(tn,(tntn)[i −2n. . i −1])+ 2n

2n+1 SD(tn,(tntn)[i −2n. . i −1]), if i ∈ [2n+1,2n+1−1],

∈

1
2{1

2}+ 1
2{0}, if i = 2n−1; (by (a),(b))

1
2[

1
4,

3
4]+

1
2[

1
4,

3
4], if i ∈ [1,2n−1]\{2n−1}; (by (a),(b))

1
2{0}+ 1

2{1}, if i = 2n;
1
2{1}+ 1

2{1
2}, if i = 2n+2n−1; (by (b),(a))

1
2[

1
4,

3
4]+

1
2[

1
4,

3
4], if i ∈ [2n+1,2n+1−1]\{2n+2n−1}, (by (b),(a))

C. F. Du and J. Shallit 241

=

{1
4}, if i = 2n−1;

[1
4,

3
4], if i ∈ [1,2n−1]\{2n−1};

{1
2}, if i = 2n;

{3
4}, if i = 2n+2n−1;

[1
4,

3
4], if i ∈ [2n+1,2n+1−1]\{2n+2n−1},

SD(tn+1, t
2
n+1[i. .2

n+1+ i −1])

= SD(tntn,(tntntntn)[i. .2
n+1+ i −1])

=

SD(tntn,(tntntn)[i. .2n+1+ i −1]), if i ∈ [1,2n−1];

SD(tntn, tntn), if i = 2n;

SD(tntn,(tntntn)[i −2n. .2n+ i −1]), if i ∈ [2n+1,2n+1−1],

=

2n

2n+1 SD(tn,(tntn)[i. .2n+ i −1])+ 2n

2n+1 SD(tn,(tntn)[i. .2n+ i −1]), if i ∈ [1,2n−1];
2n

2n+1 SD(tn, tn)+ 2n

2n+1 SD(tn, tn), if i = 2n;
2n

2n+1 SD(tn,(tntn)[i −2n. . i −1])+ 2n

2n+1 SD(tn,(tntn)[i −2n. . i −1]), if i ∈ [2n+1,2n+1−1],

∈

1
2{1

2}+ 1
2{1

2}, if i = 2n−1; (by (a),(a))
1
2[

1
4,

3
4]+

1
2[

1
4,

3
4], if i ∈ [1,2n−1]\{2n−1}; (by (a),(a))

1
2{0}+ 1

2{0}, if i = 2n;
1
2{1

2}+ 1
2{1

2}, if i = 2n+2n−1; (by (a),(a))
1
2[

1
4,

3
4]+

1
2[

1
4,

3
4], if i ∈ [2n+1,2n+1−1]\{2n+2n−1}, (by (a),(a))

=

{1
2}, if i = 2n−1;

[1
4,

3
4], if i ∈ [1,2n−1]\{2n−1};

0, if i = 2n;

{1
2}, if i = 2n+2n−1;

[1
4,

3
4], if i ∈ [2n+1,2n+1−1]\{2n+2n−1},

hence proving (a) and (b) also hold forn+1. By Observation 11, the remaining six cases also hold
for n+1.

Corollary 21. For all n ∈ N, i ∈ [0,2n−1] with gcd(i,2n)≤ 2n−2, and x,y0,y1 ∈ {tn, tn},

SD(x,(y0y1)[i. . i +2n−1]) ∈ [1
4,

3
4].

Proof. Follows immediately from Lemma 20.

Corollary 22. For all n, i ∈N with gcd(i,2n)≤ 2n−2 andx,y ∈ {tn, tn}ω ,

1
4
≤ LSD(x,y[i. .∞]) ≤ USD(x,y[i. .∞]) ≤ 3

4
.

Proof. Note that for anyj ∈ N, gcd(i + j ·2n,2n) = gcd(i,2n) ≤ 2n−2. Also for any j ∈ N, sincex,y ∈
{tn, tn}ω and|tn|= |tn|= 2n, we havex[2n j. .2n(j +1)−1] ∈ {tn, tn} andy[i +2n j. . i +2n(j +1)−1] =
(y0y1)[(i mod 2n). .(i mod 2n)+2n−1] for somey0,y1 ∈ {tn, tn}. Hence, for anyj ∈N, by Corollary 21,

SD(x[2n j. .2n(j +1)−1],y[i +2n j. . i +2n(j +1)−1]) ∈
[

1
4
,
3
4

]
,

242 Similarity Density

whence by Observation 10,

SD(x[0. .2n(j +1)−1],y[i. . i +2n(j +1)−1]) ∈
[

1
4
,
3
4

]
,

whence by Observation 14,

(LSD,USD)(x,y[i. .∞]) =

(
lim inf

j→∞
, limsup

j→∞

)
SD(x[0. .2n j −1],y[i. . i +2n j −1])

∈
([

1
4
,
3
4

]
,

[
1
4
,
3
4

])
.

Corollary 23. For all i ∈ N\{0}, 1
4 ≤ LSD(t, t[i. .∞]) ≤ USD(t, t[i. .∞]) ≤ 3

4.

Proof. Sincei > 0, we have 4maxm∈N gcd(i,2m) = 2n for somen∈N. Note that gcd(i,2n) = 2n−2. Also
note thatt = µn(t) ∈ {tn, tn}ω . Hence, by Corollary 22,

1
4
≤ LSD(t, t[i. .∞]) ≤ USD(t, t[i. .∞]) ≤ 3

4
.

We now have all the tools needed to prove Theorem 18.

Proof of Theorem 18.Let w ∈ Σω
2 \{t, t}. By Theorem 16, there existsx ∈ Σω

5 that encodes a valid path
through the Fife automaton for overlap-free infinite binarywords such that FBE(x) =w or FBE(x,a) =w
for somea∈ Σ2. From inspection of the Fife automaton for overlap-free infinite binary words, we see
thatx must fall into one of the following four cases.

(1) x ends in0ω .

(2) x does not end in0ω , begins with0n2 or 0n4 for somen∈ N, and contains exactlyn 0s.

(3) x does not end in0ω , begins with0n2 or 0n4 for somen∈ N, and contains more thann 0s.

(4) x does not end in0ω and begins with0n1 or 0n3 for somen∈N.

Case 1: wends in eithert or t, so sincew 6∈ {t, t}, it follows that w ∈ {zt,zt} for somez∈ Σ+
2 . By

Observation 13, we have

(LSD,USD)(w, t) ∈ {(LSD,USD)(t, t[|z| . .∞]),(LSD,USD)(t, t[|z| . .∞])},
whence by Corollary 23 and Corollary 12, we obtain(LSD,USD)(w, t) ∈ ({[1

4,
3
4], [1− 3

4,1−
1
4]},{[1

4,
3
4], [1− 3

4,1− 1
4]}) = ([1

4,
3
4], [

1
4,

3
4]), as desired.

Case 2: From inspection of the Fife automaton for overlap-free infinite binary words, we see thatx ∈
{0n{2(31)ω ,4(13)ω} : n∈ N}. Note that FBE(0n4(13)ω) = FBE(0n2(31)ω). Hence, by Propo-
sition 19 and Corollary 12, we obtain(LSD,USD)(w, t) ∈ {(1

3,
2
3),(1− 2

3,1− 1
3)} = {(1

3,
2
3)} ⊂

([1
4,

3
4], [

1
4,

3
4]), as desired.

Case 3: From inspection of the Fife automaton for overlap-free infinite binary words, we see thatx ∈
{0n{2(31)m

2 ,4(13)
m
2 }0{1,3}y : n,m∈ N,y ∈ {0,1,3}ω}, whence

w ∈ Σω
2 ∩
(
⋃

n,m∈N
Σ2n+m+1

2 {tn+m+2, tn+m+2}
∞

∏
k=n+m+3

{ε , tk, tk}
)

⊆
⋃

n,m∈N
Σ2n+m+1

2 {tn+m+2, tn+m+2}{tn+m+3, tn+m+3}ω ,

C. F. Du and J. Shallit 243

so there is ak ∈ N such thatw[2k. .∞] ∈ {tk+1, tk+1}{tk+2, tk+2}ω . By Observation 13 and Corol-
lary 22, we obtain

(LSD,USD)(t,w) = (LSD,USD)(t[2k+2. .∞],w[2k+2. .∞])

= (LSD,USD)(t[2k+2. .∞]︸ ︷︷ ︸
∈{tk+2,tk+2}ω

,(w[3·2k. .∞]︸ ︷︷ ︸
∈{tk+2,tk+2}ω

)[2k. .∞])

∈
([

1
4
,
3
4

]
,

[
1
4
,
3
4

])
,

as desired.

Case 4: From inspection of the Fife automaton for overlap-free infinite binary words, we see thatx ∈
{0n{1,3}0m{1,3}y : n,m∈ N,y ∈ {0,1,3}ω}, whence

w ∈ Σω
2 ∩
(
⋃

n,m∈N
{tn, tn}{tn+m+1, tn+m+1}

∞

∏
k=n+m+2

{ε , tk, tk}
)

⊆
⋃

n,m∈N
{tn, tn}{tn+m+1, tn+m+1}{tn+m+2, tn+m+2}ω ,

so there arek, l ∈ N such thatw ∈ {tk, tk}{tk+l+1, tk+l+1}{tk+l+2, tk+l+2}ω . By Observation 13 and
Corollary 22, we obtain

(LSD,USD)(t,w) = (LSD,USD)(t[2k+l+2. .∞],w[2k+l+2. .∞])

= (LSD,USD)(t[2k+l+2. .∞]︸ ︷︷ ︸
∈{tk+l+2,tk+l+2}ω

,(w[2k+2k+l+1. .∞]︸ ︷︷ ︸
∈{tk+l+2,tk+l+2}ω

)[2k+l+1−2k. .∞])

∈
([

1
4
,
3
4

]
,

[
1
4
,
3
4

])
,

as desired.

6 Future work

Using the Fife automaton for overlap-free infinite binary words, we computed similarity densities of long
prefixes of all overlap-free infinite binary words (up to a certain length) with prefixes oft. Inspection of
the compuation results immediately suggests the followingimprovement to Theorem 18.
Conjecture 24. For all overlap-freew ∈ Σω

2 \{t, t}, we have1
3 ≤ LSD(w, t)≤ USD(w, t)≤ 2

3.
Note that the bounds in Conjecture 24 are tight due to Proposition 17. Computational evidence also

suggests that these bounds are also tight for many other overlap-free infinite binary words.
However, Conjecture 24 cannot be proved just by using the technique we used to prove Theorem 18.

This is because the bounds in Lemma 20 (and, more transparently, Corollary 21) are tight. For example,
SD(t2, t3[1. .4]) =SD(0110,1101)= 1

4. More generally, for anyn∈N, we have SD(tn+2, tn+3[2n. .2n+2+
2n−1]) = 1

4.
On the other hand, our proof of Theorem 18 never used the overlap-free property directly; we merely

used it indirectly via the Fife automaton. As such, our proofof Theorem 18 works for all images of FBE
provided the argument to FBE is of the form required for one ofthe four cases presented in the proof,
regardless of whether the resulting word is overlap-free. Namely, we have the following more general,
but much more cumbersome, theorem.

244 Similarity Density

Theorem 25. For all x ∈ {1,2,3,4}Σ∗
50

ω ∪0∗{2(31),4(13)}ω

∪ 0∗{2(31)∗{ε ,3},4(13)∗{ε ,1}}0{1,3}{0,1,3}ω ∪ (0∗{1,3})2{0,1,3}ω

and

w ∈
{
{FBE(x,0),FBE(x,1)}, if x ends in0ω ;

{FBE(x)}, otherwise,

we have
1
4
≤ LSD(w, t)≤ USD(w, t)≤ 3

4
.

Note that Theorem 25 is indeed more general than Theorem 18, since, for example,13ω is not a
valid path in the Fife automaton for overlap-free infinite binary words (indeed, FBE(13ω) begins with
the overlap01010) and FBE(13ω) also is not just a shift oft or t, but Theorem 25 nevertheless implies
that 1

4 ≤ LSD(FBE(13ω), t)≤ USD(FBE(13ω), t)≤ 3
4.

Together, Conjecture 24 and Theorem 25 suggest the following more general question.

Question 26. For eachn∈ N\{0,1}, r,s∈ [0,1], andx ∈ Σω
n , let

Sn,r,s(x) := {y ∈ Σω
n : r ≤ LSD(x,y) ≤ USD(x,y) ≤ s}.

What areS2, 1
4 ,

3
4
(t) andS2, 1

3 ,
2
3
(t)?

Another avenue of investigation is to consider what makest so special in the sense of Theorem 18.
As mentioned in the introduction, Theorem 18 is false if we replace t with an arbitrary overlap-free
infinite binary word. However, perhaps there are specific words other thant andt that do share similar
properties. In other words, we raise the following question.

Question 27. Let O denote the set of all overlap-free infinite binary words.
What is{x ∈ Σω

2 : O ⊆ S2, 1
4 ,

3
4
(x)}? What if we replace14,

3
4 with 1

3,
2
3?

A third avenue of investigation is to consider what occurs inwords that avoid higher powers in place
of being overlap-free (which are essentially(2+ ε)- or 2+-powers). In fact, there is a Fife automa-
ton characterizing7

3-power-free infinite binary words having the same encoding mechanism as the Fife
automaton for overlap-free infinite binary words but with more states and different transitions [3, 9].
However, initial inspection of the automaton for7

3-power-free infinite binary words suggests that our
proof of Theorem 18 cannot be extended to account for all7

3-power-free infinite binary words because
there are many more edges labeled2 and4 in the Fife automaton for73-power-free infinite binary words,
resulting in valid paths that contain infinitely many2s and4s, but our proof of Theorem 18 heavily relied
on there being at most one occurrence of2 or 4 (which must be preceeded by a string of0s if it occurs)
in the path taken through the automaton so that the infinite binary word corresponding to the path even-
tually “lags behind” the prefixestn of t in the sense that each successiventh symbol in the path can only
generate positions prior to 2n. Nevertheless, computational evidence suggests that Theorem 18 and even
Conjecture 24 can be generalized even further.

Conjecture 28. For all 7
3-power-freew ∈ Σω

2 \{t, t}, 1
3 ≤ LSD(w, t)≤ USD(w, t)≤ 2

3.

Finally, we revisit the notion, already mentioned in Remark7, that LSD and USD are not new
ideas, and not just in number theory. In fact, 1−LSD is a pseudometric onΣN, called the Besicovitch
pseudometric, which has already been studied from the perspective of discrete dynamical systems such as

C. F. Du and J. Shallit 245

[2]. Also studied in [2] is the Weyl pseudometric, which suggests the following slightly different notion
of similarity density, considering all blocks of a given size instead of just blocks from the beginning.

LSDWeyl(x,y) = lim inf
n→∞

inf
k∈N

SD(x[k. .k+n−1],y[k. .k+n−1]),

USDWeyl(x,y) = limsup
n→∞

sup
k∈N

SD(x[k. .k+n−1],y[k. .k+n−1]).

With this notion of Weyl similarity density, analogous to the Besicovitch case, we have that 1−LSDWeyl

is the Weyl pseudometric. The Besicovitch and Weyl pseudometrics share some topological properties,
but the Besicovitch pseudometric is complete while the Weylpseudometric is not [2]. This fact sug-
gests one might be able to shed further light on some of the questions above by also considering the
Weyl similarity density; perhaps several different notions of similarity density, when taken together, can
characterize the overlap-free infinite binary words.

Acknowledgments.We are grateful to Chao Hsien Lin for having suggested the question we study here.
We thank the referees for a careful reading, and Joel Ouaknine and Stefan Kiefer for having pointed out
the paper [2].

References

[1] J.-P. Allouche & J. Shallit (1999):The ubiquitous Prouhet-Thue-Morse sequence. In C. Ding, T. Helleseth &
H. Niederreiter, editors:Sequences and Their Applications, Proceedings of SETA ’98, Springer-Verlag, pp.
1–16, doi:10.1007/978-1-4471-0551-0_1.

[2] F. Blanchard, E. Formenti & P. Kůrka (1997):Cellular automata in the Cantor, Besicovitch, and Weyl topo-
logical spaces. Complex Systems11, pp. 107–123.

[3] V. D. Blondel, J. Cassaigne & R. M. Jungers (2009):On the number ofα-power-free binary words for
2< α ≤ 7/3. Theoret. Comput. Sci.410, pp. 2823–2833, doi:10.1016/j.tcs.2009.01.031.

[4] S. Brown, N. Rampersad, J. Shallit & T. Vasiga (2006):Squares and overlaps in the Thue-Morse sequence
and some variants. RAIRO Inform. Théor. App.40, pp. 473–484, doi:10.1051/ita:2006030.

[5] E. D. Fife (1980):Binary sequences which contain no BBb. Trans. Amer. Math. Soc.261, pp. 115–136,
doi:10.1090/S0002-9947-1980-0576867-5.

[6] E. Grant, J. Shallit & T. Stoll (2009):Bounds for the discrete correlation of infinite sequences onk symbols
and generalized Rudin-Shapiro sequences. Acta Arith. 140, pp. 345–368, doi:10.4064/aa140-4-5.

[7] K. Mahler (1927):On the translation properties of a simple class of arithmetical functions. J. Math. and
Phys.6, pp. 158–163.

[8] P. Ochem, N. Rampersad & J. Shallit (2008):Avoiding approximate squares. Internat. J. Found. Comp. Sci.
19, pp. 633–648, doi:10.1142/S0129054108005863.

[9] N. Rampersad, J. Shallit & A. Shur (2011):Fife’s theorem for (7/3)-powers. In P. Ambroz, S. Holub &
Z. Masakova, editors:WORDS 2011, 8th International Conference, pp. 189–198, doi:10.4204/EPTCS.63.
25.

[10] J. Shallit (2011):Fife’s theorem revisited. In G. Mauri & A. Leporati, editors:Developments in Lan-
guage Theory, Lecture Notes in Computer Science6795, Springer-Verlag, pp. 397–405, doi:10.1007/

978-3-642-22321-1_34.

[11] R. Yarlagadda & J. E. Hershey (1984):Spectral properties of the Thue-Morse sequence. IEEE Trans. Com-
mun.32, pp. 974–977, doi:10.1109/TCOM.1984.1096162.

[12] R. Yarlagadda & J. E. Hershey (1990):Autocorrelation properties of the Thue-Morse sequence andtheir use
in synchronization. IEEE Trans. Commun.38, pp. 2099–2102, doi:10.1109/26.64649.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 246–260, doi:10.4204/EPTCS.151.17

This work is dedicated to the public domain.

Cooperating Distributed Grammar Systems of Finite Index
Working in Hybrid Modes

Henning Fernau
Fachbereich 4—Abteilung Informatik

Universität Trier
D-54286 Trier, Germany
fernau@uni-trier.de

Rudolf Freund
Institut für Computersprachen
Technische Universität Wien

Favoritenstr. 9, A-1040 Wien, Austria
rudi@emcc.at

Markus Holzer
Institut für Informatik
Universität Gießen,

Arndtstraße 2, D-35392 Gießen, Germany
holzer@informatik.uni-giessen.de

We study cooperating distributed grammar systems working in hybrid modes in connection with the
finite index restriction in two different ways: firstly, we investigate cooperating distributed grammar
systems working in hybrid modes which characterize programmed grammars with the finite index
restriction; looking at the number of components of such systems, we obtain surprisingly rich lattice
structures for the inclusion relations between the corresponding language families. Secondly, we
impose the finite index restriction on cooperating distributed grammar systems working in hybrid
modes themselves, which leads us to new characterizations of programmed grammars of finite index.

Keywords: CD grammar systems; finite index; hybrid modes; programmed grammars
AMS MSC[2010] classification: 68Q42; 68Q45

1 Introduction

Cooperating distributed (CD) grammar systems first were introduced in [12] with motivations related to
two-level grammars. Later, the investigation of CD grammar systems became a vivid area of research
after relating CD grammar systems with Artificial Intelligence (AI) notions [2], such as multi-agent
systems or blackboard models for problem solving. From this point of view, motivations for CD grammar
systems can be summarized as follows: several grammars (agents or experts in the framework of AI),
mainly consisting of rule sets (corresponding to scripts the agents have to obey to) are cooperating in
order to work on a sentential form (representing their common work), finally generating terminal words
(in this way solving the problem). The picture one has in mind is that of several grammars (mostly, these
are simply classical context-free grammars called “components” in the theory of CD grammar systems)
“sitting” around a table where there is lying the common workpiece, a sentential form. Some component
takes this sentential form, works on it, i.e., it performs some derivation steps, and then returns it onto the
table such that another component may continue the work.

In classical CD grammar systems, all components work in the same derivation mode. It is of course
natural to alleviate this requirement, because it simply refers to different capabilities and working regu-
lations of different experts in the original CD motivation. This leads to the notion of so-called hybrid CD
grammar systems introduced by Mitrana and Păun in [13, 14]. We investigate internally hybrid deriva-
tion modes which partly allow for new characterizations of the external hybridizations explained above.

Henning Fernau, Rudolf Freund, and Markus Holzer 247

This paper belongs to a series of papers on hybrid modes in CD grammar systems: as predecessors, we
mention that [6] introduces hybrid modes in CD array grammar systems as a natural specification tool for
array languages and [10] investigates accepting CD grammar systems with hybrid modes; the two most
relevant papers are [8, 9] where the most important aspects of internal and external mode hybridizations
are discussed for the case of word languages.

Here, we will continue this line of research, focussing on the finite index restriction. The paper is
organized as follows. In the next section, we introduce the necessary notions. In Section 3, we review
important notions and results in connection with the finite index restriction. Section 4 is devoted to the
study of internally hybrid CD grammar systems with the (explicit) restriction of being of finite index;
we establish infinite hierarchies with respect to the number of components and the number of maximal
derivation steps per component. In Section 5, we refine our previous analysis (published in [9]) showing
characterizations of programmed grammars of finite index by several variants of (internally) hybrid CD
grammar systems, also considering the number of grammar components as an additional descriptional
complexity parameter. In the last section, we review our results again and give a prospect on possible
future work.

2 Definitions

We assume the reader to be familiar with some basic notions of formal language theory and regulated
rewriting, as contained in [15] and [4]. In particular, details on programmed grammars can be found
there. In general, we have the following conventions: ⊆ denotes inclusion, while ⊂ denotes strict inclu-
sion; the set of positive integers is denoted by N. The empty word is denoted by λ ; |α|A denotes the
number of occurrences of the symbol A in α . We consider two languages L1,L2 to be equal if and only
if L1 \ {λ} = L2 \ {λ}, and we simply write L1 = L2 in this case. The families of languages generated
by linear context-free and context-free grammars are denoted by L (LIN) and L (CF), respectively, and
the family of finite languages is denoted by L (FIN). We attach−λ in our notations for formal language
classes if erasing rules are not permitted. Notice that we use bracket notations in order to express that
the equation holds both in case of forbidding erasing rules and in the case of admitting erasing rules
(consistently neglecting the contents between the brackets).

Next we introduce programmed grammars, a well-known concept in the area of regulated rewriting.
A programmed grammar is a septuple G = (N,T,P,S,Λ,σ ,φ), where N, T , and S ∈ N are the set

of nonterminals, the set of terminals, and the start symbol, respectively. In the following we use VG

to denote the set N ∪T , which is the complete working alphabet of the grammar. P is the finite set of
context-free rules A→ z with A ∈ N and z ∈ V ∗G, and Λ is a finite set of labels (for the rules in P), such
that Λ can also be interpreted as a function which outputs a rule when being given a label; σ and φ are
functions from Λ into the set of subsets of Λ. For (x,r1), (y,r2) in V ∗G×Λ and Λ(r1) = (A→ z), we write
(x,r1)⇒ (y,r2) if and only if either

1. x = x1Ax2, y = x1zx2, and r2 ∈ σ(r1), or

2. x = y, the rule A→ z is not applicable to x, and r2 ∈ φ(r1).

In the latter case, the derivation step is performed in the so-called appearance checking mode. The
set σ(r1) is called success field and the set φ(r1) is called failure field of r1. As usual, the reflexive
transitive closure of⇒ is denoted by =⇒∗. The language generated by G is defined as

L(G) = {w ∈ T ∗ | (S,r1) =⇒∗ (w,r2) for some r1,r2 ∈ Λ}.

248 Cooperating Distributed Grammar Systems of Finite Index Working in Hybrid Modes

The family of languages generated by [λ -free] programmed grammars containing only context-free rules
is denoted by L (P,CF[−λ],ac). When no appearance checking features are involved, i.e., φ(r) = /0 for
each label r ∈ Λ, we obtain the family L (P,CF[−λ]).

Finally, we now define cooperating distributed (CD) and hybrid cooperating distributed (HCD) gram-
mar systems.

A CD grammar system of degree n, with n ≥ 1, is an (n + 3)-tuple G = (N,T,S,P1,P2, . . . ,Pn),
where N, T are disjoint alphabets of nonterminal and terminal symbols, respectively, S ∈ N is the start
symbol, and P1, . . . ,Pn are finite sets of rewriting rules over N ∪T . Throughout this paper, we consider
only regular, linear context-free, and context-free rewriting rules. For x,y ∈ (N ∪T)∗ and 1≤ i ≤ n, we
write x =⇒i y if and only if x = x1Ax2, y = x1zx2 for some A→ z ∈ Pi. Hence, subscript i refers to the
component to be used. Accordingly, x =⇒m

i y denotes an m-step derivation using component number i,
where x =⇒0

i y if and only if x = y.
We define the classical basic modes B = {∗, t }∪{≤ k,= k,≥ k | k ∈ N} and let

D = B∪{(≥ k∧ ≤ `) | k, ` ∈ N,k ≤ `}∪{(t∧ ≤ k),(t∧= k),(t∧ ≥ k) | k ∈ N}.

For f ∈ D we define the relation =⇒ f
i by

x =⇒ f
i y ⇐⇒ ∃m≥ 0 : (x =⇒m

i y∧P(f ,m, i,y)),

where P is a predicate defined as follows (let k ∈ N and f1, f2 ∈ B):

predicate definition
P(= k,m, i,y) m = k
P(≤ k,m, i,y) m≤ k
P(≥ k,m, i,y) m≥ k
P(∗,m, i,y) m≥ 0
P(t,m, i,y) ¬∃z(y =⇒i z)
P((f1∧ f2),m, i,y) P(f1,m, i,y)∧P(f2,m, i,y)

Observe that not every combination of modes as introduced above is a genuinely hybrid mode. For
example, the (≥ k∧≤ k)-mode is just another notation for the = k-mode. Especially, ∗ may be used as a
“don’t care” in our subsequent notations, since P((∗∧ f2),m, i,y) if and only if P(f2,m, i,y).

If each component of a CD grammar system may work in a different mode, then we get the notion
of an (externally) hybrid CD (HCD) grammar system of degree n, with n≥ 1, which is an (n+3)-tuple
G = (N,T,S,(P1, f1),(P2, f2), . . . ,(Pn, fn)), where N,T,S,P1, . . . ,Pn are as in a CD grammar system, and
fi ∈ D, for 1≤ i≤ n. Thus, we can define the language generated by a HCD grammar system as:

L(G) := {w ∈ T ∗ | S⇒ fi1
i1 w1⇒

fi2
i2 . . .⇒ fim−1

im−1
wm−1⇒ fim

im wm = w
with m≥ 1, 1≤ i j ≤ n, and 1≤ j ≤ m}

If F ⊆ D and X ∈ {LIN,CF}, then the family of languages generated by [λ -free] HCD grammar
systems with degree at most n using rules of type X , each component working in one of the modes con-
tained in F , is denoted by L (HCDn,X [−λ],F). In a similar way, we write L (HCD∞,X [−λ],F) when
the number of components is not restricted. If F is a singleton { f}, we simply write L (CDn,X [−λ], f),
where n ∈ N∪{∞}; additionally, we write L f (G) instead of L(G) to denote the language generated by
the CD grammar system G in the mode f .

The following example is taken from [8, Theorem 24], as we need this language in the following of
this paper. This should also help to clarify our definitions.

Henning Fernau, Rudolf Freund, and Markus Holzer 249

Example 1 The non-context-free language L = {an
1an

2 . . .a
n
k+1 | n ≥ 1} can be generated by the CD

grammar system G = (N,T,S1,P1,P2), where P1,P2 work in the (t∧ ≥ k)-mode, k ≥ 2. For both compo-
nents, we take N = {Si,Ai,A′i, | 1 ≤ i ≤ k} as nonterminal alphabet and T = {a1, . . . ,ak+1} as terminal
alphabet. The components P1 and P2 are defined as follows:

P1 = {Si→ Si+1 | 1≤ i < k}∪{Sk→ A1 · · ·Ak}∪
{A′i→ Ai | 1≤ i≤ k} and

P2 = {Ai→ aiA′i | 1≤ i≤ k−1}∪{Ak→ akA′kak+1}∪
{Ai→ ai | 1≤ i≤ k−1}∪{Ak→ akak+1}.

Then we have L(G) = L, since every derivation of G leading to a terminal word is of the form

S1 =⇒=k
1 A1 . . .Ak · · · =⇒=k

2 an
1 . . .a

n
kan

k+1,

where the intermediate steps are of the form

ai
1A1 . . .ai

kAkai
k+1 =⇒=k

2 ai+1
1 A′i+1

1 kA′i+1
k k+1 =⇒=k

1 ai+1
1 A1 . . .ai+1

k Akai+1
k+1;

if a non-vanishing number of occurrences of A′i less than k is obtained by using P2 then neither P1 nor P2
can perform k derivation steps any more. Hence, G generates L.

The same grammar system, viewed as a (CD2,CF,(t∧= k)) grammar system, generates L, too.

3 The Finite Index Restriction

The finite index restriction is defined as follows: let G be an arbitrary grammar type (from those dis-
cussed in Section 2) and let N, T , and S ∈ N be its nonterminal alphabet, terminal alphabet, and axiom,
respectively. For a derivation

D : S = w1 =⇒ w2 =⇒ ···=⇒ wn = w ∈ T ∗

according to G, we set ind(D,G) = max{|wi|N | 1 ≤ i ≤ n}. In the case of programmed grammars we
assume to have a derivation of the form

D : (S,r1) = (w1,r1) =⇒ (w2,r2) =⇒ ·· ·=⇒ (wn,rn) = (w,rn) ∈ T ∗×Λ.

For w ∈ T ∗, we define ind(w,G) = min{ ind(D,G) | D is a derivation for w in G}. The index of gram-
mar G is defined as ind(G) = sup{ ind(w,G) | w ∈ L(G)}. For a language L in the family L (X) of
languages generated by grammars of type X, we define indX(L) = inf{ ind(G) | L(G) = L and G is of
type X}. For a family L (X), we set

Ln(X) = {L | L ∈L (X) and indX(L)≤ n} for n ∈ N, and

Lfin(X) =
⋃

n≥1

Ln(X).

It is well-known that the class of programmed languages of index m can be characterized in various
ways, compare, e.g., [4, 11, 16]. Especially, normal forms are available. For the reader’s convenience,
we quote [9, Theorem 9] in the following, since we will use it to give a sharpened and broadened version
of [3, Theorem 3.26], which leads us to new characterizations of the classes Lm(P,CF) and Lfin(P,CF).

250 Cooperating Distributed Grammar Systems of Finite Index Working in Hybrid Modes

Theorem 1 For every (P,CF,ac) grammar G = (N,T,P,S,Λ,σ ,φ) whose generated language is of in-
dex n ∈ N, there exists an equivalent (P,CF,ac) grammar G′ = (N′,T,P′,S′,Λ,σ ′,φ ′) whose generated
language is also of index n and which satisfies the following three properties:

1. There exists a special start production with a unique label p0, which is the only production where
the start symbol S′ appears.

2. There exists a function f : Λ′ → NN′
0 such that, if S′ =⇒∗ v =⇒p w is a derivation in G′, then

(f (p))(A) = |v|A for every nonterminal A.

3. If D : S′ = v0 =⇒r1 v1 =⇒r2 v2 · · ·=⇒rm vm = w is a derivation in G′ then, for every vi, 0≤ i≤ m,
and every nonterminal A, |vi|A ≤ 1. In other words, every nonterminal occurs at most once in any
derivable sentential form.

Moreover, we may assume that either G′ is a (P,CF) grammar, i.e., we have φ ′ = /0, or that G′ is a
(P,CF,ut) grammar, i.e., we have φ ′ = σ ′.

In the following, we will refer to a grammar satisfying the three conditions listed above as nontermi-
nal separation form (NSF).

Theorem 1 shows that, in contrast to the general case, where L (P,CF,ac)⊃L (P,CF), the appear-
ance checking feature does not increase the generative power of programmed grammars if the finite index
restriction is imposed; especially we have Lm(P,CF[−λ],ac) = Lm(P,CF[−λ]).

Recall that we have shown in [9, Theorem 30] the following link between hybrid CDGS and the finite
index restriction on programmed grammars.

Theorem 2 Let ` ∈ N and ∆ ∈ {≤,=}. Then we have:

L (HCD∞,CF[−λ],{(t ∧∆k) | k ≥ 1}) =
⋃

k∈N
L (CD∞,CF[−λ],(t ∧∆k))

= L (CD∞,CF[−λ],(t ∧∆l))

= L (CD∞,CF[−λ],(t ∧∆1))

= Lfin(P,CF[−λ],ac).

Unfortunately, our proof did not bound the number of components of the CD grammar system. This
is not just a coincidence, as we will see in this paper.

4 Infinite Hierarchies for CD Grammar Systems Working in Hybrid
Modes

Our task will be the study of the language families L (CDn,CF[−λ],(t ∧∆k)) for different n,k ∈ N and
∆ ∈ {≤,=}. First we give some characterizations of well-known language families, namely the family
of finite languages and the family of linear languages.

Lemma 3 For every k ∈ N, and ∆ ∈ {≤,=}, we have

L (FIN) = L (CD1,CF[−λ],(t ∧∆k)).

Henning Fernau, Rudolf Freund, and Markus Holzer 251

Proof. Since we have only one component, by definition of the (t ∧∆k)-mode, every derivation has
length at most k, so that we only get finite languages. If L = {w1,w2, . . . ,wm} ⊆ T ∗ is some finite
language, then the grammar G = ({S}×{1, . . . ,k},T,(S,1),P) with

P = {(S, i)→ (S, i+1) | 1≤ i < k}∪{(S,k)→ w j | 1≤ j ≤ m})

generates L. 2

Now we turn our attention to CD grammar systems with two components working in the (t ∧∆1)-
mode for ∆ ∈ {≤,=}.
Lemma 4 For ∆ ∈ {≤,=} we have L (LIN) = L (CD2,CF[−λ],(t ∧∆1)).

Proof. Let L be generated by the linear grammar G = (N,T,S,P). Grammar G is simulated by the CD
grammar system G′ = (N ∪N′,T,S,P1,P2) where N′ contains primed versions of the nonterminals of G,
set P1 contains colouring unit productions B→ B′ for every nonterminal B∈N, and P2 contains, for every
production A→ w ∈ P, a production A′→ w. The simulation of G by G′ proceeds by applying P2 and P1
in sequence until the derivation stops.

On the other hand, it is easy to see that no sentential form generated by some (CD2,CF[−λ],(t ∧
∆1))-system (eventually leading to a terminal string) can contain more than one nonterminal. Otherwise,
we must have applied a production A→ w of say the first component, where w contains at least two
nonterminals. All nonterminals occurring in w cannot be processed further by the first component, since
otherwise it violates the (t ∧∆1)-mode restriction. But nearly the same argument applies to the second
component, too: it can only process at most one of the nonterminals just introduced. Hence, no terminal
string is derivable in this way.

Therefore, one can omit all productions containing more than one nonterminal on their right-hand
sides, so that there are only linear rules left. Furthermore, one can also omit all productions in a com-
ponent containing a nonterminal as its right-hand side which occurs also as the left-hand side of the
originally given component as this would lead to more than one derivation step in the same component.
Now, one can put all remaining productions together yielding the rule set of a simulating linear grammar.

2

In the general case, i.e., two components working together in the (t ∧ ∆k)-mode, for k ∈ N and
∆ ∈ {≤,=}, we first give some lower bounds.

Theorem 5 Let k ∈ N, ∆ ∈ {≤,=}. Then we have:

1. L (LIN) = L1(CF) = L (CD2,CF[−λ],(t ∧∆1));

2. Lk(CF)⊆L (CD2,CF[−λ],(t ∧∆k)) for k ≥ 1, and

3. Lk(CF)⊂L (CD2,CF[−λ],(t∧= k)) for k > 1;

4. Lfin(CF)⊂⋃k∈NL (CD2,CF[−λ],(t∧= k)).

Proof.

1. It is easy to see that L (LIN) =L1(CF). Hence, this statement is equivalent to the assertion of the
previous lemma.

2. Let G = (N,T,S,P) be a context-free grammar of index k. Without loss of generality, we as-
sume that every nonterminal occurs as the left-hand side of some production in P. Let N′ be
the set of primed nonterminal symbols. Grammar G is simulated by the CD grammar system

252 Cooperating Distributed Grammar Systems of Finite Index Working in Hybrid Modes

G′ = (N∪N′,T,S,P1,P2), where P1 contains colouring unit productions B→ B′, and B→ B for ev-
ery nonterminal B ∈ N, and P2, for every production A→ w ∈ P, contains productions A′→ w and
A′→ A′. The unit productions B→ B in P1 and A′→ A′ in P2 guarantee that at most k nonterminals
can occur in any sentential form that can be derived in G′.

3. A separating example was already explained in Example 1: there the languages {an
1an

2 . . .a
n
k+1 |

n ≥ 1} was shown to be in L (CD2,CF[−λ],(t∧ = k)) for k ≥ 2, but obviously these languages
are not context-free.

4. Follows from 3.

2

Unfortunately, we do not know whether the inclusion

Lk(CF)⊆L (CD2,CF[−λ],(t∧ ≤ k))

in the previous theorem is strict or not. By the prolongation technique introduced in [8], we know that
the classes L (CDn,CF[−λ],(t ∧∆k)), for ∆ ∈ {≤,=} form a prime number lattice, i.e.,

L (CDn,CF[−λ],(t ∧∆k))⊆L (CDn,CF[−λ],(t ∧∆` · k) for ` ∈ N,

with the least element L (CDn,CF[−λ],(t ∧∆1)). This prolongation technique is based on the simple
idea to “slow down” a derivation using A→ w of the original CDGS by intercalating productions of the
form A→ A′, A′→ A′′, . . . , A(j)→ w within the simulating CDGS. It will be used on several occasions
in this paper. Obviously, we also have the trivial inclusions

L (CDn,CF[−λ],(t ∧∆k))⊆L (CDn+1,CF[−λ],(t ∧∆k)) for ∆ ∈ {≤,=}.

The question arises whether all these hierarchies are strict. At least we will be able to show that
both with respect to k – for a fixed number of components n – as well as with respect to the number of
components n – for a fixed derivation mode (t ∧∆k), ∆ ∈ {≤,=} – we obtain infinite hiearachies. In
order to prove these hierarchies, we show some general theorems relating the number of components
and the bound of the number of symbols to be rewritten by one component with the finite index of a
simulating programmed grammar.

Theorem 6 Let n,k ∈ N and ∆ ∈ {≤,=}. Then, we have

L (CDn,CF[−λ],(t ∧∆k))⊆Ln·k(P,CF[−λ],ac).

Proof. Let G = (N,T,S,P1,P2, . . . ,Pn) be a CD grammar system working in the (t∧ = k)-mode.
Let Pi = {Ai j → wi j | 1 ≤ j ≤ N(i)}. G can be simulated by the programmed grammar G′ = (N ∪
{F},T,S,P,Λ,σ ,φ), with label-set

Λ = {(i, j,κ) | 1≤ i≤ n,1≤ j ≤ N(i),1≤ κ ≤ k}
∪ {(i, j) | 1≤ i≤ n,1≤ j ≤ N(i)}.

Now, let 1 ≤ i ≤ n,1 ≤ j ≤ N(i),1 ≤ κ ≤ k. Then, we set Λ((i, j,κ)) = Ai j → wi j, success field
σ((i, j,κ)) = {(i, j′,κ + 1) | 1 ≤ j′ ≤ N(i)}, if κ < k, and σ((i, j,k)) = {(i,1)}, and failure field
φ((i, j,κ)) = /0. Moreover, we let Λ((i, j)) = Ai j → F , failure field φ((i, j)) = {(i, j+ 1)} if j < N(i),
φ((i,N(i))) = {(i′, j′,1) | 1≤ i′ ≤ n,1≤ j′ ≤ N(i′)}, and success field σ((i, j)) = /0.

Henning Fernau, Rudolf Freund, and Markus Holzer 253

An application of Pi is simulated by a sequence of productions labeled with

(i, j1,1), . . . ,(i, jk,k),(i,1), . . . ,(i,N(i)).

In each such sequence, at most k symbols can be processed. Since there are n sets of productions Pi, only
sentential forms containing at most n ·k nonterminals can hope for termination. Therefore, the simulating
programmed grammar has index at most n · k, which can be seen by induction.

The (t∧≤ k)-mode case can be treated in a similar way: we just define φ((i, j,κ)) to equal σ((i, j,κ))
instead of taking φ((i, j,κ)) = /0. 2

Before we can establish the infinite hierarchies for the families L (CDn,CF[−λ],(t ∧∆k)) with re-
spect to n and k, respectively, we need the following theorem shown in [4, page 160, Theorem 3.1.7]:

Theorem 7 Sn+1 = {b(aib)2·(n+1) | i≥ 1} ∈Ln+1(P,CF)\Ln(P,CF) for all n ∈ N.

These separating languages can also be generated by CD grammar systems working in the internally
hybrid modes (t∧= k+1) and (t∧ ≤ k+1):

Theorem 8 Let n,k ∈ N.

1. Sn·k ∈L (CDn+1,CF−λ ,(t∧= k+1)), i.e., Sn·k can be generated by a CD-grammar system with
n+1 context-free components, without erasing productions, working in the (t∧= k+1)-mode.

2. Sn·k ∈L (CD2n+1,CF−λ ,(t∧ ≤ k+1)), i.e., Sn·k can be generated by CD-grammar system with
2 ·n+1 context-free components, without erasing productions, working in the (t∧ ≤ k+1)-mode.

Proof. We first construct a CD grammar system

G = (N,{a,b},(S,0),P0,P1,1∪P1,2, . . . ,Pn,1∪Pn,2)

working in the (t∧= k+1)-mode generating language Sn·k. Let

N = {(S, i) | 0≤ i≤ n}
∪ {(qi,0),(qi,1) | 1≤ i≤ n}
∪ {(ti, j),(t ′i , j) | 1≤ i≤ n,0≤ j ≤ k}
∪ {(Ai,0),(Ai,1) | 1≤ i≤ k ·n}

and let the set of productions be as follows:

P0 = {(S,0)→ (S,1),(S,k)→ (q1,0)(A1,0)b(A2,0)b . . .b(An·k,0)b}
∪ {(S, i)→ (S, i+1) | 1≤ i < k}
∪ {(Ai,1)→ (Ai,0) | 1≤ i≤ n · k}
∪ {(qi,1)→ (qi+1,0) | 1≤ i < n}∪{(qn,1)→ (q1,0),(qn,1)→ (t1,0)}
∪ {(t ′i , j)→ (t ′i , j+1) | 1≤ i≤ n,0≤ j < k}
∪ {(t ′i ,k)→ (ti+1,0) | 1≤ i < n}∪{(t ′n,k)→ b}.

For every 1≤ i≤ n let Pi = Pi,1∪Pi,2 where

Pi,1 = {(qi,0)→ (qi,1)}
∪ {(A j,0)→ a(A j,1)a | (i−1) · k ≤ j ≤ i · k} and

Pi,2 = {(ti,0)→ (t ′i ,0)}
∪ {(A j,0)→ aba | (i−1) · k ≤ j ≤ i · k}.

254 Cooperating Distributed Grammar Systems of Finite Index Working in Hybrid Modes

The only way to start the derivation is to use P0 obtaining the word

(q1,0)(A1,0)b(A2,0)b . . .b(An·k,0)b.

To continue the derivation one always has to apply Pi and P0 in sequence: Pi is only successfully appli-
cable to a sentential form beginning with a letter (qi,0) or (ti,0), and P0 is only successfully applicable
to a sentential form beginning with a letter (qi,1) or (t ′i ,0).

Assume we have a sentential form starting with letter (qi,0), then rules from Pi replace exactly k
occurrences of nonterminals (A j,0), for (i− 1) · k ≤ j ≤ i · k, by a(A j,1)a or aba, respectively, and the
label is changed to (qi,1). Now applying the corresponding rules from P0 (the only way to continue),
the derivation would block if at least one of the symbols (A j,0) from the previous step were replaced by
aba. This ensures that all previously used productions are non-terminating. In case the sentential from
starts with a letter (ti,0), then an application of Pi followed by P0 checks whether the terminating rules
form Pi were all used or not.

Thus, starting with the word (q1,0)(A1,0)b(A2,0)b . . .b(An·k,0)b, one cycle, i.e., an application of
P1,P0,P2,P0, . . . ,Pn, and P0 leads to

(q1,0)a(A1,0)aba(A2,0)ab . . .ba(An·k,0)ab ,

and in general, running the cycle ` times, to the word

(q1,0)a`(A1,0)a`ba`(A2,0)a`b . . .ba`(An·k,0)a`b.

Note that in the last application of P0 we could have taken the rule (qn,1)→ (t1,0) in order to terminate
the derivation process after having finished the next cycle. After that cycle the grammar G has generated
the word b(a`+1b)2n·k.

In case of the (t∧ ≤ k+1)-mode, we use the same construction as above, but now treat each Pi, j, for
1≤ i≤ n and 1≤ j ≤ 2, as an independent component of the grammar. This gives the bound 2 ·n+1 on
the number of components. 2

Now we are ready to investigate the families L (CDn,CF[−λ],(t ∧∆k)) in more detail. First, let the
number of components n be fixed.

Corollary 9 Let ∆ ∈ {≤,=} and n ∈ N be fixed. The hierarchy of the families of languages Lk :=
L (CDn,CF[−λ],(t ∧∆k)) with respect to k ∈ N is infinite, i.e., for every k ∈ N there exists an m ∈ N,
m > k, such that Lk ⊂Lm.

Proof. We first consider the (t∧= k)-mode. By the preceding theorem we have that

Sn·m ∈L (CDn+1,CF[−λ],(t∧= m+1)).

On the other hand, Sn·m /∈Ln·m−1(P,CF) according to Theorem 7 and, because of

L (CDn+1,CF[−λ],(t∧= k))⊆L(n+1)·k(P,CF)

according to Theorem 6, Sn·m therefore cannot belong to L (CDn+1,CF[−λ],(t∧= k)), provided n ·m−
1≥ (n+1) · k, i.e., m≥ n+1

n k+ 1
n .

For the (t∧ ≤ k)-mode, we can argue in a similar way: By the preceding theorem we have that

Sn·m ∈L (CD2n+1,CF[−λ],(t∧ ≤ m+1))

Henning Fernau, Rudolf Freund, and Markus Holzer 255

and therefore Sn·m ∈L (CD2n+2,CF[−λ],(t∧ ≤ m+1)), too. On the other hand, Sn·m /∈Ln·m−1(P,CF)
according to Theorem 7 and, because of

L (CD2n+1,CF[−λ],(t∧ ≤ k))⊆L(2n+1)·k(P,CF)⊆L(2n+2)·k(P,CF)

according to Theorem 6, Sn·m therefore cannot belong to L (CD2n+1,CF[−λ],(t∧ ≤ k)) ∩
L (CD2n+2,CF[−λ],(t∧ ≤ k)), provided n ·m−1≥ (2n+2) · k, i.e., m≥ 2 n+1

n k+ 1
n . 2

We now consider the other hierarchy, i.e., we fix k and vary the number of components:

Corollary 10 Let ∆ ∈ {≤,=} and k ∈ N be fixed. The hierarchy of the families of languages Ln :=
L (CDn,CF[−λ],(t ∧∆k)) with respect to n ∈ N is infinite, i.e., for every n ∈ N there exists an m ∈ N,
m > n, such that Ln ⊂Lm.

Proof. We argue in a similar way as in the preceding corollary. First consider the (t∧ = k)-mode of
derivation. We already know that

Sm·k ∈L (CDm+1,CF[−λ],(t∧= k+1)).

according to Theorem 7, but Sm·k /∈Lm·k−1(P,CF) according to Theorem 7 and, because of

L (CDn,CF[−λ],(t∧= k+1))⊆Ln·(k+1)(P,CF)

according to Theorem 6, Sm·k therefore cannot belong to L (CDn,CF[−λ],(t∧ = k+1)), provided m ·
k−1≥ n · (k+1), i.e., m≥ k+1

k n+ 1
k .

By a similar reasoning, in case of the (t∧ ≤ k)-mode, for

Sm·k ∈L (CD2m+1,CF[−λ],(t∧ ≤ k+1))⊆L (CD2m+2,CF[−λ],(t∧ ≤ k+1))

we obtain Sm·k /∈L (CD2n+1,CF[−λ],(t∧ = k+1))∩L (CD2n+2,CF[−λ],(t∧ = k+1)), provided m ·
k−1≥ (2n+2) · (k+1), i.e., m≥ 2 k+1

k n+ 2(k+1)
k (= 2(1+ 1

k)n+2(1+ 1
k)).

In both cases, we see that the hierarchy with respect to the number of components is infinite. 2

Finally, let us consider the hierarchies for the “small cases” of n.

Lemma 11 Let k ∈ N and ∆ ∈ {≤,=}.

L (CD1,CF[−λ],(t ∧∆k)) ⊂ L (CD2,CF[−λ],(t ∧∆1))

⊂ L (CD3,CF[−λ],(t ∧∆k)).

Proof. By our previous considerations, we know that L (CD1,CF[−λ],(t ∧ ∆k)) and
L (CD2,CF[−λ],(t ∧∆1)) coincide with L (FIN) and L (LIN), respectively, which already proves the
first strict inclusion.

Now consider the non-linear language {anbnambm | n,m ∈N}, which is generated by a CD grammar
system

G = ({S,A,B,A′,B′},{a,b},S,P1,P2,P3)

taking k = 1 with the following three components:

P1 = {S→ AB,A′→ A,B′→ B}
P2 = {A→ aA′b,A→ ab,B′→ B′}
P3 = {B→ aB′b,B→ ab,A→ A,A′→ A′}.

256 Cooperating Distributed Grammar Systems of Finite Index Working in Hybrid Modes

First, P1 and P2 have to be applied in sequence, say n times, until P2 uses the rule A→ ab. Now, P3 can
be applied. Then, P1 and P3 must be applied in sequence, say m−1 times, until P3 terminates the whole
derivation using B→ ab. In this way, a word anbnambm is derived. By the prolongation technique, the
claimed assertion follows for k > 1. 2

We conclude this section by remarking that the results presented in this section (originally contained
in the Technical Report [7]) have been employed to show the following theorem in [1] that nicely com-
plements our results here; we state these below with the notations of our paper.

Theorem 12 Let n,k ≥ 1. Then we have

1. L (CDn,CF[−λ],(t∧= k))⊂L (CDn+2,CF[−λ],(t∧= k+1)) and

2. L (CDn,CF[−λ],(t∧ ≤ k))⊂L (CD2·(n+1),CF[−λ],(t∧ ≤ k+1)).

5 CD Grammar Systems and Programmed Grammars of Finite Index

In this section we consider the finite index property for CD and HCD grammar systems and how they
relate to programmed grammars of finite index in more detail.

Theorem 13 Let m ∈ N, FI = {t} ∪ {= m′′,≥ m′′,(≥ m′′∧ ≤ m′),(t∧ = k), (t∧ ≤ k),(t∧ ≥ k) |
m′,m′′,k ∈ N,m′ ≥ m′′ ≥ m}, and F contain all the hybrid modes considered in this paper, i.e.,
F = {(t∧= k), (t∧ ≤ k) | k ∈ N}. Let f ∈ FI. Then

Lm(P,CF[−λ]) = Lm(CD∞,CF[−λ], f)

= Lm(HCD∞,CF[−λ],F).

Proof. Looking through all the proofs showing the containment of HCD languages within programmed
languages with appearance checking, it is easily seen that all these constructions preserve a finite index
restriction.

Hence, it only remains to show that

Lm(P,CF[−λ])⊆Lm(CD∞,CF[−λ], f)

for every f ∈ FI. Let L ∈Lm(P,CF) be generated by a programmed grammar G = (N,T,P,S,Λ,σ) in
NSF. Especially, there exists a function f : Λ→ NN

0 such that, if S ∗⇒ v⇒
p

w is a derivation in G, then

(f (p))(A) = |v|A ≤ 1 for every nonterminal A.
We construct a simulating CD grammar system G′ given by

((N×Λ)∪ ({ i ∈ N | i≤ m}×N),T,(1,S),{PI}∪{Pp,q | p ∈ Λ∧q ∈ σ(p)})

of index m all of whose components are working in one of the modes = m, ≥ m, t, (≥ m,≤ m′) (with
m′ ≥ m), (t∧= m), (t∧ ≤ m), or (t∧ ≥ m). Consider a production Λ(p) = A→ w of G. We can assume
(check) that (f (p))(A) = 1. Furthermore, define

n := ∑
B∈N

(f (p))(B)≤ m

is the number of nonterminals in the current string (within a possible derivation leading to an application
of p).

Henning Fernau, Rudolf Freund, and Markus Holzer 257

Let the homomorphism hp,q : (N×{p}∪T)∗ → (N×{q}∪T)∗ be defined by (A, p) 7→ (A,q) for
A ∈ N, a 7→ a for a ∈ T .

For every q ∈ σ , we introduce a component Pp,q within the CD grammar system containing the
following productions:

If n = m, then (A, p)→ hp,q(w) simulates the (successful) application of rule p. If n < m, then we
prolong the derivation in the following way:

(A, p)→ (1,A), (1,A)→ (2,A), . . . , (m−n,A)→ hp,q(w).

(B, p)→ hp,q(B) for B ∈ N \{A} keeps track of the information of the current state.
As initialization component, we take PI containing

(1,S)→ (2,S), . . . , (m,S)→ (S, p)

for every p ∈ Λ such that (f (p))(S) = 1.
Observe that, by induction, to every sentential form derivable from the initial symbol (1,S), any

component applied to it can make either 0 steps (so, we selected the wrong one) or exactly m steps.
By a simple prolongation trick, we can also take components working in one of the modes = m′′,

≥ m′′, (≥ m′′,≤ m′) (with m′ ≥ m′′), for some m′′ ≥ m.
Since the construction given in Theorem 2 is index-preserving, we can also take arbitrary (t∧= k) or

(t∧ ≤ k) components instead of requiring k ≥ m. Since the t-mode and the (t∧ ≥ 1)-mode are identical,
the prolongation technique delivers the result for the (t∧ ≥ k)-mode for k ∈ N in general. 2

Our theorem readily implies a characterization of programmed languages of general finite index. We
summarize this fact together with results obtained via a different simulation in [3, Theorem 3.26] in the
following corollary.

Corollary 14 Let m,k,k′ ∈N, k≥ 2, and ∆ ∈ {≤,=,≥}. Then following families of languages coincide
with Lfin(P,CF[−λ]):

1. Lfin(CD∞,CF[−λ], t),

2. Lfin(CD∞,CF[−λ],= k),

3. Lfin(CD∞,CF[−λ],≥ k),

4. L (CD∞,CF[−λ],(t∧= k)),

5. L (CD∞,CF[−λ],(t∧ ≤ k)), and

6. Lfin(CD∞,CF[−λ],(t ∧∆k′)).

As regards the number of components, we can state the following:

Theorem 15 Let m ∈ N, ∆ ∈ {≤,=,≥}. Then we have

1. Lm(CD∞,CF[−λ],∆m) = Lm(CD3,CF[−λ],∆m) and

2. Lm(CD∞,CF[−λ],(t ∧∆m)) = Lm(CD3,CF[−λ],(t ∧∆m)).

Proof. Since we restrict our attention to languages of index m, we can simply carry over the proofs of
the type “three is enough” for t-mode components, see [3, Theorem 3.10] and [13, Lemma 2].

258 Cooperating Distributed Grammar Systems of Finite Index Working in Hybrid Modes

In case of the (t∧ = m)-mode, we have to go back to the simulation of the programmed grammar
given in the preceding theorem. It is clear that, due to the nonterminal separation form (NSF) (see
Theorem 1), we can prolong the simulation of a single nonterminal symbol. 2

It is quite natural to compare the families of languages defined by CD grammar systems obtained via
the restriction of being of finite index m with their unrestricted counterparts. In our case, it is interesting
to see that also these unrestricted counterparts deliver languages of finite index. However, as we have
seen in Theorem 8,

Sn·k ∈L (CDn+1,CF[−λ],(t∧= k+1)).

Especially, we have
S2·(m−1) ∈L (CD3,CF[−λ],(t∧= m)).

Since S2·(m−1) is not of (programmed) index 2m−3, we can state:

Corollary 16 For m ∈ N, we have

Lm(CD3,CF[−λ],(t∧= m))⊂L (CD3,CF[−λ],(t∧= m)).

Proof. Our previous considerations deliver the case m> 2, since S2(m−1) is not a (programmed) language
of index 2m−3, and therefore not a (programmed) language of index m; hence,

S2·(m−1) /∈Lm(CD3,CF[−λ],(t∧= m)).

In case m = 2, we know that
S3 /∈L2(CD3,CF[−λ],(t∧= 2)).

On the other hand, the (CD3,CF[−λ],(t∧= 2)) grammar system

G = ({S,A,B,A′,B′C,C′,B′′,F},{a,b},S,P1,P2,P3)

with the following three components generates S3, starting with S:

P1 = {A→ aA′a,A→ aba,B→ aB′a,B→ B′′}
P2 = {B′→ B,C→ aC′a,A→ F,B′′→ aba,C→ aba}
P3 = {S→ bAbBbCb,C′→C,A′→ A,B′→ F}.

Finally, we have L1(CD3,CF[−λ],(t∧ = 1)) = L (LIN). The example {anbnambm | n,m ∈ N} /∈
L (LIN) in Lemma 11 was shown to be in L (CD3,CF[−λ],(t∧= 1)). 2

If we admit four components (or arbitrarily many), by a similar reasoning we can separate all corre-
sponding classes, since 3(m−1) = 3m−3 > m for m≥ 2.

Corollary 17 For m,n ∈ N, n≥ 4 (or n = ∞), we have

Lm(CDn,CF[−λ],(t∧= m))⊂L (CDn,CF[−λ],(t∧= m)).

Observe that the results exhibited in the last two corollaries are quite astonishing if one keeps in mind
that

Lfin(P,CF) =
⋃

m∈N
Lm(CDn,CF[−λ],(t∧= m))

=
⋃

m∈N
L (CDn,CF[−λ],(t∧= m))

for all n ∈ N,n > 2.

Henning Fernau, Rudolf Freund, and Markus Holzer 259

6 Conclusions and Prospects

In this paper we have studied CD grammar systems working in the internally hybrid modes (t∧ = m)
and (t∧ ≤ m) together with the finite index restriction. Showing specific relations to programmed gram-
mars of finite index, we were able to establish infinite hierarchies for CD grammar systems of finite
index working in the internally hybrid modes (t∧= k) and (t∧ ≤ k) both with respect to the number of
components n and the number of maximal steps k. However, many quite natural questions still remain
open. For instance, Theorem 12 leaves open the strictness of several natural inclusion relations relating
the parameters “numbers of components” n and “step number bound” k.

It is well-known that ET0L systems are tightly related to CD grammar systems working in the t-
mode. In the literature, several step-bound restrictions have been discussed in relation with parallel
systems, see [5] for an overview. Are these somehow related to the internally hybrid systems discussed
in this paper (and their companions)? Or do hybrid modes lead to new (natural) derivation modes for
parallel systems? In particular, the finite index restriction studied in Section 5 could be of interest in this
context, although (and also because) we are not aware of a study of finite index in the context of limited
parallel rewriting, which might be an interesting research question in its own.

Acknowledgements Most of the research of the first and last author was undertaken while being affil-
iated to Wilhelm-Schickard Institut für Informatik, Universität Tübingen, Sand 13, D-72076 Tübingen,
Germany. Part of the research of the first author was supported by Deutsche Forschungsgemeinschaft,
grant DFG La 618/3-1/2 “Komplexitätstheoretische Methoden für die adäquate Modellierung paralleler
Berechnungen.”

References

[1] H. Bordihn & M. Holzer (1999): On a hierarchy of languages generated by cooperating distributed grammar
systems. Information Processing Letters 69(2), pp. 59–62, doi:10.1016/S0020-0190(98)00200-2.

[2] E. Csuhaj-Varjú & J. Dassow (1990): On cooperating/distributed grammar systems. J. Inf. Process. Cybern.
EIK (formerly Elektron. Inf.verarb. Kybern. 26(1/2), pp. 49–63.

[3] E. Csuhaj-Varjù, J. Dassow, J. Kelemen & Gh. Păun (1994): Grammar Systems. A Grammatical Approach to
Distribution and Cooperation. Gordon and Breach, London.

[4] J. Dassow & Gh. Păun (1989): Regulated Rewriting in Formal Language Theory. EATCS Monographs in
Theoretical Computer Science 18, Springer Berlin, doi:10.1007/978-3-642-74932-2.

[5] H. Fernau (2003): Parallel Grammars: A Phenomenology. GRAMMARS 6, pp. 25–87,
doi:10.1023/A:1024087118762.

[6] H. Fernau & R. Freund (1996): Bounded parallelism in array grammars used for character recognition.
In P. Perner, P. Wang & A. Rosenfeld, editors: Advances in Structural and Syntactical Pattern Recognition
(Proceedings of the SSPR’96), Lecture Notes in Computer Science 1121, Springer, pp. 40–49, doi:10.1007/3-
540-61577-6 5.

[7] H. Fernau, R. Freund & M. Holzer (1996): External versus Internal Hybridization for Cooperating Dis-
tributed Grammar Systems. Technical Report TR 185–2/FR–1/96, Technische Universität Wien (Austria).

[8] H. Fernau, R. Freund & M. Holzer (2001): Hybrid modes in cooperating distributed grammar systems: inter-
nal versus external hybridization. Theoretical Computer Science 259(1–2), pp. 405–426, doi:10.1016/S0304-
3975(00)00022-0.

260 Cooperating Distributed Grammar Systems of Finite Index Working in Hybrid Modes

[9] H. Fernau, R. Freund & M. Holzer (2003): Hybrid modes in cooperating distributed grammar systems:
combining the t-mode with the modes ≤ k and = k. Theoretical Computer Science 299, pp. 633–662,
doi:10.1016/S0304-3975(02)00541-8.

[10] H. Fernau & M. Holzer (1996): Accepting multi-agent systems II. Acta Cybernetica 12, pp. 361–379.
[11] H. Fernau & M. Holzer (1997): Conditional context-free languages of finite index. In Gh. Păun & A. Salomaa,

editors: New Trends in Formal Languages, Lecture Notes in Computer Science 1218, Springer, pp. 10–26,
doi:10.1007/3-540-62844-4 2.

[12] R. Meersman & G. Rozenberg (1978): Cooperating grammar systems. In: Proceedings of Mathematical
Foundations of Computer Science MFCS’78, Lecture Notes in Computer Science 64, Springer, pp. 364–374,
doi:10.1007/3-540-08921-7 84.

[13] V. Mitrana (1993): Hybrid cooperating/distributed grammar systems. Computers and Artificial Intelligence
12(1), pp. 83–88.

[14] Gh. Păun (1994): On the generative capacity of hybrid CD grammar systems. J. Inf. Process. Cybern. EIK
(formerly Elektron. Inf.verarb. Kybern.) 30(4), pp. 231–244.

[15] G. Rozenberg & A. Salomaa, editors (1997): Handbook of Formal Languages, 3 volumes. Springer, Berlin.
[16] G. Rozenberg & D. Vermeir (1978): On the effect of the finite index restriction on several families of gram-

mars; Part 2: context dependent systems and grammars. Foundations of Control Engineering 3(3), pp.
126–142.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 261–270, doi:10.4204/EPTCS.151.18

Representations of Circular Words

László Hegedüs∗ Benedek Nagy∗ †

{hegedus.laszlo, nbenedek}@inf.unideb.hu
∗Department of Computer Science,

Faculty of Informatics, University of Debrecen
†Department of Mathematics, Faculty of Arts and Sciences,

Eastern Mediterranean University, Famagusta, North Cyprus, Mersin-10, Turkey

In this article we give two different ways of representations of circular words. Representations with
tuples are intended as a compact notation, while representations with trees give a way to easily
process all conjugates of a word. The latter form can also be used as a graphical representation of
periodic properties of finite (in some cases, infinite) words. We also define iterative representations
which can be seen as an encoding utilizing the flexible properties of circular words. Every word over
the two letter alphabet can be constructed starting from ab by applying the fractional power and the
cyclic shift operators one after the other, iteratively.

1 Introduction

One of the most popular areas of research in theoretical computer science is combinatorics on words.
This field deals with various properties of finite and infinite sequences or words. Being closely related to
mathematics, it has connections to algebra, number theory, game theory and several others. Although it
was written decades ago, the books of M. Lothaire are good reads and are recommended for researchers
who want to get a deep overview of the subject [8, 9, 10]. Axel Thue contributed the first results to the
field [19, 20]. Since then many applications in computer science have been discovered (e.g., in string
matching, data compression, bioinformatics, etc.).

We deal with circular words (sometimes called necklaces [18] or cyclic words) that are different
from linear ones and lead to some interesting new viewpoints. Similar sequences can appear in nature,
for example, the DNA sequences of some bacteria has a similar form to a necklace. In the simplest sense,
circular words are strongly periodic discrete functions.

Circular words are not as widely investigated as linear words. We hope that our approach and results
may show that interesting facts can be obtained by analyzing these sequences. Dirk Nowotka wrote about
unbordered conjugates of words in Chapter 4 of his dissertation [13]. Complementing this, we deal with
bordered conjugates that have periods smaller than the length of the word. Another related article is
[4], where permutations and cyclic permutations of primitive and non-primitive words were investigated.
For an overview of current research about circular words, the reader can consult the following articles.
Relations to Weinbaum factorizations are investigated in [3]. Several articles were written about pattern
avoidance of circular words, for example, [2, 6, 17] to name a few. Other applications in mathematics,
namely integer sequences [14, 15] were also considered.

The notion of weak and strong periods was introduced in [7]. One result about periodic functions is
often cited in combinatorics on words, since it is clearly about periodic infinite words too. This result
belongs to Fine and Wilf [5]. It can be shown by example that this statement is not true for weak
periods of circular words [7]. In this paper, we investigate two kinds of representations of circular words
continuing the research line of the paper [7] presented at the WORDS 2013 conference in Turku. The

262 Representations of Circular Words

first one is connected to the property that every linear word has a shortest root, while the other one is
related to tries (see e.g., [18]).

The structure of the paper is as follows. Section 2 defines the notation and notions used in the rest
of the article. After this, in Section 3 we discuss ways of representing circular words with tuples and an
algorithm to construct one of these representations. Section 4 is about representing circular words with
trees (or tries) and we present some results related to Fibonacci words. At the end in Section 5 some
possible directions of future research is discussed.

2 Preliminaries

The following notions and notation are used in the rest of the article. We will call a non-empty set of
symbols an alphabet and denote it by Σ. Words (or linear words) over Σ are finite sequences of symbols
of Σ. The operation of concatenation is defined by writing two words after each-other. The empty word,
i.e., the empty sequence is denoted by ε and it is the unit element of the monoid Σ∗. We also define
Σ+ = Σ∗ \{ε}. The length of the word w ∈ Σ∗ (denoted by |w|) is the length of w as a sequence, that is,
the number of all the symbols in w. We will use N to denote the set of non-negative integers.

We say, that v∈ Σ∗ is a factor of w∈ Σ∗ if there exist words x,y∈ Σ∗ such that w = xvy. Furthermore,
if x = ε (resp. y = ε), then v is a prefix (resp. suffix) of w. For any word w and integer 0≤ k ≤ |w|, we
denote the length k factors of w by Fk(w). For arbitrary positive integers p and q, we use (p mod q) to
denote the remainder of p

q . Let w ∈ Σ∗ be a word of length n, that is, w = w1 . . .wn, where w1, . . . ,wn ∈ Σ.

Then for any p ∈N, we have w
p
n = wb

p
n cw′, where w′ = w1 . . .w(p mod n). We call w

p
n the fractional power

of w. From now on we will always refer to the ith position of a word w ∈ Σ∗ as wi. A word w ∈ Σ+ is
primitive if there is no word v ∈ Σ∗ such that w = vp where p ∈ N, p > 1.

A positive integer p is a period of w = w1 . . .wn if wi = wi+p for all i = 1, . . . ,n− p. As a comple-
mentary notion, word v∈ Σ∗ is a border of w∈ Σ∗ if v is a prefix and also a suffix of w. Each word w∈ Σ∗
has trivial borders ε and w. It is clear, that word w has a border b if and only if w has period |w|− |b|.

Words x and y are conjugates if there exist words u,v ∈ Σ∗ such that x = uv and y = vu. Related to
this notion, we define the shift operation σ (w) for all w ∈ Σ∗ as follows:

σ (w) = w2 . . .wnw1.

Moreover, σ `(w) = σ `−1(σ (w)) = w1+` . . .wnw1 . . .w`. Also, we will use σ −`(w) that can also be
written as σ |w|−`(w).

Lyndon and Schützenberger stated the following, which characterizes the relation between a word
and its non-trivial borders [12].

Lemma 1 (Lyndon and Schützenberger). Let x ∈ Σ+, y, b ∈ Σ∗ be arbitrary words. Then xb = by if and
only if there exist u ∈ Σ+, v ∈ Σ∗ and k ∈ N such that x = uv, y = vu and b = (uv)ku = u(vu)k.

A circular word is obtained from a linear word w ∈ Σ∗ if we link its first symbol after the last one, as
seen on Figure 1.

One can see from the figure that circular words do not have a beginning nor an end. Nor do the
notions of suffix and prefix make sense. A circular word w◦ can be seen as the set of all conjugates of w,
or all cyclic shifts of w, that is, the set

w◦ = {v | v is a conjugate of w}= {σ `(w) | `= 0, . . . , |w|−1}.

L. Hegedüs & B. Nagy 263

Figure 1: Creating the circular word w◦ from the linear word w.

Note, that w◦ consists exactly of the length |w| factors of ww. That is, w◦ = F|w|(ww). The notions
of weak- and strong periods were given in [7]. We will only refer to weak periods in this paper and define
them as follows.

Definition 1. The positive integer p is a weak (strong) period of a circular word w◦ if p is a period of at
least one (all) of the conjugates v ∈ w◦.

3 Representations with tuples

If not stated otherwise, we assume that alphabet Σ can be arbitrary. Every word w∈ Σ∗ can be represented
by a power of a (possibly shorter) word u ∈ Σ∗ and a positive integer that is the length of w. In other

words, for all w ∈ Σ∗, there exists a word u ∈ Σ∗ such that u
|w|
|u| = w. We will call such a u a root of w,

while the shortest root is called the primitive root of w (see e.g., pages 10–11 of [18]). In this section we
discuss analogous representations of circular words that take advantage of their lack of strictly specified
endpoints.

Definition 2. A pair (u,n)∈ Σ∗×N is a representation of the circular word w◦ over Σ if |u| ≤ n, n = |w◦|
and u

n
|u| ∈ w◦.

Definition 3. A minimal representation of a circular word w◦ over Σ is a representation (u,n) of w◦, such
that |u| ≤ |u′| for any other representation (u′,n) of w◦.

It is clear, that every circular word has a minimal representation, since all of them have a smallest
weak period. Trivially, that not all pairs (u,n) are minimal representations of some circular word. For
example, consider the representation (baa,5) of the circular word (baaba)◦. This circular word also has
a representation (ab,5) which is in fact a minimal representation.

It is also true, that a circular word can have more than one minimal representations. For example,
(ababa,12), (babaa,12), (abaab,12) and (baaba,12) are all minimal representations of the circular
word (ababaababaab)◦. Note, that (aabab,12) is not a minimal representation of this circular word,
since it represents (aababaababaa)◦.

Clearly, if n = k · |u| for some k ∈ N in a minimal representation (u,n), then (σ `(u),n) is also a
minimal representation of the same circular word for all `= 0, . . . , |u|−1.

Suppose, that w = umu′ for some u ∈ Σ∗ where u′ is a non empty prefix of u and m ∈ N\{0}. Then
for every k ∈ N, the word w′ = wuk has a cyclic shift σ |w|(w′) = uk+mu′. Thus the circular word w′◦ has
a representation (u, |w|+ k · |u|).

264 Representations of Circular Words

Theorem 1. Let (u,n) be a representation of w◦. Suppose, that u has border s, that is, u = sx = ys, and
n = 2 · |u|− |s|. Then (y,n) is also a representation of w◦. Moreover, if s is the longest non-trivial border
of u, then (y,n) is a minimal representation of w◦.

Proof. Let us have a representation (u,n) of w◦ that satisfies the assumption, that is, u has border s and
n = 2 · |u|−|s|. Then u is in the form u = sx = ys for some x,y ∈ Σ∗ and w◦ = (uy)◦ = (ysy)◦. By Lemma
1, yys has period |y|, thus w◦ has weak period |y| and a representation (y,n).

If s is the longest non-trivial border of u, then y is the primitive root of u, thus (y,n) is a minimal
representation of w◦.

Suppose that we have a representation w◦ = (u,n), where u ∈ Σ∗ and n ∈ N. If |u| ≥ 2, then u may
be compressed further. In other words, we can take a minimal representation (u′, |u|) with an additional
parameter k ∈N, such that σ k(u) has primitive root u′. This method of compression can be done finitely
many times, until reaching a word u0 which we will refer to as a minimal root of w◦. We will call these
representations iterative representations, defined formally in Definition 4. Of course, if a minimal root of
a word w◦ has only one letter, then it is in the form (a|w|)◦ for some a∈ Σ. In this case, this letter is unique
and we can refer to it as the minimal root of w◦. Thus words in these forms have trivial representations
and we will no longer deal with them.

Definition 4. Let u ∈ Σ∗, m ∈ N\{0} and `1, `2, . . . , `m−1, `m,k1,k2, . . . ,km−1 ∈ N. The 2m-tuple

(u, `1,k1, `2,k2, . . . , `m−1,km−1, `m)

is an iterative representation of the circular word w◦ = (u
`m

`m−1
m−1)◦ over the two letter alphabet {a,b}, where

u0 = u, u1 = σ k1(u
`1
|u0 |
0) and ui = σ ki(u

`i
`i−1
i−1) for all i = 2, . . . ,m−1.

Example 1. Consider the circular word w◦ = (bababaabbabaab)◦. One of its iterative representations is

(baa,4,0,6,4,14).

By using the previous definition of the words ui, the following words are obtained during the recon-
struction of the circular word: u0 = baa, u1 = baab, u2 = babaab and finally, w◦ = (babaabbabaabba)◦.
Note, that no shifting is required in the last step, because w◦ = v◦ for all v ∈ w◦.

Of course, every circular word has an iterative representation of the form above that can be con-
structed with the greedy algorithm in Figure 2. Moreover, the algorithm halts if only if it has found a
minimal root.

Note, that by using this algorithm, we can process the iterative representation in Example 1 further
to obtain (ab,3,1,4,0,6,4,14). In fact, the following can be stated about the iterative representations of
circular words over the two letter alphabet {a,b}.
Theorem 2. Let w ∈ {a,b}∗. If (u, `1,k1, . . . , `m−1,km−1, |w|) is a minimal iterative representation of w◦,
then |u| ≤ 2.

Proof. It follows from the fact that every word u ∈ {a,b}, |u| ≥ 3 has a conjugate that has a border of
length at least one, thus in this case u◦ has a representation (v, |u|) such that |v|< |u|.

Let (u, `1,k1, . . . , `m−1,km−1, |w|) be an iterative representation of w◦. It is optimal if for all iterative
representations (u′, `′1,k

′
1, . . . , `

′
m′−1,k

′
m′−1, |w|) of w◦, |u| ≤ |u′| and if |u| = |u′|, then m ≤ m′. In other

words an optimal iterative representation of w◦ is one with the shortest possible minimal root, such that

L. Hegedüs & B. Nagy 265

construct iterative representation(w◦)
1. u← w

2. v← find v such that (v, |w|) is a minimal representation of w◦

3. rep← [|w|] # rep is a vector of integers

4. while true do

5. u← v

6. v← find v such that (v, |u|) is a minimal representation of u◦

7. if |u|= |v| then # if we have found a minimal root,

8. break # then the algorithm breaks the loop

9. endif

10. k← find k such that σ −k(u) has root v

11. rep← |u| : k : rep # append |u| and k to rep from the left

12. endwhile

13. return v : rep

Figure 2: Algorithm for constructing the iterative representation of w◦.

w◦ can be reconstructed from it with the least amount of fractional power operations (regardless of the
amount of shift operations required).

The algorithm may not provide an optimal solution for all inputs w◦. For example, consider the
circular word (ababaa)◦. The algorithm would construct the iterative representation (ab,3,0,4,0,6),
while an optimal solution would be (ab,5,0,6). One of the directions of future research is to look for
an efficient algorithm that always finds an optimal iterative representation of any circular word w◦ (see
Section 5).

Note, that we do not have to restrict ourselves to representations of circular words. If we are looking
for a linear word, another shift operation has to be applied at the end of the reconstruction.

Let us now turn to another method of representation, which is not intended as an encoding, nor as a
compression, but a way of representing the structure of different conjugates of a word and their relation
to each-other (e.g., common prefixes).

4 Representations with trees

The tree τ is the tree of the circular word w◦ if and only if for any word v = v1 . . .vn in w◦, there exists a
path in τ between the root and a leaf node with a series of edges labeled v1, . . . ,vn.

This approach is related to tries that are data structures representing associative structures. They are
often used to search for suffixes or other factors of words. Quite similarly, our trees represent a set of
words that are conjugates of each-other. For more information on the use of tries consult [1].

We remark, that in our figures the letters appear as nodes, but they are to be considered as labels of
edges between two (unnamed) nodes. This way, the represented words can be seen more clearly. First,

266 Representations of Circular Words

Figure 3: Tree representation of (abaab)◦. Figure 4: Tree representation of (aabbcac)◦.

consider the circular word

(abaab)◦ = {abaab,baaba,aabab,ababa,babaa}.

Its tree representation is shown in Figure 3.
Now, see Figure 4 for the tree of the circular word (aabbcac)◦ (over the three letter alphabet {a,b,c})

which is the set

(aabbcac)◦ = {aabbcac,abbcaca,bbcacaa,bcacaab,cacaabb,acaabbc,caabbca}.

Clearly, both trees represent finite-state automata with partially defined, deterministic transition func-
tions. We can distinguish different levels of a tree. Vertex ◦ is on level zero (`(◦) = 0) and if there is an
edge u→ v, then `(v) = `(u)+1.

We can see some branching nodes in both trees. The tree in Figure 4 has two branching nodes on
level one while no two branching nodes of the tree in Figure 3 are on the same level.

Examining branching nodes is useful for analyzing trees of circular words and the words themselves.
Suppose that tree τ has u1, . . . ,uk branching nodes such that ◦→a u1 and ui→a ui+1 for all i= 1, . . . ,k−1.
Then there is a letter b such that ak, ak−1b, and thus ak−2b, . . . ,ab, b are all factors of w◦. If the level of
the leaf nodes is k+1, then the represented circular word must be (akb)◦. Similarly, if there are branching
nodes u1, . . . ,um and v1, . . . ,vk such that ◦→a u1→a . . .→a um and ◦→b v1→b . . .→b vk, and the level
of the leaf nodes is m+ k, then the tree can only represent the circular word (ambk)◦. Apart from these
simple cases, we can state the following about the relation of circular words and branching nodes in their
trees: Let w◦ be a circular word with tree τ . There is a branching node in τ on level ` if and only if there
are two distinct words w′,w′′ ∈ w◦, such that the longest common prefix of w′ and w′′ is a word of length
`. Moreover, if there is a branching node in the tree on level n > 0, then there is a branching node on level
n− 1. These nodes do not necessarily lie on the same path. To verify this, assume that tree τ contains
the edges u→a v and u→b s, where u 6= ◦. Then there are words xay,xbz ∈ w◦ such that x,y,z ∈ Σ∗ with
|x| > 0, and a,b ∈ Σ, where Σ is an alphabet of at least two letters. Write x = x1, . . . ,xm. Clearly, both

L. Hegedüs & B. Nagy 267

x2 . . .xmayx1 and x2 . . .xmbzx1 are in w◦, having a common prefix of length |x|− 1. Thus there must be
a node u′ such that the path from ◦ to u′ reads x2 . . .xm and two nodes v′ and s′, such that u′→a v′ and
u′→b s′.

Proposition 1. Consider a circular word w◦ ∈ {a,b} with tree τ . If τ has a branching node on level
|w|−2, then there is exactly one branching node on all levels m = 0, . . . , |w|−2 of τ .

Proof. From the previous argument, it follows that all levels k < |w| − 2 of the tree has at least one
branching node. Clearly, the depth of the tree is |w|. Since the root node is branching, the number of
possible paths (words) up to level one is two. Moreover, if level k > 0 has mk ∈ N branching nodes,
then the number of all possible paths up to level k + 1 is equal to the number of all possible paths
up to level k, plus mk. Then we get that the number of possible paths on the level of the leaf nodes is
2+m1+ . . .+m|w|−1+m|w|= |w|. We have stated, mi > 0 for all i= 1, . . . , |w|−2, thus m|w|−1 =m|w|= 0
and 2+m1 + . . .+m|w|−2 = |w|. If mi > 1 for any i≥ 1, then m j = 0 for some j 6= i. This is impossible,
since all levels under |w|−2 have at least one branching node, thus mi = 1 for all i = 1, . . . , |w|−2.

Now, let us analyze an interesting class of words. Let f1 = b, f2 = a and define fn = fn−1 fn−2 for all
n ≥ 3. We call fn (where n ≥ 1) the nth finite Fibonacci word. The infinite Fibonacci word is the limit
of the sequence f1, f2, . . .

The following lemma describes a well known property of the infinite Fibonacci words.

Lemma 2 (see Séébold [16]). If a word u2 is a factor of the infinite Fibonacci word, then u is a conjugate
of some finite Fibonacci word.

Note that the tree in Figure 3 represents the circular word obtained from f5 which is the fifth Fi-
bonacci word. See the trees of (f6)◦ and (f7)◦ in Figure 5. One can observe that the structure of these
trees are very similar. This is strongly related to the definition of Fibonacci words.

Figure 5: Trees of (f6)o and (f7)o.

268 Representations of Circular Words

Theorem 3. Let us denote the tree of the finite Fibonacci word fi by ϕi for all i ∈ N. Then for all i ∈ N,
the tree ϕi has exactly one branching node on all of its levels, except for the last two.

Proof. Consider the tree ϕi of the circular Fibonacci word (fi)◦ and let ` ∈ {0, . . . , | fi|}. The paths from
◦ to nodes on level k represent the length k factors of (fi)◦. By the properties of Fibonacci words (or
Sturmian words), we know that the number of distinct factors of length k in the infinite Fibonacci word
is k+1. Since all of the length k words of the tree appear in the infinite Fibonacci word (because it has
factor f 2

i), their number must not be more than k+1. On the other hand, each tree of a primitive word of
length n must contain n branching nodes. Thus in ϕi all branching nodes must be on different levels.

Based on the proof, we can state the following about the trees of circular Fibonacci words.

Corollary 1. For all i, j ∈ N\{0}, if j > i, then ϕi is a subtree of ϕ j.

Thus the trees of Fibonacci words are not only very similar, but they contain recurring subtrees.
Notice in Figure 5, that the tree of (f5)◦ appears in the tree of (f6)◦ which also appears in the tree
of (f7)◦, marked by the dashed lines. Thus we can define the tree ϕ which belongs to the limit of
the sequence of Fibonacci words, that is, the infinite Fibonacci word. Each path in the tree ϕ defines
an infinite suffix of the infinite Fibonacci word. This is a consequence of the structure of the trees ϕi

(i = 1,2, . . .), since all of their words are factors of the infinite Fibonacci word and an infinite factor must
be a suffix.

Let us state another interesting fact about branching nodes of trees of circular Fibonacci words.

Theorem 4. Consider the tree ϕi for any i ∈ N. Let u and u′ be branching nodes of ϕi such that they
lie on the same path and there are no other branching nodes between them. Then |`(u)− `(u′)| is a
Fibonacci number.

Proof. Assume the contrary, that is, there is a Fibonacci word fi such that there are two branching nodes
u, u′ in tree ϕi that lie on the same path and do not have any other branching nodes between them, but
|`(u)− `(u′)| is not a Fibonacci number. Then, there exists a Fibonacci word f j with j ≥ i such that
(f j)◦ has square factor vv where v is the word constructed from the labels on the path between u and
u′. Moreover, this will be true for all Fibonacci words f j′ where j′ ≥ j. Thus the infinite Fibonacci
word must contain the square factor vv. This contradicts Lemma 2, since v cannot be a conjugate of any
Fibonacci word because its length is not a Fibonacci number. Thus our indirect assumption is false.

5 Conclusion and future directions

Combinatorics on circular words is a field that still has countless open problems and many possible
research directions. We have shown some non-traditional methods of considering (representing) cir-
cular words. The following questions are still open and may lead to a better characterization of these
sequences.

1. The algorithm presented in Section 3 does not always provide optimal solutions. Is there a way of
deciding how to choose the best sequence of roots in the algorithm?

2. Theorem 2 is about the minimal roots of words over the two letter alphabet. What can we say
about words over alphabets of more than two letters?

3. One could use the tree ϕ to deduce some properties of the infinite Fibonacci word.

L. Hegedüs & B. Nagy 269

4. Or the tree representations can be utilized to prove results about the structure of other (possibly
infinite) words.

5. We believe, that Theorem 3 is true for all standard sturmian words (see e.g., [11] for their defini-
tion).

Acknowledgements

The authors would like to thank the reviewers for their valuable and useful comments. The work is
supported by the TÁMOP 4.2.2/C-11/1/KONV-2012-0001 and 4.2.2/B-10/1-2010-0024 projects. The
projects are implemented through the New Hungary Development Plan, co-financed by the European
Social Fund and the European Regional Development Fund.

References

[1] Maxime Crochemore & Wojciech Rytter (2002): Jewels of Stringology. World Scientific Publishing Com-
pany, Incorporated, doi:10.1142/4838.

[2] James D. Currie & D. Sean Fitzpatrick (2002): Circular words avoiding patterns. Proceedings of the 6th
International Conference on Developments in Language Theory. LNCS 2450., pp. 319–325, doi:10.1007/3-
540-45005-X 28.

[3] Volker Diekert, Tero Harju & Dirk Nowotka (2006): Factorizations of cyclic words. Workshop on Words and
Automata at CSR 7.

[4] Szilárd Zsolt Fazekas & Benedek Nagy (2008): Scattered Subword Complexity of Non-primitive Words. J.
Autom. Lang. Comb. 13(3), pp. 233–247.

[5] Nathan J. Fine & Herbert S. Wilf (1965): Uniqueness theorems for periodic functions. Proceedings of the
American Mathematical Society 16, pp. 109–114, doi:10.1090/S0002-9939-1965-0174934-9.

[6] D. Sean Fitzpatrick (2005): There are binary cube-free circular words of length n contained within the Thue-
Morse word for all positive integers n. Ars Combinatorica 74.

[7] László Hegedüs & Benedek Nagy (2013): Periodicity of circular words. Local Proceedings of WORDS
2013, TUCS Lecture Notes 20, pp. 45–56.

[8] M. Lothaire (1983): Combinatorics on words. Addison-Wesley.

[9] M. Lothaire (2002): Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applica-
tions 90, Cambridge University Press, doi:10.1017/CBO9781107326019.

[10] M. Lothaire (2005): Applied Combinatorics on Words. Encyclopedia of Mathematics and its Applications
105, Cambridge University Press, doi:10.1017/CBO9781107341005.

[11] Aldo de Luca & Filippo Mignosi (1994): Some combinatorial properties of Sturmian words. Theoretical
Computer Science 136(2), pp. 361–385, doi:10.1016/0304-3975(94)00035-H.

[12] Roger C. Lyndon & Marcel-Paul Schützenberger (1962): The equation aM = bNcP in a free group. Michigan
Math. J. 9(4), pp. 289–298, doi:10.1307/mmj/1028998766.

[13] Dirk Nowotka (2004): Periodicity and unbordered factors of words. TUCS Dissertations No. 50.

[14] Benoı̂t Rittaud & Laurent Vivier (2011): Circular words and applications. Proceedings of Words 2011,
Electronic Proceedings in Theoretical Computer Science 63, pp. 31–36, doi:10.4204/EPTCS.63.6.

[15] Benoı̂t Rittaud & Laurent Vivier (2012): Circular words and three applications: factors of the Fibonacci
word, F -adic numbers, and the sequence 1, 5, 16, 45, 121, 320,. . . . Funct. Approx. Comment. Math. 47(2),
pp. 207–231, doi:10.7169/facm/2012.47.2.6.

270 Representations of Circular Words

[16] Patrice Séébold (1985): Propriétés combinatoires des mots infinis engendrés par certains morphismes. Thèse
de doctorat, Université P. et M. Curie, Institut de Programmation.

[17] Arseny M. Shur (2010): On ternary square-free circular words. The Electronic Journal of Combinatorics 17.
[18] William Smyth (2003): Computing patterns in strings. Addison-Wesley.
[19] Axel Thue (1906): Über unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter, I. Mat. Nat. Kl. 7, pp.

1–22.
[20] Axel Thue (1912): Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra. Vidensk. Selsk.

Skrifter, I. Mat. Nat. Kl. 46, pp. 1–67.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 271–285, doi:10.4204/EPTCS.151.19

More Structural Characterizations of Some Subregular
Language Families by Biautomata

Markus Holzer and Sebastian Jakobi
Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany
{holzer,sebastian.jakobi}@informatik.uni-giessen.de

We study structural restrictions on biautomata such as, e.g., acyclicity, permutation-freeness, strongly
permutation-freeness, and orderability, to mention a few. We compare the obtained language fami-
lies with those induced by deterministic finite automata with the same property. In some cases, it is
shown that there is no difference in characterization between deterministic finite automata and biau-
tomata as for the permutation-freeness, but there are also other cases, where it makes a big difference
whether one considers deterministic finite automata or biautomata. This is, for instance, the case
when comparing strongly permutation-freeness, which results in the family of definite language for
deterministic finite automata, while biautomata induce the family of finite and co-finite languages.
The obtained results nicely fall into the known landscape on classical language families.

1 Introduction

The finite automaton is one of the first and most intensely investigated computational model in theo-
retical computer science, see, e.g., [15]. Its systematic study led to a rich and unified theory of regular
subfamilies such as, for example, finite languages (are accepted by acyclic finite automata—here, ex-
cept for non-accepting sink states, self-loops on states count as cycles), ordered languages (where the
transitions of the accepting automata preserve an order on the state set), and star-free languages or non-
counting languages (which can be described by regular like expressions using only union, concatenation,
and complement or equivalently by permutation-free finite automata), to mention a few. Relations be-
tween several subregular language families, such as those mentioned above, are summarized in [6]. In
particular, an extensive study of star-free regular languages can be found in [14]. Even nowadays the
study of subregular language families from different perspectives such as, for instance, algebra, logic,
descriptional, or computational complexity, is a vivid area of research.

Recently, an alternative automaton model to the deterministic finite automaton (DFA), the so called
biautomaton (DBiA) [12] was introduced. Roughly speaking, a biautomaton consists of a deterministic
finite control, a read-only input tape, and two reading heads, one reading the input from left to right
(forward transitions), and the other head reading the input from right to left (backward transitions).
Similar two-head finite automata models were introduced, e.g., in [5, 13, 17]. An input word is accepted
by a biautomaton, if there is an accepting computation starting the heads on the two ends of the word
meeting somewhere in an accepting state. Although the choice of reading a symbol by either head is
nondeterministic, a deterministic outcome of the computation of the biautomaton is enforced by two
properties: (i) The heads read input symbols independently, i.e., if one head reads a symbol and the
other reads another, the resulting state does not depend on the order in which the heads read these single
letters. (ii) If in a state of the finite control one head accepts a symbol, then this letter is accepted in this
state by the other head as well. Later we call the former property the �-property and the latter one the
F-property. In [12] and a series of forthcoming papers [7, 8, 10, 11] it was shown that biautomata share

272 More Structural Characterizations of Some Subregular Language Families by Biautomata

a lot of properties with ordinary finite automata. For instance, as minimal DFAs, also minimal DBiAs
are unique up to isomorphism [1, 12].

Now the question arises, which structural characterizations of subregular language families of DFAs
carry over to biautomata. Let us give an example which involves partially ordered automata. A DFA
with state set Q and input alphabet Σ is partially ordered, if there is a (partial) order ≤ on Q such that
q ≤ δ (q,a), for every q ∈ Q and a ∈ Σ. In [4] it was shown that partially ordered DFAs characterize
the family of R-trivial regular languages, that is, a regular language L is R-trivial if for its syntactic
monoid ML, the assumption sML = tML implies s = t, for all s, t ∈ML. For the definition of the syntactic
monoid of a regular language we refer to [1]. Adapting the definition of being partially ordered literally
to DBiAs results in a characterization of the family of J -trivial regular languages [11, 12]—originally
the authors of [12] speak of acyclic biautomata instead, since loops are not considered as cycles there;
we think that the term partially ordered is more suitable in this context. Here a regular language L is
J -trivial if for its syntactic monoid ML, the assumption MLsML = MLtML implies s = t, for all s, t ∈ML.
Note that a language is J -trivial regular if and only if it is piecewise testable [19]. A language L⊆ Σ∗ is
piecewise testable if it is a finite Boolean combination of languages of the form Σ∗a1Σ∗a2Σ∗ . . .Σ∗anΣ∗,
where ai ∈ Σ for 1 ≤ i ≤ n. We can also ask whether a transfer of conditions can be done the other
way around from DBiAs to DFAs. This is not that obvious, since structural properties on DBiAs may
involve conditions on the forward and backward transitions. For instance, in [7] it was shown that
biautomata, where for every state and every input letter the forward and the backward transition go to
the same state, characterize the family of commutative regular languages. A regular language L ⊆ Σ∗
is commutative if for all words u,v ∈ Σ∗ and letters a,b ∈ Σ we have uabv ∈ L if and only if ubav ∈ L.
Obviously, this condition can be used also to give a structural characterization of commutative regular
languages on DFAs, namely that for every state q and letters a,b ∈ Σ the finite state device satisfies
δ (δ (q,a),b) = δ (δ (q,b),a). This is the starting point of our investigations.

We study structural properties of DFAs appropriately adapted to DBiAs, since up to our knowledge
most classical properties from the literature on finite automata were not studied for DBiAs yet. Our
investigation is started in Section 3 with automata which transition functions induce permutations on
the state set. Originally permutation DFAs were introduced in [20]. We show that both types of finite
state machines, permutation DFAs and permutation DBiAs are equally powerful. Thus, an alternative
characterization of the family of p-regular languages in terms of DBiAs is obtained. Next we take a
closer look on quite the opposite of permutation automata, namely on permutation-free devices—see
Section 4. A special case of a permutation-free automaton is an acyclic (expect for sink states) one.
It is easy to see that acyclic DFAs as well as DBiAs characterize the family of finite languages. An
important subregular language family, which can be obtained from finite languages by finitely many
applications of concatenation, union, and complementation with respect to the underlying alphabet, is
the class of star-free languages. It obeys a variety of different characterizations [14], one of them are
permutation-free DFAs. We show that permutation-free DBiAs characterize the star-free languages, too.
For strongly permutation-free automata, which are automata that are permutation-free and where also
the identity permutation is forbidden, we find the first significant difference of DFAs and DBiAs. While
for DFAs this property characterizes the family of definite languages, DBiAs describe only finite or
co-finite languages. A language L ⊆ Σ∗ is definite [16] if and only if L = L1 ∪Σ∗L2, for some finite
languages L1 and L2. Moreover, we find a relation between strongly permutation-free automata, and
automata where all states are almost-equivalent—the notion of almost-equivalence was introduced in [2].
Then in Section 5 we continue our investigation with another important subfamily of star-free languages,
namely ordered languages [18]. A DFA with state set Q and input alphabet Σ is ordered if there is a
total order ≤ on the state set Q such that p ≤ q implies δ (p,a) ≤ δ (q,a), for every p,q ∈ Q and a ∈ Σ.

Markus Holzer and Sebastian Jakobi 273

Automata type
Property DFAs DBiAs
permutation p-regular p-regular
permutation-free star-free star-free
ordered ordered FIN∪ co-FIN⊂ · ⊂ ORD
partially ordered R-trivial J -trivial
strongly permutation-free definite finite and co-finite
acyclic; self-loops are cycles finite finite
non-exiting prefix-free circumfix-free
non-returning strict superset of suffix-free strict subset of non-returning DFAs

Table 1: Comparison of the results on structural properties on DFAs and DBiAs and their induced lan-
guage families (shading represents results obtained in this paper); here FIN refers to the family of finite
languages, co-FIN to the family of co-finite languages, and ORD to the family of ordered languages.

The family of ordered languages lies strictly in-between the family of finite and the family of star-free
languages. Appropriately adapting this definition to biautomata results in a language class, which we
call the family of bi-ordered languages, that is a proper superset of the family of finite and co-finite
languages and a strict subset of the family of ordered languages. Moreover, it is shown that there is a
subtle difference whether the order condition is applied to automata in general or to minimal devices
only. In the next to last section we take a closer look on non-exiting and non-returning machines. It is
well known that non-exiting DFAs characterize the family of prefix-free languages, while non-returning
automata are related to suffix-free languages. We show that every biautomaton which is non-exiting
must also be non-returning (unless it accepts the empty language), and that non-exiting minimal DBiAs
characterize the family of circumfix-free languages. For non-returning minimal DBiAs we prove that the
induced language family is a strict subset of the family of non-returning minimal DFAs languages. The
obtained results are summarized in Table 1. In the last section we briefly discuss our findings and give
some hints on future research directions on the subject under consideration.

2 Preliminaries

A deterministic finite automaton (DFA) is a quintuple A = (Q,Σ,δ ,q0,F), where Q is the finite set of
states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states,
and δ : Q× Σ→ Q is the transition function. As usual, the transition function δ can be recursively
extended to δ : Q×Σ∗→Q. The language accepted by A is defined as L(A) = {w ∈ Σ∗ | δ (q0,w) ∈ F }.

A deterministic biautomaton (DBiA) is a sixtuple A = (Q,Σ, ·,◦,q0,F), where Q, Σ, q0, and F are
defined as for DFAs, and where · and ◦ are mappings from Q×Σ to Q, called the forward and backward
transition function, respectively. It is common in the literature on biautomata to use an infix notation
for these functions, i.e., writing q ·a and q◦a instead of ·(q,a) and ◦(q,a). Similar as for the transition
function of a DFA, the forward transition function · can be extended to · : Q×Σ∗→ Q by q ·λ = q and
q ·av = (q ·a) ·v, for all states q ∈Q, symbols a ∈ Σ, and words v ∈ Σ∗. Here λ refers to the empty word.
The extension of the backward transition function ◦ to ◦ : Q×Σ∗→ Q is defined as follows: q ◦λ = q
and q◦va = (q◦a)◦v, for all states q ∈Q, symbols a ∈ Σ, and words v ∈ Σ∗. Notice that ◦ consumes the
input from right to left, hence the name backward transition function.

274 More Structural Characterizations of Some Subregular Language Families by Biautomata

The DBiA A accepts a word w ∈ Σ∗ if there are words ui,vi ∈ Σ∗, for 1 ≤ i ≤ k, such that w can be
written as w = u1u2 . . .ukvk . . .v2v1, and

((. . .((((q0 ·u1)◦ v1) ·u2)◦ v2) . . .) ·uk)◦ vk ∈ F.

The language accepted by A is L(A) = {w ∈ Σ∗ | A accepts w}.
The DBiA A has the �-property, if (q · a) ◦ b = (q ◦ b) · a, for all a,b ∈ Σ, and q ∈ Q, and it has the

F-property, if for all q ∈Q and a ∈ Σ it is q ·a ∈ F if and only if q◦a ∈ F . The biautomata as introduced
in [12] always had to satisfy both these properties, while in [7, 8] also biautomata that lack one or both
of these properties, as well as nondeterministic biautomata were studied. Throughout the current paper,
when writing of biautomata, or DBiAs, we always mean deterministic biautomata that satisfy both the
�-property, and the F-property, i.e., the model as introduced in [12]. For such biautomata the following
it is known from the literature [7, 12]:

• (q ·u)◦ v = (q◦ v) ·u, for all states q ∈ Q and words u,v ∈ Σ∗,

• (q ·u)◦ vw ∈ F if and only if (q ·uv)◦w ∈ F , for all states q ∈ Q and words u,v,w ∈ Σ∗.

From this one can conclude that for all words ui,vi ∈ Σ∗, with 1≤ i≤ k, it is

((. . .((((q0 ·u1)◦ v1) ·u2)◦ v2) . . .) ·uk)◦ vk ∈ F

if and only if
q0 ·u1u2 . . .ukvk . . .v2v1 ∈ F.

Therefore, the language accepted by a DBiA A can as well be defined as L(A) = {w ∈ Σ∗ | q0 ·w ∈ F }.
Let A be DFA or a DBiA with state set Q. We say that a state q ∈ Q is a sink state if and only if

all outgoing transition (regardless whether they are forward or backward transitions) are self-loops only.
Note, that in particular, one can distinguish between accepting and non-accepting sink states.

In the following we define the two DFAs contained in a DBiA, which accept the language, and the
reversal of the language accepted by the biautomaton. Let A = (Q,Σ, ·,◦,q0,F) be a DBiA. We denote
by Qfwd the set of all states reachable from q0 by only using forward transitions, and denote the set of
states reachable by only using backward transitions by Qbwd, i.e.,

Qfwd = {q ∈ Q | ∃u ∈ Σ∗ : q0 ·u = q} and Qbwd = {q ∈ Q | ∃v ∈ Σ∗ : q0 ◦ v = q}.

Now we define the DFA Afwd = (Qfwd,Σ,δfwd,q0,Ffwd), with Ffwd = Qfwd∩F , and δfwd(q,a) = q ·a, for
all states q∈Qfwd and symbols a∈ Σ. Similarly, we define the DFA Abwd = (Qbwd,Σ,δbwd,q0,Fbwd), with
Fbwd = Qbwd∩F , and δbwd(q,a) = q◦a, for all q ∈ Q and a ∈ Σ. One readily sees that L(Afwd) = L(A).
Moreover, since q ◦ uv = (q ◦ v) ◦ u, one can also see L(Abwd) = L(A)R. It is shown in [9] that if A is a
minimal biautomaton, then the two DFAs Afwd and Abwd are minimal, too.

3 Permutation Automata

First we study automata where every input induces a permutation on the state set. Such finite automata
were defined in [20]. A DFA A = (Q,Σ,δ ,q0,F) is a permutation DFA if δ (p,a) = δ (q,a) implies p = q,
for all p,q∈Q and a∈ Σ. A regular language is p-regular if it is accepted by a permutation DFA. We give
a similar definition for biautomata: a biautomaton A = (Q,Σ, ·,◦,q0,F) is a permutation biautomaton if
for all p,q ∈ Q and a ∈ Σ we have that p ·a = q ·a implies p = q, and also p◦a = q◦a implies p = q.

Markus Holzer and Sebastian Jakobi 275

We will see that a language is p-regular if and only if it is accepted by a permutation biautomaton.
Before we can show this, we describe a useful technique to construct a biautomaton from finite automata.
In [12] a construction of a biautomaton from a given DFA A is described, that uses a cross-product
construction of A with the power-set automaton of the reversal of A. In the following we describe how a
biautomaton can be constructed from two arbitrary DFAs accepting a regular language and its reversal.

Let L⊆Σ∗ be a regular language, and for i∈{1,2} let Ai =(Qi,Σ,δi,q
(i)
0 ,Fi) be DFAs with L(A1)=L,

and L(A2) = LR. Further, for all states p ∈ Q1 let up be some word with δ1(q
(1)
0 ,up) = p, and similarly

for q ∈ Q2 let vq be a word with δ2(q
(2)
0 ,vq) = q. Then define the automaton BA1×A2 = (Q,Σ, ·,◦,q0,F)

with state set Q = Q1×Q2, initial state q0 = (q(1)0 ,q(2)0), accepting states F = {(p,q) ∈ Q | upvR
q ∈ L},

and where for all (p,q) ∈ Q and a ∈ Σ we have (p,q) · a = (δ1(p,a), q), and (p,q)◦ a = (p, δ2(q,a)).
The following lemma proves the correctness of this construction.

Lemma 1 For i∈{1,2} let Ai =(Qi,Σ,δi,q
(i)
0 ,Fi) be DFAs with L(A1)=L, and L(A2)=LR. Then BA1×A2

is a deterministic biautomaton, such that L(BA1×A2) = L.

Besides its usefulness for our result on permutation biautomata, this construction is also of relevance
from a descriptional complexity point of view. Using the construction from [12] on an n-state DFA yields
a biautomaton with n ·2n states. In fact, a precise analysis in [10] that uses a similar construction as in [12]
proves a tight bound of n ·2n−2(n−1) states for converting an n-state DFA into an equivalent biautoma-
ton. However, this bound only takes into account the state complexity of the original language L, but not
the state complexity of LR. If the state complexity of LR much smaller than 2n then the bound from [10]
is far off the number of states of the minimal biautomaton for L. Using our construction, we can deduce
an upper bound of n ·m for the number of states of a biautomaton for the language L, if n is the state
complexity of L, and m is the state complexity of LR.

Now we show our result on permutation automata.

Theorem 2 A language is p-regular if and only if it is accepted by some permutation biautomaton.

Proof : If A is a permutation biautomaton, then Afwd is a permutation DFA, hence L(A) is p-regular.
For the reverse implication let L be some p-regular language over the alphabet Σ. Then LR is p-regular,
too [20], so there are permutation DFAs Ai = (Qi,Σ,δi,q

(i)
0 ,Fi), for i = 1,2, that L = L(A1), and LR =

L(A2). Using the cross-product construction from Lemma 1, we obtain the biautomaton B = BA1×A2 .
Recall that the states of B are of the form (p,q), with p ∈ Q1 and q ∈ Q2, and the transitions are defined
such that (p,q) · a = (δ1(p,a),q), and (p,q) ◦ a = (p,δ2(q,a)), for all states (p,q) and symbols a ∈ Σ.
We will show in the following that B is a permutation automaton. Therefore let (p,q) and (p′,q′) be two
states of B, and a ∈ Σ. If (p,q) ·a = (p′,q′) ·a then (δ (p,a),q) = (δ (p′,a),q′), which implies δ (p,a) =
δ (p′,a) and q = q′. Since A1 is a permutation DFA, we also obtain p = p′, hence (p,q) = (p′,q′).
With a similar reasoning, using the permutation property of A2, we see that also (p,q) ◦ a = (p′,q′) ◦ a
implies (p,q) = (p′,q′), therefore B is a permutation biautomaton.

4 Permutation-Free Automata

An important subregular language family is the class of star-free languages. A language is star-free
if it can be obtained from finite languages by finitely many applications of concatenation, union, and
complementation with respect to the underlying alphabet. For the class of finite languages we have the
following obvious theorem, which we state without proof.

276 More Structural Characterizations of Some Subregular Language Families by Biautomata

Theorem 3 A language is finite (co-finite, respectively) if and only if its minimal biautomaton is acyclic
except for non-accepting (accepting, respectively) sink states; self-loops count as cycles.

The class of star-free languages obeys a variety of different characterizations [14], one of them being
the following: a regular language is star-free if its minimal DFA is permutation-free. A DFA A =
(Q,Σ,δ ,q0,F) is permutation-free if there is no word w ∈ Σ∗ such that the mapping q 7→ δ (q,w), for
all q ∈ Q, induces a non-trivial permutation, i.e., a permutation different from the identity permutation,
on some set P ⊆ Q. Now the question arises whether a similar condition for biautomata also yields a
characterization of the star-free languages. We feel that the following definition of permutation-freeness
is a natural extension from the corresponding definition for DFAs. We say that a biautomaton A =
(Q,Σ, ·,◦,q0,F) is permutation-free if there are no words u,v ∈ Σ∗, such that the mapping q 7→ (q ·u)◦ v
induces a non-trivial permutation on some set of states P ⊆ Q. It turns out that with this definition,
permutation-free biautomata indeed characterize the star-free languages. We will later discuss some
other possible definitions. Before we show our result on permutation-free biautomata, we prove the
following lemma which helps us to relate permutations in biautomata to permutations in DFAs.

Lemma 4 Let Q be a finite set and π1,π2 : Q→Q be two mappings satisfying π1(π2(q)) = π2(π1(q)) for
all q ∈Q. If there exists a subset P⊆Q such that the mapping π : P→ P defined by π(p) = π2(π1(p)) is
a non-trivial permutation on P, then there exists a subset P′ ⊆Q and an integer d ≥ 1 such that πd

1 or πd
2

is a non-trivial permutation on P′.

Proof : Consider the sequence of sets π0
1 (P),π

1
1 (P),π2

1 (P), . . . ⊆ Q. Since Q is a finite set, the number
of different sets π j

1(P), for j ≥ 0, is finite. Thus, there must be integers m,d ≥ 1 such that the sets
π0

1 (P),π
1
1 (P), . . .π

m+d−1
1 (P) are pairwise distinct, and πm+d

1 (P) = πm
1 (P). Since π = π1π2 = π2π1 is a

permutation on P, we obtain

P = πm+d(P) = πm+d
2 (πm+d

1 (P)) = πd
2 (π

m
2 (π

m
1 (P))) = πd

2 (P),

which shows that πd
2 is a permutation on P. It follows that also πd

1 must be a permutation on P. If one
of these is a non-trivial permutation we are done. Therefore assume that both πd

1 and πd
2 are the identity

permutation on P. In this case it must be d ≥ 2 because otherwise the permutation π = π1π2 would
be trivial. Then the two sets P and π1(P) are different, so there is an element q ∈ P with π1(q) 6= q.
On the other hand q must satisfy πd

1 (q) = q. Therefore the mapping π1 is a permutation on the set
P′ = {π0

1 (p),π1
1 (p), . . . ,πd−1

1 (p)}, and it is non-trivial because π0
1 (p) = p 6= π1

1 (p).

Now we can show the following characterization of star-free languages in terms of permutation-free
biautomata.

Theorem 5 A language is star-free if and only if its minimal biautomaton is permutation-free.

Proof : Clearly, if A is a minimal biautomaton that is permutation-free, then also the contained minimal
DFA Afwd is permutation-free, too. Therefore the language L(A) is star-free.

For proving the reverse implication let A = (Q,Σ, ·,◦,q0,F) be a minimal biautomaton that is not
permutation-free. Then there are words u,v ∈ Σ∗, and a set of states P ⊆ Q, with |P| ≥ 2, such that
the mapping π : Q→ Q defined as π(q) = (q · u) ◦ v induces a non-trivial permutation on P. Notice
that the �-property of the biautomaton A implies π(q) = π1(π2(q)) = π2(π1(q)), for π1(q) = q · u, and
π2(q) = q ◦ v. Therefore we can use Lemma 4, and obtain an integer d ≥ 1 such that πd

1 or πd
2 induces

a non-trivial permutation on some subset P′ ⊆ Q. If πd
1 is non-trivial, then the word ud induces a non-

trivial permutation in the minimal DFA Afwd, which in turn means that the language L(A) is not star-free.

Markus Holzer and Sebastian Jakobi 277

q0 q1 q2

q3 q4 q5

q6 q7 q8

a, b a

b

a, b a

b

a, b a

b

b

a

a, b

b

a a, b

b

a

a, b

Figure 1: The permutation-free biautomaton A that has a word-cycle and a graph-cycle.

Otherwise, the mapping πd
2 is non-trivial, and the word vd induces a non-trivial permutation on the

minimal DFA Abwd, which means that the language L(A)R is not star-free. Since the class of star-free
languages is closed under reversal, we again conclude that the language L(A) cannot be star-free in this
case.

In the above definition of permutation-free biautomata, from all states in the permutation induced by
the word uv, the prefix u must be read with forward transitions and the suffix v with backward transitions.
One could also think of other kinds of permutations in biautomata, and we shortly discuss two different
such notions in the following. Since a permutation is composed of cycles, we describe the types of
cycles. Let P = {p0, p1, . . . , pk−1} be some set of states of a biautomaton A and w be some non-empty
word over the input alphabet of A.
• We say that w induces a word-cycle on P if for 0≤ i≤ k−1 we have p(i+1) mod k = (pi ·ui)◦vi, for

some words ui and vi, with uivi = w.

• We say that w induces a graph-cycle on P if w = a1a2 . . .an and we have

p(i+1) mod k = (. . .((pi •i,1 a1)•i,2 a2) . . .)•i,n an,

for 0≤ i≤ k−1, where •i, j ∈ {·,◦}, for 1≤ j ≤ n. The intuition behind the definition of a graph-
cycle is that the word w specifies the sequence of transitions (regardless whether they are forward
or backward transitions) that are taken during the course of the computation.

Notice that if a biautomaton has a permutation as defined before Theorem 5, then it also has a word-
cycle, and also a graph-cycle. Hence, if a language is accepted by a biautomaton that has no word-cycle
or by a biautomaton that has no graph-cycle, then it is star-free. However, the converse is not true, as the
following example shows.
Example 6 Let A = (Q,Σ, ·,◦,q0,F) be the minimal DBiA for the language L = {aab,bab}∗. The bi-
automaton A is depicted in Figure 1—solid arrows denote forward transitions by ·, and dashed arrows
denote backward transitions by ◦. By inspecting the DFA Afwd, consisting of the states q0,q1,q2, and the
non-accepting sink state, which is not shown, one can see that Afwd is permutation-free. Therefore the
language L is star-free, and also the biautomaton A must be permutation-free. However, the word ab
induces a word-cycle on the states q0, q1, and q6 because q0 ◦ab = q6, (q6 ·a)◦b = q1, and q1 ·ab = q0.
Further, the word ab also induces a graph-cycle on the states q0, q4, and q3 because (q0 · a) ◦ b = q4,
(q4 ·a) ·b = q3, and (q3 ◦a)◦b = q0.

278 More Structural Characterizations of Some Subregular Language Families by Biautomata

4.1 Strongly Permutation-Free Automata

A permutation-free automaton does not contain any non-trivial permutation, but it may contain the iden-
tity permutation. We may also forbid the identity permutation, which leads to the following definitions.
A DFA A = (Q,Σ,δ ,q0,F) is strongly permutation-free if there is no non-empty word w ∈ Σ+, such that
the mapping q 7→ δ (q,w) induces a permutation on some set P⊆Q, with |P| ≥ 2. Similarly, a biautoma-
ton A = (Q,Σ, ·,◦,q0,F) is strongly permutation-free if there are no words u,v ∈ Σ∗, with uv ∈ Σ+, such
that the mapping q 7→ (q ·u)◦ v induces a permutation on some set P⊆ Q, with |P| ≥ 2. In these defini-
tions we require the words w and uv to be non-empty because the empty-word always induces the identity
permutation on all sets of states. Further we only consider subsets P ⊆ Q with |P| ≥ 2 because every
DFA and every biautomaton must contain a (maybe identity) permutation on a set P ⊆ Q with |P| ≥ 1,
since by the pigeon hole principle there is a state which is repeatedly visited by only reading the letter a
long enough.

Before we study which languages are accepted by strongly permutation-free automata, we give some
further definitions which turn out to be related to strongly permutation-freeness. Let A = (Q,Σ,δ ,q0,F)
be a DFA, and w ∈ Σ+ some non-empty word. A state q ∈ Q is called a w-attractor in A, if for all
states p ∈ Q there is an integer k > 0 such that δ (p,wk) = q. For a biautomaton A = (Q,Σ, ·,◦,q0,F)
and words u,v ∈ Σ∗, with |uv| ≥ 1, we denote by πu,v the mapping p 7→ (p · u) ◦ v. Now a state q ∈ Q
is a (u,v)-attractor in A if for all p ∈ Q there is an integer k > 0 such that πk

u,v(p) = q. Notice that due
to the �-property of A the condition πk

u,v(p) = q can also be written as (p · uk) ◦ vk = q. Next we recall
the definition of almost-equivalence. Two languages L1 and L2 are almost-equivalent (L1 ∼ L2) if their
symmetric difference L14L2 = (L1 \L2)∪ (L2 \L1) is finite. This notion naturally transfers to states as
follows. For a state q of some DFA or biautomaton A we denote by LA(q) the language accepted by the
automaton qA which is obtained from A by making state q its initial state. The language LA(q) is also
called the right language of q. Now two states p and q of a DFA or biautomaton A are almost-equivalent
(p ∼ q) if their right languages LA(p) and LA(q) are almost-equivalent. We write p ≡ q, if p and q
are equivalent, i.e., if LA(p) = LA(q). Our next theorem connects the notions of almost-equivalence,
w-attractors, and strongly permutation-freeness for DFAs, and shows that these conditions can be used to
characterize the class of definite languages—a language L over an alphabet Σ is definite if there are finite
languages L1 and L2 over Σ such that L = L1∪Σ∗L2. Interestingly the relation between definite languages
and almost-equivalence was already studied in [16], long before the notion of almost-equivalence became
popular in [2]—in [16] the used form of equivalence was not called “almost-equivalence,” but simply
“equivalent.” Moreover, the relation between definite languages and strongly permutation-free automata
was independently shown in [3]—compare also with [14, Exercise 28 of Chapter 4 and Exercise 13 of
Chapter 5].

Theorem 7 Let A = (Q,Σ,δ ,q0,F) be some minimal DFA, then the following statements are equivalent:

1. All states in Q are pairwise almost-equivalent.

2. For all words w ∈ Σ+, there is a w-attractor in A.

3. A is strongly permutation-free.

4. L(A) is a definite language.

Now we turn to biautomata, where we will see that the equivalences between the first three conditions
of Theorem 7 also hold in the setting of biautomata. However, we will see that the language class related
to these conditions is different. Before we come to this result we recall the following lemma from [9]:

Markus Holzer and Sebastian Jakobi 279

Lemma 8 Let A = (Q,Σ, ·,◦,q0,F) and A′ = (Q′,Σ, ·′,◦′,q′0,F ′) be two biautomata, and let p ∈ Q
and q ∈ Q′. Then p ∼ q if and only if (p · u) ◦ v ∼ (q ·′ u) ◦′ v, for all words u,v ∈ Σ∗. Moreover, p ∼ q
implies (p ·u)◦ v≡ (q ·′ u)◦′ v, for all words u,v ∈ Σ∗ with |uv| ≥ k = |Q×Q′|.

The two automata A and A′ in Lemma 8 need not be different, so this lemma can also be used for
states p and q in one biautomaton A. Further, if this biautomaton A is minimal, then it does not contain
a pair of different, but equivalent states. In this case the states p and q are almost-equivalent if and only
if for all long enough words uv ∈ Σ∗ the two states (p ·u)◦ v and (q ·u)◦ v are the same state. We obtain
the following corollary.

Corollary 9 Let A = (Q,Σ, ·,◦,q0,F) be a minimal biautomaton, and k = |Q×Q|. Two states p,q ∈ Q
are almost-equivalent if and only if for all words u,v ∈ Σ∗, with |uv| ≥ k, it is (p ·u)◦ v = (q ·u)◦ v.

Now we are ready for our result on strongly permutation-free biautomata.

Theorem 10 Let A = (Q,Σ, ·,◦,q0,F) be some minimal biautomaton, then the following statements are
equivalent:

1. All states in Q are pairwise almost-equivalent.

2. There is a state s ∈ Q that is a (u,v)-attractor in A, for all u,v ∈ Σ∗ with |uv| ≥ 1.

3. A is strongly permutation-free.

4. L(A) is a finite or co-finite language.

Proof : Let A = (Q,Σ, ·,◦,q0,F) be a minimal biautomaton. First assume L(A) is a finite language, and
let ` be the length of a longest word in L(A). Then the right language LA(q) of every state q ∈Q is finite,
so all states in Q are pairwise almost-equivalent. Since L(A) is finite, and A is minimal, the biautomaton
has a non-accepting sink state s, with s ·a = s◦a = s for all a ∈ Σ. Moreover, from any state q ∈ Q the
automaton always reaches this sink state s after reading at most ` symbols. Therefore, the state s is a
(u,v)-attractor in A, for all words u,v ∈ Σ∗ with |uv| ≥ 1. It also follows that the only permutation that is
possible in A is the identity permutation on the singleton set {s}, hence A is strongly permutation-free.
The case where L(A) is a co-finite language is similar. The only differences are that the sink state s is an
accepting state, and the integer ` must be the length of the longest word that is not in L(A). This shows
that statement 4 implies all other statements, and it remains to prove the other directions.

Assume that all states in Q are pairwise almost-equivalent, and let k be the integer from Corollary 9.
If the length of every word in L(A) is less than k then L(A) is a finite language, so assume that there is a
word w ∈ L(A) with |w| ≥ k. We show that in this case language L(A) contains every word of length at
least k, and thus, is co-finite. Since |w| ≥ k, we can write w as w=w1w2, with |w2|= k. Because w∈ L(A)
we have (q0 ·w1) ◦w2 ∈ F . Now let u ∈ Σ≥k, and consider the states p = (q0 ·w1) and q = (q0 · u).
Since all states are almost-equivalent, and the word w2 has length k, we can use Corollary 9 to obtain
(p ·λ)◦w2 = (q ·λ)◦w2. Hence the state q◦w2 = (q0 ·u)◦w2 is accepting. By the �-property of A we
have (q0 ·u)◦w2 = (q0 ◦w2) ·u, and another application of Corollary 9 on the almost-equivalent states q0
and q0 ◦w2 we obtain q0 ·u = (q0 ◦w2) ·u, because |u| ≥ k. This shows that the word u is accepted by A,
hence L(A) is co-finite. This shows that statements 1 and 4 are equivalent.

Next assume there is a state s∈Q that is a (u,v)-attractor for all words u,v∈ Σ∗ with |uv| ≥ 1. Then A
must be strongly permutation-free, which can be seen as follows. Assume that there are words u,v ∈ Σ∗
with |uv| ≥ 1 such that the mapping π : q 7→ (q ·u)◦ v is a permutation on some set P⊆ Q, with |P| ≥ 2.
Then it must be

∣∣π i(P)
∣∣= |P| ≥ 2, for all i≥ 0. But since s is a (u,v)-attractor, there is an integer m≥ 0

280 More Structural Characterizations of Some Subregular Language Families by Biautomata

q0 q1 q2

b

a

a

b

a, b

Figure 2: The minimal DFA A for the language Σ∗abΣ∗ over the alphabet Σ = {a,b}. The states of A1
can be ordered by q0 ≤ q1 ≤ q2.

such that (q ·um)◦vm = s, for all states q ∈Q. Then |πm(P)|= 1, which is a contradiction, therefore A is
strongly permutation-free.

Now it is sufficient to show that statement 3 implies statement 1. Therefore let A be strongly
permutation-free, and assume for the sake of contradiction, that there are two states p,q ∈Q with p � q.
Corollary 9 now implies that there are words u,v∈Σ∗, with |uv| ≥ |Q×Q|, such that (p ·u)◦v 6=(q ·u)◦v.
Since the number of steps in the computations (p · u) ◦ v and (q · u) ◦ v is at least |Q×Q|, the words u
and v can be written as u = u1u2u3 and v = v3v2v1 such that

(p ·u1)◦ v1 = p1, (p1 ·u2)◦ v2 = p1, (p1 ·u3)◦ v3 = (p ·u)◦ v,

(q ·u1)◦ v1 = q1, (q1 ·u2)◦ v2 = q1, (q1 ·u3)◦ v3 = (q ·u)◦ v.

But then the mapping π : r 7→ (r ·u2)◦v2 is a permutation (the identity permutation) on the states {p1,q1}.
Since A is strongly permutation-free, it follows p1 = q1, and in turn (p ·u)◦v= (q ·u)◦v. This contradicts
the assumption p � q, and concludes our proof.

5 Ordered Automata

We now study automata where one can find an order on the state set that is compatible with the tran-
sitions of the automaton. Ordered DFAs and their accepted languages were studied in [18]. A DFA
A = (Q,Σ,δ ,q0,F) is ordered if there exists some total order≤ on the state set Q such that p≤ q implies
δ (p,a)≤ δ (q,a), for all states p,q∈Q and symbols a∈Σ. Similarly, a biautomaton A= (Q,Σ, ·,◦,q0,F)
is ordered if there is a total order ≤ on Q such that p≤ q implies p ·a≤ q ·a as well as p◦a≤ q◦a, for
all states p,q ∈ Q and symbols a ∈ Σ. A regular language is ordered if it is accepted by some ordered
DFA, and it is bi-ordered if it is accepted by an ordered biautomaton. Moreover, a language is strictly
ordered if its minimal DFA is ordered, and it is strictly bi-ordered if its minimal biautomaton is ordered.

The next two results show that the class of bi-ordered languages is located between the class of
ordered languages and the class of finite and co-finite languages.

Theorem 11 The class of bi-ordered languages is strictly contained in the class of ordered languages.

Proof : If L is a bi-ordered language, then it is accepted by some ordered DBiA A. Then of course the
automaton Afwd is an ordered DFA. Therefore any bi-ordered language is an ordered language. The
strictness of this inclusion is witnessed by the language Σ∗abΣ∗ over the alphabet Σ = {a,b}, which is
accepted by the ordered DFA A from Figure 2.

Next let us argue, why no biautomaton for the language Σ∗abΣ∗ can be ordered. Therefore consider
some biautomaton B = (Q,Σ, ·,◦,q0,F) with L(B) = Σ∗abΣ∗. In the following we use the notation [u.v],
for u,v ∈ Σ∗, to describe the state (q0 · u) ◦ v of B. Of course, different word pairs [u.v] and [u′.v′] may
describe the same state. First note that the three states [λ .λ], [a.λ], and [λ .b] must be pairwise distinct,

Markus Holzer and Sebastian Jakobi 281

because every one of these states leads to an accepting state on a different input string. Assume there
is some order ≤ on the state set Q that is compatible with the transition functions of B. There are six
different possibilities to order the three above mentioned states:

[λ .λ]≤ [a.λ]≤ [λ .b], [a.λ]≤ [λ .λ]≤ [λ .b], [λ .b]≤ [a.λ]≤ [λ .λ],
[λ .λ]≤ [λ .b]≤ [a.λ], [a.λ]≤ [λ .b]≤ [λ .λ], [λ .b]≤ [λ .λ]≤ [a.λ].

If [λ .λ] ≤ [a.λ] ≤ [λ .b] then it must be [λ .bi] ≤ [a.bi] ≤ [λ .bi+1], for all i ≥ 0. Since the number
of states in Q is finite, there must be integers j > k ≥ 0 for which [λ .bk] = [λ .b j]. It then follows that
[λ .bk] = [a.bk] = [λ .bk+1]. This is a contradiction because [a.bk] describes an accepting state, while [λ .bk]
and [λ .bk+1] describe non-accepting states.

If [λ .λ] ≤ [λ .b] ≤ [a.λ] then we obtain [ai.λ] ≤ [ai.b] ≤ [ai+1.λ] for all i ≥ 0. Similar to the case
above we get a contradiction: because Q is finite there is an integer k≥ 0 with [ak.λ] = [ak.b] = [ak+1.λ],
but the state [ak.b] is accepting while the other two states are non-accepting.

Next consider the case [a.λ] ≤ [λ .λ] ≤ [λ .b]. By reading symbol a with a forward transition we
obtain [a.λ] ≤ [a.b] from the second inequality, and by reading b with a backward transition, the first
inequality implies [a.b] ≤ [λ .b]. Note that both times [a.b] describes the same state because B has the
�-property. Further, this state must be different from the three states [a.λ], [λ .λ], and [λ .b] because it is
an accepting state, and the others are not. Now there are two possibilities for the placement of state [a.b]
in the order:

[a.λ]≤ [a.b]≤ [λ .λ]≤ [λ .b] or [a.λ]≤ [λ .λ]≤ [a.b]≤ [λ .b].

The first case implies [ai+1.λ]≤ [ai+1.b]≤ [ai.λ], for all i≥ 0, which leads to the contradictory equation
[ak+1.λ] = [ak+1.b] = [ak.λ], for some k ≥ 0. The second case implies [λ .bi] ≤ [a.bi+1] ≤ [λ .bi+1], for
all i≥ 0, and to the contradiction [λ .bk] = [a.bk+1] = [λ .bk+1], for some k ≥ 0.

With similar argumentation, the remaining three cases [a.λ]≤ [λ .b]≤ [λ .λ], [λ .b]≤ [a.λ]≤ [λ .λ],
and [λ .b] ≤ [λ .λ] ≤ [a.λ] lead to contradictions—we omit the details. This shows that there is no
order of the state set Q that is compatible with the transition functions of B. Therefore, the ordered
language Σ∗abΣ∗ is not a bi-ordered language.

In the proof of the following result we use the lexicographic order <lex of words, which is defined as
follows. Let Σ be an alphabet of size k and fix some order a1,a2, . . . ,ak of the symbols from Σ. For two
words w1,w2 ∈ Σ∗ let w1 <lex w2 if and only if either w1 is a prefix of w2, or w1 = uaiw′1 and w2 = ua jw′2,
for some words u,w′1,w

′
2 ∈ Σ∗ and symbols ai,a j ∈ Σ, with i < j.

Theorem 12 The class of finite and co-finite languages is strictly contained in the class of bi-ordered
languages.

Proof : Let L be some finite language over the alphabet Σ and let ` be the length of the longest word
in L. We construct an ordered biautomaton for L as follows. Let A = (Q,Σ, ·,◦,q0,F) be the biautomaton
with state set Q = {(u,v) | u,v ∈ Σ∗, |uv| ≤ `} ∪ {s}, initial state q0 = (λ ,λ), set of accepting states
F = {(u,v) ∈ Q | uv ∈ L}, and where the transition functions · and ◦ are defined as follows: for all
symbols a ∈ Σ let s ·a = s◦a = s, and for all states (u,v) ∈ Q let

(u,v) ·a =

{
(ua,v) if |uav| ≤ `,
s otherwise,

(u,v)◦a =

{
(u,av) if |uav| ≤ `,
s otherwise.

One readily sees that A has both the �-property, and the F-property. Now let us define the order≤ on Q as
follows. First of all let (u,v)≤ s, for all (u,v) ∈ Q, so the non-accepting sink state is the largest element
of Q. Next, for two different states (u1,v1) and (u2,v2) let (u1,v1)≤ (u2,v2) if and only if

282 More Structural Characterizations of Some Subregular Language Families by Biautomata

• |u1v1|< |u2v2|, or

• |u1v1|= |u2v2|, and |u1|< |u2|, or

• |u1v1|= |u2v2|, |u1|= |u2|, and u1 <lex u2, or

• |u1v1|= |u2v2|, u1 = u2, and v1 <lex v2.

Notice that if none of the four cases above holds, then (u1,v1) = (u2,v2). It remains to show that the
transitions of A respect the order ≤. Since state s goes to itself on every symbol, because it is the largest
element, we have (u,v) · a ≤ s · a, and (u,v) ◦ a ≤ s ◦ a. Next let (u1,v1) and (u2,v2) be two different
states of A with (u1,v1) ≤ (u2,v2). Then it must be |u1v1| ≤ |u2v2| ≤ `. If |u2v2| = `, then (u2,v2) goes
to the sink state s on both the forward, and the backward a-transition. Since s is the largest element we
obtain (u1,v1) ·a ≤ (u2,v2) ·a, and (u1,v1)◦a ≤ (u2,v2)◦a. Therefore, in the following argumentation
we assume that |u2,v2| < `, so that we have (u1,v1) · a = (u1a,v1) and (u2,v2) · a = (u2a,v2), as well
as (u1,v1) ◦ a = (u1,av1) and (u2,v2) ◦ a = (u2,av2). Now we have to show (u1a,v1) ≤ (u2a,v2) and
(u1,av1)≤ (u2,av2), for which we distinguish four cases.

• If |u1v1|< |u2v2| then clearly |u1av1|< |u2av2|, from which we conclude (u1a,v1)≤ (u2a,v2), and
(u1,av1)≤ (u2,av2).

• If |u1v1| = |u2v2|, and |u1| < |u2|, then also |u1a| < |u2a|. Again, we can conclude (u1a,v1) ≤
(u2a,v2), and (u1,av1)≤ (u2,av2).

• Next assume |u1v1| = |u2v2|, |u1| = |u2|, and u1 <lex u2. Since u1 and u2 are of same length, the
fact u1 <lex u2 implies u1a <lex u2a. Thus, we get (u1a,v1)≤ (u2a,v2), and (u1,av1)≤ (u2,av2).

• Finally let |u1v1|= |u2v2|, |u1|= |u2|, u1 = u2, and v1 <lex v2. From v1 <lex v2 follows av1 <lex av2,
so we obtain (u1a,v1)≤ (u2a,v2), and (u1,av1)≤ (u2,av2).

This shows that the biautomaton A is an ordered biautomaton.
In case of a co-finite language L⊆ Σ∗ we first take its complement Σ∗ \L, which is finite, and apply

the above given construction. Then we obtain an ordered biautomata A. Finally, exchanging accepting
and non-accepting states—this is the ordinary complementation construction known for DFAs applied to
DBiAs—results in an ordered biautomata for the language L.

Finally, strictness of the inclusion is witnessed by the infinite and not co-finite language a∗+b, which
is accepted by the bi-ordered biautomaton from Figure 3.

Notice that the language Σ∗abΣ∗ from the proof of Theorem 11 is even a strictly ordered language,
since its minimal DFA A from Figure 2 is ordered. As we have seen, this language is not a bi-ordered
language, therefore the class of bi-ordered languages does not even contain all strictly ordered languages.
On the other hand, if a language is strictly bi-ordered, i.e., if its minimal biautomaton B is ordered, then
also the minimal DFA Bfwd is ordered. Therefore, the class of strictly bi-ordered languages is contained
in the classes of strictly ordered languages. We summarize our findings in the following corollary.

q0 q1 q2 q3
a

b

a b

a, b
a, b

Figure 3: A bi-ordered biautomaton with order q0 ≤ q1 ≤ q2 ≤ q3 for the language a∗+b.

Markus Holzer and Sebastian Jakobi 283

Corollary 13 The class of strictly bi-ordered languages is proper subset of the class of strictly ordered
languages.

Concerning the relation between bi-ordered languages and strictly ordered languages, we can see
that these are incomparable to each other. We have seen that the strictly ordered language Σ∗abΣ∗ is not
bi-ordered. On the other hand, we know that every finite language is bi-ordered. But one can see that the
minimal DFA for the finite language {ab} is not ordered—the reader is invited convince himself of this
fact. A proof of a more general result, saying that a single word language is strictly ordered if and only
if the word is of the form ai for some alphabet symbol a and integer i≥ 0, can be found in [18].

Corollary 14 The classes of bi-ordered languages and of strictly ordered languages are incomparable
to each other.

Moreover, with a similar argumentation as above we obtain:

Corollary 15 The class strictly bi-ordered languages is a proper subset of the class of bi-ordered lan-
guages.

6 Non-Exiting and Non-Returning Automata

In this last section we study so called non-exiting automata and non-returning automata. A biautomaton
or finite automaton A is non-exiting if all outgoing transitions from accepting states go to a non-accepting
sink state, and it is non-returning if the initial state does not have any ingoing transitions. We say that A
is exiting if it is not non-exiting, and it is returning if it is not non-returning.

In the DFA case non-exiting automata are known to characterize the class of prefix-free languages,
while non-returning automata are related to suffix-free languages. However this latter relation is not
a characterization: it is true that every DFA that accepts a (non-empty) suffix-free language must be
non-returning, but the reverse implication does not hold.

Concerning the situation for biautomata, we first show that every biautomaton which is non-exiting
must also be non-returning (unless it accepts the empty language).

Lemma 16 Let A be a biautomaton with L(A) 6= /0. If A is non-exiting, then A is non-returning.

Proof : We prove the contraposition of the lemma. Assume A = (Q,Σ, ·,◦,q0,F) is a returning biau-
tomaton. Then there must be words u,v ∈ Σ∗, with |uv| ≥ 1, such that (q0 · u) ◦ v = q0. It follows that
(q0 · un) ◦ vn = (q0 ◦ vn) · un = q0, for all n ≥ 0. Since the number of states in A is finite, there are inte-
gers i, j ≥ 0 and x,y≥ 1 such that q0 ·ui = q0 ·ui+x and q0 ◦ v j = q0 ◦ v j+y. We obtain q0 = (q0 ·ui+x)◦ vi

and q0 = (q0 ◦ v j+y) · u j. Now let w ∈ L(A), i.e., q0 ·w ∈ F . From our considerations above we get
((q0 ·ui)◦ vi) ·w ∈ F and

((q0 ·ui)◦ vi) ·w = ((q0 ·ui+x)◦ vi) ·w = (((q0 ·ui)◦ vi) ·w) ·ux ∈ F.

Recall that |uv| ≥ 1. If |u| ≥ 1, then we see that A is exiting because the accepting state ((q0 ·ui+x)◦vi) ·w
cannot go to a non-accepting sink state on every input symbol. If |u|= 0 then it must be |v| ≥ 1. Now a
similar argumentation gives ((q0 ◦ v j) ·u j) ·w ∈ F and

((q0 ◦ v j) ·u j) ·w = ((q0 ◦ v j+y) ·u j) ·w = (((q0 ◦ v j) ·u j) ·w)◦ vy ∈ F.

Here the accepting state ((q0 ◦ v j) · u j) ·w cannot go to a non-accepting sink state on every alphabet
symbol, which shows that A is exiting.

284 More Structural Characterizations of Some Subregular Language Families by Biautomata

The converse of Lemma 16 is not true which can easily be seen by the minimal biautomaton for
the language {a,aa}. Since the language is finite, there cannot be a cycle q0 = (q0 · u) ◦ v, hence the
biautomaton is non-returning. However, since both states q0 ·a and (q0 ·a) ·a are accepting, the automaton
cannot be non-exiting.

Now we study the classes of languages accepted by biautomaton that are non-exiting or non-returning.
While minimal non-exiting DFAs characterize the class of prefix-free languages, we show in the follow-
ing that minimal non-exiting biautomata characterize a different language class, namely the class of
circumfix-free languages. A word v ∈ Σ∗ is a circumfix of a word w ∈ Σ∗, if w = w1w2w3 and v = w1w3,
for some words w1,w2,w3 ∈ Σ∗. A language L is called circumfix-free if there are no two different
words w,v ∈ L, such that v is a circumfix of w. Notice that prefixes and suffixes of a word are also cir-
cumfixes (where one “side” is λ). Therefore the class of circumfix-free languages is contained in both
the classes of prefix-free languages and suffix-free languages.

Theorem 17 A regular language is circumfix-free if and only if its minimal biautomaton is non-exiting.

Proof : Let A = (Q,Σ, ·,◦,q0,F) be a minimal biautomaton and L = L(A). First assume that A is exiting,
i.e., there is an accepting state q ∈ F and a non-empty word w ∈ Σ+ such that q ·w ∈ F . Since q must be
reachable from the initial state of A, there are words u,v ∈ Σ∗ with (q0 ·u)◦ v = q. Then both words uv
and uwv belong to L(A), but uv is a circumfix of w. Therefore, if L(A) is circumfix-free then A must be
non-exiting.

For the reverse implication notice that whenever there are two different words w and w′ in L(A)
such that w′ is a circumfix of w, then w = w1w2w3 and w′ = w1w3, with w1,w3 ∈ Σ∗ and w2 ∈ Σ+

(because w 6= w′). It follows (q0 ·w1) ◦w3 ∈ F and ((q0 ·w1) ◦w3) ·w2 ∈ F , and since w2 6= λ the
automaton A must be exiting. Thus, if A is non-exiting then L(A) must be circumfix-free.

Now we consider languages accepted non-returning biautomata. If a minimal biautomaton A is non-
returning then clearly the contained minimal DFA Afwd is non-returning, too. Therefore the class of
languages accepted by minimal non-returning biautomata is contained in the class of languages accepted
by minimal non-returning DFAs. Moreover, this inclusion is strict because the minimal DFA for the
language ab∗ is non-returning, while the minimal biautomaton for that language is not (it has a backward
transition loop for symbol b on its initial state). Therefore we have the following result.

Theorem 18 The class of languages accepted by minimal non-returning biautomata is strictly contained
in the class of languages accepted by minimal non-returning deterministic finite automata.

7 Conclusions

We continued the study of structural properties on biautomata started in [7, 11, 12]. Our focus was on the
effect of classical properties of deterministic finite automata such as, e.g., permutation-freeness, strongly
permutation-freeness, and orderability, on biautomata. It is shown that this approach on structurally
restricting the recently introduced biautomata model was worth looking at. A comparison of the induced
language families on structurally restricted deterministic automata and biautomata is given in Table 1.
Future research on the subject under consideration may consist on some further properties such as, e.g.,
biautomata where all states are final or all are initial. In the case of ordinary deterministic finite automata
the family of prefix-closed languages is obtained by the former property, while the latter gives the family
of suffix-closed languages. Moreover, it would be also interesting to study, which structural properties
can be successfully applied to nondeterministic biautomata, as introduced in [8].

Markus Holzer and Sebastian Jakobi 285

References

[1] M. A. Arbib (1969): Theories of Abstract Automata. Automatic Computation, Prentice-Hall, London.

[2] A. Badr, V. Geffert & I. Shipman (2009): Hyper-Minimizing Minimized Deterministic Finite State Automata.
RAIRO–Informatique théorique et Applications / Theoretical Informatics and Applications 43(1), pp. 69–94.
doi:10.1051/ita:2007061

[3] J. Brzozowski & B. Liu (2021): Syntactic Complexity of Finite/Cofinite, Definite, and Reverse Definite Lan-
guages. arXiv:1203.2873v1 [cs.FL].

[4] J. A. Brzozowski & F. E. Fitch (1980): Languages of R-Trivial Monoids. Journal of Computer and System
Sciences 20(1), pp. 32–49. doi:10.1016/0022-0000(80)90003-3

[5] J.-M. Champarnaud, J.-P. Dubernard, H. Jeanne & L. Mignot (2013): Two-Sided Derivatives for Regular
Expressions and for Hairpin Expressions. In A. H. Dediu, C. Martı́n-Vide & B. Truthe, editors: Proc. of the
7th International Conference on Language and Automata Theory and Applications, LNCS 7810, Springer,
Bilbao, Spain, pp. 202–213. doi:10.1007/978-3-642-37064-9 19

[6] I. M. Havel (1969): The theory of regular events II. Kybernetika 6, pp. 520–544.

[7] M. Holzer & S. Jakobi (2013): Minimization and Characterizations for Biautomata. In S. Bensch, F. Drewes,
R. Freund & F. Otto, editors: Proc. of the 5th International Workshop on Non-Classical Models of Automata
and Applications, books@ocg.at 294, Österreichische Computer Gesellschaft, Umeå, Sweden, pp. 179–193.

[8] M. Holzer & S. Jakobi (2013): Nondeterministic Biautomata and Their Descriptional Complexity. In
H. Jürgensen & R. Reis, editors: Proc. of the 15th International Workshop on Descriptional Complexity
of Formal Systems, LNCS 8031, Springer, London, Ontario, Canada, pp. 112–123. doi:10.1007/978-3-642-
39310-5 12

[9] M. Holzer & S. Jakobi (2014): Minimal and Hyper-Minimal Biautomata. IFIG Research Report 1401, Institut
für Informatik, Justus-Liebig-Universität Gießen, Arndtstr. 2, D-35392 Gießen, Germany.

[10] G. Jirásková & O. Klı́ma (2012): Descriptional Complexity of Biautomata. In M. Kutrib, N. Moreira &
R. Reis, editors: Proc. of the 14th International Workshop Descriptional Complexity of Formal Systems,
LNCS 7386, Springer, Braga, Portugal, pp. 196–208. doi:10.1007/978-3-642-31623-4 15

[11] O. Klı́ma & L. Polák (2012): Biautomata for k-Piecewise Testable Languages. In H.-C. Yen & O. H. Ibarra,
editors: Proc. of the 16th International Conference Developments in Language Theory, LNCS 7410, Springer,
Taipei, Taiwan, pp. 344–355. doi:10.1007/978-3-642-31653-1 31

[12] O. Klı́ma & L. Polák (2012): On Biautomata. RAIRO–Informatique théorique et Applications / Theoretical
Informatics and Applications 46(4), pp. 573–592. doi:10.1051/ita/2012014

[13] R. Loukanova (2007): Linear Context Free Languages. In C. B. Jones, Z. Liu & J. Woodcock, editors: Proc.
of the 4th International Colloquium Theoretical Aspects of Computing, LNCS 4711, Springer, Macau, China,
pp. 351–365.

[14] R. McNaughton & S. Papert (1971): Counter-free automata. Research monographs 65, MIT Press.

[15] M. L. Minsky (1967): Computation: Finite and Infinite Machines. Automatic Computation, Prentice-Hall.

[16] M. Perles, M. O. Rabin & E. Shamir (1963): The Theory of Definite Automata. IEEE Transactions on
Electronic Computers EC-12(3), pp. 233–243. doi:10.1109/PGEC.1963.263534

[17] A. L. Rosenberg (1967): A Machine Realization of the Linear Context-Free Languages. Information and
Control 10, pp. 175–188. doi:10.1016/S0019-9958(67)80006-8

[18] H.-J. Shyr & G. Thierrin (1974): Ordered Automata and Associated Languages. Tamkang Journal of Math-
ematics 5(1).

[19] I. Simon (1975): Piecewise Testable Events. In H. Brakhage, editor: Proc. of the 2nd GI Conference on
Automata Theory and Formal Languages, LNCS 33, Springer, Kaiserslautern, Germany, pp. 214–222.

[20] G. Thierrin (1968): Permutation Automata. Mathematical Systems Theory 2(1), pp. 83–90.
doi:10.1007/BF01691347

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 286–300, doi:10.4204/EPTCS.151.20

Buffered Simulation Games for Büchi Automata

Milka Hutagalung, Martin Lange and Etienne Lozes
School of Electr. Eng. and Computer Science, University of Kassel, Germany∗

Simulation relations are an important tool in automata theory because they provide efficiently com-
putable approximations to language inclusion. In recent years, extensions of ordinary simulations
have been studied, for instance multi-pebble and multi-letter simulations which yield better approxi-
mations and are still polynomial-time computable.

In this paper we study the limitations of approximating language inclusion in this way: we
introduce a natural extension of multi-letter simulations called buffered simulations. They are based
on a simulation game in which the two players share a FIFO buffer of unbounded size. We consider
two variants of these buffered games called continuous and look-ahead simulation which differ in
how elements can be removed from the FIFO buffer. We show that look-ahead simulation, the simpler
one, is already PSPACE-hard, i.e. computationally as hard as language inclusion itself. Continuous
simulation is even EXPTIME-hard. We also provide matching upper bounds for solving these games
with infinite state spaces.

1 Introduction

Nondeterministic Büchi automata (NBA) are an important formalism for the specification and verifica-
tion of reactive systems. While they have originally been introduced as an auxiliary device in the quest
for a decision procedure for Monadic Second-Order Logic [4] they are by now commonly used in such
applications as LTL software model-checking [13, 21], or size-change termination analysis for recursive
programs [24, 17]. Typical decision procedures from these domains then reduce to automata-theoretic
decision problems like emptiness or inclusion for instance [30].

While emptiness for Büchi automata is NLOGSPACE-complete, deciding inclusion between two
nondeterministic finite automata is already more difficult, namely PSPACE-complete [25]. This is also
the complexity of inclusion for NBA. Thus, it is – given current knowledge – exponential in the size of
the involved NBA regardless of whether it is solved using explicit complementation [27, 29, 23] or other
means [1, 16]. One major issue of automata manipulation is therefore to keep the number of states as
small as possible.

Since the early works of Dill et al [11], simulations have been intensively used in automata-based
verification. Unlike the PSPACE-hard problems like inclusion, simulation between two NBA is cheap
to compute. Simulations are interesting with respect to several aspects. On the one hand, they offer
a sound, but incomplete, approximation of language inclusion that may be sufficient in many practical
cases. On the other hand, simulations can be used for quotienting automata [5, 18, 14], for pruning
transitions [1, 2], or for improving existing decision procedures on NBA like the Ramsey-based [17] or
the antichain algorithm for inclusion, resp. universality checking [12].

There is a simple game-theoretic characterisation of simulation between two NBA: two players called
Spoiler and Duplicator move two pebbles on the transition graph of the NBA, each of them controls one
pebble. In order to decide whether or not an NBA A is simulated by an NBA B, Spoiler starts with his

∗The European Research Council has provided financial support under the European Community’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant agreement no 259267.

M. Hutagalung, M. Lange, E. Lozes 287

pebble on the initial state of A and moves it along a transition labeled with some alphabet symbol a.
Duplicator starts with her pebble on the initial state of B and responds with a move along a transition
labeled with the same letter. This proceeds ad infinitum. There are different kinds of simulation depend-
ing on the winning conditions in these games. For instance, fair simulation models the Büchi acceptance
condition and requires Duplicator to have visited infinitely often accepting states if Spoiler has done so.
While it is close to the actual condition on inclusion between these two automata, quotienting automata
with respect to fair simulation does not preserve the automaton’s language.

It is therefore that different winning conditions like delayed simulation have been invented which
require Duplicator to eventually visit an accepting states whenever Spoiler has visited one [14]. They,
however, do not necessarily provide better approximations to language inclusion. Extensions of the
plain simulation relation have been considered since, in particular multi-pebble [15] and multi-letter
simulations [9, 22]. Both try to alleviate the gap between simulation and language inclusion which
shows up in the game-theoretic characterisation as Spoiler being too strong: language inclusion would
correspond to a game in which player chooses an entire run in A and then Duplicator produces one in
B on the same word. In the simulation game, Spoiler reveals his run step-wise and can therefore dupe
Duplicator into positions from which she cannot win anymore even though language inclusion holds.

The two extensions – multi-pebble and multi-letter simulation – use different approaches to approx-
imate language inclusion better: multi-pebble simulation add a certain degree of imperfectness to these
games by allowing Duplicator to be in several positions at the same time. Multi-letter simulation forces
Spoiler to reveal more of his runs and therefore allows Duplicator to delay her choices for a few rounds
and therefore benefit from additional information she gained about Spoiler’s moves. The complexity of
computing these extended simulations has been studied before: both are polynomial for a fixed number
of pebbles, respectively a fixed look-ahead in the multi-letter games. However, nothing is known about
the complexity of these simulations if the number of pebbles/letters is not fixed.

Contribution. This paper studies a natural extension of multi-letter games to unbounded look-aheads.
We introduce a new family of simulation relations for Büchi automata, called buffered simulations. In
a buffered simulation, Spoiler and Duplicator move two pebbles along automata transitions, but unlike
in standard simulations, Spoiler and Duplicator’s moves do not always alternate. Indeed, Duplicator can
“skip her turn” and wait to see Spoiler’s next moves before responding. Spoiler and Duplicator share
a first-in first-out buffer: every time Spoiler moves along an a-labelled transition, he adds an a into the
buffer, whereas every time Duplicator makes a step along a b-labelled transition, she removes a b from
the buffer. Since Duplicator has more chances to defeat Spoiler than in standard simulations, buffered
simulations better approximate language inclusion. They also improve multi-letter simulations, and it is
thus a natural question to ask if they are polynomial time decidable and could be used in practice.

We study two notions of buffered simulation games, called continuous and look-ahead simulation
games, respectively. Their rules only differ in the way that Duplicator must use the buffer: in look-ahead
simulations, Duplicator is forced to flush the buffer, so that she “catches up” with Spoiler every time she
decides to make a move. Thus, the buffer is flushed completely with each of Duplicator’s moves. In the
continuous case, Duplicator can choose to only consume a part of the buffer with every move, and it need
not ever be flushed.

We show that these unbounded buffer simulation games – whilst naturally extending the “easy” multi-
letter simulations – provide in a sense a limit to the efficient approximability of language inclusion:
we show that look-ahead simulations are already PSPACE-hard, i.e. as difficult as language inclusion
itself, while continuous simulations are even worse: they are EXPTIME-hard, i.e. presumably even more

288 Buffered Simulation Games for Büchi Automata

difficult than language inclusion.
We also provide matching upper bounds in order to show that these lower bounds are tight, i.e. these

simulations problems are not worse than that. In particular, look-ahead simulation is therefore as difficult
as language inclusion, and continuous simulation is “only” slightly more difficult. Decidability of these
simulations is not obvious. In the finitary cases, it is provided by a rather straight-forward reduction to
parity games but games with unbounded buffers would yield parity games of infinite size. Moreover,
questions about systems with unbounded FIFO buffers are often undecidable; for instance, linear-time
properties of a system of two machines and one buffer are known to be undecidable [6]. Decidability
of these simulation relations may therefore be seen as surprising, and it is also not inconceivable that
the decidability results for these unbounded FIFO buffer simulations may lead to developments in other
areas, for instance reachability in infinite-state systems etc.

Outline. Section 2 first recalls Büchi automata and ordinary simulation relations. It then introduces
continuous simulation as a simulation game extended with an unbounded buffer. Look-ahead simulation
is obtained by restricting the use of the buffer in a natural way. Section 3 contains the most important
results in these relations: it shows that look-ahead simulation is already as hard as language inclusion
whereas continuous simulation is even harder. Section 4 shows that these bounds are tight by introducing
a suitable abstraction called quotient game which yields corresponding upper bounds. Finally, Section 5
collects further interesting results on these simulation relations like topological characterisations for
instance and concludes with comments on their use in automata minimisation.

2 Extended Simulation Relations

2.1 Background

Nondeterministic Büchi Automata. A non-deterministic Büchi automaton (NBA) is a tuple A =
(Q,Σ,δ ,q0,F) where Q is a finite set of states with q0 being a designated starting state, δ ⊆ Q×Σ×Q
is a transition relation, and F ⊆ Q is a set of accepting states. A state q ∈ Q is called a dead end when
there is no a ∈ Σ and q′ ∈ Q such that (q,a,q′) ∈ δ . If w = a1 . . .an, a sequence q0a1q1 . . .qn is called a
w-path from q0 to qn if (qi,ai+1,qi+1) ∈ δ for all i ∈ {0, . . . ,n−1}. It is an accepting w-path if there is
some i ∈ {1, . . . ,n} such that qi ∈ F . We write q0

w−→ qn to state that there is a w-path from q0 to qn, and
q0

w
−→qn to state that there is an accepting one.
A run of A on a word w= a1a2 · · · ∈Σω is an infinite sequence ρ = q0q1 . . . such that (qi,ai+1,qi+1)∈

δ for all i ≥ 0. The run is accepting if there is some q ∈ F such that q = qi for infinitely many i. The
language of A is the set L(A) of infinite words for which there exists an accepting run.

Fair Simulation.

Fair simulation [19] is an extension of standard simulation to Büchi automata. The easiest way of defining
fair simulation is by means of a game between two players called Spoiler and Duplicator. Let us fix two
NBA A = (Q,Σ,δ ,qI,F) and B = (Q′,Σ,δ ′,q′I,F ′). Spoiler and Duplicator are each given a pebble that
is initially placed on q0 := qI for Spoiler and q′0 := q′I for Duplicator. Then, on each round i≥ 1,

1. Spoiler chooses a letter ai ∈ Σ and a transition (qi−1,ai,qi) ∈ δ , and moves his pebble to qi;

2. Duplicator responds by choosing a transition (q′i−1,ai,q′i) ∈ δ ′ and moves his pebble to q′i.

M. Hutagalung, M. Lange, E. Lozes 289

Either the play terminates because one player reaches a dead end, and then the opponent wins the play.
Or the game produces two infinite runs ρ = q0a1q1, . . . and ρ ′ = q′0a1q′1 . . ., in which case Duplicator is
declared the winner of the play if ρ is not accepting or ρ ′ is accepting. Otherwise Spoiler wins this play.

We say that A is fairly simulated by B, written A vf B, if Duplicator has a winning strategy for
this game. Clearly, A vf B implies L(A)⊆ L(B), but the converse does not hold in general.

Remark 2.1. Notice that standard simulation, as defined for labelled transition systems, is a special case
of fair simulation. Indeed, for a given labelled transition system (Q,Σ,δ), and a given state q, we can
define the NBA A (q) with qI := q as the initial state, and F := Q as the set of accepting states. Then
q′ simulates q in the standard sense (without taking care of fairness) if and only if A (q) vf A (q′). We
write qv q′ when q′ simulates q in the standard sense.

2.2 Continuous Simulation

Continuous simulations are defined by games in which Duplicator is allowed to see in advance some
finite but unbounded number of Spoiler’s moves. This naturally extends recent work on extensions of
fair simulation called multi-letter or look-ahead simulations in which Duplicator is allowed to see a
number of Spoiler’s moves that is bounded by a constant [22, 9].

Let A = (Q,Σ,δ ,qI,F) and B = (Q′,Σ,δ ′,q′I,F ′) be two NBA. In the continuous fair simulation
game, Spoiler and Duplicator now share a FIFO buffer β and move two pebbles through the automata’s
state spaces. The positions of the pebbles form a word w and two runs ρ and ρ ′, obtained by successively
extending sequences ρi and ρ ′i in each round i with zero or more states. At the beginning we have ρ0 := qI

and ρ ′0 := q′I , i.e. Spoiler’s pebble is on qI and Duplicator’s pebble is on q′I . Initially, both word and buffer
are empty, i.e. we have w0 := ε and β0 := ε .

For the m-th round, with m ≥ 1 suppose that wm−1 = a1, . . . ,am−1, ρm−1 = q0, . . . ,qm−1, ρ ′m−1 =
q′0, . . . ,qm′ and βm−1 have been created already. Duplicator’s run in B is shorter than Spoiler’s run, i.e.
m′ ≤ m. Furthermore, the buffer β contains the suffix am′+1, . . . ,am of wm−1 that Duplicator has not
mimicked yet. The m-th round then proceeds as follows.

1. Spoiler chooses a letter am ∈ Σ and a transition (qm−1,am,qm) ∈ δ and moves the pebble to qm, i.e.
we get wm := wm−1am and ρm := ρm−1qm+1. The letter am is added to the buffer, i.e. β ′ := β ,am.

2. Suppose we now have β ′ = b1, . . . ,bk. Duplicator picks some r with 0 ≤ r ≤ k as well as states
q′m′ , . . . ,q

′
m′+r−1 such that (qm′+i−1,bi,qm′+i)∈ δ ′ for all i= 1, . . . ,r. Then we get ρ ′m := ρ ′m−1,qm′+1,

. . . ,qm′+r. The letters get flushed from the buffer, i.e. βi := br+1, . . . ,bk.

Note that we have ρ ′m = ρ ′m−1 if Duplicator chooses r = 0. In this case we also say that she skips
her turn.

A play of this game defines a finite or infinite run ρ = q0,q1, . . . for Spoiler (finite if Spoiler reaches a
dead end), and a finite or infinite run ρ ′ = q′0,q

′
1, . . . for Duplicator (finite if Duplicator eventually always

skips her turn) on the finite or infinite word w = a1a2
Duplicator is declared the winner of the play if

• ρ is finite, or

• ρ is infinite (and w is necessarily infinite as well) and

– ρ is not an accepting run on w, or
– ρ ′ is infinite and an accepting run on w.

290 Buffered Simulation Games for Büchi Automata

In all other cases, Spoiler wins the play.
We say that B continuously fairly simulates A , written A vf

co B, if Duplicator has a winning
strategy for the continuous fair simulation game on A and B. We also consider the (unfair) continuous
simulationvco for pairs of LTS states by considering an LTS with a distinguished state as an NBA where
all states are accepting.

Example 2.2. Consider the following two NBA A (left) and B (right) over the alphabet Σ = {a,b,c}.

a b

c

Σ

Σ

a
a

a

b
Σ

c Σ

a

a

Clearly, we have L(A)⊆ L(B).
Duplicator has a winning strategy for the continuous fair simulation game on this pair of automata:

she skips her turns until Spoiler follows either the b- or the c-transition. However, if we ignore the
accepting states and consider these automata as a transition system, then Spoiler has a winning strategy
for the continuous simulation: he iterates the a-loop, and then either Duplicator waits forever and loses
the play, or she makes a move and it is then easy for Spoiler to defeat her.

This example also shows that continuous fair simulation strictly extends multi-letter fair simulation
which can be seen as the restriction of the former to a bounded buffer. I.e. in these games, Duplicator can
only benefit from a fixed look-ahead of at most k letters for some k. It is not hard to see that Spoiler wins
the game with a bounded buffer of length k for any k on these two automata: he simply takes k turns on
the a-loop in A which forces Duplicator to choose a transition out of the initial state in B. After doing
so, Spoiler can choose the b- or c-transition that is not present for Duplicator anymore and make her get
stuck.

2.3 Look-Ahead Simulations

We now consider a variant of the continuous simulation games called look-ahead simulation games (the
terminology follows [9]). Look-ahead simulation games proceed exactly like the continuous ones, except
that now Duplicator has only two possibilities: either she skips her turn, or she flushes the entire buffer.
Formally, the definition of the game only differs from the one of Section 2.2 in that the number r of letters
removed by Duplicator in a round is either 0 or the size |β | of the current buffer β , whereas continuous
simulation allowed any r ∈ {0, . . . , |β |}.

We write A vf
la B if Duplicator has a winning strategy for the look-ahead fair simulation on the two

automata A ,B. Similarly, we define the look-ahead fair simulation for LTS, vla.

Example 2.3. Consider again A and B as in Example 2.2. It holds that A vf
la B, because Duplicator

can flush the buffer once she has seen the first b or c.

Clearly, look-ahead simulation implies continuous simulation but the converse does not hold.

Example 2.4. Consider the following two NBA A (left) and B (right) over the alphabet Σ = {a,b,c}.

a
b,c

a

a

b

b
c

c

M. Hutagalung, M. Lange, E. Lozes 291

Duplicator wins the continuous fair simulation: a winning strategy for Duplicator is to skip her first turn,
and then to remove one letter at a time during the rest of the play. Thus, after each round, the buffer
always contains exactly one element.

On the other hand, Spoiler wins the look-ahead simulation, because the first time Duplicator flushes
the buffer, she has committed to a choice between the two right states and thus makes a prediction about
the next letter that Spoiler will play.

Remark 2.5. Multi-pebble simulations [15] are another notion of simulation in which duplicator is given
more than just one pebble, which she can move, duplicate, and drop during the game. If the number
of such pebbles is not bounded, multi-pebble simulations better approximate language inclusion than
continuous and look-ahead simulation; in particular, the look-ahead simulation game corresponds to the
multi-pebble simulation game in which duplicator is required to drop all but one pebble infinitely often.

3 Lower Bounds: The Complexity of Buffered Simulations

The difficulty of deciding continuous and look-ahead simulation is shown by reduction from suitable
tiling problems.

Definition 3.1. A tiling system is a tuple T = (T,H,V, tI, tF), where T is a set of tiles, H,V ⊆ T ×T are
the horizontal and vertical compatibility relations, tI, tF ∈ T are the initial and final tiles.

Let n,m be two natural numbers. A tiling with n columns and m rows according to T is a function
t : {1, . . . ,n}×{1, . . . ,m} → T ; the tiling is valid if (1) t1,1 = tI and tn,m = tF , (2) for all i = 1, . . . ,n−1
and all j = 1, . . . ,m we have (ti, j, ti+1, j) ∈ H, (3) for all i = 1, . . . ,n, for all j = 1, . . . ,m− 1 we have
(ti, j, ti, j+1) ∈V .

The problem of deciding whether there exists a valid tiling with n columns and 2n rows, for a given
n in unary and a tiling system T , is known to be PSPACE-hard [3].0 Clearly, the problem to decide
whether there is no such tiling is equally PSPACE-hard. We reduce the complement of the tiling problem
to look-ahead buffered simulation.

Theorem 3.2. Deciding vla (resp. vf
la) is PSPACE-hard.

Proof. Given a tiling system T = (T,H,V, tI, tF) and an n ∈ N, we consider the alphabet Σ := (T ×
{0,1})∪{$,#}. We define the two automata A , B as depicted on Figure 1, where all states are accepting.
The sizes of A , B are polynomial in |T |+n. Let us consider first the automaton A . A word accepted
by A is composed of blocks of n tiles separated by the $ symbol, such that each block is tagged with
the binary representation of a number in {0, . . . ,2n−1}. We take as a convention that the first bit is the
least significant one. Either the word contains finitely many blocks, in which case, the word ends with
the symbol # repeated infinitely often, or it contains infinitely many blocks. Moreover, the first block is
tagged with 0, and the last one, if it exists, is tagged with 2n−1 and it is the only one that may be tagged
with 2n−1.

Consider now the automaton B. From state q0, the automaton accepts a word if the two first blocks
are not tagged with consecutive numbers. From the state qi, the automaton accepts a word if either it
starts with a tile that is not horizontally compatible with ti, or if after n symbols it contains a tile that is
not vertically compatible with ti.

0The requirement on the final tile for instance is not needed for PSPACE-hardness but this variant of the tiling problem is
most convenient for the reductions presented here.

292 Buffered Simulation Games for Büchi Automata

A
$ tI,0 (T ×{0})n−1

$

(T ×{0,1})n \ (T ×{1})n

(T ×{1})n−1 tF ,1
#

B q0

q1

qr

Σ\{#}
$

t1,
...

tr,

Σn

Σn

{(t, i) | (t1, t) 6∈V, i ∈ {0,1}}

{(t, i) | (tr, t) 6∈V, i ∈ {0,1}}

Σ

Σ

{(t, i) | (t1, t) 6∈ H, i ∈ {0,1}}

{(t, i) | (tr, t) 6∈ H, i ∈ {0,1}}

,1

,0 Σn ,0
Σ

,1 Σn ,1
Σ

,0 Σ\{$} ,0
,1

Σn ,1
Σ

Σn ,0
Σ

Figure 1: Automata A and B used in the proof of Theorem 3.2.

The claim is that A vla B (resp. A vf
la B) if and only if there is no valid n×2n tiling. Assume first

that a valid tiling exists. Then Spoiler wins if he plays the word that contains in the i-th block the i-th
row of the tiling tagged with the binary representation of i. Note that Duplicator cannot loop forever in
the initial state because she cannot read the # symbol. Conversely, assume there is no valid tiling. Then
Duplicator wins if she waits until she has seen at most 2n + 1 blocks: either two blocks are not tagged
with consecutive numbers, or Spoiler played exactly 2n blocks but these do not code a valid tiling. In the
former, Duplicator then accepts by moving to q0 at the beginning of the first ill-tagged block, and in the
later, she wins by moving to qi after having read a tile ti whose horizontal or vertical successor does not
match.

In order to establish an even higher lower bound for the continuous game we consider an EXPTIME-
hard game-theoretic variant of the tiling problem on some tiling system T . The game is played by two
players: Starter and Completer. The task for Completer is to produce a valid tiling, whereas Starter’s
goal is to make it impossible. On every round i≥ 1,

1. Starter selects the tile t1,i starting the i-th row; if i = 1, then t1,i = tI , otherwise (t1,i−1, t1,i) ∈V .

2. Completer selects the tiles t2,i, . . . tn,i completing the i-th row; (t1,i, t2,i), . . . ,(tn−1,i, tn,i) ∈ H, and
(t2,i−1, t2,i), . . . ,(tn,i−1, tn,i) ∈V .

If one of the players gets stuck, the opponent wins. Otherwise Completer wins iff there are i, j such
that ti, j = tF . The problem of deciding whether there exists a winning strategy for Starter in this tiling
game is known to be EXPTIME-hard [7, 3]. Equally, deciding whether there is no winning strategy for

M. Hutagalung, M. Lange, E. Lozes 293

qt1

qt2

qt3

(P1) (P4), (P5)

00

0

T\tF ,1

T\tF ,1

T\tF ,1

0

0

0

T\t1

T\t2

T\t3

Σ

Σ

Σ

(P3)

t1
t2
t3

T,0 T,0 T,0
v̄t1

T,0 T,0 T,0 v̄t2

T,0 T,0 T,0 v̄t3

Σ

(P2)

t1
t2
t3

T,1 T,1 T,1
T\t1

T,1 T,1 T,1 T\t2

T,1 T,1 T,1 T\t3

Σ

ε

ε

ε

ε

ε

ε

Figure 2: The NBA B from the construction in the proof of Thm. 3.3 for m = 3 and the tiling system
T = (T,H,V, t1, t3) where T = {t1, t2, t3}, H = {(t1, t1),(t1, t3),(t3, t3)}, and V = {(t1, t2),(t2, t1),(t2, t3)}.
v̄t denotes the set of tiles that are not vertically compatible with t.

him is EXPTIME-hard and – since the games are easily seen to be determined – so is the problem of
deciding whether or not Completer has a winning strategy. This distinction is important because, as in the
previous construction, we will reduce the complement of the tiling game problem to continuous buffered
simulation. In other words, we present a reduction from one game to another in which the players’ roles
are inverted. Thus, Starter in the tiling game corresponds to Duplicator in the simulation game, and so
do Completer and Spoiler.

Theorem 3.3. Deciding vco (resp. vf
co) is EXPTIME-hard.

Proof. Given a tiling system T = (T,H,V, t0, tF), we construct two NBA A , B of polynomial size, that
only contain accepting states, such that there is a winning strategy for Starter in the tiling game if and
only if there is a winning strategy for Duplicator in the continuous simulation game (A vco B, resp
A vf

co B).
We consider the alphabet T]{0,1}. Spoiler’s automaton A is defined such that an infinite word w is

accepted by A if and only if it is of the form b0w0b1w1b2w2 . . . , where for all i≥ 0, bi ∈ {0,1}, wi ∈ T n,
and two consecutive tiles in wi are in the horizontal relation.

Duplicator’s automaton does several things. It forces Spoiler to repeat the previous row when bit
1 occurs, i.e. if Spoiler plays wi1wi+1, then wi = wi+1. Duplicator also forces Spoiler to provide a
vertically matching row when bit 0 occurs, i.e. if Spoiler plays wi0wi+1, then wi and wi+1 must be
vertically compatible consecutive rows. However, Duplicator does more: she always forces Spoiler to
start the row with a given tile t; this tile is determined by the state qt in which Duplicator currently is.
Informally, the states qt of Duplicator’s automaton B are such that (1) qtI is the initial state of B, and
(2) if one starts reading from qt , the following holds:

(P1) for an infinite word starting with 0t ′ . . . , with t 6= t ′, one can pick an accepting run that does not
depend on the infinite suffix;

294 Buffered Simulation Games for Büchi Automata

(P2) for an infinite word starting with bv1v′ . . . , b ∈ {0,1}, v,v′ ∈ T n, and v 6= v′, one can pick an
accepting run that does not depend on the infinite suffix;

(P3) for an infinite word starting with bv0v′ . . . , b ∈ {0,1}, v,v′ ∈ T n, if there is i ∈ {1, . . . ,n} such that
the i-th letters of v and v′ are not vertically compatible, then one can pick an accepting run that
does not depend on the infinite suffix;

(P4) if v ∈ T n does not contain tF , then qt
1v−→ qt ;

(P5) if v ∈ T n does not contain tF , then qt
0v−→ qt ′ for all t ′ such that (t, t ′) ∈V .

We illustrate the construction of B in Figure 2.
The main component is formed by the states qti for ti ∈ T . Each qti is connected to another component

that can detect a vertical mismatch (P3) and a non-proper repetition (P2). Each state qti is also connected
to a component that can detect when Spoiler does not respect Duplicator’s choice of the first tile (P1).
Each state qti has a self-loop by reading T\tF or 1 (P4) to consume the buffer and form an accepting run
if one of Spoiler’s mistakes is detected. Moreover, the automaton B encodes vertical compatibility for
Duplicator’s choice of the first tile by having edges (qti ,0,qti′) ∈ δ if and only if (ti, ti′) ∈V (P5).

We first show that if Completer has a winning strategy in the tiling game, then Spoiler has a winning
strategy in the continuous fair simulation game on A and B. Spoiler plays as follows: first, he moves
along 0v1, where v1 is the first row of the tiling. Then he iterates 1v1 for a while. This forces Duplicator
to eventually remove 0v1 from the buffer, and commit to choosing some qt , due to (P4) and (P5). Spoiler
then considers the second row v2 that Completer would answer if Starter would put t at the beginning of
the second row. Spoiler picks this row v2, and plays 0v2, followed by iterations of 1v2, and repeats the
same principle.

Now we show that if Starter has a winning strategy then Duplicator has a winning strategy. Duplicator
first waits for the 2n+2 first letters of Spoiler. Because of (P1–P3), Spoiler has nothing better to do than
to play 0v1v for some v encoding a valid first row of a tiling. Duplicator considers the tile t that would
be played by Starter in the second row if Completer played v on the first row. Duplicator then removes
0v and ends in the state qt . From there, she waits again for n+1 letters, so that the buffer now contains
1vbv′ for some b ∈ {0,1}. Repeating the same process if b = 1, she can force Spoiler to eventually
play 0v′ where v′ encodes a row vertically compatible with v and starting with t. Iterating this principle
results in a play won by Duplicator, since either Completer never uses the final tile or Spoiler’s move
can always be mimicked by Duplicator due to (P4) and (P5) or, when Completer gets stuck on some row,
Spoiler is forced to play a word with a vertical mismatch, and Duplicator wins by accepting the rest of
the word.

One may wonder why the EXPTIME-hardness proof for continuous simulation does not need the
machinery of the binary counter as used in the PSPACE-hardness proof for look-ahead simulation. The
reason is the following. In the look-ahead game Duplicator always has to flush the buffer entirely. Thus,
she has to wait for the entire row-by-row tiling to be produced by Spoiler before she can point out a
mistake. Thus, her best strategy is to wait for as long as possible but this would make her lose ultimately.
The integrated counter forces Spoiler to get closer and closer to the moment when he has to play the final
tile, and Duplicator can therefore relax and wait for that moment before she flushes the entire buffer. In
the continuous game, Duplicator’s ability to consume parts of the buffer is enough to force Spoiler to not
delay the production of a proper tiling forever.

M. Hutagalung, M. Lange, E. Lozes 295

4 Upper Bounds: Quotient Games

We now show that the bounds of the previous section are tight by establishing the decidability of buffered
simulations with corresponding complexity bounds. For this, we define a “quotient game” that has a finite
state space, and show that it is equivalent to the buffered simulation game.

Continuous Quotient Game. The quotient game is based on the congruence relation associated with
the Ramsey-based algorithm for complementation. We briefly recall its definition. Let us fix two Büchi
automata A = (Q,Σ,δ ,qI,F) and B = (Q,Σ,δ ,q′I,F) – for simplicity we assume they share the same
state space and only differ in their initial state. We introduce the function fw : Q2→{0,1,2} defined as

fw(q,q′) =

0 if q
w
−→q′

1 if q 6 w−→ q′

2 otherwise

We say that two finite words w,w′ ∈ Σ∗ are equivalent, w∼ w′, if fw = fw′ . Observe that ∼ is an equiva-
lence relation, a congruence for word concatenation, and that the number |Σ∗/∼| of equivalence classes
is bounded by 3|Q|

2
. We write [w] to denote the equivalence class of w with respect to ∼. We say a class

[w] is idempotent if [ww] = [w].

Definition 4.1. The continuous quotient game is played between players Refuter and Prover1 as follows.
Initially, Refuter’s pebble is on q0 := qI and Prover’s pebble is on q′0 := q′I . The players use an abstraction
by equivalence classes of a buffer that, initially, contains [ε]. On each round i≥ 1:

1. Refuter chooses two equivalence classes [w1], [w2] and a state qi, such that qi−1
w1−→ qi

w2
−→qi and
[w2] is idempotent

2. Prover chooses q′i such that q′i−1
βw1w2−−−−→ q′i

w2
−→q′i. The value β of the abstract buffer is set to [w2]
for the next turn.

Prover wins the play if Refuter gets stuck or the play is infinitely long.

Proposition 4.2. Whether Prover has a winning strategy for the continuous quotient game is decidable
in EXPTIME.

Proof. Observe first that the arena of the quotient game is finite and can be computed in exponential
time. Indeed, a configuration of a quotient game is either a tuple (q,q′, [w]) for Refuter’s turn or a
tuple (q,q′, [b], [w], [w′]) for Prover’s turn. The arena of the quotient game is thus finite and its size is
bounded by 2|Q|2 · |Σ∗/∼|2 = 2|Q|2 ·32|Q|2 = 2O(|Q|2·log |Q|). The finite monoid Σ∗/∼ can be computed in
exponential time: starting from the set {[a] | a ∈ Σ}, compose any two classes until a fixpoint is reached.
Composition of two equivalence classes given as functions of type Q2→{0,1,2} is not hard to compute
[10].

Observe now that the quotient game is a reachability game from Refuter’s point of view (he wins if
he reaches a configuration in which Prover gets stuck), so once the arena is computed, one can decide
the winner of the game in time polynomial in the size of the arena, which is exponential in |Q|.

We show that quotient games characterise the relation vf
co.

1We use different player names on purpose to make an easy distinction between the original simulation game and the
quotient game.

296 Buffered Simulation Games for Büchi Automata

Lemma 4.3. A vf
co B only if Prover has a winning strategy for the continuous quotient game.

Proof. Assume that Refuter has a winning strategy for the continuous quotient game. We want to show
that then Spoiler has a winning strategy for the continuous fair simulation game. We actually consider
a variant of the continuous fair simulation game in which Spoiler may add more than one letter in a
round, and Duplicator only removes one letter in a round. Clearly, Spoiler has a winning strategy for
this variant if and only if he has a winning strategy for the continuous fair simulation game as defined in
Section 2.2. Spoiler’s strategy basically follows the one of Refuter. In the first round, Spoiler adds into
the buffer some representatives w1,w2 of the equivalence classes played by Refuter. Spoiler then adds
w2 into the buffer on every round until the answer of Duplicator can be identified as a Prover’s move in
the quotient game, i.e. if Duplicator does not get stuck, she will eventually produce a trace of the form

q′0
w1w∗2−−−→ q′1

w+
2
−→q′1, since there are only finitely many states in the automaton. Then Spoiler considers the

state q′1 in which Duplicator is and looks at what Refuter would play if Prover would have picked q′1.
Iterating this principle, Spoiler mimics Refuter’s winning strategy: eventually, since Prover gets stuck on
some round i, Duplicator will get stuck when trying to mimick w1w+

2 . . .w+
i , and then Spoiler wins by

continuously adding wi into the buffer for the rest of the play.

A key argument in the proof of the converse direction is the following lemma which is easily proved
using Ramsey’s Theorem [26].

Lemma 4.4. Let q0,q1, . . . be an infinite accepting run on a1a2 Then there are i, j,k with i < j < k
such that qi = q j = qk is accepting and ai+1 . . .a j ∼ a j+1 . . .ak ∼ ai+1 . . .ak.

Lemma 4.5. A vf
co B if Prover has a winning strategy for the continuous quotient game.

Proof. When the continuous simulation game starts, Duplicator just skips his turn for a while. Then
Spoiler starts providing an infinite accepting run q0a0q1a1 . . . – if he does not, Duplicator waits forever
and wins the play. At some point, Lemma 4.4 applies: the buffer contains w1w2w′2 with [w2] = [w′2] being
idempotent, and Spoiler is in a state q that admits a [w2]-loop. Then Duplicator considers the state q′ in
which Prover would move if Refuter played [w1], [w2],q in the first round. She removes w1w2 from the
buffer and moves to this state q′. Duplicator proceeds identically in the next rounds, and either Spoiler
eventually gets stuck or he follows a non-accepting run or the play is infinite.

Lemmas 4.3 and 4.5 together with Prop. 4.2 yield an upper bound on the complexity of deciding con-
tinuous simulation. Together with the lower bound from Theorem 3.3 we get a complete characterisation
of the complexity of continuous fair simulation.

Corollary 4.6. Continuous fair simulation is EXPTIME-complete.

Look-Ahead Quotient Game. In order to establish the decidability of look-ahead simulations, we
introduce a look-ahead quotient game. The game essentially differs from the continuous quotient game
in that it does not use a buffer.

Definition 4.7. The look-ahead quotient game is played between Refuter and Prover. Initially, Refuter’s
pebble is on q0 := qI , Prover’s pebble is on q′0 := q′I , and the buffer β contains the equivalence class [ε].
On each round i≥ 1:

1. Refuter chooses two equivalence classes [w1], [w2] and a state qi, such that qi−1
w1−→ qi

w2
−→qi and
[w2] is idempotent.

M. Hutagalung, M. Lange, E. Lozes 297

2. Prover chooses q′i such that there is a q′i−1
w1−→ q′i

w2
−→q′i.

Prover wins the play if Refuter gets stuck or if the play is infinitely long.

Following the same kind of arguments we used for the continuous quotient game, the result below
can be established.

Proposition 4.8. A vf
la B if and only if Prover has a winning strategy for the look-ahead quotient game.

The size of the arena of a look-ahead quotient game is again exponential in the size of the automata;
but there are only |Q|2 positions for Refuter, so look-ahead quotient games can be solved slightly better
than continuous ones.

Proposition 4.9. Whether Prover has a winning strategy for the look-ahead quotient game can be de-
cided in PSPACE.

Proof. Consider the following non-deterministic algorithm that guesses the set W of all pairs (q0,q′0) of
initial configurations of the game such that Duplicator has a winning strategy. For all (q0,q′0) in W , the
following can then be checked in polynomial space: for all [w1], [w2], and q1 that could be played by
Spoiler, there is q′1 that can be played by Duplicator such that (q1,q′1) is in W . Inclusion in PSPACE then
follows from Savitch’s Theorem [28].

Corollary 4.10. Look-ahead fair simulation is PSPACE-complete.

5 Properties of Buffered Simulations

In this section we investigate some fundamental properties of buffered simulations starting with a com-
parison to language inclusion. Remember that the main motivation for studying simulations is the ap-
proximation thereof.

Continuous Simulation vs. Language Inclusion. Continuous simulation is strictly smaller than lan-
guage inclusion. It is not hard to see that continuous simulation implies language inclusion, so we focus
on strictness.

The following example shows a case where language inclusion holds, indeed L(A) = L(B), but
A 6vf

co B since Spoiler can win the game by always producing a, whereas Duplicator has to keep the
pebble on the initial state of B to be ready for a possible b.

a

b

b a

b

a a

b

Topological Characterisation. Consider a run of an NBA on some word w = a1a2 . . . ∈ Σω to be an
infinite sequence q0,a1,q1, . . . with the usual properties, i.e. the word is actually listed in the run itself.
We write Runs(A) for the set of runs of A in this respect, and ARuns(A) for the set of accepting runs.

Given a set ∆, the set ∆ω is equipped with a standard structure of a metric space. The distance d(x,y)
between two infinite sequences x0x1x2 . . . and y0y1y2 . . . is the real 1

2i , where i is the first index for which
xi 6= yi. Intuitively, two words are “significantly close” if they share a “significantly long” prefix. The
sets Runs(A) and ARuns(A) are subsets of (Q∪Σ)ω ; Runs(A) has the particularity of being a closed
subset, and it is thus a compact space, whereas ARuns(A) is not.

298 Buffered Simulation Games for Büchi Automata

We call a function f : ARuns(A)→ ARuns(B) word preserving if for all ρ ∈ ARuns(A), f (ρ) and
ρ are labelled with the same word. It can be seen that L(A)⊆ L(B) holds if and only if there is a word
preserving function f : ARuns(A)→ ARuns(B).

Proposition 5.1. Let A ,B be two NBA. The following holds: A vf
co B if and only if there is a contin-

uous word preserving function f : ARuns(A)→ ARuns(B).

Proposition 5.1 has some interesting consequences. First, it shows again that A vf
co B implies

L(A)⊆ L(B), and explain the difference between the two in terms of continuity. Second, it shows that
vco and vf

co are transitive relations, since the composition of two continuous functions is continuous.
Another application of Proposition 5.1 is that vco (but not vf

co) is decidable in 2-EXPTIME using a
result of Holtmann et al. [20]. This is of course not optimal as seen in the previous section.

Remark 5.2. It might be asked whether look-ahead simulation has a topological characterisation similar
to this one. The answer is negative: if it had (a reasonable) one, it would entail that look-ahead simulation
is a transitive relation. However, Mayr and Clemente [9] gave examples of automata that show that look-
ahead simulation is not transitive in general.

Buffered Simulations in Automata Minimisation. An important application of simulation relations
in automata theory is automata minimisation. A preoder R over the set of states of an automaton A
defines two new automata: its quotient A /R, and its pruning prune(A ,R), c.f. Clemente’s PhD thesis [8]
for a formal definition of these notions. Intuitively, the quotient automaton is defined by merging states
that are equivalent with respect to the preorder R, whereas pruning is obtained by removing a transition
q a−→ q1 if it is “subsumed” by a transition q a−→ q2, where q1 R q2.

A preoder R is then said to be good for quotienting (GFQ) if L(A /R) = L(A), and good for pruning
(GFP) if L(prune(A ,R)) = L(A). It can be checked that GFQ and GFP are antitone properties: if R⊇ R′

and R is GFQ (resp. GFP), then so does R′.
Fair simulation is neither GFQ nor GFP; as a consequence, fair continuous and fair look-ahead sim-

ulations, which contain fair simulation, are not GFQ and GFP either. Simulation preorders that are
used for automata minimisation rely on less permissive winning conditions than fairness. The delayed
winning condition asserts that every round in which Spoiler visits an accepting state is (not necessarily
immediately) succeeded by some round in which Duplicator also visits an accepting state. The direct
winning condition imposes that, if Spoiler visits an accepting state in a given round, then in the same
round Duplicator should visit an accepting state. Delayed simulation is known to be GFQ but not GFP,
whereas direct simulation is known to be both GFP and GFQ. Since a play of a continuous/look-ahead
simulation game yields a play of the standard simulation game, there is a natural buffered counterpart of
delayed and direct simulation, obtained by changing the winning conditions accordingly.

Proposition 5.3. Delayed continuous and delayed look-ahead simulation is GFQ but not GFP, and direct
continuous as well as direct look-ahead simulation is GFP and GFQ.

The proof is a rather straightforward consequence of similar results for multi-pebble simulations [15],
and from the fact that these multi-pebble simulations subsume continuous simulations (provided the
number of pebbles is larger than the number of states of duplicator’s automaton).

Recall that bounded buffered simulation relations are polynomial time computable [22] and can be
used to significantly improve language inclusion tests for NBA using automata minimisation [9]. We
already showed that fair, unbounded, buffered simulation is not polynomial time computable, and thus
cannot be used for improving language inclusion tests. We now extend this result to the delayed and
direct buffered simulations.

M. Hutagalung, M. Lange, E. Lozes 299

Theorem 5.4. The delayed (resp. direct) continuous simulation is EXPTIME hard, and the delayed
(resp. direct) look-ahead simulation is PSPACE hard.

This follows from a simple observation: the automata that were used in the hardness proofs had all
states accepting, and in this case, fair, delayed and direct simulation coincide.

References

[1] P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Holı́k, C.-D. Hong, R. Mayr & T. Vojnar (2010): Simulation Sub-
sumption in Ramsey-Based Büchi Automata Universality and Inclusion Testing. In: Proc. 22nd Int. Conf. on
Computer-Aided Verification, CAV’10, LNCS 6174, Springer, pp. 132–147, doi:10.1007/978-3-642-14295-
6 14.

[2] P. Aziz Abdulla, Y.-F. Chen, L. Clemente, L. Holı́k, C.-D. Hong, R. Mayr & T. Vojnar (2011): Advanced
Ramsey-Based Büchi Automata Inclusion Testing. In: Proc. 22nd Int. Conf. on Concurrency Theory, CON-
CUR’11, LNCS 6901, Springer, pp. 187–202, doi:10.1007/978-3-642-23217-6 13.

[3] Peter Van Emde Boas (1997): The Convenience of Tilings. In: In Complexity, Logic, and Recursion Theory,
Marcel Dekker Inc, pp. 331–363, doi:10.1.1.38.763.

[4] J. R. Büchi (1962): On a Decision Method in Restricted Second Order Arithmetic. In: Proc. Congress
on Logic, Method, and Philosophy of Science, Stanford University Press, Stanford, CA, USA, pp. 1–12,
doi:10.1007/978-1-4613-8928-6 23.

[5] D. Bustan & O. Grumberg (2003): Simulation-based minimization. ACM Trans. Comput. Logic 4(2), pp.
181–206, doi:10.1145/635499.635502.

[6] G. Cécé & A. Finkel (2005): Verification of programs with half-duplex communication. Inf. Comput. 202(2),
pp. 166–190, doi:10.1016/j.ic.2005.05.006.

[7] B. S. Chlebus (1986): Domino-Tiling Games. Journal of Computer and System Sciences 32, pp. 374–392,
doi:10.1016/0022-0000(86)90036-X.

[8] L. Clemente (2012): Generalized Simulation Relations with Applications in Automata Theory. Ph.D. thesis,
University of Edinburgh.

[9] Lorenzo Clemente & Richard Mayr (2013): Advanced automata minimization. In: Proc. 40th Symp. on
Principles of Programming Languages, POPL’13, ACM, pp. 63–74, doi:10.1145/2429069.2429079.

[10] C. Dax, M. Hofmann & M. Lange (2006): A proof system for the linear time µ-calculus. In: Proc. 26th
Conf. on Foundations of Software Technology and Theoretical Computer Science, FSTTCS’06, LNCS 4337,
Springer, pp. 274–285, doi:10.1007/11944836 26.

[11] D. L. Dill, A. J. Hu & H. Wong-Toi (1991): Checking for Language Inclusion Using Simulation Preorders.
In: Proc. 3rd Int. Workshop on Computer-Aided Verification, CAV’91, LNCS 575, Springer, pp. 255–265,
doi:10.1007/3-540-55179-4 25.

[12] L. Doyen & J.-F. Raskin (2009): Antichains for the Automata-Based Approach to Model-Checking. Logical
Methods in Computer Science 5(1), doi:10.2168/LMCS-5(1:5)2009.

[13] K. Etessami & G. J. Holzmann (2000): Optimizing Büchi Automata. In: Proc. 11th Int. Conf. on Concurrency
Theory, CONCUR’00, LNCS 1877, Springer, pp. 153–167, doi:10.1007/3-540-44618-4 13.

[14] K. Etessami, T. Wilke & R. A. Schuller (2001): Fair Simulation Relations, Parity Games, and State Space
Reduction for Büchi Automata. In: Proc. 28th Int. Coll. on Algorithms, Languages and Programming,
ICALP’01, LNCS 2076, Springer, pp. 694–707, doi:10.1137/S0097539703420675.

[15] Kousha Etessami (2002): A Hierarchy of Polynomial-Time Computable Simulations for Automata. In Lubo
Brim, Mojmr Ketnsk, Antonn Kuera & Petr Janar, editors: CONCUR 2002 Concurrency Theory, Lecture
Notes in Computer Science 2421, Springer Berlin Heidelberg, pp. 131–144, doi:10.1007/3-540-45694-5 10.

300 Buffered Simulation Games for Büchi Automata

[16] S. Fogarty & M. Y. Vardi (2010): Efficient Büchi Universality Checking. In: Proc. 16th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’10, LNCS 6015, Springer, pp. 205–220,
doi:10.1007/978-3-642-12002-2 17.

[17] S. Fogarty & M. Y. Vardi (2012): Büchi Complementation and Size-Change Termination. Logical Methods
in Computer Science 8(1), doi:10.2168/LMCS-8(1:13)2012.

[18] S. Gurumurthy, R. Bloem & F. Somenzi (2002): Fair simulation minimization. In: Proc. 14th Int. Conf. on
Computer-Aided Verification, CAV’02, LNCS 2404, Springer, pp. 610–624, doi:10.1007/3-540-45657-0 51.

[19] T. A. Henzinger, O. Kupferman & S. K. Rajamani (2002): Fair Simulation. Inf. Comput. 173(1), pp. 64–81,
doi:10.1006/inco.2001.3085.

[20] M. Holtmann, L. Kaiser & W. Thomas (2012): Degrees of Lookahead in Regular Infinite Games. Logical
Methods in Computer Science 8(3), doi:10.2168/LMCS-8(3:24)2012.

[21] Gerard J. Holzmann (2004): The SPIN Model Checker - primer and reference manual. Addison-Wesley.
[22] M. Hutagalung, M. Lange & É. Lozes (2013): Revealing vs. Concealing: More Simulation Games for Büchi

Inclusion. In: Proc. 7th Int. Conf. on Language and Automata Theory and Applications, LATA’13, LNCS,
Springer, pp. 347–358, doi:10.1007/978-3-642-37064-9 31.

[23] O. Kupferman & M. Y. Vardi (2001): Weak Alternating Automata Are Not That Weak. ACM Trans. on
Comput. Logic 2(3), pp. 408–429, doi:10.1145/377978.377993.

[24] C. S. Lee, N. D. Jones & A. M. Ben-Amram (2001): The size-change principle for program termi-
nation. In: Proc. 28th Symp. on Principles of Programming Languages, POPL’01, ACM, pp. 81–92,
doi:10.1145/360204.360210.

[25] A. R. Meyer & L. J. Stockmeyer (1973): Word problems requiring exponential time. In: Proc. 5th Symp. on
Theory of Computing, STOC’73, ACM, New York, pp. 1–9, doi:10.1145/800125.804029.

[26] F. P. Ramsey (1930): On a problem in formal logic. Proc. London Math. Soc. (3) 30, pp. 264–286,
doi:10.1007/978-0-8176-4842-8 1.

[27] S. Safra (1988): On the complexity of ω-automata. In: Proc. 29th Symp. on Foundations of Computer
Science, FOCS’88, IEEE, pp. 319–327, doi:10.1109/SFCS.1988.21948.

[28] W. J. Savitch (1970): Relationships between nondeterministic and deterministic tape complexities. Journal
of Computer and System Sciences 4, pp. 177–192, doi:10.1016/S0022-0000(70)80006-X.

[29] W. Thomas (1999): Complementation of Büchi automata revisited. In J. Karhumäki et al., editor: Jewels are
Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, Springer, pp. 109–122,
doi:10.1007/978-3-642-60207-8 10.

[30] M. Y. Vardi (1996): An Automata-Theoretic Approach to Linear Temporal Logic, pp. 238–266. LNCS 1043,
Springer, New York, NY, USA, doi:10.1007/3-540-60915-6 6.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 301–313, doi:10.4204/EPTCS.151.21

c© Szabolcs Iván
This work is licensed under the
Creative Commons Attribution License.

Synchronizing weighted automata

Szabolcs Iván
University of Szeged, Hungary

szabivan@inf.u-szeged.hu

We introduce two generalizations of synchronizability to automata with transitions weighted in an
arbitrary semiringK = (K,+, ·,0,1). (or equivalently, to finite sets of matrices inKn×n.) Let us call a
matrixA location-synchronizing if there exists a column inA consisting of nonzero entries such that
all the other columns ofA are filled by zeros. If additionally all the entries of this designated column
are the same, we callA synchronizing. Note that these notions coincide for stochastic matrices and
also in the Boolean semiring. A setM of matrices inKn×n is called (location-)synchronizing if
M generates a matrix subsemigroup containing a (location-)synchronizing matrix. TheK -(location-
)synchronizability problem is the following: given a finitesetM of n×n matrices with entries inK ,
is it (location-)synchronizing? Both problems are PSPACE-hard for any nontrivial semiring. We give
sufficient conditions for the semiringK when the problems are PSPACE-complete and show several
undecidability results as well, e.g. synchronizability isundecidable if 1 has infinite order in(K,+,0)
or when the free semigroup on two generators can be embedded into (K, ·,1).

1 Introduction

The synchronization (directing, reseting) problem of classical, deterministic automata is a well-studied
topic with a vast literature (see e.g. [16] for a survey). An automatonA is synchronizableif some word
u induces a constant function on its state set, in which caseu is a synchronizing word ofA . Deciding
whether an automaton is synchronizable can be done in polynomial time and it is also known that for
synchronizable automata, a synchronizing word of lengthO(n3) exists, wheren denotes the number of
its states. (The famoušCerný conjecture from the sixties states that this bound is(n−1)2.)

The notion of synchronizability has been extended e.g. (in three different ways) to nondeterministic
automata in [9], to stochastic automata in [10] and more recently in another way in [2], to integer-
weighted transitions in [1]. To our knowledge, only ad-hoc notions have been defined so far, each for a
particular underlying semiring. We note that in [1] the notion has also been extended to timed automata
as well.

In this paper we introduce several extensions of synchronizability to automata with transitions weighted
in an arbitrary semiringK = (K,+, ·,0,1). For statesp,q and wordu, let (pu)q ∈K denote the sum of the
weights of allu-labeled paths fromp to q, with the weight of a path being the product of the weights of
its edges, as usual. Following the nomenclature of [1], we call the automatonA location-synchronizable
if ∃q,u: ∀p, r (pu)r 6= 0 iff r = q andsynchronizableif ∃q,u,k 6= 0: ∀p, r (pu)q = k and(pu)r = 0
for eachr 6= q.

As an equivalent formulation, let us call a matrixA∈Kn×n location synchronizingif it contains a column
entirely filled with nonzero values, and all its other entries are zero. If in addition all the nonzero values

302 Synchronizing weighted automata

are the same, we callA synchronizing. Then, an instance of the synchronizability problems is a finite set
A = {Ai : 1≤ i ≤ k} of matrices, each inKn×n. The familyA is called (location) synchronizable if it
generates a (location) synchronizing matrix. The questionis to decide whether the instance is (location)
synchronizing.

Note that these notions coincide for stochastic automata and also in the Boolean semiring. For uncon-
strained automata, both problems arePSPACE-hard for any nontrivial semiring, and in any semiring, the
length of the shortest directing word can be exponential. Wegive sufficient conditions for the semiringK
when the problems are inPSPACE(and hence arePSPACE-complete) and show several undecidability
results as well.

2 Notation

A semiring is an algebraic structureK = (K,+, ·,0,1) where(K,+,0) is a commutative monoid with
identity 0, (K, ·,1) is a monoid with identity 1, 0 is an annihilator for· and · distributes over+, i.e.
0a= a0= 0, (a+b)c= ac+bcanda(b+c) = ab+ac for eacha,b,c∈K. (When the context is clear, we
usually omit the· sign.) The case when|K|= 1 is that of the trivial semiring; when|K|> 1, the semiring
is nontrivial. Three semirings used in this paper are theBoolean semiringB = ({0,1},∨,∧,0,1) and the
semiringsN andZ of the natural numbers{0,1,2, . . .} and the integers{0,±1,±2, . . .} with the standard
addition and product. Among these, onlyZ is a ring since the other two have no additive inverses. A
semiringK is zero-sum-free ifa+b= 0 impliesa= b= 0; is zero-divisor-free ifab= 0 impliesa= 0 or
b= 0; is positive if it is both zero-sum-free and zero-divisor-free; is locally finite if for any finiteK0 ⊆K,
the least subsemiring ofK containingK0 (which is also called the subsemiring ofK generated byK0) is
finite.

An alphabetis a finite nonempty set, usually denotedA in this paper. Whenn is an integer,[n] stands for
the set{1, . . . ,n}. For a setX, P(X) denotes its power set{Y : Y ⊆ X}. For any alphabetA, the semiring
of languagesoverA is (P(A∗),∪, ·, /0,{ε}) where product is concatenation of languages,KL = {uv : u∈
K,v∈ L} andε stands for the empty word.

WhenK is a semiring andn> 0 is an integer, then the setKn×n of n×n matrices with entries inK also
forms a semiring with pointwise addition(A+B)i, j = Ai, j +Bi, j (for clarity, Ai, j stands for the entry in
the ith row and jth column) and the usual matrix product(AB)i, j = ∑k∈[n] Ai,kBk, j . The zero element is

the null matrixOi, j = 0 and the one element is the identity matrixIi, j =

{
1, if i = j

0, otherwise
in Kn×n.

In this article we only take products of matrices, no sums andthus use the notion〈M 〉 whenM ⊆ Kn×n

is a set of matrices for the least submonoidof the monoid(Kn×n, ·, In) containingM . That is,〈M 〉
contains all products of the formM1M2 . . .Mk with k≥ 0 andMi ∈ M for eachi ∈ [k].

For a semiringK , alphabetA and integern > 0, ann-stateK -weighted A-automatonis a systemM =
(α ,(Ma)a∈Σ,β) whereα ,β ∈ Kn are theinitial andfinal vectors, respectively and for eacha∈ A, Ma ∈
Kn×n is a transition matrix. The mappinga 7→ Ma extends in a unique way to a homomorphismA∗ →
Kn×n, w 7→ Mw with Ma1...ak = Ma1 . . .Mak. The automatonM above associates to each wordw a weight
M(w) = αMwβ ∈ K, whereα is considered as a 1×n row vector andβ as ann×1 column vector. We
usually do not specify the numbern of states explicitly and omitK andA when the weight structure

Szabolcs Iván 303

and/or the alphabet is clear from the context.

3 Synchronizability in various semirings

Classical nondeterministic automata (with multiple initial states but noε-transitions) can be seen as au-
tomata with weights in the Boolean semiring. For any semiring K , aK -automatonM = (α ,(Ma)a∈A,β)
is

• partial if there is at most one nonzero entry in each row of each transition matrix, andα has exactly
one nonzero entry,

• deterministicif it is partial and there is exactly one nonzero entry in eachrow of each matrixMa.

A classical deterministic automatonM = (α ,(Ma)a∈A,β) is calledsynchronizable(directable, resetable
etc) if there exists a wordw (called a synchronizing word ofM) such thatMw has exactly one column
that is filled with 1’s and all the other entries ofMw are zero. (Traditionally, this property is formalized
asw inducing a constant map on the state set.)

As an example, the 4-state automatonM = (α ,(Ma)a∈{0,1},β) with arbitraryα andβ and with transition
matrices

M0 =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ,M1 =

0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

is synchronizable since for the word 100010001, the transition matrix is

(M1(M0)
3)2M1 =

0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0

 .

The notion celebrates its 50th anniversary this year – a verypopular and intensively studied conjecture in
the area is that of̌Cerný stating if ann-state classical deterministic automaton is synchronizable, then it
admits a synchronizing word of length at most(n−1)2. We remark here that it is decidable in polynomial
time (it’s actually inNL) whether an input classical, deterministic automaton is synchronizable.

Synchronizability has been extended to nondeterminisic automata in [9] in three different ways. Here
we highlight the one entitled “D3-directability” there: aB-automatonM = (α ,(Ma)a∈A,β) (that is, a
classical nondeterministic automaton) is called D3-directable if there exists a wordw such thatMw has
exactly one column that is filled with 1’s and all the other entries ofMw are zero. It is known (see e.g. [9])
that in general, the shortest synchronizing word of a synchronizablen-stateB-automaton can have length
Ω(2n) with O(2n) being an upper bound [4]. For partialB-automata, the best known bounds areΩ(3

√
3

n
)

andO(n2 3
√

4
n
), see [11, 4].

In the next section of the paper we will frequently use the following results of [12]:

Theorem 1. Deciding whether an inputB-automaton is synchronizable is complete forPSPACE. The
problem remainsPSPACE-complete when restricted to partialB-automata.

304 Synchronizing weighted automata

For the probabilistic semiring, in which case the weight structure is that of the nonnegative reals with the
standard addition and product, and the input automata’s transition matrices are restricted to be stochastic,
the notion has been also generalized by several authors:

• In [10], M is synchronizable if there exists a wordw such that all the rows ofMw are identical.

• In [2], M is synchronizable if there exists a single infinite wordw such that for anyε > 0, there
exists an integerKε such that for each finite prefixu of w having length at leastKε , in Mu there is
a column in which each entry is at least 1− ε .

The problem of checking synchronizability is undecidable in the former setting andPSPACE-complete
in the latter setting.

Most of these generalizations require (an arbitrary precise approximation of) a column consisting of ones
and zeros everywhere else in some matrix of the formMw. In fact, under these conditions it is a simple
consequence of the structure of the semiring and the constraint on the automata that if in a row of a
transition matrixMw there is exactly one nonzero element, then it has to be 1. (TheBoolean semiring
has only two elements, while in the probability semiring thestochasticity of the matrices guarantee that
the row sum is preserved and is one.)

The authors of [1] worked in the semiringZ, with a different semantics notion, though: according to
the notions of the present paper they worked in the semiringPf (Z), where the elements are finite sets of
integers, with union as addition and complex sumX+Y= {x+y : x∈X,y∈Y} being product. There two
different notions of synchronizability are introduced: a matrix M is location synchronizingif there exists
a column in which each entry is nonzero, while all the other entries of the matrix are zeroes (recall that
in this semiring /0 plays as zero) and issynchronizingif additionally the nonzero entries all coincide and
map every possible starting vectorα to some fixed vector (which is simply not possible in this semiring
since this would require the presence of anL -trivial element of the semiring). An automatonM is
location synchronizable if there exists a wordw such thatMw is location synchronizing. Regarding the
complexity issues, location synchronizability isPSPACE-complete (which is due to the fact thatPf (Z)
is positive, cf. Proposition 4) and synchronizability is trivially false.

In this paper we extend the notion of synchronizability in spirit similar to [1], covering most of the
generalizations above (the exception being the case of the probabilistic semiring, which seems to require
a notion of metric).
Definition 1. Given a semiringK and a matrixM ∈ Kn×n, we say thatM is

• location synchronizingif there exists a (unique) integeri ∈ [n] such thatM j,k 6= 0 iff k= i;

• synchronizingif it is location synchronizing and additionally,M j,i = M1,i for each j ∈ [n] for the
above indexi.

A finite set M1, . . . ,Mk ∈ Kn×n of matrices is(location) synchronizableif they generate a (location)
synchronizing matrix, i.e. whenMi1Mi2 . . .Mit is (location) synchronizing for somei1, . . . , it ∈ [k], t > 0.

A K -automaton is (location) synchronizable if so is its set of transition matrices.

We formulate theK -(location) synchronizing problem (K -Sync andK -LocSync for short) as follows:
given a finite setM = {M1, . . . ,Mk} of matrices inKn×n for somen> 0, decide whetherM is (location)
synchronizable?

(Clearly, this is equivalent to having a singleK -automaton as input.)

Szabolcs Iván 305

4 Results on complexity of the two problems

Given a semiringK , call a matrixM ∈ Kn×n a partial 0/1-matrix if in each row there is at most one
nonzero entry, which can have only a value of 1 if present, formally for eachi there exists at most
one j with Mi, j 6= 0 in which caseMi, j = 1 has to hold. Observe that the product of two partial 0/1-
matrices is still a partial 0/1-matrix, being the same in any semiring. Moreover, a partial 0/1-matrix is
synchronizing iff it is location synchronizing. Thus the following are equivalent for any setM ⊆ Kn×n

of partial 0/1-matrices:

1. M is synchronizable;

2. M is location synchronizable;

3. M , viewed as a set of partial 0/1-matrices overB, is synchronizable.

Since by Theorem 1 the last condition isPSPACE-hard to check, we immediately get the following:

Proposition 1. For any nontrivial semiringK , bothK -SyncandK -LocSyncarePSPACE-hard.

4.1 Decidable subcases

First we make several (rather straightforward) observations on decidable subcases, generally involving
finiteness conditions.

Of course ifK is finite, we getPSPACE-completeness:

Proposition 2. For any finite semiringK both problems are inPSPACE, thus arePSPACE-complete.

Proof. Given an instanceM = {M1, . . . ,Mk} of the problem, we store a current matrixC∈ Kn×n initial-
ized by the unit matrixIn of Kn×n. In an endless loop, we nondeterministically choose an index i ∈ [k]
and letC := CAi. After each step we check whetherC is (location) synchronizing. If so, we report
acceptance, otherwise continue the iteration.

If K is finite, storing an entry ofC takes constant space, so storingC takesO(n2) memory, as well as
computation of the product matrix. In total, we have anNPSPACE algorithm which isPSPACE by
Savitch’s theorem [13].

Proposition 3. For any locally finite semiringK , bothK -SyncandK -LocSyncare decidable, provided
that addition and product ofK are computable.

Proof. Recall that a semiringK is locally finite if any finite subset ofK generates a finite subsemiring of
K .

Now given an instanceM = {M1, . . . ,Mk} of the problem, letX = {Mi j,t : i ∈ [k], j, t ∈ [n]} ⊆ K stand
for the finite set of the entries occurring in any of the matrices. Then clearly,〈M 〉 ⊆ Xn×n whereX is the
subsemiring ofK generated byX. SinceK is finitely generated, this implies〈M 〉 is finite as well, hence
there exists an integert such that〈M 〉 = M≤t = {Mi1Mi2 . . .Mid : d ≤ t, i1, . . . , id ∈ [k]} which can be
chosen to be the least integert with M≤t =M≤t+1. Hence by computing the setsM≤t for t = 0,1,2, . . .

306 Synchronizing weighted automata

and reporting acceptance when a witness is found and rejecting the input whenM≤t = M≤t+1 gets
satisfied without finding a witness we decide the respective problem.

(Note that computability of addition and product is needed for the effective computation of the sets
above.)

Proposition 4. For any positive semiringK , K -LocSync is in PSPACE.

Proof. For any positive semiringK the mappingσ : K → B which maps 0 to 0 and all other elements of
K to 1, is a semiring morphism. Henceσ can be extended pointwise to a semiring morphismσ : Kn×n →
Bn×n, with (σ(A))i, j = σ(Ai, j). Then, a matrixA∈ Kn×n is locationsynchronizing if and only ifσ(A)
is (location) synchronizing. HenceK -LocSync can be reduced toB-Sync via the polytime reduction
{A1, . . . ,Ak} 7→ {σ(A1), . . . ,σ(Ak)}, which is solvable inPSPACE, hence so isK -LocSync.

Remark1. One can use the above semiring morphism to decide any such property of matrices which
cares only on the positions of zeroes (i.e. whenM satisfies the property if and only if so doesσ(M)).
Examples of such properties aremortality (whether the all-zero matrix is generated), and thezero-in-
the-upper-left-corner(whether a matrix with a zero in the upper-left corner is generated). Thus both
properties are inPSPACEfor positive semirings (and are in fact undecidable for the semiringZ, which
is not zero-sum-free).

Synchronizability, on the other hand, as well as the “equal entries problem” asking whether a matrix is
generated having the same entry at two specified positions, is not such a property. The latter is well-
known to be undecidable inN while the former is shown to be undecidable in Theorem 2.

4.2 Undecidable subcases

Now we turn our attention to undecidability results.

A well-known undecidable problem is theFixed Post Correspondence Problem, or FPCP for short: given
a finite set{(u1,v1), . . . ,(uk,vk)} of pairs of nonempty words over a binary alphabet, does thereexist a
nonempty index sequencei1, . . . , it , eachi j in [k], t > 0 with it = 1 (i.e. we fix thelast used tile) such
thatui1ui2 . . .uit = vi1vi2 . . .vit ? The problem is already undecidable for the fixed constantk= 7 (also, it’s
known to be decidable fork= 2, see [8] and has an unknown decidability status for 3≤ k≤ 6).

Proposition 5. For any semiringK such that the semigroup({a,b}∗, ·) embeds into the multiplicative
monoid(K, ·,1) of K , theK -Syncproblem is undecidable, even for two-state deterministic WFA with an
alphabet size of8 (i.e. for eight2×2 matrices when the question is viewed as a problem for matrices).

Proof. In order to ease notation, suppose({a,b}∗, ·) is a subsemigroup of(K, ·,1). For wordsu,v ∈
{a,b}+, let us define the matricesA(u,v) =

(
u 0
0 v

)
andB(u,v) =

(
u 0
v 0

)
. Then a direct compu-

tation shows that

A(u1,v1)A(u2,v2) = A(u1u2,v1v2),

B(u1,v1)A(u2,v2) = B(u1u2,v1v2),

B(u1,v1)A(u2,v2) = B(u1,v1)B(u2,v2) = B(u1u2,v1u2).

Szabolcs Iván 307

Also, matricesA(u,v) are not synchronizing while matricesB(u,v) are synchronizing iffu= v. Moreover,
a productB(u1,v1)X is synchronizing forX ∈ 〈∪u,v∈{a,b}+{A(u,v),B(u,v)}〉 iff u1 = v1. Thus we can
derive that a product of the formX1(u1,v2)X2(u2,v2) . . .Xk(uk,vk) with eachXi being eitherA or B and
ui ,vi ∈ {0,1}+ is synchronizing iff there exists somet ∈ [k] such thatXt = B, Xt ′ = A for eacht ′ < t and
u1 . . .ut = v1 . . .vt holds.

Hence, a reduction from FPCP toK -Sync is given by the transformation

{(ui ,vi) : i ∈ [k]} 7→ {A(ui ,vi) : i ∈ [k]}∪{B(u1,v1)}.

Since FPCP is undecidable, so isK -Sync.

Note that(Σ∗,∪, ·, /0,{ε}) is positive, so its location synchronization problem is decidable in polynomial
space, while when|Σ|> 1, its synchronization problem becomes undecidable.

Now we give a polynomial-time reduction from theK -mortality problem to both of theK -synchronization
and theK -location synchronization problem. TheK -mortality problem is actively studied for the case
K = Z:

Definition 2. For a fixed semiringK , theK -mortality problem is the following: given a finite setM =
{M1, . . . ,Mk} of matrices inKn×n for somen> 0, does〈M 〉 contain the null matrixOn?

Proposition 6. For any semiring K, theK -mortality problem reduces to both ofK -SyncandK -LocSync.
Thus, in particular, whenK -mortality problem is undecidable, so are both synchronizability problems.

Proof. Let M = {M1, . . . ,Mk} be an instance of theK -mortality problem. We define the matricesAi =(
1 0
0 Mi

)
, i.e. adding an all-zero top row and an all-zero first row to each Mi, i ∈ [k] and fill the

upper-left corner by 1. Also, we defineA0 =

(
1 0
1 In

)
. We claim that the following are equivalent:

1. On ∈ 〈M 〉;
2. A = {Ai : 0≤ i ≤ k} is synchronizable;

3. A is location synchronizable.

Observe that each member ofA is block-lower triangular with 1 in the upper left corner, hence for

any productA= Ai1Ai2 . . .Ait we haveA=

(
1 0
X Mi1Mi2 . . .Mit

)
for some column vectorX. Note that

in order to ease notation we defineM0 as the unit matrixIn and setM = {M0, . . . ,Mk} – sinceIn is not
synchronizing and is the unit element ofKn×n, this neither affects mortality (ofM) nor synchronizability
(of A).

Thus in particular the first column of any matrixA ∈ 〈M 〉 contains a nonzero entry, henceA is (lo-
cation) synchronizing only ifMi1Mi2 . . .Mit = On, in which caseM is indeed a positive instance of
the K -mortality problem, showing iii)→ i). For i)→ii), let Ai1 . . .Ait = On, t > 0, i j ∈ [k]. Then

M := Mi1 . . .Mit =

(
1 0
0 On

)
, thusA0M =

(
1 0
1 On

)
is a synchronizing matrix. Finally, ii)→iii)

is clear for anyA .

308 Synchronizing weighted automata

In particular, since mortality is undecidable inZ, so areZ-SyncandZ-LocSync.

Our most involved result on undecidability is the followingone:

Theorem 2. N-Syncis undecidable. Thus ifN embeds intoK (i.e. when1 has infinite order in(K,+,0)),
then so isK -Sync.

Proof. We give a polynomial-time reduction from the FPCP problem toN-Sync. This time we use the
variant of FPCP in which thefirst tile is fixed to (u1,v1). Let {(ui ,vi) : i ∈ [k]} be an instance of the
FPCP,ui ,vi ∈ {0,1}+. For a nonempty wordu ∈ {0,1}+ let int(u) be its value when considered as a
ternary number, i.e. int(an−1 . . .a0) = ∑0≤i<nai3i . Also, we define for each wordu a matrixM(u) =(

3|u| 0
int(u) 1

)
. Then, since int(uv) = 3|v|int(u)+ int(v), we get thatM(u)M(v) = M(uv) and since the

mappingu 7→ M(u) is also injective, it is an embedding of the semigroup({0,1}+, ·) into N2×2.

We define the following matricesAi, i ∈ [k], B andC, all in N6×6:

Ai =

M(ui) 0 0
0 M(ui) 0
0 0 M(vi)

 ,

B=

int(u1) 1 int(u1) 1 0 0
int(u1) 1 int(u1) 1 0 0
0 0 int(u1) 1 0 0
0 0 int(u1) 1 0 0
0 0 0 0 int(v1) 1
0 0 0 0 int(v1) 1

,

C=

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

,

that is,C has exactly two nonzero entries, namelyC3,1 =C5,1 = 1.

Then for any sequencei2, . . . , it , t ≥ 1 we have

Ai2 . . .Ait =

M(u) 0 0
0 M(u) 0
0 0 M(v)

with u= ui2 . . .uit andv= vi2 . . .vit and also

BAi2 . . .Ait =

int(u1u) int(u) int(u1u) int(u) 0 0
int(u1u) int(u) int(u1u) int(u) 0 0
0 0 int(u1u) int(u) 0 0
0 0 int(u1u) int(u) 0 0
0 0 0 0 int(v1v) int(v)
0 0 0 0 int(v1v) int(v)

,

Szabolcs Iván 309

and thus

BAi2 . . .AitC=

int(u1u) 0 0 0 0 0
int(u1u) 0 0 0 0 0
int(u1u) 0 0 0 0 0
int(u1u) 0 0 0 0 0
int(v1v) 0 0 0 0 0
int(v1v) 0 0 0 0 0

,

which is synchronizing if and only ifu1ui2 . . .uit = v1vi2 . . .vit , hence if{(ui ,vi) : i ∈ [k]} is a positive
instance of FPCP, thenM = {Ai : i ∈ [k]}∪{B,C} is synchronizable.

For the other direction, supposeM is synchronizable. We already argued that any memberA of 〈{Ai :

i ∈ [k]}〉 has the form

M(u) 0 0
0 M(u) 0
0 0 M(v)

 for wordsu,v with u= ui1ui2 . . .uit andv= vi1vi2 . . .vit

for somei j ∈ [k], t ≥ 0. These matrices are clearly not (location) synchronizing.

Considering the matrixC, we have the following claims:

Claim A. For any matrixX we haveXC=

c1

c2
...
c6

0

 for somec1, . . . ,c6 ∈ N.

Claim B. If XCY is synchronizing for some matricesX andY, then so isXC.

Indeed,XC is the matrix whose first column is the sum of the third and the fifth column ofX, and whose

other entries are all zero. Also, ifXC=

c1

c2
...
c6

0

 thenXCY=

c1r1

c2r1
...
c6r1

 wherer1 is the

first row ofY. If XCY is synchronizing, this impliescir1 = c j r1 6= 0 for eachi, j ∈ [6], henceci = c j and
XC is synchronizing as well.

Thus, by ii) above we get that ifM is synchronizable, then there is a synchronizing matrix of the form
XC with X ∈ 〈{Ai : i ∈ [k]}∪{B}〉.
Inspecting members of〈{Ai : i ∈ [k]}∪{B}〉 we get the following claim:

Claim C.Let A stand for the matrix semigroup〈{Ai : i ∈ [k]}〉. Then for anyn ≥ 0, any member of

A (BA)n has the form

X nX 0
0 X 0
0 0 Y

 for some matricesX,Y ∈ N2×2.

Indeed, for the base casen= 0 we have matrices of the form

M(u) 0 0
0 M(u) 0
0 0 M(v)

 satisfying the

condition. Suppose the claim holds forn and consider a matrixM ∈A (BA)n+1 =A (BA)nBA . By the

310 Synchronizing weighted automata

induction hypothesis,M = M0BA with M0 =

X nX 0
0 X 0
0 0 Y

, andA=

M(u) 0 0
0 M(u) 0
0 0 M(v)

 for

someX,Y ∈ N2×2 and wordsu,v. We can also writeU1 for

(
int(u1) 1
int(u1) 1

)
andV1 for

(
int(v1) 1
int(v1) 1

)
.

Calculating the product we get

M = M0BA=

X nX 0
0 X 0
0 0 Y

U1 U1 0
0 U1 0
0 0 V1

M(u) 0 0
0 M(u) 0
0 0 M(v)

=

XU1M(u) (n+1)XU1M(u) 0
0 XU1M(u) 0
0 0 YV1M(v)

 ,

showing the claim.

Thus, since〈{Ai : i ∈ [k]} ∪ {B}〉 = ⋃
n≥0

A (BA)n, we get by Claim B that ifM is synchronizable,

then there is a synchronizing matrix of the form

X nX 0
0 X 0
0 0 Y

C. Writing X =

(
x1 x2

x3 x4

)
and

Y =

(
y1 y2

y3 y4

)
we get that this product is further equal to

nx1

nx3

x1

x3

y1

y3

0

which is synchronizing

if and only if n= 1 andx1 = x3 = y1 = y3 6= 0. By n= 1 we get that ifM is synchronizable, then there
is a synchronizing matrix of the form

X = A j1A j2 . . .A jℓBAi2Ai3 . . .AitC,

with ℓ≥ 0, t ≥ 1, jr , ir ∈ [k]. Writing u= u1ui2 . . .uit , v= v1vi2 . . .vit , u′ = u j1 . . .u jℓ andv′ = v j1 . . .v jℓ we

Szabolcs Iván 311

can write

X = A j1A j2 . . .A jℓBAi2Ai3 . . .AitC

=

M(u′) 0 0
0 M(u′) 0
0 0 M(v′)

int(u1u) 1 int(u1u) 1 0 0
int(u1u) 1 int(u1u) 1 0 0
0 0 int(u1u) 1 0 0
0 0 int(u1u) 1 0 0
0 0 0 0 int(v1v) 1
0 0 0 0 int(v1v) 1

C

=

3|u
′|int(u1u) 3|u

′| 3|u
′ |int(u1u) 3|u

′| 0 0
(int(u′)+1) · int(u1u) int(u′)+1 (int(u′)+1) · int(u1u) int(u′)+1 0 0
0 0 3|u

′ |int(u1u) 3|u
′| 0 0

0 0 (int(u′)+1) · int(u1u) int(u′)+1 0 0
0 0 0 0 3|v

′|int(v1v) 3|v
′|

0 0 0 0 (|v′|+1) · int(v1v) int(v′)

C

=

3|u
′|int(u1u)

(int(u′)+1) · int(u1u)
3|u

′|int(u1u)
(int(u′)+1) · int(u1u)
3|v

′|int(v1v)
(int(v′)+1) · int(v1v)

0

which is synchronizing only if 3|u
′| = int(u′)+1 and 3|v

′| = int(v′)+1, that is,u′ = v′ = ε implying ℓ= 0.

Hence ifM is synchronizable then there exists a synchronizing product of the form BAi2Ai3 . . .AitC,
which in turn impliesu1ui2 . . .uit = v1vi2 . . .vit , thus in that case{(ui ,vi) : i ∈ [k]} is indeed a positive
instance of the FPCP problem.

We note that the idea of encoding of a PCP variant within matrix semirings is not new, see e.g. [7,
15, 3]. For example,Z-mortality can be shown to be undecidable for 3× 3 integral matrices via a

similar embedding(u,v) 7→ M(u,v) =

4|u| 0 0
0 4|v| 0
int(u) int(v) 1

 as in the proof of Theorem 2, with int(u)

being the base-4 value ofu. This mapping is also an injective monoid homomorphism. Then, defining

B=

0 0 0
−1 0 −1
0 0 0

 which satisfiesB2 = B andBM(u,v)B= (4|u|+ int(u)− int(v))B we get a similar

construction (cf. [5]), also suitable for showing the undecidability of the zero-in-the-upper-left-corner
problem. However, the lack of substraction (in general, zero-sum-freeness ofN) prevents us to apply this
method. Also, defining matrices of the formTM(u,v)T−1 for a suitableT (as in [6], see also [14]) is
again out of question since inNk×k, only permutation matrices are invertible. The most closest approach
is that of the equal entries problem: in the proof we also showed undecidability of the problem whetherA
generates a matrix having equal entries in the top-left corner and in entry(5,5). Actually, the embedding

(u,v) 7→
(

M(u) 0
0 M(v)

)
shows the same for 4× 4 matrices. However, we were unable to modify

the construction for 4× 4 matrices toshift the values int(u) and int(v) into, say, the first column and

312 Synchronizing weighted automata

at the same time,overwrite the values 3|u| and 3|v| by int(u) and int(v), respectively. (Adding them or
something similar did not seem to work, either.) That’s why we had to use 6× 6 matrices – it is quite
plausible that the encoding is not the most compact possibleand the dimension can be further lowered.

5 Conclusion, future directions

We generalized the notion of synchronizability to automatawith transitions weighted in an arbitrary
semiring in two ways: one of them, location synchronizability requires the existence of a wordu and
a stateq such that starting from any statep, q and onlyq has a nonzero weight afteru is being read;
synchronizability additionally requires that this nonzero weight is the same for all statesp. In this paper
we studied thecomplexityof checking these properties, parametrized by the underlying semiring.

Our results can be summarised as follows:

• Both problems arePSPACE-hard for any nontrivial semiring.

• For finite semirings, they arePSPACE-complete.

• For positive semirings, location synchronizability isPSPACE-complete.

• For locally finite semirings they are decidable (provided that the addition and product operations
of the semiring are computable).

• The mortality problem reduces to both problems in any semiring. Thus for semirings having an
undecidable mortality problem, both variants of synchronization are undecidable. (This is the case
for Z.)

• If ({0,1}+, ·,ε) embeds into the multiplicative structure ofK , then synchronizability is undecid-
able forK , even for deterministic automata.

• Synchronizability is undecidable for any semiring where 1 has infinite order in the additive semi-
group. (This is the case forN. Note that forN, location synchronizability is inPSPACE.)

We do not have any decidability results forK -synchronizability when the semiringK is not locally
finite, the element 1 has a finite order in the additive structure, and{0,1}+ does not embed into the
multiplicative semigroup. Also, it is not clear whether synchronizability can be reduced to location
synchronizability in general – since inN, location synchronizability is decidable but synchronizability is
undecidable, so in general, synchronizability cannot be Turing-reduced to location synchronizability. It
is also an interesting question whetherN-synchronizability of 5-state automata is decidable or not– we
conjecture that it is still undecidable and one can use a slightly more compact encoding of FPCP. Also,
to cover the existing generalizations of synchronizability for the case of the probabilistic semiring, we
could study semirings that are equipped with a metric – our current investigations can be seen as the case
of this perspective where the metric is the dicrete unit-distance metric.

Acknowledgement

The research was supported by the European Union and the State of Hungary, co-financed by the Eu-
ropean Social Fund in the framework of TÁMOP-4.2.4.A/ 2-11/1-2012-0001 “National Excellence Pro-
gram”.

Szabolcs Iván 313

The author is thankful to the anonymous referees for their suggestions and detailed comments.

References

[1] Laurent Doyen, Line Juhl, Kim G. Larsen, Nicolas Markey &Mahsa Shirmohammadi (2013):Synchro-
nizing Words for Timed and Weighted Automata. Research Report LSV-13-15, Laboratoire Spécification et
Vérification, ENS Cachan, France. Available athttp://www.lsv.ens-cachan.fr/Publis/RAPPORTS_

LSV/PDF/rr-lsv-2013-15.pdf. 26 pages.

[2] Laurent Doyen, Thierry Massart & Mahsa Shirmohammadi (2011): Infinite Synchronizing Words for Prob-
abilistic Automata. In Filip Murlak & Piotr Sankowski, editors:Mathematical Foundations of Computer
Science 2011, Lecture Notes in Computer Science6907, Springer Berlin Heidelberg, pp. 278–289, doi:10.

1007/978-3-642-22993-0_27.

[3] Stephane Gaubert & Ricardo Katz (2006):Reachability Problems for Products of Matrices in Semir-
ings. IJAC 16(3), pp. 603–627. Available athttp://dblp.uni-trier.de/db/journals/ijac/ijac16.
html#GaubertK06.

[4] Zsolt Gazdag, Szabolcs Iván & Judit Nagy-György (2009): Improved Upper Bounds on Synchronizing Non-
deterministic Automata. Inf. Process. Lett.109(17), pp. 986–990, doi:10.1016/j.ipl.2009.05.007.

[5] Vesa Halava (1997):Decidable and Undecidable Problems in Matrix Theory.

[6] Vesa Halava & Tero Harju (2001):Mortality in Matrix Semigroups. AMER. MATH. MONTHLY 2001, p.
653.

[7] Vesa Halava & Mika Hirvensalo (2007):Improved matrix pair undecidability results. Acta Informatica
44(3-4), pp. 191–205, doi:10.1007/s00236-007-0047-y.

[8] Vesa Halava, Mika Hirvensalo & Ronald de Wolf (2001):Marked{PCP} is decidable. Theoretical Computer
Science255(12), pp. 193 – 204, doi:10.1016/S0304-3975(99)00163-2.

[9] Balázs Imreh & Magnus Steinby (1999):Directable Nondeterministic Automata.Acta Cybern.14(1), pp.
105–115. Available athttp://dblp.uni-trier.de/db/journals/actaC/actaC14.html#ImrehS99.

[10] D.J. Kfoury (1970):Synchronizing Sequences for Probabilistic Automata. Stud. Appl. Math.49, pp. 101–
103.

[11] P. V. Martyugin (2010):A lower bound for the length of the shortest carefully synchronizing words. Russian
Mathematics54, pp. 46–54, doi:10.3103/S1066369X10010056.

[12] P.V. Martyugin (2010):Complexity of Problems Concerning Carefully Synchronizing Words for PFA and
Directing Words for NFA. In Farid Ablayev & ErnstW. Mayr, editors:Computer Science Theory and Appli-
cations, Lecture Notes in Computer Science6072, Springer Berlin Heidelberg, pp. 288–302, doi:10.1007/

978-3-642-13182-0_27.

[13] Christos H. Papadimitriou (1994):Computational complexity.Addison-Wesley.

[14] M. Paterson (1970):Unsolvability in 3×3 matrices. Studies in Applied Mathematics49, pp. 105–107.

[15] Igor Potapov (2004):From Post Systems to the Reachability Problems for Matrix Semigroups and Mul-
ticounter Automata. In: Developments in Language Theory, LNCS 3340, pp. 345–356, doi:10.1007/
978-3-540-30550-7_29.

[16] Mikhail V. Volkov (2008): Language and Automata Theory and Applications. chapter Synchroniz-
ing Automata and thěCerný Conjecture, Springer-Verlag, Berlin, Heidelberg,pp. 11–27, doi:10.1007/
978-3-540-88282-4_4.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 314–326, doi:10.4204/EPTCS.151.22

c© A. Maletti and D. Quernheim
This work is licensed under the
Creative Commons Attribution License.

Hyper-Minimization for
Deterministic Weighted Tree Automata

Andreas Maletti∗

Universität Leipzig, Institute of Computer Science
Augustusplatz 10–11, 04109 Leipzig, Germany
maletti@informatik.uni-leipzig.de

Daniel Quernheim∗

Universität Stuttgart, Institute for Natural Language Processing
Pfaffenwaldring 5b, 70569 Stuttgart, Germany

daniel@ims.uni-stuttgart.de

Hyper-minimization is a state reduction technique that allows a finite change in the semantics. The
theory for hyper-minimization of deterministic weighted tree automata is provided. The presence of
weights slightly complicates the situation in comparison to the unweighted case. In addition, the first
hyper-minimization algorithm for deterministic weighted tree automata, weighted over commutative
semifields, is provided together with some implementation remarks that enable an efficient imple-
mentation. In fact, the same run-time O(m logn) as in the unweighted case is obtained, where m is
the size of the deterministic weighted tree automaton and n is its number of states.

1 Introduction

Deterministic finite-state tree automata (DTA) [13, 14] are one of the oldest, simplest, but most useful
devices in computer science representing structure. They have wide-spread applications in linguistic
analysis and parsing [27] because they naturally can represent derivation trees of a context-free grammar.
Due to the size of the natural language lexicons and processes like state-splitting, we often obtain huge
DTA consisting of several million states. Fortunately, each DTA allows us to efficiently compute a unique
(up to isomorphism) equivalent minimal DTA, which is an operation that most tree automata toolkits
naturally implement. The asymptotically most efficient minimization algorithms are based on [22, 18],
which in turn are based on the corresponding procedures for deterministic string automata [20, 16, 30].
In general, all those procedures compute the equivalent states and merge them in time O(m logn), where
n is the number of states of the input DTA and m is its size.

Hyper-minimization [3] is a state reduction technique that can reduce beyond the classical minimal
device because it allows a finite change in the semantics (or a finite number of errors). It was already suc-
cessfully applied to a variety of devices such as deterministic finite-state automata [12, 19], deterministic
tree automata [21] as well as deterministic weighted automata [24]. With recent progress in the area of
minimization for weighted deterministic tree automata [25], which provides the basis for this contribu-
tion, we revisit hyper-minimization for weighted deterministic tree automata. The asymptotically fastest
hyper-minimization algorithms [12, 19] for DFA compute the “almost-equivalence” relation and merge
states with finite left language, called preamble states, according to it in time O(m logn), where m is
the size of the input device and n is the number of its states. Naturally, this complexity is the goal for
our investigation as well. Variations such as cover automata minimization [8], which has been explored
before hyper-minimization due to its usefulness in compressing finite languages, or k-minimization [12]
restrict the length of the error strings instead of their number, but can also be achieved within the stated
time-bound.

∗Both authors were financially supported by the German Research Foundation (DFG) grant MA / 4959 / 1–1.

A. Maletti and D. Quernheim 315

As in [24] our weight structures will be commutative semifields, which are commutative semi-
rings [17, 15] with multiplicative inverses. As before, we will restrict our attention to deterministic
automata. Actually, the mentioned applications of DTA often use the weighted version to compute a
quantitative answer (i.e., the numerically best-scoring parse, etc). We already know that weighted de-
terministic tree automata (DWTA) [4, 11] over semifields can be efficiently minimized [25], although the
minimal equivalent DWTA is no longer unique due to the ability to “push” weights [26, 10, 25]. The
asymptotically fastest minimization algorithm [25] nevertheless still runs in time O(m logn). To the au-
thors’ knowledge, [25] is currently the only published algorithm achieving this complexity for DWTA.
Essentially, it normalizes the input DWTA by “pushing” weights, which yields that, in the process, the
signatures of equivalent states become equivalent, so that a classical unweighted minimization can then
perform the computation of the equivalence and the merges. To this end, it is important that the signature
ignores states that can only recognize finitely many contexts, which are called co-preamble states, to
avoid computing a wrong “pushing” weight.

We focus on an almost-equivalence notion that allows the recognized weighted tree languages to
differ (in weight) for finitely many trees. Thus, we join the results on unweighted hyper-minimization
for DTA [21] and weighted hyper-minimization for WDFA [24]. Our algorithms (see Algorithms 1 and
2) contain features of both of their predecessors and are asymptotically as efficient as them because
they also run in time O(m logn). As in [28], albeit in a slightly different format, we use standardized
signatures to avoid the explicit pushing of weights that was successful in [25]. This adjustment allows us
to mold our weighted hyper-minimization algorithm into the structure of the unweighted algorithm [19].

2 Preliminaries

We use N to denote the set of all nonnegative integers (including 0). For every integer n ∈ N, we use
the set [n] = {i ∈ N | 1 ≤ i ≤ n}. Given two sets S and T , their symmetric difference S	T is given by
S	T = (S−T)∪ (T −S). An alphabet Σ is simply a finite set of symbols, and a ranked alphabet (Σ, rk)
consists of an alphabet Σ and a ranking rk : Σ→N. We let Σn = {σ ∈ Σ | rk(σ) = n} be the set of symbols
of rank n for every n ∈ N. We often represent the ranked alphabet (Σ, rk) by Σ alone and assume that the
ranking ‘rk’ is implicit. Given a set T and a ranked alphabet Σ, we let

Σ(T) = {σ(t1, . . . , tn) | n ∈ N,σ ∈ Σn, t1, . . . , tn ∈ T} .

The set TΣ(Q) of Σ-trees indexed by a set Q is the smallest set T such that Q∪Σ(T) ⊆ T . We write TΣ
for TΣ(/0). Given a tree t ∈ TΣ(Q), its positions pos(t) ⊆ N∗ are inductively defined by pos(q) = {ε}
for each q ∈ Q and pos(σ(t1, . . . , tn)) = {ε} ∪ {iw | i ∈ [n],w ∈ pos(ti)} for all n ∈ N, σ ∈ Σn, and
t1, . . . , tn ∈ TΣ(Q). For each position w ∈ pos(t), we write t(w) for the label of t at position w and
t|w for the subtree of t rooted at w. Formally,

q(ε) = q
(
σ(t1, . . . , tn)

)
(w) =

{
σ if w = ε
ti(v) if w = iv with i ∈ [n], v ∈ N∗

q|ε = q σ(t1, . . . , tn)|w =

{
σ(t1, . . . , tn) if w = ε
ti|v if w = iv with i ∈ [n], v ∈ N∗

for all q ∈ Q, n ∈ N, σ ∈ Σn, and t1, . . . , tn ∈ TΣ(Q). The height ht(t) of a tree t ∈ TΣ(Q) is simply
ht(t) = max {|w| | w ∈ pos(t)}.

316 Hyper-minimization for deterministic weighted tree automata

We reserve the use of the special symbol � of rank 0. A tree t ∈ TΣ∪{�}(Q) is a Σ-context indexed by Q
if the symbol � occurs exactly once in t. The set of all Σ-contexts indexed by Q is denoted by CΣ(Q). As
before, we write CΣ for CΣ(/0). For each c∈CΣ(Q) and t ∈ TΣ(Q), the substitution c[t] denotes the tree ob-
tained from c by replacing � by t. Similarly, we use the substitution c[c′] with another context c′ ∈CΣ(Q),
in which case we obtain yet another context.

We take all weights from a commutative semifield 〈S,+, ·,0,1〉,1 which is an algebraic structure
consisting of a commutative monoid 〈S,+,0〉 and a commutative group 〈S−{0}, ·,1〉 such that
• s ·0 = 0 for all s ∈ S, and
• s · (s1 + s2) = (s · s1)+(s · s2) for all s,s1,s2 ∈ S.

Roughly speaking, commutative semifields are commutative semirings [17, 15] with multiplicative in-
verses. Many practically relevant weight structures are commutative semifields. Examples include
• the real numbers 〈R,+, ·,0,1〉,
• the tropical semifield 〈R∪{∞},min,+,∞,0〉,
• the probabilistic semifield 〈[0,1],max, ·,0,1〉 with [0,1] = {r ∈R | 0≤ r ≤ 1}, and
• the BOOLEAN semifield B= 〈{0,1},max,min,0,1〉.

For the rest of the paper, let 〈S,+, ·,0,1〉 be a commutative semifield (with 0 6= 1), and let S= S−{0}.
For every s∈ Swe write s−1 for the inverse of s; i.e., s ·s−1 = 1. For better readability, we will sometimes
write s1

s2
instead of s1 ·s−1

2 . The following notions implicitly use the commutative semifield S. A weighted
tree language is simply a mapping ϕ : TΣ(Q)→ S. Its support supp(ϕ) ⊆ TΣ(Q) is supp(ϕ) = ϕ−1(S);
i.e., the support contains exactly those trees that are evaluated to non-zero by ϕ . Given s ∈ S, we let
(s ·ϕ) : TΣ(Q)→ S be the weighted tree language such that (s ·ϕ)(t) = s ·ϕ(t) for every t ∈ TΣ(Q).

A deterministic weighted tree automaton (DWTA) [4, 23, 6, 11] is a tuple A = (Q,Σ,δ ,wt,F) with
• a finite set Q of states,
• a ranked alphabet Σ of input symbols such that Σ∩Q = /0,
• a transition mapping δ : Σ(Q)→ Q,2

• a transition weight assignment wt : Σ(Q)→ S, and
• a set F ⊆ Q of final states.

The transition and transition weight mappings ‘δ ’ and ‘wt’ naturally extend to mappings δ̂ : TΣ(Q)→ Q
and ŵt : TΣ(Q)→ S by

δ̂ (q) = q δ̂ (σ(t1, . . . , tn)) = δ (σ(δ̂ (t1), . . . , δ̂ (tn)))

ŵt(q) = 1 ŵt(σ(t1, . . . , tn)) = wt(σ(δ̂ (t1), . . . , δ̂ (tn))) ·∏
i∈[n]

ŵt(ti)

for every q ∈ Q, n ∈ N, σ ∈ Σn, and t1, . . . , tn ∈ TΣ(Q). Since δ̂ (t) = δ (t) and ŵt(t) = wt(t) for all
t ∈ Σ(Q), we can safely omit the hat and simply write δ and wt for δ̂ and ŵt, respectively. The DWTA A
recognizes the weighted tree language JA K : TΣ→ S such that

JA K(t) =
{

wt(t) if δ (t) ∈ F
0 otherwise

for all t ∈ TΣ. Two DWTA A and B are equivalent if JA K = JBK; i.e., their recognized weighted tree
languages coincide. A DWTA over the BOOLEAN semifield B is also called DTA [13, 14] and written

1We generally require 0 6= 1, and in fact, the additive monoid is rather irrelevant for our purposes.
2Note that our DWTA are always total. We additionally disallow transition weight 0. If a transition is undesired, then its

transition target can be set to a sink state, which we commonly denote by ⊥. Finally, the restriction to final states instead of
final weights does not cause a difference in expressive power in our setting [6, Lemma 6.1.4].

A. Maletti and D. Quernheim 317

(Q,Σ,δ ,F) since the component ‘wt’ is uniquely determined. Moreover, we identify each BOOLEAN

weighted tree language ϕ : TΣ(Q)→ {0,1} with its support. Finally, the set Cδ of shallow transition
contexts is

Cδ = {σ(q1, . . . ,qi−1,�,qi+1, . . . ,qn) | n ∈ N, i ∈ [n],σ ∈ Σn,q1, . . . ,qn ∈ Q} ,

which we assume to be totally ordered by some arbitrary order ≤.
For minimization, the weighted (extended) context language of a state is relevant. For every q ∈ Q

the context-semantics JqKA : CΣ(Q)→ S of q is defined for every c ∈CΣ(Q) by

JqKA (c) =

{
wt(c[q]) if δ (c[q]) ∈ F
0 otherwise.

Intuitively, JqKA is the weighted (extended) language recognized by A starting in state q. Two states
q,q′ ∈ Q are equivalent [5], written q ≡ q′, if there exists s ∈ S such that JqKA (c) = s · Jq′KA (c) for all
c ∈CΣ. An equivalence relation ∼=⊆ Q×Q is a congruence relation (for the DWTA A) if for all n ∈ N,
σ ∈ Σn, and q1 ∼= q′1, . . . ,qn ∼= q′n we have δ (σ(q1, . . . ,qn)) ∼= δ (σ(q′1, . . . ,q

′
n)). It is known [5] that ≡

is a congruence relation. The DWTA A is minimal if there is no equivalent DWTA with strictly fewer
states. We can compute a minimal DWTA efficiently using a variant of HOPCROFT’s algorithm [20, 18]
that computes ≡ and runs in time O(m logn), where m = |Σ(Q)| is the size of A and n = |Q|.

3 A characterization of hyper-minimality

Hyper-minimization [3] is a form of lossy compression that allows any finite number of errors. It has
been investigated in [1, 19, 12] for deterministic finite-state automata and in [21] for deterministic
tree automata. Finally, hyper-minimization was already generalized to weighted deterministic finite-
state automata in [24], from which we borrow much of the general approach. In the following, let
A = (Q,Σ,δ ,wt,F) and B = (P,Σ,µ,wt′,G) be DWTA over the commutative semifield 〈S,+, ·,0,1〉
with 0 6= 1.

We start with the basic definition of when two weighted tree languages are almost-equivalent. We
decided to use the same approach as in [24], so we require that the weighted tree languages, seen as
functions, must coincide on almost all trees. Note that this restriction is not simply the same as requiring
that the weighted tree languages have almost-equal (i.e., finite-difference) supports. It fact, our defi-
nition yields that the supports are almost-equal, but that is not sufficient. In addition, we immediately
allow a scaling factor in many of our basic definitions since those are already required in classical min-
imization [5] to obtain the most general statements. Naturally, a scaling factor is not allowed for the
almost-equivalence of DWTA since these are indeed supposed assign a different weight to only finitely
many trees.

Definition 1. Two weighted tree languages ϕ1,ϕ2 : TΣ(Q)→ S are almost-equivalent, written ϕ1 ≈ ϕ2,
if there exists s ∈ S such that ϕ1(t) = s ·ϕ2(t) for almost all t ∈ TΣ(Q).3 We write ϕ1 ≈ ϕ2 (s) to indicate
the factor s. The DWTA A and B are almost-equivalent if JA K≈ JBK (1). Finally, the states q∈Q and
p ∈ P are almost-equivalent if there exists s ∈ S such that JqKA (c) = s · JpKB(c) for almost all c ∈CΣ.

We start with some basic properties of ≈, which is shown to be an equivalence relation both on the
weighted tree languages as well as on the states of a single DWTA. In addition, we demonstrate that the

3“Almost all” means all but a finite number, as usual.

318 Hyper-minimization for deterministic weighted tree automata

latter version is even a congruence relation. This shows that once we are in almost-equivalent states, the
same impetus causes the different devices to switch to other almost-equivalent states.

Lemma 2. Almost-equivalence is an equivalence relation such that δ (c[q]) ≈ µ(c[p]) for all c ∈ CΣ,
q ∈ Q, and p ∈ P with q≈ p.

Proof. Trivially, ≈ is reflexive and symmetric (because we have multiplicative inverses for all elements
of S). Let ϕ1,ϕ2,ϕ3 : TΣ(Q)→ S be weighted tree languages such that ϕ1 ≈ ϕ2 (s) and ϕ2 ≈ ϕ3 (s′) for
some s,s′ ∈ S. Then there exist finite sets L,L′ ⊆ TΣ(Q) such that ϕ1(t) = s ·ϕ2(t) and ϕ2(t ′) = s′ ·ϕ3(t ′)
for all t ∈ TΣ(Q)−L and t ′ ∈ TΣ(Q)−L′. Consequently, ϕ1(t ′′) = s ·s′ ·ϕ3(t ′′) for all t ′′ ∈ TΣ(Q)−(L∪L′),
which proves ϕ1 ≈ ϕ3 (s · s′) and thus transitivity. Hence, ≈ is an equivalence relation. The same
arguments can be used for≈ on DWTA4 and states. For the second property, induction allows us to easily
prove [6] that

JqKA (c′[c]) = wt(c[q]) · Jδ (c[q])KA (c′) and JpKB(c2[c1]) = wt′(c1[p]) · Jµ(c1[p])KB(c2) (†)

for all c,c′ ∈ CΣ(Q) and c1,c2 ∈ CΣ(P). Since q ≈ p (s), there exists a finite set C ⊆ CΣ such that
JqKA (c′′) = s · JpKB(c′′) for all c′′ ∈CΣ−C. Consequently,

Jδ (c[q])KA (c′) =
JqKA (c′[c])

wt(c[q])
= s · JpKB(c′[c])

wt(c[q])
= s · wt′(c[p])

wt(c[q])
· Jµ(c[p])KB(c′)

for all c′ ∈CΣ such that c′[c] /∈C, which proves that δ (c[q])≈ µ(c[p]).

Next, we show that almost-equivalent states of the same DWTA even coincide (up to the factor s) on
almost all extended contexts, which are contexts in which states may occur.

Lemma 3. Let A be minimal and q≈ q′ (s) for some s ∈ S and q,q′ ∈ Q. Then

JqKA (c) = s · Jq′KA (c) (‡)

for almost all c ∈CΣ(Q).

Proof. By definition of q≈ q′ (s), there exists a finite set C⊆CΣ such that JqKA (c) = s ·Jq′KA (c) for all
c∈CΣ−C. Let h≥max {ht(c) | c∈C} be an upper bound for the height of those finitely many contexts.
Clearly, there are only finitely many contexts of CΣ that have height at most h. Now, let c ∈ CΣ(Q) be
an extended context such that ht(c) > h, and let W = {w ∈ pos(c) | c(w) ∈ Q} be the positions that are
labeled with states. For each state q∈Q, select tq ∈ δ−1(q)∩TΣ a tree (without occurrences of states) that
is processed in q. Clearly, such a tree exists for each state because A is minimal. Let c′ be the context
obtained from c by replacing each state occurrence of q by tq. Obviously, ht(c′)≥ ht(c)> h because we
replace only leaves. Consequently, c′ ∈CΣ−C. Using a variant [6] of (†) we obtain

JqKA (c) · ∏
w∈W

wt(tc(w)) = JqKA (c′) = s · Jq′KA (c′) = s · Jq′KA (c) · ∏
w∈W

wt(tc(w)) ,

where the second equality is due to the fact that c′ ∈ CΣ −C. Comparing the left-hand and right-
hand side and cancelling the additional terms, which is allowed in a commutative semifield, we obtain
JqKA (c) = s ·Jq′KA (c) for all c∈CΣ(Q) with ht(c)> h, and thus for almost all c∈CΣ(Q) as required.

4Note that 1−1 = 1 and 1 · 1 = 1, so the restriction to factor 1 in the definition of the almost-equivalence of DWTA is not
problematic.

A. Maletti and D. Quernheim 319

As in all the other scenarios, the goal of hyper-minimization given device A is to construct an almost-
equivalent device B such that no device is smaller than B and almost-equivalent to A . In our setting, the
devices are DWTA over the ranked alphabet Σ and the commutative semifield S. Since almost-equivalence
is an equivalence relation by Lemma 2, we can replace the requirement “almost-equivalent to A ” by
“almost-equivalent to B” and call a DWTA B hyper-minimal if no (strictly) smaller DWTA is almost-
equivalent to it. Then hyper-minimization equates to the computation of a hyper-minimal DWTA B that
is almost-equivalent to A . Let us first investigate hyper-minimality, which was characterized in [3] for
the BOOLEAN semifield using the additional notion of a preamble state.

Definition 4 (see [3, Definition 2.11]). A state q∈Q is a preamble state if δ−1(q)∩TΣ is finite. Otherwise,
it is a kernel state.

In other words, a state is a preamble state if and only if it accepts finitely many trees (without occur-
rences of states). This notion is essentially unweighted, so the discussion in [21] applies. In particular,
we can compute the set of kernel states in time O(m) with m = |Σ(Q)| being the size of the DWTA A .

Recall that a DWTA (without unreachable states; i.e., δ−1(q)∩TΣ 6= /0 for every q ∈ Q) is minimal
if and only if it does not have a pair of different, but equivalent states [7, 5]. The “only-if” part of this
statement is shown by merging two equivalent states to obtain a smaller, but equivalent DWTA. Let us
define a merge that additionally applies a weight s to the rerouted transitions.

Definition 5. Let q,q′ ∈ Q and s ∈ S with q 6= q′. The s-weighted merge of q into q′ is the
DWTA mergeA (q s→ q′) = (Q−{q},Σ,δ ′,wt′,F−{q}) such that for all t ∈ Σ(Q−{q})

δ ′(t) =

{
q′ if δ (t) = q
δ (t) otherwise

wt′(t) =

{
s ·wt(t) if δ (t) = q
wt(t) otherwise.

In our approach to weighted hyper-minimization, we also merge, but we need to take care of the
factors, so we use the weighted merges just introduced. The next lemma hints at the correct use of
weighted merges.

Lemma 6. Let q,q′ ∈ Q be different states, of which q is a preamble state, and s ∈ S be such that q≈ q′

(s). Then mergeA (q s→ q′) is almost-equivalent to A .

Proof. Since q≈ q′ (s), there exists a finite set C⊆CΣ such that JqKA (c) = s ·Jq′KA (c) for all c∈CΣ−C.
Let h ≥ max {ht(c) | c ∈ C} be an upper bound on the height of the contexts of C. Moreover, let
h′ ≥ max {ht(t) | t ∈ δ−1(q)∩TΣ} be an upper bound for the height of the trees of δ−1(q)∩TΣ, which
is a finite set since q is a preamble state. Finally, let z > h+ h′. Now we return to the main claim.
Let B = mergeA (q s→ q′) and consider an arbitrary tree t ∈ TΣ whose height is at least z. Clearly,
showing that B(t) = A (t) for all trees t with ht(t) ≥ z proves that B and A are almost-equivalent.5

Let W = {w ∈ pos(t) | δ (t|w) = q} be the set of positions of the subtrees that are recognized in state q.
Now wt′(t|w) = s ·wt(t|w) for all w ∈W because clearly the subtrees t|w only use states different from q
except at the root, where A switches to q and B switches to q′ with the additional weight s. Note that
q cannot occur anywhere else inside those subtrees because this would create a loop which is impossible
for a preamble state. Let W = {w1, . . . ,wm} with w1 @ · · · @ wm, in which v is the lexicographic order
on N∗. Let c1 ∈CΣ be the context obtained by removing the subtree at w1 from t. Note that c1 is taller

5There are only finitely many ranked trees up to a certain height and recall that almost-equivalence does not permit a scaling
factor for DWTA.

320 Hyper-minimization for deterministic weighted tree automata

than h (i.e., ht(c1) > h) and thus c1 ∈CΣ−C because the height of t is larger than h+h′ and the height
of t|w1 is at most h′. Consequently, using a variant [6] of (†) we obtain

A (t) = A (c1[t|w1])
†
= wt(t|w1) · JqKA (c1) =

wt′(t|w1)

s
· s · Jq′KA (c1) = wt′(t|w1) · Jq′KA (c1)

= wt′(t|w1) ·
{

wt(c1[q′]) if δ (c1[q′]) ∈ F
0 otherwise.

Let c2 be the context obtained from c1[q′] by replacing the subtree at w2 by �. Also c2 /∈C.

= wt′(t|w1) ·
{

wt(c2[t|w2]) if δ (c2[t|w2]) ∈ F
0 otherwise.

= wt′(t|w1) ·wt(t|w2) · JqKA (c2)

‡
= wt′(t|w1) ·

wt′(t|w2)

s
· s · Jq′KA (c2) = wt′(t|w1) ·wt′(t|w2) · Jq′KA (c2) ,

which can now be iterated to obtain

= wt′(t|w1) · . . . ·wt′(t|wm) · Jq′KA (cm) = wt′(t|w1) · . . . ·wt′(t|wm) · Jq′KB(cm)
†
= B(t) ,

where the second-to-last step is justified because the state q is not used when processing the context cm.
This proves the statement.

Theorem 7. A minimal DWTA is hyper-minimal if and only if it has no pair of different, but almost-
equivalent states, of which at least one is a preamble state.

Proof. Let A be the minimal DWTA. For the “only if” part, we know by Lemma 6 that the smaller DWTA

mergeA (q s→ q′) is almost-equivalent to A if q≈ q′ (s) and q is a preamble state. For the “if” direction,
suppose that B is almost-equivalent to A and |P|< |Q|.6 For all t ∈ TΣ we have δ (t)≈ µ(t) by Lemma 2.
Since |P|< |Q|, there exist t1, t2 ∈ TΣ with q1 = δ (t1) 6= δ (t2) = q2 but µ(t1) = p = µ(t2). Consequently,
q1 = δ (t1)≈ µ(t1) = p = µ(t2)≈ δ (t2) = q2, which yields q1 ≈ q2. By assumption, q1 and q2 are kernel
states. Using a variation of the above argument (see [3, Theorem 3.3]) we can obtain t1 and t2 with the
above properties such that ht(t1),ht(t2) ≥ |Q|2. Due to their heights, we can pump the trees t1 and t2,
which yields that the states 〈q1, p〉 and 〈q2, p〉 are kernel states of the HADAMARD product A ·B. Since
A and B are almost-equivalent, we have

wt(t1) · Jq1KA (c) †
= JA K(c[t1]) = JBK(c[t1]) †

= wt′(t1) · JpKB(c)

wt(t2) · Jq2KA (c) †
= JA K(c[t2]) = JBK(c[t2]) †

= wt′(t2) · JpKB(c)

for almost all c ∈ CΣ using again the tree variant of (†). Moreover, since both 〈q1, p〉 and 〈q2, p〉 are
kernel states, we can select t1 and t2 such that the previous statements are actually true for all c ∈ CΣ.
Consequently,

wt(t1) · Jq1KA (c)
wt′(t1)

=
wt(t2) · Jq2KA (c)

wt′(t2)
and Jq1KA (c) = s · Jq2KA (c)

for all c∈CΣ and s = wt′(t1)·wt(t2)
wt′(t2)·wt(t1)

, which yields q1 ≡ q2. This contradicts minimality since q1 6= q2, which
shows that such a DWTA B cannot exist.

6Recall that almost-equivalent DWTA do not permit a scaling factor; their semantics need to coincide for almost all trees.

A. Maletti and D. Quernheim 321

Algorithm 1 Structure of the hyper-minimization algorithm.
Require: a DWTA A with n states
Return: an almost-equivalent hyper-minimal DWTA

A ←MINIMIZE(A) // O(m logn)
2: K← COMPUTEKERNEL(A) // O(m)

K← COMPUTECOKERNEL(A) // O(m)

4: (∼, t)← COMPUTEALMOSTEQUIVALENCE(A ,K) // Algorithm 2 — O(m logn)
return MERGESTATES(A ,K,∼, t) // Algorithm 3 — O(m)

4 Hyper-minimization

Next, we consider some algorithmic aspects of hyper-minimization for DWTA. Since the unweighted
case is already well-described in the literature [21], we focus on the weighted case, for which we need
the additional notion of co-preamble states [24], which in analogy to [24] are those states with finite
support of their weighted context language. Let P and K be the sets of preamble and kernel states of A ,
respectively.

Definition 8. A state q ∈ Q is a co-preamble state if supp(JqKA) is finite. Otherwise it is a co-kernel
state. The sets of all co-preamble states and all co-kernel states are P and K = Q−P, respectively.

Transitions entering a co-preamble state can be ignored while checking almost-equivalence because
(up to a finite number of weight differences) the reached states behave like the sink state ⊥. Trivially, all
co-preamble states are almost-equivalent. In addition, a co-preamble state cannot be almost-equivalent
to a co-kernel state. The interesting part of the almost-equivalence is thus completely determined by the
weighted languages of the co-kernel states. This special role of the co-preamble states has already been
pointed out in [12] in the context of DFA.

All hyper-minimization algorithms [3, 2, 12, 19] share the same overall structure (Algorithm 1).
In the final step we perform state merges (see Definition 5). Merging only preamble states into almost-
equivalent states makes sure that the resulting DWTA is almost-equivalent to the input DWTA by Lemma 6.
Algorithm 1 first minimizes the input DWTA using, for example, the algorithm of [25]. With the help of
a weight redistribution along the transitions (pushing), it reduces the problem to DTA minimization, for
which we can use a variant of HOPCROFT’s algorithm [18]. In the next step, we compute the set K of
kernel states of A [21] using any algorithm that computes strongly connected components (for example,
TARJAN’s algorithm [29]). By [21] a state is a kernel state if and only if it is reachable from (i) a
nontrivial strongly connected component or (ii) a state with a self-loop. Essentially, the same approach
can be used to compute the co-kernel states. In line 4 we compute the almost-equivalence on the states Q,
which is the part where the algorithms [3, 2, 12, 19] differ. Finally, we merge almost-equivalent states
according to Lemma 6 until the obtained DWTA is hyper-minimal (see Theorem 7).

Lemma 9. Let A be a minimal DWTA. The states q,q′ ∈ Q are almost-equivalent if and only if there is
n ∈ N such that δ (c[q]) = δ (c[q′]) for all c ∈CΣ such that � occurs at position w in c with |w| ≥ n.

Our algorithm for computing the almost-equivalence is an extension of the algorithm of [24]. As
in [24], we need to handle the scaling factors, for which we introduced the standardized signature
in [24]. Roughly speaking, we ignore transitions into co-preamble states and normalize the transition
weights. Recall that Cδ is the set of transition contexts; i.e., transitions with exactly one occurrence of
the symbol �. Moreover, for every q ∈ Q, we let cq be the smallest transition context cq ∈Cδ such that

322 Hyper-minimization for deterministic weighted tree automata

δ (cq[q]) ∈ K, where the total order on Cδ is arbitrary as assumed earlier, but it needs to be consistently
used.

Definition 10. Given q ∈ Q, its standardized signature is

Sig(q) =
{
〈c,δ (c[q]), wt(c[q])

wt(cq[q])
〉
∣∣∣ c ∈Cδ , δ (c[q]) ∈ K

}
.

Next, we show that states with equal standardized signature are indeed almost-equivalent.

Lemma 11. For all q,q′ ∈ Q, if Sig(q) = Sig(q′), then q≈ q′.

Proof. If q or q′ is a co-preamble state, then both q and q′ are co-preamble states and thus q≈ q′. Now,
let q,q′ ∈ K, and let cq ∈Cδ be the smallest transition context such that cq[q] ∈ K. Since q′ has the same
signature, cq = cq′ . In addition, let s = wt(cq[q])

wt(cq[q′])
. For every c ∈Cδ and c′ ∈CΣ,

JqKA (c′[c]) †
= wt(c[q]) · Jδ (c[q])KA (c′) and Jq′KA (c′[c]) †

= wt(c[q′]) · Jδ (c[q′])KA (c′) .

First, let 〈c,qc,sc〉 /∈ Sig(q) = Sig(q′) for all qc ∈ Q and sc ∈ S. Then c takes both q and q′ into a
co-preamble state and thus JqKA (c′[c]) = 0 = s · Jq′KA (c′[c]) for almost all c′ ∈CΣ. Second, suppose that
〈c,qc,sc〉 ∈ Sig(q) = Sig(q′) for some qc ∈ Q and sc ∈ S. Since δ (c[q]) = qc = δ (c[q′]), and we obtain

JqKA (c′[c]) =
wt(c[q])
wt(cq[q])

·wt(cq[q]) · JqcKA (c′) = sc ·wt(cq[q]) · JqcKA (c′)

=
wt(c[q′])
wt(cq[q′])

·wt(cq[q]) · JqcKA (c′) = s · Jq′KA (c′[c])

for every c′ ∈ CΣ, which shows that q ≈ q′ (s) because the scaling factor s does not depend on the
transition context c.

In fact, the previous proof can also be used to show that at most the empty context � yields a differ-
ence in the weighted context languages JqKA and Jq′KA (up to the common factor). For the completeness,
we also need a (restricted) converse for minimal DWTA, which shows that as long as there are almost-
equivalent states, we can also identify them using the standardized signature.

Lemma 12. Let A be minimal, and let q ≈ q′ be such that Sig(q) 6= Sig(q′). Then there exist r,r′ ∈ Q
such that r 6= r′ and Sig(r) = Sig(r′).

Proof. Since q ≈ q′, there exists an integer h such that δ (c[q]) = δ (c[q′]) for all c ∈ CΣ such that
w ∈ pos(c) with c(w) = � and |w| ≥ h by Lemma 9. Let c′ ∈ CΣ be a maximal context such that
r = δ (c′[q]) 6= δ (c′[q′]) = r′. Since c′ is maximal, we have δ (c′′[c′[q]]) = qc′′ = δ (c′′[c′[q′]]) for all
c′′ ∈ Cδ . If qc′′ is a co-preamble state, then 〈c,qc,sc〉 /∈ Sig(r) = Sig(r′) for all qc ∈ Q and sc ∈ S. On
the other hand, let qc′′ be a co-kernel state, and let cr ∈ Cδ be the smallest transition context such that
δ (cr[r]) ∈ K. Since q ≈ q′ and ≈ is a congruence relation by Lemma 2, we have r ≈ r′ (s) for some
s ∈ S, which means that JrKA (c) = s · Jr′KA (c) for almost all c ∈CΣ. Consequently,

wt(c′′[r]) · Jqc′′KA (c) = s ·wt(c′′[r′]) · Jqc′′KA (c)

wt(cr[r]) · Jδ (cr[r])KA (c) = s ·wt(cr[r′]) · Jδ (cr[r])KA (c)

A. Maletti and D. Quernheim 323

Algorithm 2 Algorithm computing the almost-equivalence ≈ and scaling map f .
Require: minimal DWTA A and its co-kernel states K
Return: almost-equivalence ≈ as a partition and scaling map f : Q→K

for all q ∈ Q do
2: π(q)←{q}; f (q)← 1 // trivial initial blocks

h← /0; I← Q // hash map of type h : Sig→ Q

4: for all q ∈ I do
succ← Sig(q) // compute standardized signature using current δ and K

6: if HASVALUE(h,succ) then
q′← GET(h,succ) // retrieve state in bucket ‘succ’ of h

8: if |π(q′)| ≥ |π(q)| then
SWAP(q,q′) // exchange roles of q and q′

10: I← I∪{r ∈ Q−{q′} | ∃c ∈Cδ : δ (c[r]) = q′} // add predecessors of q′

f (q′)← wt(cq[q′])
wt(cq[q])

// cq is as in Definition 10

12: A ←mergeA (q′
f (q′)→ q) // merge q′ into q

π(q)← π(q)∪π(q′) // q and q′ are almost-equivalent

14: for all r ∈ π(q′) do
f (r)← f (r) · f (q′) // recompute scaling factors

16: h← PUT(h,succ,q) // store q in h under key ‘succ’

return (π, f)

for almost all c ∈CΣ. Since both qc′′ and δ (cr[r]) are co-kernel states, we immediately can conclude that
wt(c′′[r]) = s ·wt(c′′[r′]) and wt(cr[r]) = s ·wt(cr[r′]), which yields

wt(c′′[r])
wt(cr[r])

=
s ·wt(c′′[r′])
s ·wt(cr[r′])

=
wt(c′′[r′])
wt(cr[r′])

.

This proves Sig(r) = Sig(r′) as required.

Lemmata 11 and 12 suggest Algorithm 2 for computing the almost-equivalence and a map represent-
ing the scaling factors. This map contains a scaling factor for each state with respect to a representative
state of its block. Algorithm 2 is a straightforward modification of an algorithm by [19] using our stan-
dardized signatures. We first compute the standardized signature for each state and store it into a (perfect)
hash map [9] to avoid pairwise comparisons. If we find a collision (i.e., a pair of states with the same
signature), then we merge them such that the state representing the bigger block survives (see Lines
9 and 12). Each state is considered at most logn times because the size of the “losing” block containing
it at least doubles. After each merge, scaling factors of the “losing” block are computed with respect to
the new representative. Again, we only recompute the scaling factor of each state at most logn times.
Hence the small modifications compared to [19] do not increase the asymptotic run-time of Algorithm 2,
which is O(n logn) where n is the number of states (see Theorem 9 in [19]). Alternatively, we can use
the standard reduction to a weighted finite-state automaton using each transition context c ∈Cδ as a new
symbol.

324 Hyper-minimization for deterministic weighted tree automata

Algorithm 3 Merging almost-equivalent states.
Require: a minimal DWTA A , its kernel states K, its almost-equivalence≈, and a scaling map f : Q→ S
Return: hyper-minimal DWTA A that is almost-equivalent to the input DWTA

for all B ∈ (Q/≈) do
2: select q ∈ B such that q ∈ K if possible

for all q′ ∈ B−K do

4: A ←mergeA (q′
f (q′)
f (q)−→ q)

Proposition 13. Algorithm 2 can be implemented to run in time O(m logn), where m = |Σ(Q)| and
n = |Q|.

Finally, we need an adjusted merging process that takes the scaling factors into account. When
merging one state into another, their mutual scaling factor can be computed from the scaling map by
multiplicaton of one scaling factor with the inverse of the other. Therefore, merging (see Algorithm 3)
can be implemented in time O(n), and hyper-minimization (Algorithm 1) can be implemented in time
O(m logn) in the weighted setting.

Proposition 14. Our hyper-minimization algorithm can be implemented to run in time O(m logn).

It remains to prove the correctness of our algorithm. To prove the correctness of Algorithm 2, we
still need a technical property.

Lemma 15. Let q,q′ ∈Q be states with q 6= q′ but Sig(q) = Sig(q′). Moreover, let B = mergeA (q′ s→ q)
with s = f (q′)

f (q) , and let ∼= be its almost-equivalence (restricted to P). Then ∼= = ≈∩ (P× P) where
P = Q−{q′}.

Proof. Let p1 ≈ p2 with p1, p2 ∈ P. Let c = c`[c`−1[· · · [c1] · · ·]] with c1, . . . ,c` ∈Cδ . Then we obtain the
runs

Rp1 = 〈δ (c1[p1]),δ (c2[c1[p1]]), · · · ,δ (c[p1])〉 with weight wt(c[p1])

Rp2 = 〈δ (c1[p2]),δ (c2[c1[p2]]), · · · ,δ (c[p2])〉 with weight wt(c[p2]).

The corresponding runs R′p1
and R′p2

in B replace every occurrence of q′ in both Rp1 and Rp2 by q. Their
weights are

wt′(c[p1]) =

{
wt(c[p1]) if δ (c[p1]) 6= q′

wt(c[p1]) · s otherwise

wt′(c[p2]) =

{
wt(c[p2]) if δ (c[p2]) 6= q′

wt(c[p2]) · s otherwise.

Since δ (c′[p1]) = δ (c′[p2]) for suitably tall contexts c′ ∈CΣ and p1 ≈ p2, we obtain that p1 ∼= p2. The
same reasoning can be used to prove the converse.

Theorem 16. Algorithm 2 computes ≈ and a scaling map.

Proof sketch. If there exist different, but almost-equivalent states, then there exist different states with
the same standardized signature by Lemma 12. Lemma 11 shows that such states are almost-equivalent.

A. Maletti and D. Quernheim 325

Finally, Lemma 15 shows that we can continue the computation of the almost-equivalence after a weighted
merge of such states. The correctness of the scaling map is shown implicitly in the proof of Lemma 11.

Theorem 17. We can hyper-minimize DWTA in time O(m logn), where m = |Σ(Q)| and n = |Q|.

References

[1] Andrew Badr (2008): Hyper-Minimization in O(n2). In: Proc. 13th CIAA, LNCS 5148, Springer, pp. 223–
231, doi:10.1007/978-3-540-70844-5_23.

[2] Andrew Badr (2009): Hyper-Minimization in O(n2). Int. J. Found. Comput. Sci. 20(4), pp. 735–746,
doi:10.1142/S012905410900684X.

[3] Andrew Badr, Viliam Geffert & Ian Shipman (2009): Hyper-minimizing minimized deterministic finite state
automata. RAIRO Theor. Inf. Appl. 43(1), pp. 69–94, doi:10.1051/ita:2007061.

[4] Jean Berstel & Christophe Reutenauer (1982): Recognizable Formal Power Series on Trees. Theor. Comput.
Sci. 18(2), pp. 115–148, doi:10.1016/0304-3975(82)90019-6.

[5] Björn Borchardt (2003): The Myhill-Nerode Theorem for Recognizable Tree Series. In: Proc. 7th DLT, LNCS
2710, Springer, pp. 146–158, doi:10.1007/3-540-45007-6_11.

[6] Björn Borchardt (2005): The Theory of Recognizable Tree Series. Ph.D. thesis, Technische Universität
Dresden.

[7] Walter S. Brainerd (1968): The Minimalization of Tree Automata. Information and Control 13(5), pp. 484–
491, doi:10.1016/S0019-9958(68)90917-0.

[8] Cezar Câmpeanu, Nicolae Santean & Sheng Yu (2001): Minimal cover-automata for finite languages. Theor.
Comput. Sci. 267(1–2), pp. 3–16, doi:10.1016/S0304-3975(00)00292-9.

[9] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans Rohnert &
Robert Endre Tarjan (1994): Dynamic Perfect Hashing: Upper and Lower Bounds. SIAM J. Comput. 23(4),
pp. 738–761, doi:10.1137/S0097539791194094.

[10] Jason Eisner (2003): Simpler and More General Minimization for Weighted Finite-State Automata. In: Proc.
HLT-NAACL, The The Association for Computational Linguistics, pp. 64–71.

[11] Zoltán Fülöp & Heiko Vogler (2009): Weighted tree automata and tree transducers. In Manfred Droste,
Werner Kuich & Heiko Vogler, editors: Handbook of Weighted Automata, chapter IX, EATCS Monographs
on Theoret. Comput. Sci., Springer, pp. 313–403, doi:10.1007/978-3-642-01492-5_9.

[12] Paweł Gawrychowski & Artur Jeż (2009): Hyper-minimisation Made Efficient. In: Proc. 34th MFCS, LNCS
5734, Springer, pp. 356–368, doi:10.1007/978-3-642-03816-7_31.

[13] Ferenc Gécseg & Magnus Steinby (1984): Tree Automata. Akadémiai Kiadó, Budapest.

[14] Ferenc Gécseg & Magnus Steinby (1997): Tree Languages. In Grzegorz Rozenberg & Arto Salomaa, editors:
Handbook of Formal Languages, chapter 1, 3, Springer, pp. 1–68, doi:10.1007/978-3-642-59126-6_1.

[15] Jonathan S. Golan (1999): Semirings and their Applications. Kluwer Academic, Dordrecht, doi:10.1007/978-
94-015-9333-5.

[16] David Gries (1973): Describing an Algorithm by Hopcroft. Acta Inform. 2(2), pp. 97–109,
doi:10.1007/BF00264025.

[17] Udo Hebisch & Hanns J. Weinert (1998): Semirings — Algebraic Theory and Applications in Computer
Science. World Scientific, doi:10.1142/9789812815965_0001.

[18] Johanna Högberg, Andreas Maletti & Jonathan May (2009): Backward and Forward Bisimulation Minimiza-
tion of Tree Automata. Theor. Comput. Sci. 410(37), pp. 3539–3552, doi:10.1016/j.tcs.2009.03.022.

326 Hyper-minimization for deterministic weighted tree automata

[19] Markus Holzer & Andreas Maletti (2010): An n logn Algorithm for Hyper-Minimizing a (Minimized) Deter-
ministic Automaton. Theor. Comput. Sci. 411(38–39), pp. 3404–3413, doi:10.1016/j.tcs.2010.05.029.

[20] John E. Hopcroft (1971): An nlogn Algorithm for Minimizing States in a Finite Automaton. In: Theory of
Machines and Computations, Academic Press, pp. 189–196.

[21] Artur Jeż & Andreas Maletti (2013): Hyper-minimization for deterministic tree automata. Int. J. Found.
Comput. Sci. 24(6), pp. 815–830, doi:10.1142/S0129054113400200.

[22] Dexter Kozen (1992): On the Myhill-Nerode theorem for trees. Bulletin of the EATCS 47, pp. 170–173.
[23] Werner Kuich (1998): Formal Power Series over Trees. In: Proc. 3rd DLT, Aristotle University of Thessa-

loniki, pp. 61–101.
[24] Andreas Maletti & Daniel Quernheim (2011): Hyper-minimisation of deterministic weighted finite automata

over semifields. In: Proc. 13th AFL, Nyíregyháza College, pp. 285–299.
[25] Andreas Maletti & Daniel Quernheim (2011): Pushing for Weighted Tree Automata. In: Proc. 36th MFCS,

LNCS 6907, Springer, pp. 460–471, doi:10.1007/978-3-642-22993-0_42.
[26] Mehryar Mohri (1997): Finite-State Transducers in Language and Speech Processing. Comput. Linguist.

23(2), pp. 269–311.
[27] Slav Petrov, Leon Barrett, Romain Thibaux & Dan Klein (2006): Learning Accurate, Compact, and Inter-

pretable Tree Annotation. In: Proc. 44th ACL, The Association for Computational Linguistics, pp. 433–440,
doi:10.3115/1220175.1220230.

[28] Daniel Quernheim (2010): Hyper-minimisation of weighted finite automata. Master’s thesis, Institut für
Linguistik, Universität Potsdam.

[29] Robert Endre Tarjan (1972): Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2), pp.
146–160, doi:10.1137/0201010.

[30] Antti Valmari & Petri Lehtinen (2008): Efficient Minimization of DFAs with Partial Transition Functions. In:
Proc. 25th STACS, LIPIcs 1, Schloss Dagstuhl — Leibniz-Zentrum für Informatik, Germany, pp. 645–656,
doi:10.4230/LIPIcs.STACS.2008.1328.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS ??, 2014, pp. 327–341, doi:10.4204/EPTCS.??.23

K-Position, Follow, Equation and K-C-Continuation Tree
Automata Constructions

Ludovic Mignot
Laboratoire LITIS - EA 4108 Université
de Rouen, Avenue de l’Université 76801
Saint-Étienne-du-Rouvray Cedex, France
ludovic.mignot@univ-rouen.fr

Nadia Ouali Sebti
Laboratoire LITIS - EA 4108 Université
de Rouen, Avenue de l’Université 76801
Saint-Étienne-du-Rouvray Cedex, France
nadia.ouali-sebti@univ-rouen.fr

Djelloul Ziadi∗

Laboratoire LITIS - EA 4108 Université
de Rouen, Avenue de l’Université 76801
Saint-Étienne-du-Rouvray Cedex, France
djelloul.ziadi@univ-rouen.fr

There exist several methods of computing an automaton recognizing the language denoted by a
given regular expression: In the case of words, the position automaton P due to Glushkov, the
c-continuation automaton C due to Champarnaud and Ziadi, the follow automaton F due to Ilie and
Yu and the equation automaton E due to Antimirov. It has been shown that P and C are isomorphic
and that E (resp. F) is a quotient of C (resp. of P).

In this paper, we define from a given regular tree expression the k-position tree automaton P and
the follow tree automaton F . Using the definition of the equation tree automaton E of Kuske and
Meinecke and our previously defined k-C-continuation tree automaton C , we show that the previous
morphic relations are still valid on tree expressions.

1 Introduction

Regular expressions are used in numerous domains of applications in computer science. They are an
easy and compact way to represent potentially infinite regular languages, that are well-studied objects
leading to efficient decision problems. Among them, the membership test, that is to determine whether
or not a given word belongs to a language. Given a regular expression E with n symbols and a word w, to
determine whether w is in the language denoted by E can be polynomially performed (with respect to n)
via the computation of a finite state machine, called an automaton, that can be seen as a symbol-labelled
graph with initial and final states. There exist several methods to compute such an automaton.

The first approach is to determine particular properties over the syntactic structure of the regular
expression E. Glushkov [8] proposed the computation of four position functions Null, First, Last, and
Follow, which once computed, lead to the computation of a (n+1)- state automaton. Ilie and Yu showed
in [9] how to reduce it by merging similar states. Another method is to compute the transition function
of the automaton as follows: associating a regular expression with a state s, any path labelled by a
word w brings the automaton from the state s into a finite set of states S′ = {s′1, . . . ,s′k} such that these
states denote the quotient w−1(L(s)) of the language L(s) by w, that contains the word w′ such that ww′

belongs to L(s). Basically, it is a computation that tries to determine what words w′ can be accepted after
reading a prefix w. The first author that introduced such a process is Brzozowski [2]. He showed how

∗D. Ziadi was supported by the MESRS - Algeria under Project 8/U03/7015.

328 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

to compute a regular expression denoting w−1(L(E)) from the expression E: this expression, denoted
by dw(E), is called the derivative of E with respect to w. Furthermore, the set of dissimilar derivatives,
combined with reduction according to associativity, commutativity and idempotence of the sum, is finite
and can lead to the computation of a deterministic finite automaton. Antimirov [1] extended this method
to the computation of partial derivatives, that are no longer expressions but sets of expressions. These
so-called derived terms produce the equation automaton. Finally, by deriving expressions after having
them indexed, Champarnaud and Ziadi [4] computed the c-continuation automaton.

The different morphic links between these four automata have been studied too: Ilie and Yu showed
that the follow automaton is a quotient of the position automaton; Champarnaud and Ziadi proved that the
position automaton and the c-continuation automaton are isomorphic and that the equation automaton is
a quotient of the position automaton. Finally, using a join of the two previously defined quotients, Garcia
et al. presented in [7] an automaton that is smaller than both the follow and the equation automata.

In this paper, we extend the study of these morphic links to different computations of tree automata.
We define two new tree automata constructions, the k-position automaton and the follow automaton,
and we study their morphic links with two other already known automata constructions, the equation au-
tomaton of Kuske and Meinecke [11] and our k-C-continuation automaton [14,15]. Notice that a position
automaton and a reduced automaton have already been defined in [12]. However, they are not isomorphic
with the automata we define in this paper. This study is motivated by the development of a library of
functions for handling rational kernels [6] in the case of trees. The first problem consists in converting a
regular tree expression into a tree transducer. Section 2 recalls basic definitions and properties of regular
tree languages and regular tree expressions. In Section 3, we define two new automata computations, the
k-position automaton and the follow automaton and recall the definition of the equation automaton and
of the k-C-continuation automaton; we also present the morphic links between these four methods in this
section. Section 4 is devoted to the comparison of the follow automaton and of the equation automaton;
it is proved that there are no morphic link between them. Moreover, we extend the computation of the
Garcia et al. equivalence leading to a smaller automaton in this section.

2 Preliminaries

Let (Σ,ar) be a ranked alphabet, where Σ is a finite set and ar represents the rank of Σ which is a
mapping from Σ into N. The set of symbols of rank n is denoted by Σn. The elements of rank 0 are
called constants. A tree t over Σ is inductively defined as follows: t = a, t = f (t1, . . . , tk) where a is
any symbol in Σ0, k is any integer satisfying k ≥ 1, f is any symbol in Σk and t1, . . . , tk are any k trees
over Σ. We denote by TΣ the set of trees over Σ. A tree language is a subset of TΣ. Let Σ≥1 = Σ\Σ0
denote the set of non-constant symbols of the ranked alphabet Σ. A Finite Tree Automaton (FTA) [5, 11]
A is a tuple (Q,Σ,QT ,∆) where Q is a finite set of states, QT ⊂ Q is the set of final states and ∆ ⊂⋃

n≥0(Q×Σn×Qn) is the set of transition rules. This set is equivalent to the function ∆ from Qn×Σn to
2Q defined by (q, f ,q1, . . . ,qn) ∈ ∆⇔ q ∈ ∆(q1, . . . ,qn, f). The domain of this function can be extended
to (2Q)n × Σn as follows: ∆(Q1, . . . ,Qn, f) =

⋃
(q1,...,qn)∈Q1×···×Qn

∆(q1, . . . ,qn, f). Finally, we denote
by ∆∗ the function from TΣ → 2Q defined for any tree in TΣ as follows: ∆∗(t) = ∆(a) if t = a with
a ∈ Σ0, ∆∗(t) = ∆(∆∗(t1), . . . ,∆∗(tn), f) if t = f (t1, . . . , tn) with f ∈ Σn and t1, . . . , tn ∈ TΣ. A tree is
accepted by A if and only if ∆∗(t)∩QT 6= /0. The language L (A) recognized by A is the set of
trees accepted by A i.e. L (A) = {t ∈ TΣ | ∆∗(t)∩QT 6= /0}. Let ∼ be an equivalence relation over
Q. We denote by [q] the equivalence class of any state q in Q. The quotient of A w.r.t. ∼ is the
tree automaton A/∼ = (Q/∼,Σ,QT /∼,∆/∼) where: Q/∼ = {[q] | q ∈ Q}, QT /∼ = {[q] | q ∈ QT}, ∆/∼ =

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 329

{([q], f , [q1], . . . , [qn]) | (q, f ,q1, . . . ,qn) ∈ ∆}. Notice that a transition ([q], f , [q1], . . . , [qn]) in ∆/∼ does
not imply a transition (q, f ,q1, . . . ,qn) in ∆. Moreover, the relation ∼ is not necessarily a congruence
w.r.t. the transition function: in this paper, we will deal with specific equivalence relations (similarity
relations) that turn to be congruences. This particular considerations will be clarified in Subsection 3.2.

For any integer n≥ 0, for any n languages L1, . . . ,Ln ⊂ TΣ, and for any symbol f ∈ Σn, f (L1, . . . ,Ln)
is the tree language { f (t1, . . . , tn) | ti ∈ Li}. The tree substitution of a constant c in Σ by a language L⊂ TΣ
in a tree t ∈ TΣ, denoted by t{c← L}, is the language inductively defined by: L if t = c; {d} if t = d
where d ∈ Σ0 \{c}; f (t1{c← L}, . . . , tn{c← L}) if t = f (t1, . . . , tn) with f ∈ Σn and t1, . . . , tn any n trees
over Σ. Let c be a symbol in Σ0. The c-product L1 ·c L2 of two languages L1,L2 ⊂ TΣ is defined by
L1 ·c L2 =

⋃
t∈L1
{t{c← L2}}. The iterated c-product is inductively defined for L⊂ TΣ by: L0c = {c} and

L(n+1)c = Lnc ∪L ·c Lnc . The c-closure of L is defined by L∗c =
⋃

n≥0 Lnc .
A regular expression over a ranked alphabet Σ is inductively defined by E= 0, E∈Σ0, E= f (E1, · · · ,En),

E = (E1+E2), E = (E1 ·c E2), E = (E1
∗c), where c ∈ Σ0, n ∈ N, f ∈ Σn and E1,E2, . . . ,En are any n reg-

ular expressions over Σ. Parenthesis can be omitted when there is no ambiguity. We write E1 = E2 if
E1 and E2 graphically coincide. We denote by RegExp(Σ) the set of all regular expressions over Σ.
Every regular expression E can be seen as a tree over the ranked alphabet Σ∪{+, ·c,∗c | c ∈ Σ0} where
+ and ·c can be seen as symbols of rank 2 and ∗c has rank 1. This tree is the syntax-tree TE of E. The
alphabetical width ||E || of E is the number of occurrences of symbols of Σ in E. The size |E | of E
is the size of its syntax tree TE. The language JEK denoted by E is inductively defined by J0K = /0,
JcK = {c}, J f (E1,E2, · · · ,En)K = f (JE1K, . . . ,JEnK), JE1+E2K = JE1K∪ JE2K, JE1 ·c E2K = JE1K ·c JE2K,
JE1
∗cK = JE1K∗c where n ∈ N, E1,E2, . . . ,En are any n regular expressions, f ∈ Σn and c ∈ Σ0. It is

well known that a tree language is accepted by some tree automaton if and only if it can be denoted
by a regular expression [5, 11]. A regular expression E defined over Σ is linear if every symbol of
rank greater than 1 appears at most once in E. Note that any constant symbol may occur more than
once. Let E be a regular expression over Σ. The linearized regular expression E in E of a regular ex-
pression E is obtained from E by marking differently all symbols of a rank greater than or equal to
1 (symbols of Σ≥1). The marked symbols form together with the constants in Σ0 a ranked alphabet
PosE(E) the symbols of which we call positions. The mapping h is defined from PosE (E) to Σ with
h(PosE (E)m) ⊂ Σm for every m ∈ N. It associates with a marked symbol f j ∈ PosE (E)≥1 the sym-
bol f ∈ Σ≥1 and for a symbol c ∈ Σ0 the symbol h(c) = c. We can extend the mapping h naturally to
RegExp(PosE (E))→RegExp(Σ) by h(a) = a, h(E1+E2) = h(E1)+h(E2), h(E1 ·c E2) = h(E1) ·c h(E2),
h(E∗c

1) = h(E1)
∗c , h(f j(E1, . . . ,En)) = f (h(E1), . . . ,h(En)), with n ∈ N, a ∈ Σ0, f ∈ Σn, f j ∈ PosE (E)n

such that h(f j) = f and E1, . . . ,En any regular expressions over PosE (E).

3 Tree Automata from Regular Expressions

In this section, we show how to compute from a regular expression E four tree automata accepting
JEK: we introduce two new constructions, the K-position automaton and the follow automaton of E, and
then we recall two already-known constructions, the equation automaton [11] and the C-continuation
automaton [14].

Regular languages defined over ranked alphabet Σ are exactly the languages denoted by a regular
expression on Σ. There may exist many distinct regular expressions which denote the same regular
language. Two regular expressions are said to be equivalent if they denote the same language. To
simplify handling regular expressions, we define trivial identities for which regular expressions denote
the same language. Let E1 . . .En be n regular expressions over a ranked alphabet Σ and c be a symbol in

330 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

Σ0. It can be trivially shown that:
JE1+0K = J0+E1K = JE1K, JE1 ·c0K = E1c←0, JJ0 ·c E1K = J0K, J0∗cK = JcK, J f (E1, . . . ,0, . . . ,En)K = J0K,
where Ec←0 is obtained by substituting the expression 0 to any symbol c in an expression E.
Consequently, we extend the equivalence = as follows:

E1+0 = 0+E1 = E1, E1 ·c0 = E1c←0, 0 ·c E1 = 0, 0∗c = c, f (E1, . . . ,0, . . . ,En) = 0.
It is easy to see that these equalities preserve the language. Consequently, any regular expression E
denotes the same language as a regular expression E ′ with no occurrence of 0 in E′ or E′ = 0.

In the following of this section, E is a regular expression over a ranked alphabet Σ. The set of symbols
in Σ that appear in an expression F is denoted by ΣF .

3.1 The K-Position Tree Automaton

In this section, we show how to compute the K-position tree automaton of a regular expression E, recog-
nizing JEK. This is an extension of the well-known position automaton [8] for word regular expressions
where the K represents the fact that any k-ary symbol is no longer a state of the automaton, but is ex-
ploded into k states. The same method was presented independently by McNaughton and Yamada [13].
Its computation is based on the computations of particular position functions, defined in the following.

In what follows, for any two trees s and t, we denote by s 4 t the relation ”s is a subtree of t”. Let
t = f (t1, . . . , tn) be a tree. We denote by root(t) the root of t, by k-child(t) the kth child of f in t, that is
the root of tk if it exists, and by Leaves(t) the set of the leaves of t, i.e. {s ∈ Σ0 | s4 t}.

Let E be linear, 1 ≤ k ≤ m be two integers and f be a symbol in Σm. The set First(E) is the subset
of Σ defined by {root(t) ∈ Σ | t ∈ JEK}; The set Follow(E, f ,k) is the subset of Σ defined by {g ∈ Σ |
∃t ∈ JEK,∃s 4 t, root(s) = f ,k-child(s) = g}; The set Last(E) is the subset of Σ0 defined by Last(E) =⋃

t∈JEK
Leaves(t).

Example 1. Let Σ = Σ0∪Σ1∪Σ2 be defined by Σ0 = {a,b,c}, Σ1 = { f ,h} and Σ2 = {g}. Let us consider
the regular expression E and its linearized form defined by:

E = (f (a)∗a ·a b+h(b))∗b +g(c,a)∗c ·c (f (a)∗a ·a b+h(b))∗b ,
E = (f1(a)∗a ·a b+h2(b))∗b +g3(c,a)∗c ·c (f4(a)∗a ·a b+h5(b))∗b .

The language denoted by E is JEK = {b, f1(b), f1(f1(b)), f1(h2(b)),h2(b),h2(f1(b)),h2(h2(b)), . . . ,
g3(b,a),g3(g3(b,a),a),g3(f4(b),a),g3(h5(b),a), f4(f4(b)), f4(h5(b),h5(f4(b)),h5(h5(b)), . . .}.

Consequently, First(E) = {b, f1,h2,g3, f4,h5} and Follow(E, f1,1) = {b, f1,h2}, Follow(E,h2,1) =
{b, f1,h2}, Follow(E,g3,1) = {b,g3, f4,h5}, Follow(E,g3,2) = {a}, Follow(E, f4,1) = {b, f4,h5},
Follow(E,h5,1) = {b, f4,h5}.

Let us first show that the position functions First and Follow are inductively computable.
Lemma 1. Let E be linear. The set First(E) can be computed as follows:

First(0) = /0, First(a) = {a}, First(f (E1, · · · ,Em)) = { f},
First(E1+E2) = First(E1)∪First(E2), First(E1

∗c) = First(E1)∪{c},
First(E1 ·c E2) =

{
(First(E1)\{c})∪First(E2) if c ∈ JE1K,
First(E1) otherwise.

Lemma 2. Let E be linear, 1 ≤ k ≤ m be two integers and f be a symbol in Σm. The set of symbols
Follow(E, f ,k) can be computed inductively as follows:

Follow(0, f ,k) = Follow(a, f ,k) = /0,

Follow(g(E1, . . . ,En), f ,k) =

First(Ek) if f = g,
Follow(El, f ,k) if ∃l | f ∈ ΣEl ,
/0 otherwise .

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 331

Follow(E1+E2, f ,k) =

Follow(E1, f ,k) if f ∈ ΣE1 ,
Follow(E2, f ,k) if f ∈ ΣE2 ,
/0 otherwise .

Follow(E1 ·c E2, f ,k) =

(Follow(E1, f ,k)\{c})∪First(E2) if c ∈ Follow(E1, f ,k),
Follow(E1, f ,k) if f ∈ ΣE1 ∧ c /∈ Follow(E1, f ,k),
Follow(E2, f ,k) if f ∈ ΣE2 ∧ c ∈ Last(E1),
/0 otherwise,

Follow(E∗c
1 , f ,k) =

{
Follow(E1, f ,k)∪First(E1) if c ∈ Follow(E1, f ,k),
Follow(E1, f ,k) otherwise,

The two functions First and Follow are sufficient to compute the K-position tree automaton of E.

Definition 1. Let E be linear. The K-position automaton PE is the automaton (Q,Σ,QT ,∆) defined by
Q = { f k | f ∈ Σm∧1≤ k ≤ m}∪{ε1} with ε1 a new symbol not in Σ, QT = {ε1},

∆ = {(f k,g,g1, . . . ,gn) | f ∈ Σm∧ k ≤ m∧g ∈ Σn∧g ∈ Follow(E, f ,k)}
∪ {(ε1, f , f 1, . . . , f m) | f ∈ Σm∧ f ∈ First(E)}
∪ {(ε1,c) | c ∈ Σ0∧ c ∈ First(E)}
∪ {(f k,c) | f ∈ Σm∧ k ≤ m∧ c ∈ Follow(E, f ,k)}

In order to show that the K-position tree automaton of E accepts JEK, we characterize the membership
of a tree t in the language denoted by E using the functions First and Follow.

Proposition 1. Let E be linear. A tree t belongs to JEK if and only if:

1. root(t) ∈ First(E) and

2. for every subtree f (t1, . . . , tm) of t, for any integer k in {1, . . . ,m}, root(tk) ∈ Follow(E, f ,k).

Let us show how to link the characterization in Proposition 1 with the transition sequences in PE.

Proposition 2. Let E be linear and PE = (Q,Σ,QT ,∆). Let t = f (t1, . . . , tm) be a term in TΣ. Then the
two following propositions are equivalent:

1. ∀g(s1, . . . ,sl)4 t, ∀p≤ l, root(sp) ∈ Follow(E,g, p),

2. ∀1≤ k ≤ m, f k ∈ ∆∗(tk).
As a direct consequence of the two previous propositions, it can be shown that the K-position au-

tomaton of E recognizes the language denoted by E.

Theorem 1. If E is linear, then L (PE) = JEK.

This construction can be extended to expressions that are not necessarily linear using the linearization
and the mapping h. The K-Position Automaton PE associated with E is obtained by replacing each
transition (f k

j ,gi,g1
i , . . . ,g

n
i) of the tree automaton PE by (f k

j ,h(gi),g1
i , . . . ,g

n
i).

Corollary 1. h(JEK) = h(L (PE)) = L (PE) = JEK.

Example 2. Let E = (f (a)∗a ·a b+ h(b))∗b + g(c,a)∗c ·c (f (a)∗a ·a b+ h(b))∗b be the regular expression
of Example 1. The k-Position Automaton PE associated with E is given in Figure 1. The set of states is
Q = {ε1, f 1

1 ,h
1
2,g

1
3,g

2
3, f 1

4 ,h
1
5}. The set of final states is QT = {ε1}. The set of transition rules ∆ is

f1(f 1
1)→ f 1

1 f1(f 1
1)→ ε1 f1(h1

2)→ ε1 f1(h1
2)→ f 1

1 h2(f 1
1)→ ε1 b→ f 1

1 b→ h1
2

h2(f 1
1)→ h1

2 h2(h1
2)→ ε1 h2(h1

2)→ h1
2 g3(f 1

4 ,g
2
3)→ ε1 g3(h1

5,g
2
3)→ ε1 b→ g1

3 a→ g2
3

f4(f 1
4)→ ε1 f4(f 1

4)→ f 1
4 f4(h1

5)→ ε1 f4(h1
5)→ f 1

4 h5(f 1
4)→ ε1 b→ h1

5 b→ f 1
4

b→ ε1 h5(f 1
4)→ h1

5 h5(h1
5)→ h1

5 g3(g1
3,g

2
3)→ ε1 h5(h1

5)→ ε1

The number of states is |Q|= 7 and the number of transition rules is |∆|= 26.

332 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

f1ε1 h2

f 1
1

h1
2

b

b

g3

b

g1
3g2

3a b

h5

h1
5

b

f4

f 1
4 b

Figure 1: The k-Position Automaton PE.

3.2 The Follow Tree Automaton

In this section, we define the follow tree automaton which is a generalisation of the Follow automaton
introduced by L. Ilie and S. Yu in [9] in the case of words, and that it is a quotient of the K-position
automaton, similarly to the case of words. Notice that in this automaton, states are no longer positions,
but sets of positions.

Definition 2. Let E be linear. The Follow Automaton of E is the tree automaton FE = (Q,Σ,QT ,∆)
defined as follows

Q = {First(E)}∪⋃ f∈ΣE m
{Follow(E, f ,k) | 1≤ k ≤ m}, QT = {First(E)},

∆ = {(Follow(E,g, l), f ,Follow(E, f ,1), . . . ,Follow(E, f ,m) | f ∈ ΣE m∧ f ∈ Follow(E,g, l)∧
g ∈ Σn∧ l ≤ n}

∪ {(I,c) | c ∈ I∧ c ∈ Σ0}
Let us show that FE is a quotient of PE w.r.t. a similarity relation ; since this kind of quotient

preserves the language, this method is consequently a proof of the fact that the language denoted by E is
recognized by FE.

A similarity relation over an automaton A = (Q,Σ,QT ,∆) is an equivalence relation ∼ over Q such
that for any two states q and q′ in Q: q ∼ q′ ⇒ ∀ f ∈ Σn, ∀(q1, . . . ,qn) ∈ Qn, (q, f ,q1, . . . ,qn) ∈ ∆ ⇔
(q′, f ,q1, . . . ,qn) ∈ ∆. In other words, two similar states admit the same predecessors w.r.t. any symbol.

Proposition 3. Let A be an automaton and∼ be a similarity relation over A . Then L (A/∼) =L (A).

The quotient from PE to FE is defined by the following similarity relation. Notice that we extend
the definition of the function Follow to the position ε1 by Follow(E,ε1,1) = First(E). Let E be linear
and PE = (Q,Σ,QT ,∆). The Follow Relation is the relation ∼F defined for any two states f k and gl in
Q by f k ∼F gl ⇔ Follow(E, f ,k) = Follow(E,g, l).

Proposition 4. Let E be linear. The relation ∼F is the largest similarity relation over PE .

Proposition 5. Let E be linear. The finite tree automaton PE�∼F is isomorphic to FE.

As a direct consequence of the previous results, the following theorem can be shown.

Theorem 2. Let E be linear. Then L (FE) = JEK.

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 333

Finally, this method can be extended to expressions that are not necessarily linear as follows. The Follow
Automaton FE associated with E is obtained by replacing each transition (I, f j,Follow(E, f j,1), . . . ,
Follow(E, f j,m)) of FE by (I,h(f j),Follow(E, f j,1), . . . ,Follow(E, f j,m)).

Corollary 2. L (FE) = JEK.

Example 3. The Follow Automaton FE associated with E = (f (a)∗a ·a b+h(b))∗b +g(c,a)∗c ·c (f (a)∗a ·a
b+h(b))∗b of Example 1 is given in Figure 2.

The set of states is Q = {{a},{b, f1,h2},{b, f1,h2,g3, f4,h5},{b,g3, f4,h5},{b, f4,h5}} and QT =
{{b, f1,h2,g3, f4,h5}}. The set of transition rules ∆ is
f ({b, f1,h2})→{b, f1,h2} h({b, f1,h2})→{b, f1,h2,g3, f4,h5} b→{b, f1,h2,g3, f4,h5}
h({b, f1,h2})→{b, f1,h2} f ({b, f4,h5})→{b, f4,h5} b→{b,g3, f4,h5}
f ({b, f4,h5})→{b,g3, f4,h5} f ({b, f4,h5})→{b, f1,h2,g3, f4,h5} a→{a}
h({b, f4,h5})→{b, f1,h2,g3, f4,h5} h({b, f4,h5})→{b, f4,h5} b→{b, f1,h2}
h({b, f4,h5})→{b,g3, f4,h5} f ({b, f1,h2})→{b, f1,h2,g3, f4,h5} b→{b, f4,h5}
g({b,g3, f4,h5},{a})→{b,g3, f4,h5} g({b,g3, f4,h5},{a})→{b, f1,h2,g3, f4,h5}

The number of states is |Q|= 5 and the number of transition rules is |∆|= 17.

f{b, f1,h2,g3, f4,h5}

g{a}

a

b h {b, f1,h2} b

b

{b, f4,h5}

{b,g3, f4,h5}

h

b

f

Figure 2: The Follow Automaton FE.

3.3 The Equation Tree Automaton

In [11], Kuske and Meinecke extend the notion of word partial derivatives [1] to tree partial derivatives in
order to compute from E a tree automaton recognizing JEK. Due to the notion of ranked alphabet, partial
derivatives are no longer sets of expressions, but sets of tuples of expressions.
Let N = (E1, . . . ,En) be a tuple of regular expressions, F and G be some regular expressions and c ∈ Σ0.
Then N ·c F is the tuple (E1 ·c F, . . . ,En ·c F). For a set S of tuples of regular expressions, S ·c F is the
set S ·c F = {N ·c F |N ∈S }. Finally, SET(N) = {E1, · · · ,Em} and SET(S) =

⋃
N ∈S SET(N).

Let f be a symbol in Σ>0. The set f−1(E) of tuples of regular expressions is defined as follows:
f−1(0) = /0, f−1(F +G) = f−1(F)∪ f−1(G), f−1(F∗c) = f−1(F) ·c F∗c ,

f−1(g(E1, · · · ,En)) =

{
{(E1, · · · ,En)} if f = g,
/0 otherwise,

f−1(F ·c G) =

{
f−1(F) ·c G if c /∈ JFK
f−1(F) ·c G∪ f−1(G) otherwise.

334 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

The function f−1 is extended to any set S of regular expressions by f−1(S) =
⋃

E∈S f−1(E).
The partial derivative of E w.r.t. a word w ∈ Σ∗≥1, denoted by ∂w(E), is the set of regular expressions
inductively defined by:

∂w(E) =

{E} if w = ε,
SET(f−1(∂u(E))) if w = u f , f ∈ Σ≥1,u ∈ Σ∗≥1, f−1(∂u(E)) 6= /0,
{0} if w = u f , f ∈ Σ≥1,u ∈ Σ∗≥1, f−1(∂u(E)) = /0.

The Equation Automaton of E is the tree automaton AE = (Q,Σ,QT ,∆) defined by Q = {∂w(E) | w ∈
Σ∗≥1}, QT = {E}, and

∆ = {(F, f ,G1, . . . ,Gm) | F ∈ Q, f ∈ Σm,m≥ 1,(G1, . . . ,Gm) ∈ f−1(F)}
∪ {(F,c) | F ∈ Q∧ c ∈ (JFK∩Σ0)}

Example 4. Let E = (f (a)∗a ·a b+h(b))∗b

︸ ︷︷ ︸
F

+g(c,a)∗c

︸ ︷︷ ︸
G

·c (f (a)∗a ·a b+h(b))∗b

︸ ︷︷ ︸
F

(Example 1).

∂h(E) = {b ·b F}, ∂ f (E) = {((a ·a f (a)∗a) ·a b) ·b F} ∂ f f (E) = {((a ·a f (a)∗a) ·a b) ·b F},
∂ f h(E) = {b ·b F} , ∂g(E) = {(a ·c G) ·c F, (c ·c G) ·c F} ∂h f (E) = {((a ·a f (a)∗a) ·a b) ·b F}
∂gh(E) = {b ·b F} ∂hh(E) = {((a ·a f (a)∗a) ·a b) ·b F}, ∂g f (E) = {((a ·a f (a)∗a) ·a b) ·b F}

∂gg(E) = {(a ·c G) ·c F, (c ·c G) ·c F},
The set of states Q is q0 =E, q1 = ((a ·a f (a)∗a) ·a b) ·b F, q2 = b ·b F, q3 = (c ·c G) ·c F, q4 = (a ·c G) ·c F.

The set of final states is QT = {q0}. The set of transition rules is
b→ q0 b→ q1 b→ q3 b→ q2 f (q1)→ q0
h(q2)→ q0 g(q3,q4)→ q0 h(q2)→ q1 g(q3,q4)→ q4 f (q1)→ q1
h(q2)→ q2 f (q1)→ q2 f (q1)→ q4 h(q2)→ q4 a→ q4

The number of states is |Q| = 5 and the number of transition rules is |∆| = 15. The Equation Au-
tomaton associated with E is given in Figure 3.

hq0

gq4a

b f q1

fh

q2 b

f

b

h

q3

g

b

Figure 3: The Equation Automaton AE.

3.4 The k-C-Continuation Tree Automaton

In [11], Kuske and Meinecke show how to efficiently compute the equation tree automaton of a regular
expression via an extension of Champarnaud and Ziadi’s C-Continuation [3, 4, 10]. In [14, 15], we
show how to inductively compute them. We also show how to efficiently compute the k-C-Continuation
tree automaton associated with a regular expression. In this section, we prove that this automaton is
isomorphic to the k-position tree automaton, similarly to the case of words.

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 335

Definition 3 ([14, 15]). Let E 6= 0 be linear. Let k and m be two integers such that 1≤ k ≤ m. Let f be
in (ΣE∩Σm). The k-C-continuation C f k(E) of f in E is the regular expression defined by:

C f k(g(E1, · · · ,Em)) =

{
Ek if f = g
C f k(E j) if f ∈ ΣE j

C f k(E1+E2) =

{
C f k(E1) if f ∈ ΣE1

C f k(E2) if f ∈ ΣE2

C f k(E1 ·c E2) =

C f k(E1) ·c G if f ∈ ΣE1

C f k(E2) if f ∈ ΣE2

and c ∈ Last(E1)
0 otherwise

C f k(F∗c) =C f k(F) ·c F∗c

By convention, we set Cε1(E) = E.

Let us now show how to compute the k-C-Continuation tree automaton.

Definition 4 ([14, 15]). Let E 6= 0 be linear. The automaton CE = (QC ,ΣE ,{Cε1(E)},∆C) is defined by

• QC = {(f k,C f k(E)) | f ∈ Σm,1≤ k ≤ m}∪{(ε1,Cε1(E))},

•
∆C = {((x,Cx(E)),g,((g1,Cg1(E)), . . . ,(gm,Cgm(E)))) | g ∈ ΣE m,

m≥ 1,(Cg1(E), . . . ,Cgm(E)) ∈ g−1(Cx(E))}
∪ {((x,Cx(E)),c) |,c ∈ JCx(E)K∩Σ0}

The C-Continuation tree automaton CE associated with E is obtained by relabelling the transitions
of CE using the mapping h.

Theorem 3 ([14, 15]). The automaton CE accepts JEK.

Example 5. Let E = (f (a)∗a ·a b+ h(b))∗b + g(c,a)∗c ·c (f (a)∗a ·a b+ h(b))∗b defined in Example 1 and
E = (f1(a)∗a ·a b+h2(b))∗b

︸ ︷︷ ︸
F1

+g3(c,a)∗c

︸ ︷︷ ︸
G2

·c (f4(a)∗a ·a b+h5(b))∗b

︸ ︷︷ ︸
F3

.

f(ε1,Cε1 (E)) h

(f 1
1 ,C f 1

1
(E)) f

h

(h1
2,Ch1

2
(E))

b

b

g

b

(g1
3,Cg1

3
(E))(g2

3,Cg2
3
(E))

g

a

b

h

(h1
5,Ch1

5
(E))

b

f h

f
(f 1

4 ,C f 1
4
(E)) b

Figure 4: The k-C-Continuation Automaton CE.

336 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

The computation of the k-C-Continuations of E using the Definition 3 is given in Table 1.

C f 1
1
(E) = ((a ·a f1(a)∗a) ·a b) ·b F1 h(C f 1

1
(E)) = ((a ·a f (a)∗a) ·a b) ·b F,

Ch1
2
(E) = b ·b F1 h(Ch1

2
(E)) = b ·b F,

Cg1
3
(E) = (c ·c g3(c,a)∗c) ·c F3 h(Cg1

3
(E)) = (c ·c g(c,a)∗c) ·c F,

Cg2
3
(E) = (a ·c g3(c,a))∗c) ·c F3 h(Cg2

3
(E)) = (a ·c g(c,a))∗c) ·c F,

C f 1
4
(E) = ((a ·a f4(a)∗a) ·a b) ·b F3 h(C f 1

4
(E)) = ((a ·a f (a)∗a) ·a b) ·b F,

Ch1
5
(E) = b ·b F3 h(Ch1

5
(E)) = b ·b F.

Table 1: The k-C-Continuations of E.

The set of states of the automaton CE is Q = {(ε1,Cε1(E)),(f 1
1 ,C f 1

1
(E)),(h1

2,Ch1
2
(E)),

(g1
3,Cg1

3
(E)),(g2

3,Cg2
3
(E)),(f 1

4 ,C f 1
4
(E)),(h1

5,Ch1
5
(E))}.

The set of transition rules ∆ is
f ((f 1

1 ,C f 1
1
(E)))→ (ε1,Cε1(E)) f ((f 1

4 ,C f 1
4
(E)))→ (ε1,Cε1(E)) b→ (f 1

1 ,C f 1
1
(E))

g((g1
3,Cg1

3
(E)),(g2

3,Cg2
3
(E)))→ (ε1,Cε1(E)) h((h1

5,Ch1
5
(E)))→ (ε1,Cε1(E)) b→ (ε1,Cε1(E))

f ((f 1
1 ,C f 1

1
(E)))→ (f 1

1 ,C f 1
1
(E)) h((h1

2,Ch1
2
(E)))→ (h1

2,Ch1
2
(E)) b→ (g1

3,Cg1
3
(E))

h((h1
2,Ch1

2
(E)))→ (ε1,Cε1(E)) f ((f 1

1 ,C f 1
1
(E)))→ (h1

2,Ch1
2
(E)) b→ (h1

2,Ch1
2
(E))

f ((f 1
4 ,C f 1

4
(E)))→ (f 1

4 ,C f 1
4
(E)) f ((f 1

4 ,C f 1
4
(E)))→ (h1

5,Ch1
5
(E)) a→ (g2

3,Cg2
3
(E))

h((h1
2,Ch1

2
(E)))→ (f 1

1 ,C f 1
1
(E)) h((h1

5,Ch1
5
(E)))→ (h1

5,Ch1
5
(E)) b→ (h1

5,Ch1
5
(E))

f ((f 1
4 ,C f 1

4
(E)))→ (g1

3,Cg1
3
(E)) h((h1

5,Ch1
5
(E)))→ (f 1

4 ,C f 1
4
(E)) b→ (f 1

4 ,C f 1
4
(E))

g((g1
3,Cg1

3
(E)),(g2

3,Cg2
3
(E)))→ (g1

3,Cg1
3
(E)) h((h1

5,Ch1
5
(E)))→ (g1

3,Cg1
3
(E))

The number of states is |Q|= 5 and the number of transition rules is |∆|= 15. The k-C-Continuation
Automaton associated with E is given in Figure 4.

Let ∼e be the equivalence relation over the set of states of CE defined for any two states (f k
j ,C f k

j
(E))

and (gp
i ,Cgp

i
(E)) by (f k

j ,C f k
j
(E))∼e (g

p
i ,Cgp

i
(E))⇔ h(C f k

j
(E)) = h(Cgp

i
(E)).

Proposition 6 ([14, 15]). The automaton CE�∼e is isomorphic to AE.

Example 6. Using the equivalence-relation ∼e over the set of states of k-C-Continuation Automaton CE
(Figure 4) we see that h(C f 1

1
(E)) = h(C f 1

4
(E)) and h(Ch1

2
(E)) = h(Ch1

5
(E)). The automaton CE�∼e is

given in Figure 5.

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 337

h{h(Cε1 (E))}

g

{h(Cg2
3
(E))}a

b f {h(C f 1
1
(E)),h(C f 1

4
(E))}

fh

{h(Ch1
2
(E)),h(Ch1

5
(E))}

b

f

b

h

{h(Cg1
3
(E))}

g

b

Figure 5: The Automaton CE�∼e .

In order to show that the k-C-continuation tree automaton of E is isomorphic to the k-position au-
tomaton of E, we first show the link between the position functions and the C-continuations.

Proposition 7 ([14, 15]). Let E be linear, 1 ≤ k ≤ m be two integers and f be a position in ΣE ∩Σm.
Then Follow(E, f ,k) = First(C f k(E)).

Lemma 3. Let E be linear and g be a symbol in Σ≥1. Then g−1(E) 6= /0⇔ g ∈ First(E).

Corollary 3. Let E be linear, 1 ≤ k ≤ m be two integers and f and g be two symbols in Σ. Then,
g−1(C f k(E)) 6= /0⇔ g ∈ First(C f k(E)).

Lemma 4. Let E be linear, 1 ≤ k ≤ m be two integers and f and g be two symbols in Σ. Then,
g−1(C f k(E)) 6= /0⇔ g ∈ Follow(E, f ,k).

Proposition 8. Let E be linear. The automaton CE is isomorphic to PE.

This proposition can be extended to expressions that are not necessarily linear since CE and PE are
relabelings of CE and PE.

Corollary 4. The automaton CE is isomorphic to PE.

We define the similarity relation denoted by ≡ over the set of states of the automaton CE as follows:
(f k,C f k(E))≡ (gp,Cgp(E))⇔ Follow(E, f ,k) = Follow(E,g, p).

Corollary 5. The finite tree automaton CE�≡ is isomorphic to the follow automaton FE.

4 Comparison between the Equation and the Follow Automata

We discuss in this section two examples to compare the equation and the follow automata.
Let Σ = Σ0∪Σ1 be the ranked alphabet defined by Σ0 = {a} and Σ1 = { f1, . . . , fn}. Let us consider

the linear regular expression E = ((f1(a)∗a ·a f2(a)∗a) ·a . . .) ·a fn(a)∗a))∗a defined over Σ. Then the size
of E is |E | = 4n− 1 and its alphabet width is ||E || = n+ 1. We have First(E) = {a, f1, f2, . . . , fn} and
Follow(E, f1,1) = Follow(E, f2,1) = . . .= Follow(E, fn,1) = {a, f1, f2, . . . , fn}.
The partial derivatives associated with E are:

∂ f1(E) = {(((a ·a f1(a)∗a ·a f2(a)∗a) ·a . . .) ·a fn(a)∗a) ·a E}
∂ f2(E) = {((a ·a f2(a)∗a ·a . . .) ·a fn(a)∗a) ·a E}, . . .

338 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

∂ fn(E) = {(a ·a fn(a)∗a) ·a E}.
The K-position automaton associated with E has n+1 states.
The follow automaton associated with E has 1 state.
The equation automaton associated with E has: n+1 states.

Let F = (f (a)∗a + f (a)∗a + · · ·+ f (a)∗a)︸ ︷︷ ︸
f (a)∗a n-times

be a regular expression defined over the ranked alphabet

Σ = Σ0∪Σ1 such that Σ0 = {a} and Σ1 = { f}. We have |E |= 4n−1 and ||E ||= n+1. The linearized
form associated with F is F = (f1(a)∗a + f2(a)∗a + · · ·+ fn(a)∗a). The set First(F) = {a, f1, f2, . . . , fn},
Follow(F, f1,1) = {a, f1}, Follow(F, f2,1) = {a, f2}, . . . , and Follow(F, fn,1) = {a, fn}.
The partial derivatives associated with F are ∂ f (F) = {a ·a f (a)∗a}, ∂ f f (F) = {a ·a f (a)∗a}.
The K-position automaton associated with F has n+1 states.
The follow automaton associated with F has: n+1 states.
The equation automaton associated with F has: 2 states.

From these examples we state that the two automata are incomparable:
Proposition 9. The Follow tree automaton and the Equation Tree Automaton are incomparable though
they are derived from two isomorphic automata, i.e. Neither is a quotient of the other.

4.1 A smaller automaton

In [7] P. Garcı́a et al. proposed an algorithm to obtain an automaton from a word regular expression.
Their method is based on the computation of both the partial derivatives automaton and the follow au-
tomaton. They join two relations, the first relation is over the states of the word follow automaton and
the second relation is over the word c-continuations automaton, in one relation denoted by ≡V . What we
propose is to extend the relation ≡V to the case of trees as follows:

C f k
j
(E)≡V Cgp

i
(E)⇔

{
(∃Chl

m
(E)∼F C f k

j
(E) | Chl

m
(E)∼e Cgp

i
(E))

∨ (∃Chl
m
(E)∼F Cgp

i
(E)) | Chl

m
(E)∼e C f k

j
(E))

The idea is to define the follow relation ∼F over the states of the c-continuation automaton CE
as follows: C f k

j
(E)∼F Cgp

i
(E)⇔ Follow(C f k

j
(E), f j,k) = Follow(Cgp

i
(E),gi, p) such that we keep all the

equivalent k-C-Continuations in the merged states. The obtained automaton is denoted by CE�∼F . Then
apply the equivalence relation ∼e (apply the mapping h) over the states of the automaton CE�∼F and
merge the states which have at least one expression in common.
Example 7. Let E = (f (a)∗a ·a b+ h(b))∗b + g(c,a)∗c ·c (f (a)∗a ·a b+ h(b))∗b defined in Example 1 and
E = (f1(a)∗a ·a b+h2(b))∗b

︸ ︷︷ ︸
F1

+g3(c,a)∗c

︸ ︷︷ ︸
G2

·c (f4(a)∗a ·a b+h5(b))∗b

︸ ︷︷ ︸
F3

.

C f 1
1
(E) = ((a ·a f1(a)∗a) ·a b) ·b (f1(a)∗a ·a b+h2(b))∗b ,

Ch1
2
(E) = b ·b (f1(a)∗a ·a b+h2(b))∗b ,

Cg1
3
(E) = (c ·c g3(c,a)∗c) ·c (f4(a)∗a ·a b+h5(b))∗b ,

Cg2
3
(E) = (a ·c g3(c,a))∗c) ·c (f4(a)∗a ·a b+h5(b))∗b ,

C f 1
4
(E) = ((a ·a f4(a)∗a) ·a b) ·b (f4(a)∗a ·a b+h5(b))∗b ,

Ch1
5
(E) = b ·b (f4(a)∗a ·a b+h5(b))∗b .

Applying ∼F over the states of CE we obtain: C f 1
1
(E) ∼F Ch1

2
(E) then the two states are merged,

C f 1
4
(E)∼F Ch1

5
(E) so they are merged. The states Cg1

3
(E) and Cg2

3
(E) are not merged with anyone.

The number of states is |Q|= 5 and the number of transition rules is |∆|= 15.

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 339

The quotient automaton of this automaton by the equivalence relation ∼F is given in Figure 6.

f{Cε1 (E)}

g

{Cg1
3
(E)}

g

b

{Cg2
3
(E)}

a

b h {C f 1
1
(E),Ch1

2
(E)} b

b

{C f 1
4
(E),Ch1

5
(E)}

f

h

Figure 6: The Automaton CE�∼F .

The quotient automaton of the automaton CE�∼F by the equivalent relation ∼e is given in Figure 7.
The number of states is |Q|= 4 and the number of transition rules is |∆|= 14.

f{h(Cε1 (E))}

g

{h(Cg2
3
(E))}

a

h

b

{h(C f 1
1
(E)),h(Ch1

2
(E)),h(C f 1

4
(E)),h(Ch1

5
(E))} b

b

{h(Cg1
3
(E))}

g

f

h

Figure 7: The resulting automaton.

340 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

5 Conclusion

In this paper we define and recall different constructions of tree automata from a regular expression.
The different automata and their relations (quotient, isomorphism) defined in this paper are repre-

sented in Figure 8.

Regular Expression E

k-C-Continuation k-Position

Equation Automaton Follow Automaton

≡
∼F

∼e

C f k (E) First(E)

Follow(E) {Follow(E)}
{First(E)}f−1(E)

∂w(E)

Figure 8: Relation between Automata

Looking for reductions of the set of states, we applied the algorithm by Garcı́a et al. [7] which
allowed us to compute an automaton the size of which is bounded above by the size of the smaller of the
follow and the equation automata.

References
[1] Valentin M. Antimirov (1996): Partial Derivatives of Regular Expressions and Finite Automaton Con-

structions. Theor. Comput. Sci. 155(2), pp. 291–319. Available at http://dx.doi.org/10.1016/

0304-3975(95)00182-4.
[2] Janusz A. Brzozowski (1964): Derivatives of Regular Expressions. J. ACM 11(4), pp. 481–494. Available at

http://doi.acm.org/10.1145/321239.321249.
[3] Jean-Marc Champarnaud & Djelloul Ziadi (2001): From C-Continuations to New Quadratic Algorithms

for Automaton Synthesis. IJAC 11(6), pp. 707–736. Available at http://dx.doi.org/10.1142/

S0218196701000772.
[4] Jean-Marc Champarnaud & Djelloul Ziadi (2002): Canonical derivatives, partial derivatives and finite au-

tomaton constructions. Theor. Comput. Sci. 289(1), pp. 137–163. Available at http://dx.doi.org/10.
1016/S0304-3975(01)00267-5.

[5] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Loding, S. Tison & M. Tommasi (2007):
Tree Automata Techniques and Applications. Available on: http://www.grappa.univ-lille3.fr/tata.

[6] Corinna Cortes, Patrick Haffner & Mehryar Mohri (2004): Rational Kernels: Theory and Algorithms. Jour-
nal of Machine Learning Research 5, pp. 1035–1062. Available at http://www.ai.mit.edu/projects/
jmlr/papers/volume5/cortes04a/cortes04a.pdf.

[7] Pedro Garcı́a, Damián López, José Ruiz & Gloria Inés Alvarez (2011): From regular expressions to smaller
NFAs. Theor. Comput. Sci. 412(41), pp. 5802–5807. Available at http://dx.doi.org/10.1016/j.tcs.
2011.05.058.

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 341

[8] V.-M. Glushkov (1961): The abstract theory of automata. Russian Mathematical Surveys 16, pp. 1–53.
[9] Lucian Ilie & Sheng Yu (2003): Follow automata. Inf. Comput. 186(1), pp. 140–162. Available at http:

//dx.doi.org/10.1016/S0890-5401(03)00090-7.
[10] Ahmed Khorsi, Faissal Ouardi & Djelloul Ziadi (2008): Fast equation automaton computation. J. Discrete

Algorithms 6(3), pp. 433–448. Available at http://dx.doi.org/10.1016/j.jda.2007.10.003.
[11] Dietrich Kuske & Ingmar Meinecke (2011): Construction of tree automata from regular expressions. RAIRO

- Theor. Inf. and Applic. 45(3), pp. 347–370. Available at http://dx.doi.org/10.1051/ita/2011107.
[12] Éric Laugerotte, Nadia Ouali Sebti & Djelloul Ziadi (2013): From Regular Tree Expression to Position

Tree Automaton. In Adrian Horia Dediu, Carlos Martı́n-Vide & Bianca Truthe, editors: LATA, Lecture
Notes in Computer Science 7810, Springer, pp. 395–406. Available at http://dx.doi.org/10.1007/
978-3-642-37064-9_35.

[13] R. McNaughton & H. Yamada (1960): Regular Expressions and State Graphs for Automata. IEEE Trans. on
Electronic Computers 9, pp. 39–47.

[14] Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi (2014): An Efficient Algorithm for the Equation Tree Au-
tomaton via the k-C-Continuations. In A. Beckmann, E. Csuhaj varjù & K. Meer (Eds.), editors: Computabil-
ity in Europe- 10th International Conference, CiE 2014, Budapest, Hungary, June 23-27, 2014. Proceedings,
Lecture Notes in Computer Science 8493, Springer, pp. 303–313.

[15] Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi (2014): An Efficient Algorithm for the Equation Tree
Automaton via the k-C-Continuations. CoRR abs/1401.5951.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 342–354, doi:10.4204/EPTCS.151.24

c© M. Valdats
This work is licensed under the
Creative Commons Attribution License.

Boolean Circuit Complexity of Regular Languages

Maris Valdats
University of Latvia

Faculty of Computing
Riga, Raiņa Bulv. 19, Latvia

d20416@lanet.lv

In this paper we define a new descriptional complexity measure for Deterministic Finite Automata,
BC-complexity, as an alternative to the state complexity. We prove that for two DFAs with the
same number of states BC-complexity can differ exponentially. In some cases minimization of DFA
can lead to an exponential increase in BC-complexity, on theother hand BC-complexity of DFAs
with a large state space which are obtained by some standard constructions (determinization of NFA,
language operations), is reasonably small. But our main result is the analogue of the ”Shannon effect”
for finite automata: almost all DFAs with a fixed number of states have BC-complexity that is close
to the maximum.

State complexity of deterministic finite automata (DFA) [1][5] has been analyzed for more than 50 years
and all this time has been the main measure to estimate the descriptional complexity of finite automata.
Minimization algorithm [6] for it was developed as well as methods to prove upper and lower bounds for
various languages.

It is hard to find any evidence of another complexity measure for finite automata. Transition com-
plexity [3] could be one, it counts the number of transitions, but there is not much use of it for DFAs (it
is proportional to the state complexity), it is used in the nondeterministic case.

But intuitively not all DFAs with the same number of states have the same complexity. We try to
illustrate it with the following example.

Consider a DFA that recognizes a language in the binary alphabet which consists of words in which
there is an even number of ones among the last 1000 input letters. One can easily prove that it needs 21000

states, however such a DFA can easily be implemented by keeping its state space in a 1000 bit register
which remembers the last 1000 input letters.

On the other hand, consider a ”random” DFA with a binary inputtape and 21000 states. There is
essentially no better way to describe it as with its state transition table which consists of 21001 lines
which (as it is widely assumed) is more than particles in our universe.

It is easy to represent a large number of states in a compact form: 2n states fit inton state bits of
the state register. This is true for the ”random” DFA as well.But the computation performed by the
transition function on this register can be very easy in somecases and hard in some other. Therefore
it seems natural to introduce a complexity measure for DFAs which measures the complexity of the
transition function.

Automata with a large state space which is kept in a state register have been used before, but not in the
widest sense. One example of such a usage is FAPKC [8] (FiniteAutomata Public Key Cryptosystem), a
public key cryptosystem developed in the 80’s by Renji Tao. In FAPKC the state space of an automaton
is considered to be a vector space and the transition function is expressed as a polynomial over a finite
field.

In this paper we consider the following model: we arbitrarily encode the state space into a bit vector
(state register) and express the transition function as a Boolean circuit. The BC-complexity of the DFA

M. Valdats 343

is (approximately) the complexity of this circuit and this notion extends to regular languages in a natural
way.

BC-complexity was first analyzed in [9] where it was considered for transducers. Here we define it
for DFAs what allows to extend the definition to regular languages.

The main result of this paper is the Shannon effect for the BC-complexity of regular languages: it
turns out that most of the languages have BC-complexity thatis close to the maximum. To obtain it we
first estimate upper (and lower) bounds for BC-complexity compared to state complexity (Theorem. 3.3),
afterwards by counting argument we show that the complexityof most of the languages is around this
upper bound.

Influence of state minimization to BC-complexity were analyzed already in [9] for transducers and
for DFAs it is essentially the same: it turns out that for someregular languages BC-complexity of
their minimal automaton is much (superpolynomially) larger than BC-complexity for some other (non-
minimal) DFA that recognizes it. Finally we look how BC-complexity behaves if we do some standard
constructions on automata (determinization of an NFA, language operations).

1 Preliminaries

1.1 Finite Automata and Regular Languages

We use a standard notion of DFA [4], it is a tuple(Q,Σ,δ ,q0,Q̃), whereQ is the state space,Σ is the
input alphabet,δ : Σ×Q→ Q is the transition function,q0 ∈ Q is the start state and̃Q⊆ Q is the set of
accepting states.

DFA starts computation in the stateq0 and in each step it reads an input letterx∈ Σ and changes its
state. If the current state of a DFA isq∈ Q and it reads an input letterx∈ Σ then it moves to stateδ (x,q).
If after reading the input word DFA is in a stateq∈ Q̃ then this word is accepted, otherwise it is rejected.
DFA A recognizes languageL iff it accepts all words from this language and rejects all words not in the
language. Two DFAs that recognize the same language are called equivalent.

The state complexity of a DFA is the number of states in its state spaceCs(A) = |Q|. For each DFAA
there is a unique minimal DFAM(A) which is equivalent toA and has minimal state complexity. There
is an effective minimization algorithm for finding it [1].

We will need the estimation of the number of DFAs withs states. DenoteAs to be the number of
pairwise non-equivalent minimal DFAs withs states overk-letter alphabet. In [2] it is estimated to be
larger than 2s−1(s−1)s(k−1)s, we will use the following reduced estimation (true fors≥ 3) which will
be sufficient for us:

Theorem 1.1 ([2]) As ≥ 2ss(k−1)s for s≥ 3.

1.2 Boolean circuits

We will use the standard notion of a Boolean circuit and restrict our attention to circuits in the standard
base (&,∨, ¬). The size of the circuitC(F) is the number of gates plus the number of outputs of the
circuit F. Boolean circuitF with n inputs andm outputs represents a Boolean function(y1, . . . ,ym) =
F(x1, . . . ,xn) in a natural way.

Each function f : {0,1}n → {0,1}m can be represented by a Boolean circuit in (infinitely many)
different ways. The complexity of this functionC(f) is the size of the smallest circuit that represents this
function.

344 Boolean Circuit Complexity of Regular Languages

We will also need a formula for the upper bound of the number ofdifferent Boolean circuits with
a given complexityC. DenoteN(n,m,C) to be the number of circuits withn input variables,m output
variables and no more thanC gates, that correspond to different Boolean functions. Then:

Theorem 1.2
N(n,m,C)≤ 9C+n(C+n)C+m

Proof Assign to inputs numbers from 1 ton, and numbers fromn+ 1 to n+C to the gates. Each
gate is characterised with its two inputs (at most(n+C)2 possibilities) and type (AND, OR, NOT, 3
possibilities). There are no more than(n+C)m ways how to assign outputs of the circuit and each circuit
is countedC! times, one for each numbering of gates. Therefore the totalnumber of circuits can be
estimated as:

N(n,m,C)<
(3(C+n)2)C · (C+n)m

C!
< 9C(1+

n
C
)C(C+n)C+m,

here we have used, thatC! >CC/3C for all C.
Further, as(1+1/x)x < e< 9 for arbitraryx> 0, then

(1+
n
C
)C = ((1+

n
C
)

C
n)n < 9n

from where the result follows.�

A classical result about Boolean functions states that mostof functions f : {0,1}n → {0,1}m have
approximately the same circuit complexity which is close tomaximum. This property is called Shannon
effect.

Theorem 1.3 ([7]) For any Boolean function f: {0,1}n →{0,1}m

C(f). m2n

n+ logm
,

For almost all Boolean functions f: {0,1}n →{0,1}m

C(f)& m2n

n+ logm
.

Here and further log= log2 and we use the notation

f (n). g(n)⇔ lim
n→∞

f (n)
g(n)

≤ 1.

2 Encodings and Representations of a DFA

Classical representations of automata are table forms or state transition diagrams. They are essentially
the same, a state diagram can be thought of as a visualizationof a table form. Table form lists the
transition function of an automaton as a table where each line corresponds to a pair of state and input
letter. In state transition diagram each state is denoted bya circle and for each transition(q,x) → q′ an
arrow is drawn from stateq to stateq′ above which letterx is written.

Both of these representations show each state of an automaton separately, therefore with these meth-
ods it is not possible to effectively describe an automaton with a large number of states.

M. Valdats 345

One can encodesstates into⌈log(s)⌉ (or more) state bits which can be kept in astate register. Also,
input letters can be encoded as a bit vectors. Every automaton has infinitely many such encodings.

The transition function in this case will take as an input a state register and an encoded input letter,
and produce a (next) state register. It is thus a Boolean function and it is natural to represent it with a
Boolean circuit.

Another question is how to represent the set of accepting states Q̃. We represent it by a Boolean
circuit implementing its characteristic function. Therefore a representation of a DFA will consist of an
encoding of its state space and input alphabet and two circuits: one for its transition function and one
for the characteristic function of the set of accepting states. We call these circuitstransition circuitand
acceptance circuit, respectively.

An encodingE(X) of a set X onto a binary string is an injective mappingfX : X → {0,1}bX where
bX is the length of the encoding. As the mapping is injective then bX ≥ ⌈log|X|⌉.

An encoding of a DFA consists of an encoding of its input alphabet fΣ and an encoding of the
state spacefQ which we call input encoding and state encoding, respectively. Additionally for the state
encoding we ask that the start state is encoded as a string of all zeros fQ(q0) = 0bQ.

Definition Let A = (Q,Σ,δ ,q0,Q̃) be a given DFA and(fΣ, fQ) be its encoding. A pair of Boolean
circuits(F,G) is a representation ofA under encoding(fΣ, fQ) iff

• F hasbΣ +bQ input variables andbQ output variables,

• G hasbQ input variables and one output variable,

• for all x∈ Σ andq∈ Q if q′ = δ (x,q), then fQ(q′) = F(fΣ(x), fQ(q)),

• G(fQ(q)) = 1 ⇐⇒ q∈ Q̃ for all q∈ Q.

In other words, transition circuitF reads encoded inputfΣ(x) as its firstbΣ input bits, encoded state
fQ(q) as following bQ input bits and has encoded next statefQ(q′) as itsbQ output bits. Acceptance
circuit G reads encoded statefQ(q) and outputs 1 as its only output bit iffq∈ Q̃.

As noted before minimal values forbΣ andbQ are⌈log(|Σ|)⌉ and⌈log(|Q|)⌉ respectively, but they
can be larger as well. Whether allowing them to be larger gives a possibility to construct smaller repre-
sentations of DFAs, is an interesting open question.

It is natural to encode the state spaceQ with |Q| lexicographically first bit strings of length⌈log|Q|⌉,
in such a case we will say that the state encoding is minimal. The notion of minimal input encoding is
introduced similarly. We call an encoding of a DFAminimal encodingif both encodings: state and input
are minimal.

3 BC-complexity

In this section we define the main concept of this paper, BC-complexity of a DFA. We start from the
bottom:

Definition BC-complexity of a representation of a DFA(F,G) is the sum of complexities of its transition
circuit and acceptance circuit and the number of state bits:

CBC((F,G)) =C(F)+C(G)+bQ.

The number of state bitsbQ is included in the definition to avoid situation that an automaton has a
large number of states but zero BC-complexity. It is naturalto assume that it costs something to create

346 Boolean Circuit Complexity of Regular Languages

a circuit even if it has no gates and this is one of the possibilities how to reflect this in the definition.
Another possibility would be to use the complexity of ”wires” instead of the complexity of gates for the
underlying circuits, but we prefer to use the standard complexity for the circuits.

Definition BC-complexity of a DFAA, CBC(A), is the minimal BC-complexity of its representations:

CBC(A) = min{CBC((F,G)) : (F,G) representsA}.

Although the name ”circuit complexity” also sounds reasonable, we use the abbreviation ”BC-
complexity” to avoid confusion with the circuit complexityof regular languages.

Definition BC-complexity of a regular languageL is the minimal BC-complexity of all DFAs that rec-
ognizeL:

CBC(L) = min{CBC(A) : A recognizesL}.
First we observe that we can optimize our acceptance circuitby rearranging states. If we encode

states in such a way that all accepting states have smaller index than rejecting states (or vice versa) then
the acceptance circuit can be reduced to a comparison operation whose complexity is not greater than 4n
wheren is the number of state bits.

But this is not the best optimization that can be achieved by rearranging states. For the upper bound
in the following Theorem 3.1 different arrangement is used.

Theorem 3.1 If |Σ|= k≥ 2 then for any DFA A with s states,

⌈log(s)⌉ ≤CBC(A). (k−1)s.

If |Σ|= 1 then for any DFA A with s states,

⌈log(s)⌉ ≤CBC(A).
s

logs
.

Proof Lower bound. For any representation(F,G) there arebQ ≥ ⌈logs⌉ state bits, therefore BC-
complexity cannot be smaller than⌈logs⌉.

For upper bound if we just construct an optimal representation (F,G) under some arbitrary minimal
encoding (with⌈logs⌉ state bits) then the BC-complexity of this representation according to Theorem 1.3
can be estimated as

CBC((F,G)) ≤C(F)+C(G)+ ⌈logs⌉. ks⌈logs⌉
log(ks⌈logs⌉) +

s
logs

+ ⌈logs⌉. ks

To improve the result to(k−1)swe will choose a specific minimal encoding where states are ordered
in a way that for one input letter the corresponding transition function is simple. Denoteq to be the
encoding of the current state,q′ to be the encoding of the next state andx to be the encoding of the input
letter. We split the transition circuitF in two partsF1 andF2 where partF1 computes the next state for
one specific input lettera and partF2 does it for otherk−1 input letters.

If we look at the state transition graph for the lettera then it splits into connected components each
of which has the form

q1 → q2 → . . .qm−1 → qm → q j

where 1≤ j ≤ m. Each such component is uniquely defined with two numbersm (the number of states
in it) and j (the length of the ”tail”), we callm to be the length of a component. We order all these

M. Valdats 347

components bym and j lexicographically what naturally leads to the ordering of states. Consider all
components with parameters(m, j) and denote byM = M(m, j) the index (encoding) of the first state of
the first such component and byN = N(m, j) the index of the last state of the last such component.

The transition function isq′ = q+ 1 except for the last stateqm of each component for which it is
q′ = q− (m− j). As each of these components havemstates thenq corresponds to the last state of some
component iffq+1= M modm.

The circuitF1 should compute the following functionq′ = F1(q):
q’ = q+1

for all pairs (m, j)

if M(m, j)<=q<=N(m, j) and q+1 == M(m, j) mod m:

q’ = q-(m-j)

HereM andN are the boundaries within which all components with parameters (m, j) are placed.
It is easy to check that circuits for subtractionq′ = q− (m− j) and comparison(M ≤ q ≤ N) are of
sizeO(logs), for modulo comparisonq+1= M modm it is of sizeO(logs2). Therefore the total size
of the circuitF1 is K ∗ clogs2 whereK is the number of different pairs(m, j) that correspond to some
components that are present in the transition graph andc is some constant. We need to estimate the
maximum value ofK.

One can easily see that maximum value ofK is obtained when each component with parameters
(m, j) appears exactly once and all the smallest components are used. Letu be the maximum length of a
component (maximal value ofm) under the condition that all the possible smallest components are used.
For eachm there arempossible different types of components (1≤ j ≤ m) thereforeK ≤ u(u+1)/2.

On the other hand the total length of all components up to the lengthu−1 should be less thans:

u−1

∑
m=1

m2 =
(u−1)u(2u−1)

6
≤ s

whence it follows thatu≤ 2 3
√

s. Therefore

K ≤ u(u+1)
2

≤ 2 3
√

s(2 3
√

s+1)
2

≤ 4s
2
3

.
The size of the transition circuitF2 for the otherk−1 input letters can be estimated from Theorem 1.3:

C(F2).
(k−1)s⌈logs⌉

log((k−1)s⌈logs⌉) . (k−1)s.

The size of the acceptance circuit can be estimated (from Theorem 1.3) asC(G). s
logs.

After reordering of states we also have to ensure that the start state is 0. This can increase the
complexity of both circuits by no more than 3logs (it is necessary to add at mostn negations to the input
of the transition circuitF, the output of the transition circuitF, and the input of the acceptance circuit
G). There are also logs state bits which are included in the computation of BC-complexity. We omit
these terms of logarithmic order in the computation of BC-complexity because asymptotically they are
negligible.

The BC-complexity of the automaton therefore can be estimated as

CBC(A)≤C(F)+C(G)+bQ . 4c(logs)2s2/3+
s

logs
+(k−1)s

If k≥ 2 then the dominant term of this expression is(k−1)s andCBC(A) . (k−1)s. For one letter
alphabet the dominant term iss/ logs, thereforeCBC(A). s

logs. �

348 Boolean Circuit Complexity of Regular Languages

Consider languageLn in binary alphabetΣ = {0,1} such thatx∈ Ln iff |x| = k andxk−n+1 = 1 (the
n-th letter from the end is ”1”). The state complexity of this language is 2n, one has to remember in a
state register the lastn input letters. But the BC-complexity of it isn. CircuitsF,G that represent the
natural encoding of a DFAAn that recognizesLn have no gates, they are shown in figure 1. Therefore the
BC-complexity of (the representation(F,G) of) An is the number of state bits which isn. This example
shows that the lower bound of Theorem 3.1 is strictly reachable.

Figure 1: Representation(F,G) of the DFAAn

Further we try to reach the upper bound. First we find a language (based on the Shannon function)
for which the BC-complexity is at leasts/ log2(s), afterwards by counting argument we show that BC-
complexity for most languages is close to(k−1)s. That matches the upper bound of Theorem 3.1 and
can be thought of as the Shannon effect for BC-complexity.

Denote byShn the Shannon function onn bits: lexicographically first Boolean function withn input
bits and one output bit with maximal complexity of its minimal circuit. Consider a languageLSh

n that
consists of all wordsx1x2 . . .xk in binary alphabet such thatShn(xk−n+1,xk−n+2, . . . ,xk) = 1. State com-
plexity of this language is not larger than 2n: it is enough to remember the lastn input letters. But its
BC-complexity is at least 2n/n2.

Theorem 3.2 BC-complexity of LSh
n is at least2n/n2.

Proof Let (F,G) be a pair of Boolean circuits that represents some DFAAn recognizingLSh
n . Assume

F has one input bit that represents input letter from the tape and m= bQ state bits. By concatenating
n circuits F together with one circuitG as in figure 2. (state bit output ofj-th circuit is passed as state
bit input of j + 1-st) one can obtain a circuit whose size is not larger thannC(F) +C(G) and which
computes Shannon functionShn on itsn input bits. From Theorem 1.3 the complexity of this circuit is at
least 2n/n. FromnC(F)+C(G)> 2n/n we get thatC(F)+C(G)> 2n/n2. �

Figure 2: Circuit construction for the Shannon functionShn

M. Valdats 349

Theorem 3.2 shows that for some languageLSh
n with s states its BC-complexity is at leasts/(logs)2.

Next theorem is an extension of this result. With the use of nonconstructive methods (counting argument)
one can show that this value can be raised up to(k−1)s. But in the beginning we will need a formula to
estimate the number of automata with a given BC-complexity.

Theorem 3.3 Fix Σ and denoteA(c) to be the class of those minimal DFAs whose BC-complexity is less
than c. If|Σ|= k≥ 2 then for anyε > 0

lim
s→∞

|A((1− ε)(k−1)s)|
|As|

= 0

If |Σ|= 1 then for anyε > 0

lim
s→∞

|A((1− ε) s
logs)|

|As|
= 0

Proof By Theorem 1.1As ≥ 2ss(k−1)s. Denotel = 2k, it is clear that no more thanl input bits for data
input will be used for the representation for which BC-complexity is minimal. If more bits are used, then
some of them will be equal as there are only 2k functions that mapsk inputs letters to{0,1}(bits).

Figure 3: Merged acceptance and transition circuits

Consider a representation(F,G) of some encodingE(A) of A. Merge these two circuitsF andG
and obtain one circuitH with bQ+bΣ inputs andbQ+1 output bits, the firstbQ of which correspond to
the output of the transition circuitF, but the last output bit corresponds to the output of the acceptance
circuit G (Figure 3). The complexity of this circuitH is C(F)+C(G), for any two minimal automata
these ”merged” circuits will be different.

Now we want to estimate the number of representations with BC-complexity less thatc. Such rep-
resentations have at least⌈logs⌉ and no more thanc state bits. The complexity of the ”merged” circuit
H for a representation withbQ state bits cannot be more thanc−bQ, the number of such circuitsH from
theorem 1.2 is not larger than

N(bQ+bΣ,bQ+1,c−bQ)< N(bQ+ l ,bQ+1,c−bQ)< 9c+l (c+ l)c+1.

Therefore the number of representations with complexityc is not larger than

c

∑
bQ=1

N(bQ+ l ,bQ+1,c−bQ)< c9c+l (c+ l)c+1 < 9c+l (c+ l)c+2.

To prove the theorem we have to show that

lim
s→∞

9c+l (c+ l)c+2

2ss(k−1)s
= 0

350 Boolean Circuit Complexity of Regular Languages

or what is equivalent to that

lim
s→∞

log
(

9c+l (c+ l)c+2
)
− log

(
2ss(k−1)s

)
=−∞

for the stated values ofc.
For k≥ 2 if we substitutec= (1− ε)(k−1)s then after simplification we obtain an equation of the

form
lim
s→∞

−εslogs+O(s) =−∞

which is true. The same happens in the casek= 1 if we substitutec= (1− ε)s/(logs). �

We have shown in Theorem 3.1 that BC-complexity for any regular language with state complexitys
and input alphabet of sizek≥ 2 is not ”much larger” than(k−1)s. Theorem 3.3 states that for minimal
encodings recognition of almost all such languages would require circuits of size around(k−1)s. This
can be thought of as the ”Shannon effect” for the BC-complexity of automata: for almost all automata
its value is close to the maximum.

4 Minimization of BC-complexity

For the state complexity of DFA an efficient minimization algorithm [6] is well known which, given a
DFA, finds the state complexity of it as well as the the minimalDFA itself. This is in a big contrast with
complexity measures of general programs (Turing machines)for which their complexity (space or time)
cannot be determined by any means in the general case.

It is easy to notice that finding the BC-complexity of a DFA is NP-hard.

Theorem 4.1 Finding the BC-complexity of a DFA given its arbitrary representation is NP-hard.

Proof We will reduce SAT problem to finding minimal BC-complexity of a DFA. Given a SAT problem
instance that containsn variables, consider a DFA withn state bits (2n states), that works in one letter
alphabet, its state transition function is a ”circle”, thatgoes through all the states, and accepting states
are those, for which this SAT instance gives positive output.

Now assume that this SAT instance is not satisfiable — then this DFA never accepts and therefore
its minimal DFA has 1 state (0 state bits) and its BC-complexity is 0. If this SAT instance is satisfiable,
then any representation of it will have some state bits and therefore its BC-complexity will be at least
1. Therefore if one could efficiently find BC-complexity of a given DFA, he could also solve any SAT
problem.�

Further we show one interesting property of BC-complexity —that for some DFAs BC-complexity
is significantly smaller than for their equivalent minimal DFAs. The theorem is based on the conjecture
that PSPACE6⊆ P/Poly. The proof of this theorem for transducers can be found in [9], for DFAs it is
almost the same and is omitted here. Denote byM(L) the minimal DFA recognizing languageL.

Theorem 4.2 If there is a polynomial p(x) such that CBC(M(L))< p(CBC(L)) for all regular languages
L then PSPACE⊆ P/Poly.

It means that in some cases by minimizing the number of states(minimizing state complexity) BC-
complexity of the transition function can increase superpolynomially. And on the other hand, sometimes
allowing equivalent states in the automaton helps to keep BC-complexity small.

M. Valdats 351

5 BC-complexity applications

5.1 Nondeterministic automata

Theorems 3.3 and 3.1 suggest that for most DFAs ink-letter alphabet withs states BC-complexity is
around(k−1)s. But in many cases when DFAs with a large state space are constructed by some standard
method, it turns out that their BC-complexity is exponentially smaller than this maximal expected value
— it is of orderPolylog(s). Further we look at some of these standard constructions starting with the
determinization of an NFA.

Theorem 5.1 If a language R over alphabetΣ, |Σ|= k can be recognized by an NFA N with n states and
t transitions, then it can also be recognized by a DFA A for which CBC(A)≤ t +(k+1)n+k logk.

Proof Consider a DFAA that is obtained by a standard construction from NFAN. Its set of states is
the powerset of the set of states ofN. The state space ofA will consist of 2n states (may be some of
them will not be reachable), which can be encoded inn state bits. Each state bit of an encoding ofA will
correspond to one state ofN. For input letters we choose arbitrary minimal input encoding into logk bits.

The transition circuit ofA can be obtained from the transition function ofN. NFA N after reading
input letterx ∈ Σ will be in stateqi , if there is a stateq j , in which it was before (NFA can be in many
states simultaneously) and from which reading input letterx leads to stateqi . Denote byQi

a subset of
states ofN from which reading lettera leads to stateqi . Denote byQt a subset of states in whichN is
after readingt letters. IfN reads input lettera in stept then:

qi ∈ Qt+1 ↔ (Qt ∩Qi
a) 6= /0.

In the circuit it means that ifx denotes the encoded input letter then

q′i =
∨

a∈Σ
((x= a)&

∨

q∈Qi
a

q).

To construct allk subcircuitsx= a we need logk negations andk(logk−1) conjunctions.
The size of the block &

∨
q∈Qi

a
q is the number of transitions entering stateq on input a therefore

the total number of these inner disjunctions and conjunctions for all output bitsq′i is t. There are also
(k− 1)n outer disjunctions

∨
a∈Σ. In total the complexity of the transition circuit is not larger than

k(logk−1)+ logk+(k−1)n+ t ≤ t +(k−1)n+k logk.
Acceptance circuitG is a disjunction of all the final states ofN, the complexity of this it is not larger

thann−1. AlsobQ = n have to be added to the BC-complexity. Therefore the total BC-complexity ofA
is not larger thant +(k+1)n+k logk. �

As the number of transitions is not larger thankn2 then

Corollary 5.2 If a language R in alphabetΣ, |Σ| = k can be recognized with an NFA N with n states,
then it can also be recognized with a DFA A for which CBC(A)≤ kn2+(k+1)n+k logk.

5.2 Language operations

State complexity of language operations has been studied long ago, e.g. in [10]. The result of some of
the operations (e.g. reversing) can lead to exponentially larger automata than the original one. Here we
analyze how BC-complexity changes with languages operations and observe that in those cases when

352 Boolean Circuit Complexity of Regular Languages

the state complexity increases exponentially it leads to automata whose state transition function is very
structured therefore its BC-complexity is exponentially smaller than state complexity.

For all operations we assume that we are given two languagesL1 andL2 andm=Cs(L1), n=Cs(L2),
a=CBC(L1), b=CBC(L2), k= |Σ|. We start with the union and intersection.

Theorem 5.3 If L3 = L1∪L2 or L3 = L1∩L2 then CBC(L3)≤ a+b+1.

Proof Assume circuits(F1,G1) represent a DFA recognizingL1 and(F2,G2) represent a DFA recogniz-
ing L2. The transition function for a DFA recognizingL3 would consist of circuitsF1 andF2 working in
parallel. The acceptance circuit consists of circuitsG1 andG2 working on corresponding parts of bit vec-
tor followed by a disjunction (for union) or conjunction (for intersection) gate. The number of state bits
is the sum of state bits for representations(F1,G1) and(F2,G2). The complexity of such a representation
is C(F1)+C(F2)+C(G1)+C(G2)+1+bQ = a+b+1. �

The complement of the language can be computed by the same pair of circuits as the language itself
with negation added at the end of the acceptance circuit.

Theorem 5.4 If L3 = Σ∗ \L1 then CBC(L3)≤ a+1.

A word x1x2 . . .xn belongs to the reverse languageLR
1 iff xn . . .x2x1 belongs toL1. NFA N recognizing

LR
1 can be obtained from the DFAA recognizingL1 by setting the start state ofN to be any accepting state

of A, settingq0 of A to be the only accepting state ofN and reversing all the arrows. DFA recognizing
LR

1 can be obtained fromN by running the standard process of determinization.

Theorem 5.5 CBC(LR
1)≤ (2k+1)m+k logk

Proof This follows directly from Theorem 5.1 and the fact, that NFAobtained by reversing all the
transitions has exactlykmtransitions.�

LanguageL1L2 which is the concatenation of languagesL1 andL2 consists of all wordsuwsuch that
u∈ L1 andw∈ L2.

Theorem 5.6 CBC(L1L2)≤ a+(2k+1)n+k logk

Proof Assume DFAA1 recognizesL1, DFA A2 recognizesL2. NFA that recognizesL1L2 can be obtained
from A1 andA2 by addingε-transitions from all the accepting states ofA1 to the start state ofA2. The
standard construction of DFA from this NFA can be optimized —it will consist of circuitsF1 andG1

representingA1 together with a circuitN(A2) constructed fromA2 as from NFA as in Theorem 5.1.
Circuit G1 sets state bit corresponding to stateq0 of A2 to ”1” iff A1 is in accepting state.

By Theorem 5.1C(N(A2))≤ t+(k+1)n+k logk and, sinceA2 is a deterministic automaton,t = kn.
Together it gives thatCBC(L1L2)≤C(F1)+C(G1)+C(N(A2))≤ a+kn+(k+1)n+k logk= a+(2k+
1)n+k logk. �

Theorem 5.7 CBC(L∗
1)≤ km2+(k+1)m+k logk.

Proof NFA recognizingL∗
1 can be obtained from DFA recognizingL1 by addingε-transitions from all

the accepting states to the start state. The resulting NFA therefore also hasmstates and the result follows
from Corollary 5.2.�

M. Valdats 353

Operation State complexity BC-complexity
L1∪L2 mn a+b+1
L1∩L2 mn a+b+1
Σ∗−L1 m a+1

LR 2m (2k+1)m+k logk
L1L2 (2m−1)2n−1 a+(2k+1)n+k logk
L∗

1 2m−1+2m−2 km2+(k+1)m+k logk

Table 1: State complexity and BC-complexity of language operations

6 Conclusions and open problems

In this paper a new measure of complexity, BC-complexity of DFAs and regular languages, was consid-
ered. Transition function of a DFA as well as the characteristic function of the set of accepting states
are expressed as Boolean circuits and their circuit complexity is taken as a complexity measure (BC-
complexity) of this DFA. It turns out that BC-complexity canvary exponentially for DFA with the same
number of states (Theorem 3.1). Theorem 3.3 states that almost all DFAs BC-complexity is close to
maximum (”Shannon effect”).

In all asymptotic constructions minimal encodings for state and input alphabet where used, but it is
not known if minimal encodings are always optimal. We think that sometimes they are not, but showing
an example where other encoding than minimal would be more efficient (in the sense of minimizing
BC-complexity) is an interesting open question.

In section 4 it was shown that BC-complexity of a regular language can be much smaller than the
BC-complexity of the minimal DFA that recognizes it. On the other hand, DFAs with a large state space
that are obtained in many standard operations (determinization of NFA, language operations), have a
”good” structure so that their BC-complexity can be relatively small.

References

[1] Trakhtenbrot B. Barzdins J.:Finite Automata: Behavior and synthesis. Science, Moscow.

[2] Michael Domaratzki, Derek Kisman & Jeffrey Shallit (2002): On the number of distinct languages accepted
by finite automata with n states. Journal of Automata, Languages and Combinatorics7(4), pp. 469–486.

[3] Gregor Gramlich & Georg Schnitger (2007):Minimizing nfa’s and regular expressions. Journal of Computer
and System Sciences73(6), pp. 908 – 923, doi:10.1016/j.jcss.2006.11.002.

[4] Mealy George H. (1955):A method for synthesizing sequential circuits. Bell System Technical Journal34(5),
pp. 1045–1079, doi:10.1002/j.1538-7305.1955.tb03788.x.

[5] J.E. Hopcroft & J.D. Ullman (1979):Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, Cambridge.

[6] John Hopcroft (1971):An nlogn Algorithm for Minimizing States in a Finite Automaton. Theory of Machines
and Computations, pp. 189–196.

[7] Lupanov O.B. (1984):Asymptotic Estimates of Complexity of Control Systems. Moscow University Press.

[8] Tao R. (2009):Finite Automata and Application to Cryptography. Springer.

[9] Maris Valdats (2011):Transition Function Complexity of Finite Automata.In Markus Holzer, Martin Kutrib
& Giovanni Pighizzini, editors:Proc. of DCFS, Lecture Notes in Computer Science6808, Springer, pp.
301–313, doi:10.1007/978-3-642-22600-7.

354 Boolean Circuit Complexity of Regular Languages

[10] Sheng Yu (2000):State Complexity of Regular Languages. Journal of Automata, Languages and Combina-
torics6, pp. 221–234.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 355–369, doi:10.4204/EPTCS.151.25

c© Antti Valmari
This work is licensed under the
Creative Commons Attribution License.

A Simple Character String Proof
of the “True but Unprovable” Version

of Gödel’s First Incompleteness Theorem

Antti Valmari
Tampere University of Technology, Department of Mathematics

PO Box 553, FI-33101 Tampere, FINLAND

Antti.Valmari@tut.fi

A rather easy yet rigorous proof of a version of Gödel’s firstincompleteness theorem is presented.
The version is “each recursively enumerable theory of natural numbers with 0, 1,+, ·, =,∧, ¬, and∀
either proves a false sentence or fails to prove a true sentence”. The proof proceeds by first showing
a similar result on theories of finite character strings, andthen transporting it to natural numbers,
by using them to model strings and their concatenation. Proof systems are expressed via Turing
machines that halt if and only if their input string is a theorem. This approach makes it possible to
present all but one parts of the proof rather briefly with simple and straightforward constructions.
The details require some care, but do not require significantbackground knowledge. The missing
part is the widely known fact that Turing machines can perform complicated computational tasks.

Mathematics Subject Classification 2010:03F40 Gödel numberings and issues of incompleteness

1 Introduction

Kurt Gödel’s first incompleteness theorem [2] is certainlyone of the most important results in mathemat-
ical logic. Together with an improvement by Barkley Rosser [11], the theorem says thatany recursive
sufficiently strong theory of natural numbers either provesa contradiction, or leaves both some sentence
and its negation without a proof. (We postpone discussion on Gödel’s original formulationto Section 8,
because it uses a concept that cannot be explained briefly at this stage. “Recursive” and other background
concepts are informally introduced in Section 2.)

More recently, the theorem has often been presented in the form any recursively enumerable suffi-
ciently expressive theory of natural numbers either provesa sentence that does not hold or fails to prove
a sentence that does hold. This form is not equivalent to Gödel’s and Rosser’s formulation. In some
sense it promises less and in some sense more. However, it is easier to prove and perhaps also easier to
understand. It makes the assumption of sufficient expressiveness (explained in Section 2) instead of the
stronger assumption of sufficient strength (explained in Section 8). This is the version discussed in the
major part of this paper. It is compared to Gödel’s and Rosser’s formulation in Section 8.

Both Gödel’s original proof and most of the modern expositions are long and technical. On the other
hand, its overall strategy can be explained rather briefly and is intuitively inspiring. As a consequence,
the proof is one of the most popularized ones. We only mentionhere the excellent book by Douglas R.
Hofstadter [3]. Unfortunately, to really grasp the result,the technicalities are necessary.

The goal of this paper is to present arigorousproof which, excluding one detail, can be checkedin full
by a reader withlittle background(but not necessarily with little effort). We hope that our proof makes
the result accessible to a wider audience than before. The skipped detail is the fact that some simple

356 Character String proof of First Incompleteness Theorem

things can be computed by so-called Turing machines. Its rigorous proof would take many dull pages.
On the other hand, Turing machines have been very widely accepted as a universal theoretical model
of computation. Therefore, as long as it is obvious that something could be programmed in a modern
programming language, it is common practice to skip the proof that a Turing machine can compute it.

Our trick is to first prove that theories of finite character strings with string literals, concatenation, and
equality are incomplete. Then we derive the incompletenessof natural number arithmetic as a corollary.
In this way, the main constructions of the proof are made using finite character strings, while other
proofs make them using natural numbers. This makes our constructions much simpler and much more
understandable. The presentation of our proof in this paperis not remarkably short, but this is partly due
to the fact that it is very detailed.

Some background concepts are informally explained in Section 2. Our language on finite character
strings is defined in Section 3. Not every character can be represented by itself in a string literal. There-
fore, an encoding of characters is needed. Section 4 shows that the claim “stringy is the sequence of
the encodings of the characters in stringx” can be formulated in the language. Computations of Turing
machines are encoded in Section 5. The incompleteness of theories of strings is shown in Section 6, and
of theories of arithmetic in Section 7. Section 8 compares the version of the theorem in this paper to
Gödel’s and Rosser’s versions. Discussion on related workand the conclusions are in Section 9.

An earlier, not peer-reviewed version of this paper appeared as arXiv:1402.7253v1.

2 Informal Background

A recursive theoryconsists of a language for formulating claims about some domain of discourse, to-
gether with a recursive proof system. In the case of Gödel’stheorem, the domain of discourse is the
natural numbers 0, 1, 2, . . . together with addition (+), multiplication (variably denoted with×, ·, *, or
nothing such as in 3x+1), and equality (=) with their familiar properties. Asentenceis a claim without
input, formulated in the language. For instance, “3 is a prime number” lacks input but “p is a prime
number” hasp as input. Of course, whether or not a claim can be formulated depends on the language.

When Gödel published his theorem, the notion of “recursiveproof system” had not yet developed into
its modern form. Indeed, instead of “recursive”, he used a word that is usually translated as “effective”.
Gödel meant a mathematical reasoning system for proving sentences, where any proof could be checked
against a fixed set of straigthforward rules. Proofs were checked by humans, but the requirement was that
they could do that in a mechanical fashion, without appealing to intuition on the meaning of formulae.
This makes the proof system independent of the different insights that different people might have.

Today, “in a mechanical fashion” means, in essence, “with a computer that has at least as much
memory as needed”. It suffices that there is a computer program that inputs a finite character string and
eventually halts if it is a valid proof, and otherwise runs forever. If such a program exists, then there
also is a program that systematically starts the former program on finite character strings one by one in
increasing length and executes them in parallel until a proof for the given sentence is found. (We will see
in Section 7 how all finite character strings can be scanned systematically.) If the sentence has a proof,
the program eventually finds it and halts; otherwise it runs forever in a futile attempt to find a proof.

For mathematical analysis, computers and their programs are usually formalized asTuring machines.
We will introduce Turing machines in Section 5.

We will not need the assumption that a proof system resemblesmathematical reasoning systems.
Indeed, we will not need any other assumption than machine-checkability. So we define arecursively
enumerable proof systemas any Turing machineM that reads a finite character string and does or does

Antti Valmari 357

not halt, such that if the string is not a sentence, thenM does not halt. If the string is a sentence, it is
considered as proven if and only ifM halts. Arecursive proof systemadds to this the requirement of the
existence of another Turing machine that halts precisely onthose inputs, on whichM does not halt.

Section 1 assumed that the language for expressing claims about natural numbers is sufficiently
expressive. It suffices that the language has constant symbols 0 and 1, an unbounded supply of variable
symbols, binary arithmetic operators+ and·, binary relation symbol=, binary logical operator∧ (that
is, “and”), unary logical operator¬ (that is, “not”), the so-called universal quantifier∀, and parentheses
(and). All symbols have their familiar syntactical rules and meanings. The universal quantifier is used
to formulate claims of the form∀n : P(n) (that is, “for every natural numbern, P(n) holds”).

For convenience, logical or∨ can also be used without changing the expressiveness of the language,
because it can be built from∧ and¬, sinceP∨Q is logically equivalent to¬(¬P∧¬Q). Also logical
implication→, existential quantifier∃, inequality 6=, less than<, and all familiar numeric constants 2,
3, . . . , 9, 10, 11, . . . can be used, becauseP→ Q is equivalent to¬(P∧¬Q), ∃x : P(x) is equivalent to
¬∀x : ¬P(x), x 6= y is equivalent to¬(x = y), x < y is equivalent to(∃z : x+ z+ 1= y), and any such
numeric constant has the same value as some expression of theform (1+1+ . . .+1).

3 A First-Order Language on Finite Character Strings

In this section we define our language for expressing claims aboutfinite character strings, that is, finite
sequences of characters. We usethis font when writing in that language. To make it explicit where
a string in that language ends and ordinary text continues, we put white space on both sides of the string
even if normal writing rules of English would tell us not to doso. So we write “charactersa , . . . , z
are” instead of “charactersa, . . . ,z are”.

The language uses the following characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 " \ = /= () ~ & | - > A E : + * <

We chose this set of characters for convenience. Any finite set containing at least two characters could
have been used, at the expense of a somewhat more complicatedproof. This set facilitates the use
of familiar notation for many things. The fact that its size 53 is a prime number will be exploited in
Section 7. The charactersa , . . . , z arelower case letters, and 0 , . . . , 9 aredigits.

A finite character stringor juststring is any finite sequence of characters.
An encoded characteris \0 , \1 , or any other character than" and \ . The encoded character

\0 denotes the character\ , \1 denotes" , and each remaining encoded character denotes itself. A
string literal is any sequence of characters of the form"α" , whereα is any finite sequence of encoded
characters. It denotes the corresponding sequence of (unencoded) characters. For instance,"" denotes
the empty string and"backslash=\1\0\1" denotes the stringbackslash="\" . The purpose of
encoding is to facilitate the writing of" inside a string literal, without causing confusion with the"
that marks the end of the literal.

A variable is any string that starts with a lower case letter and then consists of zero or more digits.
For instance,a , x0 , and y365 are variables but49 and cnt are not. The value of a variable is a
string. We say that the variablecontainsthe string.

A term is any non-empty finite sequence of variables and/or string literals. It denotes the concate-
nation of the strings that the variables contain and/or string literals denote. For instance,"theorem" ,
"theo""rem" and "the""""o""rem" denote the same stringtheorem . If the variable x contains
the string or , then also"the"x"em" denotestheorem .

358 Character String proof of First Incompleteness Theorem

An atomic propositionis any string of the formt=u or of the form t/=u , wheret andu are terms.
The first one expresses the claim that the strings denoted byt andu are the same string, and the sec-
ond one expresses the opposite claim. So"theorem"="theo""rem" is a true atomic proposition, and
"theorem"/="theo""rem" is not. Indeed,t/=u expresses the same claim as~t=u , where ~ is intro-
duced soon.

A formula is either an atomic proposition or any string of the following forms, whereπ and ρ
are formulae andx is a variable:(π) , ~π , π&ρ , π|ρ , π->ρ , Ax:π , and Ex:π . The
parentheses(and) are used like in everyday mathematics, to force the intendedinterpretation. In
the absence of parentheses, formulae are interpreted according to the following precedences: con-
catenation has the highest precedence, then= , ~ , & , | , -> , and : in this order. For instance,
~b=c|c="hello"&a=bc denotes the same as(~(b=c))|((c="hello")&(a=bc)) , and
Ax:~x="8"|x="8"->"u"="u" denotes the same asAx:(((~(x="8"))|(x="8"))->("u"="u")) .
All operators associate to the left, soπ->ρ->σ means the same as(π->ρ)->σ .

The formulae express the following claims:

(π) expresses the same claim asπ,
~π expresses thatπ does not hold,
π&ρ expresses thatπ andρ hold,
π|ρ expresses thatπ holds orρ holds or both hold,
π->ρ expresses that ifπ holds, then alsoρ holds,
Ax:π expresses that for any stringx, π holds, and
Ex:π expresses that there is a stringx such thatπ holds.

To improve readability, we often add spaces into a formula, like Ax: x/="8" | x="8" . We may
also split a formula onto many lines.

A first-order languageis any language whose formulae are built from atomic propositions like above.
The constants or literals, terms, and atomic propositions of a first-order language may be chosen as
appropriate to the domain of discourse. A variable of a first-order language may only contain a value in
the domain of discourse, while a variable of a higher-order language may be used more flexibly. When
talking about first-order languages in general, we use the symbols¬, ∀, and so on, and when talking
about a particular first-order language specified in this paper, we use~ , A , and so on.

We will need long formulae. To simplify reading them, we introduce abbreviations. The first abbre-
viation claims that variablea contains a character, that is, a string of length precisely one. The formula
consists ofa="x" for each encoded characterx, separated by| and surrounded by(and) . We do
not write it in full but instead write· · · to denote the missing part.

Char(a) :⇔ (a="a" | a="b" | · · · | a="<")

The abbreviation was written for variablea , but clearly a similar abbreviation can be written for any
variable. So we may use the abbreviationsChar(b) , Char(g75) , and so on.

The next abbreviation claims thatx is a substring ofy . That is, there are stringsu and v such
that string y is the same as stringu followed by string x followed by string v .

Sb(x, y) :⇔ (Eu:Ev: y=uxv)

When this abbreviation is used withu in the place ofx , some other variable has to be used instead of
u on the right hand side. That is,Sb(u, y) does not abbreviate(Eu:Ev: y=uuv) but, for instance,
(Ez:Ev: y=zuv) . The incorrect interpretation(Eu:Ev: y=uuv) contains aname clash, that
is, the variablex that is distinct fromu in y=uxv in the definition of Sb(x, y) , became the same
variable asu . In general, when interpreting an abbreviation containinga subformula of the formAx:π

Antti Valmari 359

or Ex:π , it may be necessary to replacex by some other variable, to avoid name clashes. Further
information on this issue can be found in textbooks on logic,in passages that discuss “bound” and “free”
variables.

Please keep in mind that abbreviations are not part of our language. They are only a tool for com-
pactly referring to certain formulae that are too long to be written in full. Each string that uses abbre-
viations denotes the string that is obtained by replacing the abbreviations by their definitions, changing
variable names in the definitions as necessary to avoid name clashes.

4 A Formula Expressing the Encoding of Characters

In this section we show that a formulaQ(x, y) can be written that claims thaty is the encoding ofx ,
that is, y is obtained by replacing\0 for each \ and \1 for each " in x . We start with a formula
claiming that y is obtained by replacingv for one instance ofu inside x .

RepOne(x, u, v, y) :⇔ (Ee:Ef: x=euf & y=evf)

The next formula claims that, under certain assumptions mentioned below,y is obtained by replac-
ing v for every instance ofu inside x . It converts x to y by making the replacements one by one.
It assumes thatv has no characters in common withu , so that no fake instances ofu can occur in-
side or overlappingv . Furthermore, it assumes that different instances ofu in x do not overlap, so
that the result is independent of the order in which the instances are chosen for replacement. It also as-
sumes thatp (for punctuation) is a string that does not occur insidex , y , or any intermediate result.
Furthermore,p cannot overlap with itself. We will later see howp is constructed.

The sequence of replacements is represented bys as a sequence of the formpx1px2p· · ·pxnp ,
wherex1 = x , xn = y , andx2, . . . , xn−1 are the intermediate results. The requirements onp guar-
antee thats can be decomposed into this form in precisely one way. The parts (Et: s=pxpt) and
(Et: s=tpyp) guarantee thatx1 = x andxn = y . Thanks to~Sb(u, y) , everyinstance ofu is re-
placed. The rest of the formula picks eachxi other than the last and claims thatxi+1 is obtained from it
by making one replacement. Thexi is represented byh andxi+1 by k . They are distinguished by not
containing p , being preceded byp , being separated from each other byp , and being succeeded by
p .

RepAll(x, u, v, y, p) :⇔ (Es:

(Et: s=pxpt) & (Et: s=tpyp) & ~Sb(u, y)
& Ah:Ak: (Sb(phpkp, s) & ~Sb(p, h) & ~Sb(p, k)) -> RepOne(h, u, v, k)

)

To emphasize that abbreviationsare notbut stand forstrings in our language, and that the strings
they stand for are often not easy to comprehend, we now show the string thatRepAll(x, u, v, y, p)
stands for. The real string is too long to be shown on one line,so we split it on two lines.

(Es:(Et:s=pxpt)&(Et:s=tpyp)&~(Ez:Ev:y=zuv)&Ah:Ak:((Eu:Ev:s=uphpkpv)&

~(Eu:Ev:h=upv)&~(Eu:Ev:k=upv))->(Ee:Ef:h=euf&k=evf))

To obtain the punctuation stringp , we first make variableq contain some sequence of:-characters
that does not occur insidex . Such a string exists, because the string consisting ofn+1 :-characters
meets the requirements, whenn is the length ofx .

Punct(x, q) :⇔ ((Aa: Sb(a, q) & Char(a) -> a=":") & ~Sb(q, x))

360 Character String proof of First Incompleteness Theorem

The p used above is obtained as"+"q , that is, by adding a+-character to the front of the sequence
of :-characters in variableq . So the value ofp is +::::: or some similar sequence with a different
number of:-characters. It clearly neither overlaps with itself nor occurs within x .

To guarantee thatu and v do not have characters in common, we first convert each instance of
\ to "*"q , that is, to some string of the form*:::· · ·: that does not occur insidex . Then each
*:::· · ·: is converted to\0 , then each" to *:::· · ·: , and finally each*:::· · ·: to \1 . In the
first conversion,u consists of a single character, so different instances ofu do not overlap. The same
holds for the third conversion. In the second and fourth conversion, u is *:::· · ·: , which clearly
cannot overlap with itself. Furthermore,+:::· · ·: does not overlap and is not inside*:::· · ·: , so p

cannot occur iny or any intermediate result.
We are now ready to writeQ(x, y) . In it, the value\ is represented by the string literal"\0" ,

\1 by "\01" , and so on.

Q(x, y) :⇔ (Eq: Punct(x, q)
& Ex1: RepAll(x, "\0", "*"q, x1, "+"q)
& Ex2: RepAll(x1, "*"q, "\00", x2, "+"q)
& Ex3: RepAll(x2, "\1", "*"q, x3, "+"q)
& RepAll(x3, "*"q, "\01", y, "+"q))

5 Encoding Turing Machine Computations

Turing machines are a formal model of computation. In this section we show that for each Turing
machine, there is a formulaPvble(x) that yields true if and only if the machine eventually halts,given
x as the input. We call itPvble(x) , because the Turing machine is thought to represent some proof
system such that it halts if and only ifx can be proven.

Details of the definition of Turing machines vary in the literature. To start our definition, we in-
troduce a new symbol⊔, calledblank. Let b-stringsbe defined similarly to strings, but they may also
contain blanks. So our Turing machines use 54 symbols: 53 characters and the blank. A Turing machine
consists of acontrol unit, aread/write head, and atapethat consists of an infinite number ofcells in both
directions. Each cell on the tape may contain any character or ⊔. When we say that some part of the tape
is blank, we mean that each cell in it contains⊔. At any instant of time, the read/write head is on some
cell of the tape. During a computation step, the read/write head rewrites the content of the cell and then
possibly moves to the previous or the next cell, as dictated by the control unit and the contents of the cell
before the step.

The control unit consists ofstatesandrules. The states are numbered from 0 tor, for some positive
integerr. State 0 is called thefinal state. There are 54r rules, one for each stateq other than 0 and for
each characterc and⊔. A rule is of the form(c,q) 7→ (c′,q′,d), wherec′ is any character or⊔, q′ is
any state, andd is either L , R , or N . The meaning of the rule is that if the control unit is in stateq
and the tape cell under the read/write head containsc, then the machine writesc′ on the cell, moves the
read/write head one cell to the left or right or does not move it, and the control unit enters its stateq′. If
the control unit enters state 0, then computation halts.

Initially, the tape contains a finite sequence of characters, written somewhere on the tape. This finite
sequence is the input to the machine. The rest of the tape is initially blank. Initially, the read/write head
is on the first input character (or just anywhere, if the inputis empty), and the control unit is in state 1.

At any instant of time, let theright b-string mean the content of the cell under the read/write head,
the content of the next cell to the right, and so on, up to and including the last character on the tape. If

Antti Valmari 361

the cell under the read/write head and all cells to the right are blank, then the right b-string is empty. So
the last symbol of a non-empty right b-string is always different from⊔. Let theleft b-stringbe defined
similarly, but starting at the cell immediately to the left of the read/write head, and proceeding to the left
until the first character on the tape is taken. Again, the leftb-string may be empty, and if it is not, then
its last symbol is not⊔. The contents of the tape as a whole are an infinite sequence ofblanks extending
to the left, then the left b-string reversed, then the right b-string, and then an infinite sequence of blanks
extending to the right. Initially, the left b-string is empty and the right b-string contains the input.

A halting computation corresponds to a sequence(λ0,q0,ρ0), (λ1,q1,ρ1), . . . ,(λn,qn,ρn), whereλ0

is the empty string,q0 = 1, ρ0 is the input string,qn = 0, qi 6= 0 when 0≤ i < n, and each(λi,qi ,ρi)
for 1≤ i ≤ n is obtained from(λi−1,qi−1,ρi−1) as follows. Hereλi is the left b-string andρi is the right
b-string afteri computation steps. Letc= ⊔ if ρi−1 is empty, and otherwise letc be the first symbol of
ρi−1. There is a unique rule of the form(c,qi−1) 7→ (c′,q′,d). We haveqi = q′. The b-stringsλi and
ρi are obtained by replacingc′ for the first symbol ofρi−1, with special treatment of the case thatρi−1

is empty orc′ = ⊔; and then possibly moving the first symbol of the resulting b-string to the front of
λi−1, or moving a symbol in the opposite direction, again with some special cases. The special cases are
discussed in more detail later in this section. The moving ofa symbol from the right b-string to the left
b-string models the movement of the read/write head one cellto the right, and the moving of a symbol in
the opposite direction models the movement of the read/write head one cell to the left.

We want to model this sequence in our language on strings. Thestatesqi are represented simply by
writing their numbers using the digits0 , 1 , . . . , 9 in the usual way. That is, state number 32768 is
represented by32768 . The b-stringsλi andρi are more difficult, because they may contain blanks,
but there is no blank character in our language. So we represent ⊔ with \2 and \ with \0 . To
simplify later constructions by remaining systematic withthe encoding in Section 3, we also represent
" with \1 . All other characters represent themselves. To summarize,\ , " , and⊔ on the tape of
the Turing machine are represented inλi andρi by the values\0 , \1 , and \2 , whose string literal
representations are"\00" , "\01" , and "\02" . In this sense,\ and " become doubly encoded.

So we define anencoded symbolas \0 , \1 , \2 , or any other character than\ and " . We
need not (and could not) say that⊔ is not an encoded symbol, because⊔ is not a character at all.

EChar(e) :⇔
(e="\00" | e="\01" | e="\02" | Char(e) & e/="\0" & e/="\1")

The next formula expresses thaty is obtained fromx by replacing e for its first encoded symbol,
with special treatment of the empty strings and the blank. Ifx consists of at most one encoded symbol,
x as a whole is overwritten. The result is the empty string ife is the encoded blank, and otherwise the
result is e . If x consists of more than one encoded symbols, ordinary replacement occurs.

Write(x, e, y) :⇔ (

(x="" | EChar(x)) & (e="\02" & y="" | e/="\02" & y=e)

| (Ef:Ez: x=fz & EChar(f) & z/="" & y=ez)

)

Let the encoded form of the left b-string be calledleft string, and similarly with the right b-string.
The next formula expresses the removal of the first encoded symbol from one string and its addition to the
front of another string, again with special treatment of theempty strings and the blank. The variablesf1
and f2 contain the values of the from-string before and after the operation, andt1 and t2 contain
the to-string. The encoded blank\2 is never added to the front of an empty to-string, to maintainthe
rule that the b-strings never end with the blank. If the from-string is empty, then the operation behaves
as if the encoded blank were extracted from it.

362 Character String proof of First Incompleteness Theorem

Move(f1, t1, f2, t2) :⇔ (

(f1="" & t1="" & f2="" & t2="")

| (f1="" & t1/="" & f2="" & t2="\02"t1)

| (f1="\02"f2 & t1="" & t2="")

| (Ee: EChar(e) & f1=ef2 & (e/="\02" | t1/="") & t2=et1)

)

Next we introduce a formula for each rule(c,q) 7→ (c′,q′,d). Let ċ= \0 , if c= \ ; ċ= \1 , if c= " ;
ċ= \2 , if c= ⊔ ; and otherwise ˙c= c. Let c̈= \00 , if c= \ ; c̈= \01 , if c= " ; c̈= \02 , if c= ⊔ ;
and otherwise ¨c= c. We define ˙c′ andc̈′ similarly. Let q̇ denoteq written using 0 , 1 , . . . , 9 in the
usual way, and similarly with ˙q′.

We consider first the case whered= N. The first part of the formula checks that the rule triggers, that
is, the current state isq and the symbol under the read/write head isc, taking into accout the possibility
that the right string is empty. The second part of the formulagives the state of the control unit, the right
string, and the left string new values as dictated by the rule.

Rulec′,q′,N
c,q (l1, r1, q1, l2, r2, q2) :⇔ (

q1="q̇" & (r1="" & "c̈"="\02" | Ex: r1="c̈"x)

& q2="q̇′" & Write(r1, "c̈′", r2) & l2=l1

)

Rules withd = R or d = L are similar, but the moving of the read/write head is also represented.

Rule
c′,q′,R
c,q (l1, r1, q1, l2, r2, q2) :⇔ (

q1="q̇" & (r1="" & "c̈"="\02" | Ex: r1="c̈"x)

& q2="q̇′" & Er: Write(r1, "c̈′", r) & Move(r, l1, r2, l2)
)

Rulec′,q′,L
c,q (l1, r1, q1, l2, r2, q2) :⇔ (

q1="q̇" & (r1="" & "c̈"="\02" | Ex: r1="c̈"x)

& q2="q̇′" & Er: Write(r1, "c̈′", r) & Move(l1, r, l2, r2)
)

Let λ̈i andρ̈i be obtained fromλi andρi by replacing each symbolc in them withc̈. The computation
of the Turing machine is represented as a stringc of the form

"λ̈0"ρ̈0\3q̇0"λ̈1"ρ̈1\3q̇1"· · ·"λ̈n"ρ̈n\3q̇n" .
Because the ˙qi consist of just digits and thëλi andρ̈i have been encoded," and \3 cannot occur inside
them. So they can be used for separating theλ̈i , ρ̈i , andq̇i from each other.

We are ready to write the formula that claims that the Turing machine halts on inputx . It says
that there is a sequencec that models the computation. First,c starts with the empty left string, the
encoded input string as the right string, and 1 as the state. Second, c ends with 0 as the state. Finally,
each "λ̈i"ρ̈i\3q̇i"λ̈i+1"ρ̈i+1\3q̇i+1" satisfies some rule. Thatq1 and q2 do not pick more fromc

than they should follows from the fact that the rules check that they consist of digits only.

Pvble(x) :⇔ (Ec:

(Et:Ey: Q(x, y) & c="\1\1"y"\031\1"t) & (Et: c=t"\030\1")

& (Al1:Ar1:Aq1: Al2:Ar2:Aq2:

~Sb("\1", l1) & ~Sb("\1", r1) & ~Sb("\1", l2) & ~Sb("\1", r2)
& Sb("\1"l1"\1"r1"\03"q1"\1"l2"\1"r2"\03"q2"\1", c)

-> (Rule1 (l1, r1, q1, l2, r2, q2)
| · · · | Rule54r (l1, r1, q1, l2, r2, q2)))

)

Antti Valmari 363

6 Incompleteness of Theories of Finite Character Strings

In this section we prove that any recursively enumerable proof system for our language on strings either
fails to prove some true sentence, or proves some false sentence.

Please remember thatQ(x, y) and Pvble(x"\1"y"\1") are abbreviations used in this paper to
improve readability, and not as such strings in our language. They stand for some strings in our language
that are too long to be written explicitly in this paper. Eachof these two long strings has a corresponding
encoded string, which is obtained by replacing\0 for each \ and \1 for each " . We denote them
with Q̇(x, y) and Ṗvble(x"\1"y"\1") . Also remember thatQ(x, y) claims thaty is the encoded
form of x . Therefore,

Q(Q(x, y), Q̇(x, y)) and Q(Pvble(x"\1"y"\1"), Ṗvble(x"\1"y"\1")) hold.

We can now write Gödel’s famous self-referential sentencein our framework as follows.

Ex:Ey: Q(x, y) & ~Pvble(x"\1"y"\1") & x=

"Ex:Ey: Q̇(x, y) & ~Ṗvble(x"\1"y"\1") & x="

Let α be any string andβ be its encoded form. Thenx="β" says that the variablex has the valueα .
Therefore, the last part of Gödel’s sentence says that the value of x is the following string, withQ(x, y)
and Pvble(x"\1"y"\1") replaced by the strings they stand for:

Ex:Ey: Q(x, y) & ~Pvble(x"\1"y"\1") & x=

This and Q(x, y) together say that the value ofy is the following string, with Q̇(x, y) and
Ṗvble(x"\1"y"\1") replaced by the strings they stand for:

Ex:Ey: Q̇(x, y) & ~Ṗvble(x"\1"y"\1") & x=

The string literal"\1" denotes the string" . Thus the value ofx"\1"y"\1" is the value of
x followed by " followed by the value ofy followed by " . Remembering that spaces and divi-
sion to lines are only for simplifying reading and not part ofthe real string, we see that the value
of x"\1"y"\1" is Gödel’s sentence. Furthermore,~Pvble(x"\1"y"\1") claims thatx"\1"y"\1"
is not provable. To summarize, the other parts of Gödel’s sentence makex"\1"y"\1" be Gödel’s sen-
tence, and~Pvble(x"\1"y"\1") says that it is not provable. Altogether, Gödel’s sentenceclaims that
Gödel’s sentence is not provable.

The formula Pvble() specifies a proof system for strings. Gödel’s sentence is not a single sentence,
instead, each proof system for strings has its ownPvble() and thus its own Gödel’s sentence. Gödel’s
sentence of a proof system for strings claims that Gödel’s sentence of that system is not provable in that
system.

The Turing machine that halts immediately independently ofthe input represents a proof system for
strings that proves every sentence. This proof system is useless, because for any sentence that it proves,
it also proves its negation. So it proves many false sentences. However, it serves as an example of a proof
system that proves its own Gödel’s sentence.

Consider now any proof system for strings that proves its ownGödel’s sentence. Because the sen-
tence claims that the system does not prove it, the system hasproven a false sentence. Consider then any
proof system for strings that does not prove its own Gödel’ssentence. Its Gödel’s sentence thus expresses
a true claim, and is thus a true sentence that the system does not prove.

We have proven the following.

Theorem 1 Each recursively enumerable proof system for the first-order language on finite character
strings with string literals, concatenation, and=, either proves a false sentence or fails to prove a true
sentence.

364 Character String proof of First Incompleteness Theorem

That is, there is no recursively enumerable proof system forstrings that proves precisely the true sen-
tences and nothing else. No recursively enumerable proof system for strings can precisely capture the
true claims on strings that can be expressed in our language.This is the incompleteness theorem for
strings.

7 Incompleteness of Natural Number Arithmetic

In this section we show that natural number arithmetic can simulate strings and their concatenation, and
conclude that also natural number arithmetic is incomplete.

Our language on natural number arithmetic uses the same characters as our language on strings in
Section 3. Anumber literalis either 0 or any non-empty finite sequence of digits that does not startwith
0 . A variable is any string that starts with a lower case letter and then consists of zero or more digits.
The value of a variable is a natural number. Atermis a variable, a number literal, or any of the following,
wheret andu are terms:(t) , t+u , or t*u . The parentheses are used in the familiar way,+ denotes
addition, and* denotes multiplication. Furthermore,* has higher precedence than+ , that is, t+u*v
denotes the same ast+(u*v) . Atomic propositions and formulae are defined like in Section 3.

We now introduce a one-to-one correspondence between strings and natural numbers. Letp= 53,
and let the 53 characters in the character set be given numbers from 1 to 53. Ifc′i is a character, then let
its number be denoted withci . The stringc′1c′2 · · ·c′n has the number

num(c′1c′2 · · ·c′n) = c1pn−1+c2pn−2+ . . .+cn−2p2+cn−1p+cn .

So the empty string has the number 0, and the number of any string consisting of precisely one character
is the number of that character. Letιn denote the string of lengthn whose every character has number 1.
We havenum(ιn) = pn−1+ . . .+ p+1, andι0 is the empty string.

We have to show that this mapping is indeed one-to-one. To do that, for each stringc′1c′2 · · ·c′n we
introduce asuccessorand prove that the number of the successor is always one bigger than the number
of the string itself. Ifci = p for every 1≤ i ≤ n, then the successor is defined asιn+1. We have

num(ιn+1)
− num(c′1c′2 · · ·c′n)

=
pn + pn−1 + . . . + p+ 1

− ppn−1 − ppn−2 − . . . − p·1 = 1 .

In the opposite case, at least one ofc1, . . . ,cn is not p. Let j be the last such index, that is, 1≤ j ≤ n,
c j 6= p, andci = p when j < i ≤ n. The successor is defined as the stringd′

1d′
2 · · ·d′

n, wheredi = ci when
1≤ i < j, d j = c j +1, anddi = 1 when j < i ≤ n. We have

num(d′
1d′

2 · · ·d′
n)−num(c′1c′2 · · ·c′n) =

c1pn−1 + . . . + c j−1pn− j+1 + (c j +1)pn− j + pn− j−1 + . . . + p+ 1
− c1pn−1 − . . . − c j−1pn− j+1 − c j pn− j − ppn− j−1 − ppn− j−2 − . . . − p·1

= 1 .

We see that the empty string, its successor, the successor ofthat string, and so on are in one-to-one
correspondence with the natural numbers 0, 1, 2, and so on. Itremains to be proven that this sequence
of strings covers all strings. It does not contain any stringtwice, because the corresponding natural
numbers are all distinct. So it contains infinitely many distinct strings. For anyn, there is only a finite
number of strings of lengthn. So the sequence cannot get stuck at any lengthn. The only case where the
successor is of different length than the string itself is when the successor isιn+1. So the sequence covers
at leastι0, ι1, ι2, and so on. Betweenιn andιn+1, including ιn but notιn+1, the sequence goes through

Antti Valmari 365

num(ιn+1)−num(ιn) = pn strings of lengthn. The number of strings of lengthn is pn, so the sequence
goes through all of them.

We have shown that our correspondence between strings and natural numbers is one-to-one.
Our next task is to represent concatenation of strings as a formula on their numbers. The definition

of numyields immediately

num(c′1 · · ·c′nd′
1 · · ·d′

m) = pmnum(c′1 · · ·c′n)+num(d′
1 · · ·d′

m) .

To present this in our language, we have to extractpm from num(d′
1 · · ·d′

m) only using the language.
Let y= num(d′

1 · · ·d′
m). We havenum(ιm) ≤ y< num(ιm+1), that is,pm−1+ . . .+1≤ y< pm+ . . .+1.

Multiplying this by p−1 we getpm−1≤ y(p−1) < pm+1−1, to which addingy+1 yields pm+y≤
yp+1< pm+1+y. If m′ > m, thenpm′

+y≤ yp+1 does not hold, and ifm′ <m, thenyp+1< pm′+1+y
does not hold. Therefore,k= pm if and only if k is a power ofp andk+y≤ yp+1< pk+y.

A prime number is a natural number greater than 1 that cannot be represented as a product of two
natural numbers greater than 1. Ifp is a prime number andpm = xy, then, for some 0≤ i ≤ m, x = pi

andy= pm−i. Therefore, and because 53 is a prime number, the property that k is a power of 53 can be
formulated as follows.

Pow53(k) :⇔ (Ax:Ay: k=x*y -> x=1 | Ez: x=53*z)

Thatx< y can be expressed as follows.

lt(x, y) :⇔ (Ei: y=x+i+1)

Based on these considerations, ifx and y are the numbers of two strings, then the number of the
concatenation of the strings is obtained as follows.

Cat(x, y, z) :⇔
(Ek: Pow53(k) & lt(y*53+1, 53*k+y) & ~lt(y*53+1, k+y) & z=k*x+y)

Atomic propositions in our language on strings are of the form t1 · · · tm=u1 · · ·un or t1 · · · tm/=u1 · · ·un ,
wheret1, . . . ,tm, u1, . . . ,un are variables or string literals. They can be replaced as shown below for = ,
where t and u are two variable names that are different from theti andu j .

(Et:Eu: t=u

& (Eu: Cat(u, tm, t) & Et: Cat(t, tm−1, u) & Eu: Cat(u, tm−2, t) & . . .)

& (Et: Cat(t, un, u) & Eu: Cat(u, un−1, t) & Et: Cat(t, un−2, u) & . . .)

)

There is a Turing machineT1 that inputs a sentence in the language on strings, replaces each string
literal by its number, and replaces each atomic propositionas shown above. (We could have made this
easier for the Turing machine but harder for the reader by, inSection 3, not allowing more than one
character in any string literal, not allowing more than one variable and/or string literal in a term, and
instead declaring that<x+y:z> expresses thatxy=z.) If there is a Turing machineT2 that halts on the
true sentences in the language on natural numbers and fails to halt on false sentences, then there is a
Turing machineT that first runsT1 and then runsT2 on the result. By construction,T halts if and only
if its input string is a true sentence in the language on strings. But we proved in Section 6 that such a
Turing machine does not exist. Therefore,T2 does not exist. We have proven the following.

Theorem 2 Each recursively enumerable proof system for the first-order language on natural numbers
with 0, 1, +, ·, and=, either proves a false sentence or fails to prove a true sentence.

366 Character String proof of First Incompleteness Theorem

8 Versions of G̈odel’s First Incompleteness Theorem

We proved that any recursively enumerable theory of naturalnumbers with zero, one, addition, multipli-
cation, equality, logical and, logical not, and the universal quantifier either proves a false sentence or fails
to prove a true sentence. Although this theorem is widely called Gödel’s first incompleteness theorem,
it falls short of what Gödel presented in [2]. It assumes that the truth or falsehood of a sentence can be
reasonably talked about, even if the theory does not prove either. (When we say that a theory proves a
sentence false, we mean that the theory proves the negation of the sentence.) This assumption has been
criticized. Perhaps for this reason, Gödel went beyond this version. To discuss this, we first make the
following observation.

In the presence of truth and falsehood as we usually considerthem, a sentence and its negation cannot
both be true. Furthermore, for each sentence, either it or its negation is true. A theory isconsistentif and
only if in no case it proves both a sentence and its negation. Atheory iscompleteif and only if in each
case it proves the sentence or its negation. (The word “complete” is used in more than one meaning in
mathematical logic. This is the meaning we use here.) Therefore, if a theory proves only true sentences
and proves all of them, then it is consistent and complete.

The notions of consistency and completeness do not rely on a pre-defined notion of truth of a sen-
tence. However, they do not together mean the same as “provesonly true sentences and proves all of
them”, because it may be that the theory fails to prove a true sentence and instead proves its false nega-
tion. Indeed, there are consistent and complete theories whose language is the same as the language of
natural number arithmetic. An example is obtained by letting 0 denotefalse, 1 denotetrue, + denote
∨, and· denote∧, and by adopting the usual axioms and inference rules of= and propositional logic
together with two special rules: “∀x : P(x) is equivalent toP(0) ·P(1)” and “∃x : P(x) is equivalent to
P(0)+P(1)”. This theory could well be called a first-order theory of truth values. It proves sentences
that are false from the point of view of natural number arithmetic, such as 1+1= 1 (which represents
true∨ true = true). It is a consistent and complete theory, but a wrong theory for natural number arith-
metic although it has the same language.

Another way to look at this is that the replacement of the notions of truth and falsehood by com-
pleteness and consistency disconnect the language from natural numbers, leaving only two uninterpreted
constant symbols 0 and 1, and two uninterpreted binary operator symbols+ and·. The mere fact that the
symbols look familiar does not give them any formal properties. Instead, to make them again have a link
with natural number arithmetic, some axioms and inference rules are needed.

In conclusion, the right liberation of the incompleteness result from the notion of pre-defined truth
is that no “sufficiently strong” theory of natural number arithmetic is consistent and complete. Here
“sufficient strength” has two aspects. First, the notion of first-order theories has a standard set of logical
axioms and inference rules. It is assumed. Second, enough properties of natural numbers are assumed
in the form of axioms, to ensure that the theory indeed is a theory of natural numbers instead of, say,
the theory of truth values sketched above. Not much is needed. A rather weak axiom system known as
Robinson arithmeticsuffices [10, 12]. It is otherwise the same as the well-known Peano arithmetic, but
the induction axiom has been replaced by the axiom “each natural number is either 0 or the result of
adding 1 to some natural number.”

Gödel did not prove the theorem in the form stated above. Instead of consistency, he used the stronger
notion calledω-consistency. A theory is notω-consistent if and only if it is not consistent or, for some
formulaP with one free variablex, it proves both∃x : P(x) and each one of¬P(0), ¬P(1), ¬P(2),
That a theory proves each one of¬P(0), ¬P(1), ¬P(2), . . . does not necessarily imply that it proves
their conjunction∀x : ¬P(x), because no proof can go through an infinite number of cases one by one

Antti Valmari 367

(proofs must be finite), and a common pattern that would facilitate proving them simultaneously in a
single proof does not necessarily exist. Even so, intuitionsays that if none ofP(0), P(1), P(2), and so
on holds, then there is nox such thatP(x) holds, that is,¬∃x : P(x) holds. So a healthy theory of natural
number arithmetic must be not only consistent, but alsoω-consistent.

Gödel’s result was that such a theory cannot be complete. Let Prf(x,y) denote the claim that natural
numberx is the encoding of a proof of the sentence encoded by natural numbery. This claim can be
formulated in natural number arithmetic. Furthermore, ifPrf(x,y) holds, thenPrf(x,y) can be proven,
and if¬Prf(x,y) holds, then¬Prf(x,y) can be proven. Together with the requirement of “effectivity”, this
implies that the proof system must be recursive in the sense of Section 2. That is, there is a mechanical
test which, for any string, tells whether it is a valid proof,where also the answer “no” is given explicitly
instead of just never answering anything. Although this assumption is strictly stronger than recursive
enumerability, proof systems typically satisfy it.

The proof system must also facilitate the simple reasoning steps in the sequel.
Gödel’s self-referential sentence is¬∃x : Prf(x,g), whereg is its own encoding as a natural number.

Assume first that the proof system proves¬∃x : Prf(x,g). Then there is a natural numberp that is
the encoding of some proof of¬∃x : Prf(x,g). By the strength assumption above, the proof system
provesPrf(p,g). From it the proof system can conclude∃x : Prf(x,g). So it proves both∃x : Prf(x,g)
and its negation, and is thus not consistent. The case remains where the proof system does not prove
¬∃x : Prf(x,g). Then no natural number is the encoding of a proof of¬∃x : Prf(x,g). By the strength
assumption above, the proof system proves¬Prf(0,g), ¬Prf(1,g), and so on. If the proof system is
ω-consistent, then it does not prove∃x : Prf(x,g). So it leaves both∃x : Prf(x,g) and¬∃x : Prf(x,g)
without a proof, and is thus incomplete.

Later Rosser found a modification to the proof that allows to replaceω-consistency with con-
sistency [11]. We call his self-referential sentence R. It is ∀x : (Prf(x, r) → ∃y : y ≤ x∧ Prf(y, r̄)),
wherer is the encoding of R and ¯r is the encoding of¬R. If p is the encoding of a proof of R, then
the system proves R,Prf(p, r), and∃y : y ≤ p∧ Prf(y, r̄). If such any indeed exists, then the proof
whose encoding isy yields ¬R, so the system proves a contradiction. Otherwise, the system proves
¬Prf(0, r̄)∧¬Prf(1, r̄)∧ ·· ·∧¬Prf(p, r̄), yielding¬∃y : y≤ p∧Prf(y, r̄), a contradiction again.ω-con-
sistency is not needed, because¬Prf(0, r̄)∧ ·· ·∧¬Prf(p, r̄) is a finite expression and thus a sentence.

If p is the encoding of a proof of¬R, then the system provesPrf(p, r̄) and∃x : (Prf(x, r)∧¬∃y :
y ≤ x∧Prf(y, r̄)), yielding ∃x : Prf(x, r) ∧¬(p ≤ x). Like above, the system proves one or another
contradiction, depending on whether any of 0, 1, . . . ,p−1 is the encoding of a proof of R.

In conclusion, if the system is consistent, then it proves neither R nor¬R, and is thus incomplete.
The above proof of Rosser’s theorem uses the symbol≤ that is not part of the first-order language

on arithmetic. It can be expressed as mentioned in Section 2.The crucial property is that ifc is a natural
number constant, then no other natural numbers than 0, 1, . . ., c have the properties thatx ≤ c and
¬(c+1≤ x). This can be proven from Peano arithmetic, but in the case of other axiom systems, specific
axioms on≤ may be needed.

In his original publication [2] Gödel also sketched a proofof a corollary that is now known as Gödel’s
second incompleteness theorem. It says that natural numberarithmetic does not prove its own consis-
tency, if it indeed is consistent. What is more, no recursiveconsistent theory that contains natural number
arithmetic proves its own consistency. The significance of this result is the following. Some mathemat-
ical principles are easy to accept, while some others have raised doubts. The questionable principles
would become more acceptable, if, with a proof that only useseasily acceptable principles, they were
proven to not yield contradictions. Gödel’s second incompleteness theorem rules out perhaps not all, but
at least the most obvious approaches to such proofs.

368 Character String proof of First Incompleteness Theorem

9 Related Work and Conclusions

We have shown that any recursively enumerable first-order theory of finite character strings with concate-
nation and equality either proves a false sentence or fails to prove a true sentence. From this we derived
a similar result about natural number arithmetic with addition, multiplication, and equality, obtaining the
“either proves a false sentence or fails to prove a true sentence” version of Gödel’s first incompleteness
theorem.

A halting testeris a Turing machine that reads any Turing machineM together with its inputI and
tells whetherM halts, if executed onI . In addition to inventing his machines, Alan Turing proved that
there is no halting tester [13]. (The modern version of this proof is very simple.)

Our proof of Gödel’s theorem is based on encoding each claimof the form “M halts onI ” as a
sentence in natural number arithmetic. It is not the first such proof. If each encoded sentence “M halts on
I ” or its negation were provable by a system that only proves true sentences, then a halting tester would be
obtained by letting a Turing machine test all finite character strings until it finds a proof of halting or non-
halting. Therefore, the system has an unprovable true sentence. Essentially the same reasoning can be
expressed in another words by pointing out that the set of provable sentences is recursively enumerable,
but the set of true sentences is not recursively enumerable,because the true sentences of the form “M
does not halt onI ” cannot be enumerated. So truth and provability do not match. This proof is given in,
e.g., [4, p. 354] (leaving the (A) mentioned below as a doublystarred exercise!) and [7, pp. 288–291],
underlies the proof in [8, p. 134], and is at least hinted at in[6, p. 64].

Two major difficult technicalities in Gödel’s proof are (A)to show that reasoning or computation
can be encoded as properties of natural numbers (so-calledGödel numbering), and (B) to give a formula
access to its own number. The proof based on non-existence ofhalting testers makes (B) trivial. It makes
it necessary to check or believe that, givenM andI , a Turing machine can perform the construction in
(A). Fortunately, it is rather obvious.

Because natural number arithmetic has no direct construct for expressing finite sequences of natural
numbers, (A) is surprisingly difficult. To do (A), often the Chinese Remainder Theorem is used. That
brings discussion so far from the main topic that some expositions simply skip the issue. Alternatively,
one may add the exponentiation operatornm to the theory, as was done in [8, p. 135]. In [7], Dexter Kozen
made (A) relatively easy by using a slightly less straighforward representation for halting computations
than we did in Section 5, and treating natural numbers essentially as finite sequences ofp-ary digits,
wherep is a prime. Numbers that were known to be powers ofp, but not known which power, were
used to extract individual digits. Thanks to padding with blanks, the representation of each configuration
during a computation used the same number of digits. As a consequence, there was a numberc such that
if y extracts a digit in a configuration, thenyc extracts the corresponding digit in the next configuration.

Our proof made (A) and (B) easy by doing them in a formalism that is very amenable to them. The
most advanced number-theoretic property needed in the whole proof is that if a number is a power of
prime p, then all its factors other than 1 are divisible byp. The Chinese Remainder Theorem was not
used and the exponentiation operator was not added to the language. Turing machines were referred to
twice: as the basis of the definition of “recursively enumerable proof system”, and as devices that can
perform a simple syntactic transformation.

It seems obvious that the incompleteness of theories of finite character strings can also be proven
with the approach in [4, 7, 8]. Then one may continue like in Section 7. In this combined approach, the
formula Q(x, y) would not be needed (but the computability of (A) by a Turing machine would).

Neil D. Jones has proven the incompleteness of first-order theories of nested lists with concatena-
tion [5, p. 202]. Also this proof is based on the non-existence of halting testers. The counterpart of (A)

Antti Valmari 369

is trivial, because the formalism supports it directly. Nested lists are a strong formalism that can easily
express natural numbers, so this result is not surprising.

Finite character strings with concatenation may at first sight seem a poor formalism: a data type with
infinitely many distinct values could not be much simpler. Onthe other hand, all computation reduces
to the manipulation of finite character strings both in theory (Turing machines) and in practice (files are
finite sequences of bytes). So the incompleteness of first-order theories of finite character strings with
concatenation seems too obvious to be a new result. To prove it, it suffices to cite Gödel and then show
that strings can simulate arithmetic. Such simulations have been studied at least in [1, 9]. However,
neither publication explicitly mentions the incompleteness of strings and, indeed, the author has failed to
find any mention of it in the literature. What is more, in this paper the proof was simplified by simulating
in the opposite direction, that is, by proving the incompleteness of strings directly and then deriving the
incompleteness of arithmetic as a corollary. This idea seems to be new.

Even if it turns out that the approach of this paper is not novel, we hope that the paper helps the
readers understand Gödel’s famous result.

Acknowledgements. This version of the paper has benefited from the good commentsgiven by the
anonymous reviewers.

References

[1] J. Corcoran, W. Frank & M. Maloney (1974):String Theory. J. Symb. Log.39(4), pp. 625–637, doi:10.
2307/2272846.

[2] K. Gödel (1931):Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I.
Monatsh. Math. Phys.38(1), pp. 173–198, doi:10.1007/BF01700692. In German.

[3] D.R. Hofstadter (1979):Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books.

[4] J.E. Hopcroft & J.D. Ullman (1979):Introduction to Automata Theory, Languages and Computation.
Addison-Wesley.

[5] N.D. Jones (1997):Computability and Complexity – From a Programming Perspective. Foundations of
computing series, MIT Press.

[6] S.C. Kleene (1943):Recursive Predicates and Quantifiers. Trans. Amer. Math. Soc.53(1), pp. 41–73,
doi:10.1090/S0002-9947-1943-0007371-8.

[7] D. Kozen (1997):Automata and Computability. Undergraduate texts in computer science, Springer, doi:10.

1007/978-1-4612-1844-9.

[8] C.H. Papadimitriou (1994):Computational Complexity. Addison-Wesley.

[9] W.V. Quine (1946):Concatenation as a Basis for Arithmetic. J. Symb. Log.11(4), pp. 105–114, doi:10.
2307/2268308. Available athttp://projecteuclid.org/euclid.jsl/1183395170.

[10] R.M. Robinson (1950):An Essentially Undecidable Axiom System. In: Proceedings of the International
Congress of Mathematics 1950, pp. 729–730.

[11] J.B. Rosser (1936):Extensions of Some Theorems of Gödel and Church. J. Symb. Log.1(3), pp. 87–91,
doi:10.2307/2269028. Available athttp://projecteuclid.org/euclid.jsl/1183142131.

[12] A. Tarski, A. Mostowski & R.M. Robinson (1953):Undecidable Theories. North Holland.

[13] A. Turing (1936):On Computable Numbers, With an Application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society42, pp. 230–265. Correction in 43 (1937), 544–546.

Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 370–381, doi:10.4204/EPTCS.151.26

c© Vojtěch Vorel

Subset Synchronization of Transitive Automata∗

Vojtěch Vorel
Charles University in Prague, Czech Republic

vorel@ktiml.mff.cuni.cz

We consider the following generalized notion of synchronization: A word is called a reset word of
a subset of states of a deterministic finite automaton if it maps all states of the set to a unique state.
It is known that the minimum length of such words is superpolynomial in worst cases, namely in
a series of substantially nontransitive automata. We present a series of transitive binary automata
with a strongly exponential minimum length. This also constitutes a progress in the research of
composition sequences initiated by Arto Salomaa, because reset words of subsets are just a special
case of composition sequences. Deciding about the existence of a reset word for given automaton
and subset is known to be a PSPACE-complete problem, we provethat this holds even if we restrict
the problem to transitive binary automata.

1 Introduction

A deterministic finite automatonis a triple A = (Q,X,δ), whereQ and X are finite sets andδ is an
arbitrary mappingQ× X → Q. Elements ofQ are calledstates, X is the alphabet. The transition
functionδ can be naturally extended toQ×X⋆ → Q, still denoted byδ . We extend it also by defining

δ (S,w) = {δ (s,w) | s∈ S,w∈ X⋆}

for eachS⊆ Q. An automaton(Q,X,δ) is said to betransitiveif

(∀r,s∈ Q)(∃w∈ X⋆)δ (r,w) = s.

A states∈ Q is asink stateif

(∀x∈ X)δ (s,x) = s.

Clearly, if a nontrivial automaton has some sink state, it isimpossible for the automaton to be transitive.
For a given automatonA= (Q,X,δ), we callw∈ X⋆ a reset wordif |δ (Q,w)|= 1. If such a word exists,
we call the automatonsynchronizing. Note that each word having a reset word as a factor is also a reset
word.

The Černý conjecture, a longstanding open problem, claims that each synchronizing automaton has
a reset word of length at most(|Q|−1)2. There is a series of automata due toČerný that reaches this

bound [3], but all known upper bounds lie inΩ
(
|Q|3

)
, see [15] for the best one1. A tight bound has been

established for various special classes of automata, see a survey in [23] or some recent advances e.g. in
[1, 6, 8, 20].

∗Research supported by the Czech Science Foundation grant GA14-10799S.
1An improved bound published by Trakhtman [22] in 2011 has turned out to be proved incorrectly.

Vojtěch Vorel 371

1.1 Synchronization of Subsets

Even if an automaton is not synchronizing, there could be various subsetsS⊆ Q such that|δ (S,w)|= 1
for some wordw∈ X⋆. We say that suchS is synchronizablein A and in the opposite case we say it is
blind in A. The wordw is called areset word of Sin A. Such words are of our interest. They lack some
of elegant properties of classical reset words (i.e. reset words of allQ), particularly a wordw having a
factorv which is a reset word ofSneed not to be itself a reset word ofS. In fact, if we choose a subsetS
and a wordw, it is possible for the setδ (S,w) to be blind even if the setSwas synchronizable.

SupposeA= (Q,X,δ) andS⊆ Q. We denote byCS(A,S) the length of the shortest reset word ofS
in A. If S is blind, we setCS(A,S) = 0. LetM be a class of automata. For eachn let M≤n be the class
of all automata lying inM and having at mostn states. We denote

CSMn = max
A∈M≤n

S⊆Q

CS(A,S) .

If M is the class ofall automata, we write justCSn instead ofCSMn .
Such values we informally callsubset synchronization thresholds.The class of all transitive automata

and the class of all automata with ak-letter alphabet are denoted byT R andALk respectively. Automata
from AL2 are calledbinary.

As we describe below, it was proven independently by [10] and[17] thatCSn ≥ (3
√

n)!, and a con-
struction from [12] implies thatCSn ≥ 2Ω(n), but the proofs use automata with multiple sink states and
growing alphabets. Use of sink states is a very strong tool for designing automata having given proper-
ties, but in practice such automata seem very special. They represent unstable systems balancing between
different deadlocks. The very opposite are the transitive automata. Does the threshold remain so high if
we consider only transitive automata? Unfortunately, we show below that it does, even if we restrict the
alphabet size to a constant. We prove that

CSAL2∩T R
n = 2Ω(n),

which substantially raises also the general lower bounds ofeachCSALk
n , because their former lower

bounds (following from [12]) lie in2o(n). The new bound is tight sinceCSn = 2O(n).

1.2 Minimum Length of Compositions

It has been repeatedly pointed out by Arto Salomaa [17, 18] that very little is known about minimum
length of a composition needed to generate a function by a given set of generators. To be more precise,
let us adopt and slightly extend the notation used in [17, 18]. We denote byTn the semigroup of all
functions from{1, . . . ,n} to itself. GivenG⊆ Tn, we denote by〈G〉 the subsemigroup generated byG.
GivenF⊆ Tn we denote byD(G,F) the lengthk of a shortest sequenceg1, . . . ,gk of functions fromG
such thatg1 . . .gk ∈ F. Finally, denote

Dn =max
n≤n

max
F,G⊆Tn
F∩〈G〉6=∅

D(G,F) . (1)

From the well-known connection between automata and transformation semigroups it follows that the
valueCSn could be also defined by (1) if we just restrictF to be some of the sets

FS= { f ∈ Tn | (∀r,s∈ S) f (r) = f (s)}

372 Subset Synchronization of Transitive Automata

for S⊆ {1, . . . ,n}. Therefore it holds trivially that

Dn ≥ CSn .

Arto Salomaa refers to a single nontrivial bound ofDn, namelyDn ≥ (3
√

n)!, which is a consequence
of the above-mentioned variant forCSn. In fact he omits a much older construction of Kozen [9,
Theorem 3.2.7] which deals with lengths ofproofs rather than compositions but witnesses easily that

Dn = 2
Ω
(

n
logn

)
. Since 2013 it follows from [12] thatDn = 2Ω(n). Our result shows that this lower bound

holds also if we restrictG to any nontrivial fixed size.
In Group Theory, thresholds likeDn are studied in the scope of permutations, see [7].

2 Lower Bounds of Subset Synchronization Thresholds

We first formulate the two former lower bounds ofCSn. Let pi stand for thei-th prime.

Theorem 1([10, 17]). For each k there is an automaton Ak = (Qk,{a,b} ,δk) and a subset Sk such that
|Qk|= 2+∑k

i=1 pi andCS(Ak,Sk) = ∏k
i=1 pi .

The proof of the theorem uses an automatonAk that consists ofk cyclic parts of prime sizes and
two sink states, so it is essentially non-transitive. The theorem implies thatCSn ≥ (3

√
n)!, because

∏k
i=1 pi ≥ k! and |Qk| ≤ k3, using the estimationpi ≤ i2. By the terminology of [10] such bound is

exponential, but using canonical estimations ofpi it is not hard to show that the bound is exceeded by
n 7→ εn for anyε > 1.

Theorem 2([12]). It holds thatCSn = 2Ω(n) andCSAL2
n = 2

Ω
(

n
log n

)
.

The paper [12] studiescareful synchronizationof partial automata, but the lower bounds can be
adapted for our setting. The proofs of [12, Theorem 1] and [12, Theorem 3] can be modified (by adding
one state) so that the constructed automata have sink states. Then we can add another sink stateD which
becomes the target of all undefined transitions. Then all reset words for the subsetQ\{D} are careful
reset words of the original partial automaton and we can use the corresponding lower bounds.

Let us introduce three key methods used in the present paper.The first is quite simple and has been
already used in the literature [2]. It modifies an automaton in order to decrease the alphabet size with
preserving high synchronization thresholds:

Lemma 3. For each automaton A= (Q,X,δ) and S⊆ Q there is an automaton A′ = (Q′,X′,δ ′) and
S′ ⊆ Q′ such that

1. S is synchronizable in A⇒ S′ is synchronizable in A′

2. CS(A′,S′)≥ CS(A,S)

3. |Q′|= |Q| · |X|
4. |X′|= 2

5. A′ and A have equal number of strongly connected components

Proof. Suppose thatX = {a0, . . . ,am}. We setQ′ = Q×X, X′ = {α ,β},

δ ′((s,ai) ,α) = (δ (s,ai) ,a0)

δ ′((s,ai) ,β) = (s,ai+1 mod m) .

Vojtěch Vorel 373

Informally, a transitionr
ai−→ sof A is simulated inA′ by

(r,a0)
β−→ (r,a1)

β−→ . . .
β−→ (r,ai)

α−→ (s,a0) .

If we set S′ = S×{a0}, it is not hard to see that any reset word ofS′ in A′ have to be of the form(
β i1α

)
. . .

(
β id α

)
for somew= ai1 . . .aid which is a reset word ofS in A.

The second method is original and is intended for modifying an automaton to be transitive, again
with high synchronization thresholds preserved. It relieson the following concept:

Definition 4. Let A = (Q,X,δ) be an automaton and letρ ⊆ Q2 be a congruence, i.e. equivalence
relation satisfyingrρs⇒ δ (r,x)ρ δ (s,x) for eachx∈ X. We say thatρ is aswap congruenceif, for each
equivalence classC of ρ and each letterx∈ X, the restricted functionδ (_,x) :C→ Q is injective.

Let us express the key feature of swap congruences and use it in the construction.

Lemma 5. Let A= (Q,X,δ) be an automaton, letρ ⊆ Q2 be a swap congruence and take any S⊆ Q. If
there are any r,s∈ S with r 6= s and rρs, the set S is blind.

Proof. Becauser ands lie in a common equivalence class ofρ , by the definition of swap congruence we
haveδ (r,x) 6= δ (s,x) for anyx∈ X. It follows that each setδ (S,w) for w∈ X⋆ is of size at least2.

Lemma 6. For each automaton A= (Q,X,δ) and S⊆ Q there is an automaton A′ = (Q′,X′,δ ′) and
S′ ⊆ Q′ such that

1. S is synchronizable in A⇒ S′ is synchronizable in A′

2. CS(A′,S′)≥ CS(A,S)

3. A′ is transitive

4. |Q′|= 4 |Q|+2

5. |X′|= |X|+2c

where c is the number of strongly connected components of A.

Proof. LetC1, . . . ,Cc be the strongly connected components ofA. Fix someqi ∈Ci for eachi. We set

Q′ =
{

E,E
}
∪
({

1,1,2,2
}
×Q

)

X′ = X∪{ai ,bi | i = 1, . . . ,c}

and define the transition functionδ ′ as follows. If we omit all the lettersas andbs from the alphabetX′,
we find the statesE,E isolated (i.e.E

x→ E,E
x→ E for x∈ X) and the rest ofA′ consisting just of four

copies ofA:

(N,s)
x−→ (N,δ (s,x))

for N ∈
{
1,1,2,2

}
,s∈ Q,x∈ X. Let us introduce the additional letters. For anyi ∈ 1, . . . ,c ands∈ Q

such thats 6= qi we set

(1,s)
ai ,bi−→E

(2,s)
ai ,bi−→E

(
1,s

) ai ,bi−→E
(
2,s

) ai ,bi−→E

374 Subset Synchronization of Transitive Automata

and it remains to see Figure 1, which describes for eachi ∈ 1, . . . ,c the action ofai andbi on the six states
E,E,(1,qi) ,

(
1,qi

)
,(2,qi) ,

(
2,qi

)
.

Observe that the equivalenceρ having the classes
{

E,E
}

and
{
(1,s) ,

(
1,s

)}
,
{
(2,s) ,

(
2,s

)}
for

eachs∈ Q is a swap congruence ofA′. We claim that the automatonA′ and the set

S′ = {1}×S∪
{
2
}
×S

fulfill our requirements on synchronizability, the synchronization threshold and transitivity:

• If the setS is synchronizable inA, there arer ∈ Q and w ∈ X⋆ such thatδ (S,w) = {r}. The
stater lies in someCi , so there is a wordu ∈ X⋆ such thatδ (r,u) = qi . We claim that the word
wuai synchronizesS′ in A′. Indeed, we haveδ ′(S′,w) =

{
(1, r) ,

(
2, r

)}
and thereforeδ ′(S′,wu) ={

(1,qi) ,
(
2,qi

)}
andδ ′(S′,wuai) = {(1,qi)}.

• Let S′ be synchronized inA′ by a wordw ∈ (X′)⋆. There must occur some letterar or br in w,
becauseS′ contains states from two different copies ofA. Thus we can write

w= uxv

for someu ∈ X⋆, i ∈ 1, . . . ,c, x ∈ {ai ,bi} andv ∈ (X′)⋆. If δ ′(S′,u) contains unique state from
{1}×Q, the wordu synchronizesS in A, we are done. Otherwise there is some state(1,s) ∈
δ ′(S′,u) such thats 6= qi . Becauseu∈ X⋆, it holds also that

(
2,s

)
∈ δ ′(S′,u). But

(1,s)
ai ,bi−→E

(
2,s

) ai ,bi−→E,

so the blind subset
{

E,E
}

is contained inδ ′(S′,ux), which is a contradiction.

• In order to verify thatA′ is transitive we first find a path between any pair of distinct states
(N,s),(N, r) from a common copy ofA. Let r ∈ Ci and δ (qi ,u) = r. If s= qi , the path is la-
beled byu. Otherwise we have:

(1,s)
ai−→ E

ai−→ (1,qi)
u−→ (1, r)

(2,s)
ai−→ E

bi−→ (2,qi)
u−→ (2, r)

(
1,s

) ai−→ E
ai−→

(
1,qi

) u−→
(
1, r

)
(
2,s

) ai−→ E
bi−→

(
2,qi

) u−→
(
2, r

)
.

The paths above also guarantee that there are no more than twostrongly connected components:

C= {E}∪{1,2}×Q, C=
{

E
}
∪
{
1,2

}
×Q.

It remains to connectC with C: For anyi we have(1,qi)
bi−→

(
2,qi

) ai−→ (1,qi) .

E

1, qi 1̄, qi 2, qi 2̄, qi

E

Figure 1: Action of the lettersai (solid arrows) andbi (dotted arrows) on certain states ofA′.

Vojtěch Vorel 375

Let us present the main construction of the present paper, a series of automata with strictly exponen-
tial subset synchronization threshold, constant alphabetsize and constant number of strongly connected
components. We use some informal principles that occur in [12] as well.

{0, . . . ,m− 1} ×
{
0,0↓,0↑}

{0, . . . ,m− 1} ×
{
1,1↓,1↑} D

D

{q0, . . . , qlogm}

Figure 2: Main parts ofA. The arrows depict the connectivity pattern ofA.

Lemma 7. For infinitely many m∈ N there is an automaton A= (Q,X,δ) and S⊆ Q such that

1. CS(A,S) = 2m(logm+1)+1

2. |Q|= 6m+logm+3

3. |X|= 4

4. A has4 strongly connected components.

Proof. Supposem= 2k. For eacht ∈ 0, . . . ,m− 1 we denote byτ = bin(t) the standardk-digit binary
representation oft. By a classical result proved in [5] there is aDe Bruijn sequenceξ = ξ0 . . .ξm−1

consisting of binary lettersξi ∈ {0,1} such that each wordτ ∈ {0,1}k appears exactly once as a cyclic
factor ofξ (i.e. it is a factor or begins by a suffix ofξ and continues by a prefix ofξ). Let us fix such
ξ . By π(i) we denote the numbert, whose binary representationbin(t) starts inξ from thei-th position.
Note thatπ is a permutation of{0, . . . ,m−1}. Set

Q =
(
{0, . . . ,m−1}×

{
0,0↓,0↑,1,1↓,1↑

})
∪
{

q0, . . . ,qlogm,D,D
}

X = {0,1,κ ,ω}
S = ({0, . . . ,m−1}×{0})∪{q0,D} .

Figure 2 visually distinguishes main parts of the automaton. The statesD andD are sinks. Together
with D ∈ S it implies that any reset word ofS takes the states ofS to D and that the stateD must not
become active during the synchronization (i.e. lie inδ (S,v) for a prefixv of a reset word). The states
{q0, . . . ,qlogm} guarantee that any reset word ofS lies in

(
{0,1}k κ

)⋆
ωX⋆. (2)

Indeed, as defined by Figure 3, any other word takesq0 to D. Let the letterω act as follows:

{0, . . . ,m−1}×{1} , q0 , D
ω−→ D

{0, . . . ,m−1}×
{
0,0↓,0↑,1↓,1↑

}
, q1, . . . ,qlogm , D

ω−→ D.

We see thatω maps each state toD or D. This implies that onceω occurs in a reset word ofS, it must
complete the synchronization. In order to mapq0 to D, the letterω mustoccur, so any shortest reset
word ofS is exactly of the form

w= (τ1κ) . . . (τdκ)ω , (3)

376 Subset Synchronization of Transitive Automata

D
q0

q1 q2

qlogm−1 qlogm−2

qlogm

κ

0,1 0,1

0,1
0,1

ω

D

X

X

0,1

0,1

Figure 3: A part ofA. Except for the depicted ones, all transitions here lead toD.

whereτ j ∈ {0,1}k for each j.
The two biggest parts depicted by Figure 2 contain3m states each and are the same up to the letters

κ andω . On both of them (takeb ∈ {0,1}) let the letters0 and1 act as follows:

(i,b)
0−→

{
(i +1,b) if ξi = 0(
i +1,b↓) if ξi = 1

(
i,b↑

)
0,1−→

(
i +1,b↑

)
(i,b)

1−→
{(

i +1,b↑) if ξi = 0

(i +1,b) if ξi = 1
(

i,b↓
)

0,1−→
(

i +1,b↓
)

where we perform the addition modulom. For example, Figure 4 depicts such part ofA for m= 8 and a
particular De Bruijn sequenceξ . Figure 5 defines the action ofκ on the states{i}×

{
0,0↓,0↑,1,1↓,1↑

}

for any i, so the automatonA is completely defined.

0,b 1,b 2,b 3,b 4,b 5,b 6,b 7,b 0,b

0,b↓

0 0 1 0 1 1 1 0

1 1 1 1

0 0 0 0

0,b↑ 1,b↑ 2,b↑ 3,b↑ 4,b↑ 5,b↑ 6,b↑ 7,b↑ 0,b↑

1,b↓ 3,b↓ 4,b↓ 5,b↓ 6,b↓ 7,b↓0,b↓ 2,b↓

Figure 4: A part ofA assumingm= 8 andξ = 00101110. Bold arrows represent both0,1.

i,1↑

i,1i− k,1

i,1↓

i,0↑

i,0i− k,0

i,0↓ D̄

Figure 5: Action of the letterκ . The subtrac-
tion is modulom.

i,1

i,0

vπ(i)

{vt|t < π(i)}

{vt|t > π(i)}

{vt|t ≤ π(i)}

D̄

{vt|t > π(i)}

Figure 6: Action of the wordsv0, . . . ,vm−1 on
the i-th switch.

Vojtěch Vorel 377

Let w be a shortest reset word ofS in A. It is necessarily of the form (3), so it makes sense to denote
vt = bin(t)κ and treatw as a word

w= vt1 . . .vtd ω ∈ {v0, . . . ,vm−1,ω}⋆ . (4)

The action of eachvt is depicted by Figure 6. It is a key step of the entire proof to confirm that Figure 6
is correct. Indeed:

• Starting from a state(i,0), a wordbin(t) takes us through kind of decision tree to one of the
states

(
i +k,0↓

)
,(i +k,0) ,

(
i +k,0↑

)
, depending on whethert is lesser, equal, or greater than

π(i) respectively. This is guaranteed by wiring the sequenceξ into the transition function, see
Figure 4. The letterκ then take us back to{i}×{. . .}, namely to(i,0) or (i,1), or we fall toD
(respectively).

• Starting from a state(i,1), we proceed similarly and end up in(i,0) or (i,1) depending on whether
t is greater thanπ(i) or not.

It follows that after applying any prefixvt1 . . .vt j of w exactly one of the states(i,0) ,(i,1) is active for
eachi. We say thatthe i-th switch is set to0 or 1 in time j. Observe that in timed all the switches are set
to 1, because otherwise the stateD would become active by the application ofω . On the other hand, in
time0 all the switches are set to0. We are going to show that in fact during the synchronizationof S the
switches together perform a binary counting from0 (all the switches set to0) to 2m−1 (all the switches
set to1). For eachi the significance ofi-th switch is given by the valueπ(i). So theπ−1(m−1)-th
switch carries the most significant digit, theπ−1(0)-th switch carries the least significant digit and so on.
The number represented in this manner by the switches in timej is denoted byb j ∈ {0, . . . ,2m−1}. We
claim thatb j = j for each j. Indeed:

• In time0, all the switches are set to0, we haveb0 = 0.

• Suppose thatb j′ = j ′ for each j ′ ≤ j −1. We denote

t j =min{π(i) | i-th switch is set to0 in time j −1} (5)

and claim thatt j = t j . Note thatt j is defined to be the least significance level at which there
occurs a0 in the binary representation ofb j−1. Suppose for a contradiction thatt j > t j . By the
definition of t j the state

(
π−1(t j) ,0

)
lies in δ

(
S,vt1 . . .vt j−1

)
. But vt j takes this state toD, which

is a contradiction. Now suppose thatt j < t j . In such case the application ofvt j does not turn any
switch from0 to 1, sob j ≤ b j−1 and thus in timej the configuration of switches is the same at it
was in timeb j . This contradicts the assumption thatw is a shortest reset word. We have proved
thatt j = t j and it remains only to show that the application ofvt j performs an addition of1 and so
makes the switches represent the valueb j−1+1.

– Consider ani-th switch withπ(i) < t j . By the definition oft j it is set to1 in time j − 1
and the wordvt j set it to0 in time j. This is what we need because such switches represent
a continuous segment of1s at the least significant positions of the binary representation of
b j−1.

– Theπ−1(t j)-th switch is set from0 to 1 by the wordvt j .

– Consider ani-th switch withπ(i) > t j . The switch represents a digit ofb j−1 which is more
significant than thet j -th digit. As we expect, the wordvt j leave such switch unchanged.

378 Subset Synchronization of Transitive Automata

Becausebd = 2m, we deduce thatd = 2m and thus|w|= 2m(logm+1)+1 if such (shortest) reset word
exists. But in fact we have also shown that there is only one possibility for suchw and that it is a true
reset word forS: The uniquew is of the form (4), wheret j is the position of the least significant0 in the
binary representation ofj −1.

Now it remains to put the three lemmas together and so construct a binary transitive automaton with a
strictly exponential subset synchronization threshold.

Theorem 8. It holds thatCST R∩AL2
n = 2Ω(n).

Proof. The seriesCSn is non-decreasing, so it is enough to work with some infinitely many values ofn.
Let us take anym∈ N and use it to build the automatonA= (Q,X,δ) and the subsetSas described by
Lemma 7. We apply Lemma 6 to get transitiveA′ = (Q′,X′,δ ′) andS′ with

∣∣Q′∣∣ = 24m+4logm+14∣∣X′∣∣ = 12

CS
(
A′,S′

)
≥ 2m

and then apply Lemma 3 to get transitiveA′′ = (Q′′,X′′,δ ′′) andS′′ with

∣∣Q′′∣∣ = 288m+48logm+168∣∣X′∣∣ = 2

CS
(
A′′,S′′

)
≥ 2m

Denotingn= 288m+48logm+168 we get that

CST R∩AL2
n =Ω

(
2

n
289

)
.

Simpler variants of the constructions imply some more subtle results for less restricted classes:

Theorem 9. It holds that

1. CSn =Ω
(
2

n
2

)

2. CST R
n =Ω

(
2

n
4

)

3. CSAL4
n =Ω

(
2

n
7

)

4. CSAL2
n =Ω

(
2

n
25

)

A series witnessing the first claim arises from the proof of Lemma 7 if we just consider actual
alphabet consisting of the letters{ω ,v0, . . . ,vm−1} and realize the idea of Figure 6 so there remain only
the statesD,D and(i,0) ,(i,1) for eachi. There is no more need to deal with a De Bruijn sequence.
The construction presented in Lemma 7 results from an effortto make this simple variant binary with
keeping the size ofQ in O(m). A construction needed to prove the second claim depends on acareful use
of swap congruences and appears in the extended version of this paper. The third claim follows directly
from Lemma 7 and the last one we get if we then just apply Lemma 3.

Vojtěch Vorel 379

3 Deciding about Synchronizability

It is well known that the decision about classical synchronizability of a given automaton (i.e. assuming
S=Q) is a polynomial time task, even if we also require an explicit reset word on the output. A relatively
simple algorithm could be traced back to [3] and since that time a lot of work has been done on various
improvements. Besides decreasing the running time of the algorithm there is an effort to decrease the
length of reset words produced [16, 21]. It has been proven that it is both NP-hard and coNP-hard to find a
shortestreset word for given automaton (it is actually DP-complete [14]). Moreover, it remains NP-hard
to bound the length of shortest reset words only from above bya given value [4] or approximate its length
with a constant factor [2]. Such problems has been studied also with various additional requirements on
the automaton, e.g. cyclicity, Eulerian property, commutativity and others, but in most cases also the
restricted problem turns up to be hard, see [11, 24].

On the other hand, there have not been done much research in computational complexity of problems
concerning synchronization of subsets, although they doesnot seem to have less chance to emerge in
practice. Namely, the first natural problem in this direction is

SUBSYNITY

Input: n-state automatonA= (Q,X,δ), S⊆ Q
Output: is there somew∈ X⋆ such that|δ (S,w)|= 1?

This problem, in contrast to the similar problem of classical synchronizability, is known to be
PSPACE-complete. Note that such hardness is not a consequence of any lower bound of synchronization
threshold, because an algorithm need not to produce an explicit reset word.

Theorem 10([13, 19]). SUBSYNITY is a PSPACE-complete problem.

The proofs of the theorem above make use of a result of Kozen [9], which establishes that it is
PSPACE-complete to decide if given finite acceptors with a common alphabet accept any common word.
This problem is polynomially reduced to SUBSYNITY using the idea of two sink states, which is used
also in the automata with prime-length cycles and in Lemma 7.Is it possible to avoid the non-transitivity
here? We have proved that the subset synchronization threshold may be exponential even in automata
from AL2∩T R, but this does not imply that there is no trick for tractable decision about their synchro-
nizability. However, the methods we used are general enoughto reduce SUBSYNITY to the restricted
version:

Theorem 11. SUBSYNITY RESTRICTED TO BINARY TRANSITIVE AUTOMATA is a PSPACE-complete
problem.

Proof. There is a polynomial reduction from the general problem SUBSYNITY: Perform the construction
from Lemma 6 and then the one from Lemma 3.

Though the results of this paper does not sound very optimistically, there are still many interesting
and practical restrictions which could hypothetically make our decision problem tractable or at least
decrease the subset synchronization threshold, preferably to a polynomial. Such restrictions, which
all have been already studied in terms of classical synchronization, concern monotonic and aperiodic
automata, cyclic and one-cluster automata, Eulerian automata and others.

380 Subset Synchronization of Transitive Automata

References

[1] Marie-Pierre Béal, Mikhail V. Berlinkov, and DominiquePerrin. A quadratic upper bound on the size
of a synchronizing word in one-cluster automata.Int. J. Found. Comput. Sci., 22(2):277–288, 2011.
doi:10.1142/S0129054111008039.

[2] Mikhail V. Berlinkov. Approximating the minimum lengthof synchronizing words is hard.Theory of Com-
puting Systems, 54(2):211–223, 2014.doi:10.1007/s00224-013-9511-y.

[3] JánČerný. Poznámka k homogénnym experimentom s konečnými automatmi.Matematicko-fyzikálny ča-
sopis, 14(3):208–216, 1964.

[4] David Eppstein. Reset sequences for monotonic automata. SIAM J. Comput., 19(3):500–510, 1990.
doi:10.1137/0219033.

[5] Camille Flye Sainte-Marie. Solution to question nr. 48.L’intermédiaire des Mathématicians, 1:107–110,
1894.

[6] Mariusz Grech and Andrzej Kisielewicz. TheČerný conjecture for automata respecting intervals of a directed
graph.Discrete Mathematics & Theoretical Computer Science, 15(3):61–72, 2013.

[7] Harald A. Helfgott and Ákos Seress. On the diameter of permutation groups.Annals of Mathematics, to
appear.

[8] Jakub Kowalski and Marek Szykula. TheČerný conjecture for small automata: experimental report.CoRR,
abs/1301.2092, 2013.

[9] D. Kozen. Lower bounds for natural proof systems. InFoundations of Computer Science, 1977., 18th Annual
Symposium on, pages 254–266, 1977.doi:10.1109/SFCS.1977.16.

[10] D. Lee and Mihalis Yannakakis. Testing finite-state machines: state identification and verification.Comput-
ers, IEEE Transactions on, 43(3):306–320, 1994.doi:10.1109/12.272431.

[11] Pavel Martyugin. Complexity of problems concerning reset words for cyclic and eulerian automata. In Béa-
trice Bouchou-Markhoff, Pascal Caron, Jean-Marc Champarnaud, and Denis Maurel, editors,Implementation
and Application of Automata, volume 6807 ofLecture Notes in Computer Science, pages 238–249. Springer
Berlin Heidelberg, 2011.doi:10.1007/978-3-642-22256-6_22.

[12] Pavel V. Martyugin. Careful synchronization of partial automata with restricted alphabets. In An-
drei A. Bulatov and Arseny M. Shur, editors,Computer Science - Theory and Applications, vol-
ume 7913 ofLecture Notes in Computer Science, pages 76–87. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-38536-0_7.

[13] B. K. Natarajan. An algorithmic approach to the automated design of parts orienters. InProceedings of the
27th Annual Symposium on Foundations of Computer Science, SFCS ’86, pages 132–142, Washington, DC,
USA, 1986. IEEE Computer Society.doi:10.1109/SFCS.1986.5.

[14] Jörg Olschewski and Michael Ummels. The complexity of finding reset words in finite automata. InPro-
ceedings of the 35th international conference on Mathematical foundations of computer science, MFCS’10,
pages 568–579, Berlin, Heidelberg, 2010. Springer-Verlag. doi:10.1007/978-3-642-15155-2_50.

[15] Jean-Eric Pin. On two combinatorial problems arising from automata theory.Annals of Discrete Mathematics,
17:535–548, 1983.

[16] Adam Roman. Synchronizing finite automata with short reset words.Applied Mathematics and Computation,
209(1):125–136, 2009.doi:10.1016/j.amc.2008.06.019.

[17] Arto Salomaa. Composition sequences for functions over a finite domain.Theoret. Comput. Sci., 292:263–
281, 2000.doi:10.1016/S0304-3975(01)00227-4.

[18] Arto Salomaa. A half-century of automata theory. chapter Compositions over a Finite Domain: From
Completeness to Synchronizable Automata, pages 131–143. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 2001.doi:10.1142/9789812810168_0007.

Vojtěch Vorel 381

[19] Sven Sandberg. Homing and synchronizing sequences. InManfred Broy, Bengt Jonsson, Joost-Pieter
Katoen, Martin Leucker, and Alexander Pretschner, editors, Model-Based Testing of Reactive Systems,
volume 3472 ofLecture Notes in Computer Science, pages 5–33. Springer Berlin Heidelberg, 2005.
doi:10.1007/11498490_2.

[20] Benjamin Steinberg. ThěCerný conjecture for one-cluster automata with prime length cycle. Theoret.
Comput. Sci., 412(39):5487 – 5491, 2011.doi:10.1016/j.tcs.2011.06.012.

[21] A. N. Trahtman. An efficient algorithm finds noticeable trends and examples concerning the Cerny conjec-
ture. InMFCS’06, pages 789–800, 2006.doi:10.1007/11821069_68.

[22] A. N. Trahtman. Modifying the upper bound on the length of minimal synchronizing word. InFCT, pages
173–180, 2011.doi:10.1007/978-3-642-22953-4_15.

[23] MikhailV. Volkov. Synchronizing automata and the Cerný conjecture. In Carlos Martín-Vide,
Friedrich Otto, and Henning Fernau, editors,Language and Automata Theory and Applications, vol-
ume 5196 ofLecture Notes in Computer Science, pages 11–27. Springer Berlin Heidelberg, 2008.
doi:10.1007/978-3-540-88282-4_4.

[24] Vojtìch Vorel. Complexity of a problem concerning reset words for eulerian binary automata. In Adrian-
Horia Dediu, Carlos Martín-Vide, José-Luis Sierra-Rodríguez, and Bianca Truthe, editors,Language and
Automata Theory and Applications, volume 8370 ofLecture Notes in Computer Science, pages 576–587.
Springer International Publishing, 2014.doi:10.1007/978-3-319-04921-2_47.

