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Abstract. Winning the Robocup SPL. World Championship is not ac-
complished in just one year nor is it just a matter of writing effective
software. Our success should also be attributed to the accumulation of
experience since 1999, strong institutional support and dedicated collab-
orative teamwork. This paper summarises the key contributing innova-
tions from the time the software was rewritten in 2010, and provides
some insight into team organisation. In this paper it is not possible to
cover all aspects and intricacies of the complex systems comprising the
rUNSWift software. We have therefore included an extensive list of ref-
erences to our technical reports that provide detailed accounts of the
research, algorithms and results over the last 5 years. All the reports are
available on the one website for easy access and make reference to many
external publications, including those from other teams in our league.

1 Introduction

Team rUNSWift from the University of New South Wales has been competing
in the Standard Platform League (SPL) since 1999. The league was formerly
called the Sony Four Legged League. We started as UNSW United and were
world champions three times in the years 2000 to 2003. It has taken eleven years
to regain the world title. In the interim we have seen major changes in both the
robots and the field. In 1999 the each team played on a 6 m? field with a border
using three first generation ERS-110 Sony AIBO robots. The field was uniformly
illuminated to 300 lux and localisation was aided by six beacons and coloured
goals. In contrast, the 2014 games were played on a 54 m? borderless field using
standard venue lighting, uniform coloured goals, and without beacons. There are
now 6 Aldebaran V4 NAO bipedal robots per side including a coach robot.
While the SPL prohibits any hardware modification to the robots, fielding a
world champion team is not just a matter of good programming. Our experience
is that other requirements, including strong institutional support, a cohesive
team of motivated participants, a sound strategic plan, regular team meetings,
and many hours of testing and debugging are necessary. An additional UNSW
challenge is that this is largely a final year project for undergraduates. While
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we try to encourage participation over several years, the high student turnover
means that we have more new recruits faced with a steep learning curve.

The current rTUNSWift software architecture that led to the 2014 win had
its genesis in 2010 when the code was rewritten from scratch. Although this
report is authored by the 2014 team, their success is a culmination of all the
developments from 1999, but particularly since 2010 [32]. The 2014 rUNSWift
team members are Luke Tsekouras, Jaiden Ashmore, Zijie Mei (Jacky), Belinda
Teh, Oleg Sushkov, Ritwik Roy, Roger Liu, Sean Harris, Jayen Ashar, and faculty
members Brad Hall, Bernhard Hengst, Maurice Pagnucco, and Claude Sammut,
several of whom are shown in the photo in Figure 1.

Fig. 1. A subset of the 2014 rUNSWift Team. From left to right: Jaiden Ashmore, Zijie
Mei (Jacky), Sean Harris, Bernhard Hengst, Brad Hall, Oleg Sushkov, Belinda Teh,
Ritwik Roy.

The objective of this report is therefore to summarise both the technical
approach and to describe the team organisation from 2010 to the world cham-
pionship in 2014. This paper references many UNSW Computer Science and
Engineering technical reports that provide detailed information and external
references of rTUNSWift developments throughout these years. Several of the re-
ports have been published in international publications.!

The rest of this paper will cover our strategic planning process, the robot and
software architectures, the major functional modules of perception, localisation,
motion, and behaviour, our team organisation, and future work in the pipeline.

! For completeness all the more than 40 reports are provided in one location at:
http://cgi.cse.unsw.edu.au/~robocup/2014ChampionTeamPaperReports/
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2 Strategic Planning and Development Methodology

Each year the new team plans developments using storyboards or just itemising
objectives. For example, the 2010 version 1 storyboard [15] included innovations
such as a camera preprocessing stage we call the saliency image to reduce the
vision processing load, and the RANSAC matching of outer field-edges with
straight lines as additional field features.

Ensuing developments included visual identification of natural landmarks,
foveated vision, iterative closest point combination of visual features, decision-
tree learning of robot recognition, several iterations of multi-modal Kalman fil-
ters for localisation, and new motions for walking and kicking.

The 2014 strategy called for a major overhaul of the omni-directional loco-
motion, upgrade of the vision system to use higher definition camera images for
field feature and goal detection, improved robot recognition, the reintroduction
of a distributed multi-modal Kalman filter for localisation, and the rewriting of
behaviours to improve robot team play on the large field.

Projects are selected by team participants based on interest and priority. New
developments need to demonstrate improvement before being accepted into the
code base.

The development methodology mantra reinforced each year and adopted by
the teams is “fail-fast, fail cheap”. Our research strategy demands a complete
integrated system at each stage, accepting poor performance initially, but quickly
iterating through improved versions.

3 Robot Architecture

Figure 2 is a schematic of the rTUNSWift robotic architecture showing the func-
tional elements of sensor processing, world-modelling, and behaviour generation.
This robotic architecture was first employed in 2000 [18] and has stood the test
of time.

The rUNSWift robotic architecture can be envisaged as a task-hierarchy that
consists of a set of finite state machines linked in a hierarchical lattice. The
architecture is distributed in that each NAO robot tracks its own world-model
rather than having one commander robot with a centralised view. This provides
a level of redundancy in case individual robots are disqualified or stop working.
Robots may have slightly different beliefs about the world formed from partially
observable and noisy inputs. Robots share their world-model by communicating
their position and that of the ball through wireless communication.

At the root-level, the game-controller changes the states of the game and
player robots determine their roles implicitly from their world model.

4 Software Architecture

The Aldebaran NAO robot is equipped with a Linux operating system, as well
as custom software from Aldebaran called Nao(@i which allows interaction with
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Fig. 2. The rUNSWift robotic architecture.

the hardware. The Device Communications Manager (DCM) module of NaoQi
actuates the joints and LEDs of the robot and reads sensors, including joint angle
sensors, accelerometers, and sonars. We deploy two separate binary packages on
the robot: libagent and runswift, which communicate using a block of shared
memory and a semaphore.

The primary purpose of libagent is to provide an abstraction layer over the
DCM that has the task of reading sensors and writing actuation requests. To
facilitate in-game debugging, without the need to connect an external computer
to the robot, a variety of features were added to libagent. These included a
system of button-presses to perform various actions, such as releasing stiffness
or running system commands. The libagent module also takes over the use of
the LEDs for debugging purposes.

The runswift binary is a stand-alone linux executable, detached from NaoQi
for safety and debugging. It reads frames from the two cameras, reads and writes
to a shared memory block, synchronises with libagent to read sensor values and
write actuation commands, and performs all the necessary processing to have
the NAO robot play soccer. Because it is detached from NaoQj, it is easy to run
runswift off-line, with the Motion thread disabled, allowing for vision processing
and other testing to take place without physical access to a robot. It can be
run using any of the standard linux debugging wrapper programs. The runswift
executable is a multi-threaded process. The 6 threads are: Perception, Motion,
Off-Nao Transmitter, NAO Transmitter, NAO Receiver and GameController Re-
ceiver.

The Perception thread is responsible for processing images, localising, and
deciding actions using the behaviour module. The Motion thread is a near real-
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time thread, synchronised with libagent, and therefore the DCM, that computes
appropriate joint values using the current action command and sensor values.
The other threads are all networking related. A blackboard is used to share infor-
mation internally between threads and externally between robots. We broadcast
serialised blackboard information from each robot at 5 Hz to each of its team-
mates and Off-Nao.

Off-Nao is a desktop robot monitoring application which streams data from
the NAO using a TCP/IP connection. Recordings can be reviewed in Off-Nao,
to help determine the relationship between a sequence of observations and the
resulting localisation status determined on the robot, as well as other correlations
not determinable in real-time.

To facilitate the rapid development of behaviours, we chose to use Python.
The Python interpreter was embedded into the runswift C++ executable. We
monitor a directory on the robot containing Python code, and reload the in-
terpreter whenever the Python code changes. Writing behaviours in a dynamic
auto-reloadable language such as Python, means higher team productivity.

The software architecture developed in 2010 has largely been retained. More
detailed information can be found in several reports [27] [10] and the 2010 code
release [9].

5 Perception

Vision is the primary sensor on the NAO and the one that consumes most of the
computational resources. To stay within our processing budget, we sub-sample
image pixels in a regular grid pattern to form a saliency image that is scanned
for features of interest.

Unable to rely on colour alone due to poorer venue lighting we have added
image edges as an additional modality to help identify objects. We still perform
manual colour calibration, but supplement the colour-classified image with a
gray-scale gradient image. Once points of interest have been identified, higher
resolution rectangular foveas are used to focus processing resources while con-
currently tracking several field features and ball hypotheses. In this way we can,
for example, identify the ball from over half the field length away. Figure 3 shows
the accurate detection of a distant poorly colour-classified ball. Related reports
include [27], [6], [8], and [26].

RANSAC field-edge detection in 2010 was extended to field-line detection
in 2011 [13]. The extension uses image colour and gradient to identify both
straight lines and the centre circle with a novel RANSAC algorithm that con-
currently detects both features reliably (Figure 4). Composite feature corners,
T-intersections and parallel lines are passed to localisation via a unified sensor
observation for the correction cycle of the Kalman filter.

Our vision robot detection algorithm has been subjected to several iterations
over the years and together with sonar has been successful in detecting close
robots. A region based approach in 2010 [27] was replaced by machine learning
a decision tree from multi-modal vision features in 2011 [23] and improved using
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Fig. 3. Ball detection using colour and gradient in a high-resolution rectangular fovea
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Fig. 4. Detecting field lines and the centre circle simultaneously using RANSAC

a naive Bayes classifier in 2014 [7] (Figure 5). At close range we experimented
with just foot detection using a Hough transform [20] but this development is
not included in the current code.

The uniform coloured goals require methods for distinguishing the otherwise
aliased ends of the field. A 2011 attempt was to use the zero-crossing points of
the gradient image at the level of the horizon to map background features [12].
In 2012 a one dimensional version of the local feature point detector SURF, was
found to be three orders of magnitude faster than the 2D version and viable
on the NAO. With a distinguishing visual pattern at robot eye level behind the
goals, robots were again able to tell the ends of the field apart (Figure 6) [5], [1],
[4]. The technique was extended to a full 360 degree visual compass [2].

A unified field-feature sensor model utilises the extra information available
from the specific combination of observed features. 2010 saw early incarnations
of sensor models that use multiple goal-posts and field-edges [27]. In 2012 all the
observed features were combined using a modified iterative closest point (ICP)
algorithm that resulted in significant improvements in localisation accuracy [14]

[3]-
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Fig. 5. Robot Detection using a Naive Bayes Classifier.
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Fig. 6. Natural Landmarks. A strip of image pixels at robot eye level (between the red
lines) is reproduced at the top of the image in gray-scale to find 1D SURF features.

6 Localisation

We used the combination of a particle filter (to solve the kidnapped robot prob-
lem) and a Kalman filter for localisation in 2010. In 2011 a multi-hypothesis
linear Kalman filter with a mode selection algorithm using the combined field
feature sensor model proved to be accurate and reliable [11]. In that year we also
developed a separate Kalman filter model to track a moving ball [29].

It is often difficult to measure the ground truth adequately when evaluating
localisation algorithms. An exemplary effort in 2011 found a method for tracking
a NAO robot in real-time by un-distorting and stitching together two fish-eye
images of the field from cameras mounted on our low ceiling in the lab [22].

From 2012 onwards goal colours were uniform. A combination of natural fea-
ture detection, the unified field-sensor model, using the ball as a disambiguation
beacon and a multi-modal Kalman filter ensured accurate localisation [21]. No
own-goals were scored throughout the entire competition that year.
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In 2014 our approach to localisation combined the ICP unified field-sensor
model with a distributed multi-modal Kalman filter, which is used for tracking
the belief-state of all the robot positions on the field. One of the key features
of this localisation system is distributed state tracking. Robots combine their
observations via wireless communication to track the full global state of the
team, including the ball, with the one filter. This Kalman filter algorithm is
based on the successful AIBO 2006 rUNSWift localisation system [28].

7 Motion

The two new omni-directional walking motions developed in 2010 were Slow Walk
and FastWalk [27]. SlowWalk is an open-loop walk that maintains balance by
keeping the center-of-mass over the support polygon of the stance foot. This
walk formed the basis of several variable strength kicking behaviours. Fastwalk
is a closed-loop walk based on the inverted pendulum model with stabilisation
feedback supplied via the foot sensors and accelerometers. Algebraic equations
were ported from Matlab for an iterative inverse kinematic solution to position
the feet while turning. Walk parameters were changed while walking using an
incremental ratcheting method.

The 2010 walk was improved over the next three years [33] [25]. Several
approaches to sagittal and coronal stabilisation using reinforcement learning
were tried [19] [24] [16] but the control policies were not deployed in competition
as they were not smooth enough. The development of a directional kick in 2012
reduced the delay when approaching the ball and was used to good effect that
year with TUNSWift scoring more goals than any other SPL team during the
competition [30].

The walk engine was upgraded in 2014 to address several shortcomings in-
cluding instability, slow side-stepping, robots overheating, and the inefficient
ratcheting method to change walk parameters. Walk2014 [17] is based on a rein-
forcement learning policy for sagittal balance control. It integrates a stance that
allows motor stiffness to be reduced to near-zero when not walking. The walk
generator includes upgraded kicks, reacts to new action commands immediately
on each support foot change and shifts the centre-of-gravity forward towards
the centre of the support foot to reduce the incidence of backward falls. For the
2014 Open Challenge we experimented with a heel-to-toe walk in anticipation of
a more natural walking style in the future [31].

8 Behaviour

Behaviours follow instructions from the game controller. For game-play an on-
going objective is to localise each robot on the field and to team-track the ball.
Only then can robots dynamically allocate their roles for Striker and the three
supporter roles (Defender, Midfielder, and Upfielder). The Goalie and Coach
robots are dedicated. Role switching relies on hysteresis to avoid role vacilla-
tion. Striker allocation is based on kick-distance to the ball and supporter roles
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switch given their field position and that of the ball. More detailed descriptions
of behaviours can be found for: 2010 Chapter 7 [27]; 2011 Goalie Chapter 4 [29],
2012 Striker Chapter 7 [30].

The 2014 striker uses a strategy to determine the appropriate action, namely
whether to perform a straight kick, dribble the ball or dribble while turning.
This strategy process was divided into two parts, a high-level target and target
adjustments. The high-level target was an expression of intent without taking
into consideration other opponents on the field. Target adjustments took into
account the robot’s immediate surroundings, and adapted the target in order to
better achieve its goal. For example our Ronaldo adjustment would come into
play if there is an opponent occluding the shot to the target. In this case we
would adjust our aim to avoid the opponent and change a kick to a dribble. The
2014 Striker is described in Chapter 2 [31].

The joints of the NAO heat up following intensive use and fail safe by au-
tomatically reducing power to the motors or shutting down altogether — with
devastating consequences. Our strategy for 2014 called for measures to reduce
overheating. The integrated low-stiffness stand in the walk engine allowed us to
rest the robots when they did not require to change their position, as is often the
case for support roles and the goalie. Not only did this help reduce overheating,
but it allowed the robots to stretch to maximum height and track the ball with
a steady camera.

Behaviours are written in Python and generally rewritten each year. The
perception thread reads sensor information, updates the world model, and calls
a Python function in an embedded interpreter which returns actions for lighting
LEDs and to physically move the robot. There are three core Python classes.
BehaviourTask is the superclass for any task. World provides access to shared
information about the world. It also sets a behaviour request in that world which
is read at the end of the behaviour tick. TaskState is for tasks that are complex
enough to warrant states, state transitions, and hysteresis.

Helper classes calculate geometries and check information about the team.
For efficiency we have utility modules for constants, world model information,
field geometry, team status, etc. These modules have the latest blackboard in-
formation available on each time-tick.

9 Team Organisation and the Competition

The number of undergraduates at UNSW that expressed interest in SPL partic-
ipation was low in 2014. We therefore invited participants from previous years
to join the 2014 team. This call was well received with some full-time employed
alumni giving up their nights and weekends. The additional benefit to new team
members was that past experience could be passed on more efficiently.

The team formally conducted 37 weekly meetings from October 2013 until
just before the competition. At each meeting, progress was reviewed and objec-
tives set for the following week. We use Google+ Hangouts for meetings and
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even had a participant call in while on a bus late for work. Participants would
work together in small groups as time permitted for the rest of the week.

The rUNSWift code repository and wiki is hosted on GitHub. Before leaving
for Brazil we took the precaution of transferring the code to a git repository on
one of our laptops to ensure uninterrupted access in case of internet issues at
the venue.

To help manage overheating we adopted a policy to rest robots at least two
hours before key games to give robots a chance to cool down to ambient temper-
ature. We tried several techniques to cool the NAOs below ambient temperature
before and during play as the venue was not air-conditioned.

The robot gears progressively showed wear. Every robot was sent to the NAO
clinic at least once during the competition. We reduce the aggressiveness of the
walk when playing weaker teams to try to conserve the robots. Despite our best
efforts we could not field all our robots for the duration of the final or whilst
playing against the all-stars team in the drop-in final.

10 Concluding Discussion

After the competition the team members made a list of future developments to
overcome weaknesses and add new functionality as a starting point for next year’s
team. Spectators enjoy seeing the robots fall down, but limiting the number of
falls during a game is on our list of improvements. The team of robots rely heavily
on wireless as was evident in the final when the communications failed and all
the robots clustered around the ball. This is a perennial problem and could be
addressed, not so much by improving wireless which has been unsuccessful, but
by expecting the robots to play without it. To make this possible and improve
team play, better algorithms to detect team member and opposition robots are
needed to build and track the state of the whole game.

The progression of rUNSWift to SPL champions in 2014 started in 2010.
After failing to reach the quarter finals in 2009, we were in the finals in 2010
with B-Human. In 2012 we were narrowly defeated (7-6) by the champions that
year, Austin Villa. Our 2014 team included participants from both the 2010 and
2012 teams, and one individual from the 2006 Four Legged Sony League. The
2014 performance cannot be attributed to a single factor, or to a single year,
but to a combination of integrated software development and team collaboration
over several years.
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