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Chapter 1

Introduction

In the field of robotics, the ability for a robot to localise itself is crucial to its ability to perform

tasks successfully. This is a non-trivial task, as the process of localisation typically involves a

long computational pipeline subject to error at each step:

1. Storing raw data streamed from hardware sensors (such as a video camera)

2. Recognising known features within the sensor data (such as a landmark in a visual frame)

3. In some cases, using a kinematic transform to map these features to a robot-relative

co-ordinate plane

4. Matching the features to a known world model in order to compute the robot’s position

5. Using probabilistic filtering techniques to aggregate position estimates over time and

adjust for movement

The error accumulated throughout this process can be significant, especially at the feature

recognition level, as it must be done in real-time, from many possible visual perspectives, and

in the face of noise, changing lighting conditions, and obstructions.

The RoboCup Standard Platform League, an international robotics competition, is one domain

where research into this area can be tested in a practical environment. The RoboCup SPL

is a robot soccer competition held between universities using standardised robotic hardware

(the ’standard platform’), where the main differentiator is the quality of the software research

implemented on the robots. This is an excellent test environment, and this thesis is largely

concerned with, and measured by, success in this domain.

In RoboCup, the environment is a 9 meter by 6 meter green soccer field, with white field lines

and symmetrical yellow goal posts [17]. In this domain, key landmarks are traditionally field

lines, goal posts, and field edges. By correlating multiple landmark observations, the robot’s

position and heading on the field can be determined. It is important to note, however, that

due to the symmetry of the field the robot’s position can often be ambiguous, with any set of

in-field observations at best reducing the number of possible robot positions to two.
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Figure 1.1: An illustration of the RoboCup field and landmarks [17].

To date, the UNSW RoboCup team (rUNSWift) has primarily resolved this symmetrical

ambiguity by beginning from a known starting position and, at each time-step, combining

the previous position with multiple feature observations using a modified Iterative Closest

Point (ICP) algorithm to keep the robot’s position up to date. This practice of correlating

multiple sources of information to produce a globally consistent hypothesis has proven to be

very powerful [2].

This thesis will aim to contribute another type of observation to the RoboCup system centred

around heading estimates deduced using known field properties. With a huge increase in the

size of the RoboCup field this year from that of the previous year, this has become important

because the number of features that can be detected within the robot’s field of view has

decreased significantly, reducing the ability of the ICP system to correlate these features to

produce a single strong observation. As well as this, being able to track the robot’s heading

is particularly important, especially around the centre of the field where location alone is

insufficient to disambiguate between two possible hypotheses of the robot’s pose.

In particular, the core detail this thesis aims to exploit is the fact that all straight field lines

on the RoboCup field are either parallel or perpendicular to each other. By performing an

abstract analysis of the directions that lines appear to face on the field, we are able to then

deduce the robot’s heading. The key difference between this and existing approaches is that it

does not rely on the detection of field features such as corners or T-intersections, and does not

need to match these features to a pre-existing map of the field. More specifically, this approach

decouples the practice of computing the robot’s location from its heading. In some cases, it will

be able to determine the robot’s heading where existing methods cannot, such as when there

are not enough features in view to determine the robot’s location.

4



The rest of this thesis will cover some background research (Chapter 2), followed by the general

approach taken (Chapter 3). Because two distinct methods were attempted, these will be

covered separately in Chapters 4 and 5, along with results. Finally, we will conclude with an

evaluation (6) and conclusion (7).
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Chapter 2

Background

This chapter will explore the background knowledge required to approach this problem. We

will begin with a clearer explanation of the context of the problem in Section 2.1, where we

will explain the wider rUNSWift feature detection system, before examining key concerns. In

Section 2.2, we will explore general line-finding algorithms in computer vision. Finally, in

Section 2.3 we will examine various field line detection systems in practice in the RoboCup

competition, focusing on the novelties added to these pre-existing algorithms to make them

work in competition. Although our emphasis on line-finding algorithms does not relate directly

to the approach taken in this thesis, they help establish a general context behind feature

detection and provide useful ideas, some of which were used in the line signature approach

described in Chapter 5.

2.1 Problem Context

This section will aim to define the problem more clearly, by examining the context of this

heading deduction system and identifying the key concerns.

2.1.1 Vision Process

Before we begin, it is important to have an understanding of the context in which this heading

deduction module will run, and in particular to understand the inputs and outputs of this

system. The process starts with two raw images taken from the robot’s dual cameras. The

Aldebaran Nao Version 4 has a top camera and a bottom camera which provide a combined

vertical field of view that ranges from the feet to above eye level [1]. The raw images from the

two cameras are stored in a vision frame (Figure 2.1), which additionally stores information

such as time stamps and the kinematics snapshot, a record of the robot’s stance at the time

the image was taken [3].

From these raw images, saliency foveae are generated. These saliency foveae highlight specific

features of the original images, and include colour-classified, grey-scale and edge saliency images.
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Figure 2.1: An illustration of the rUNSWift vision system. Image taken from [3, p. 7].

The term fovea is used generically here and in the rUNSWift code-base to describe a snapshot

of all or part of an image at a specific resolution [3]. In this case, the saliency foveae are

down-sampled versions of the original image for efficiency reasons (80 × 60 in 2011 and 160

× 120 in 2012). The heavy use of these foveae throughout the rest of the vision system hence

subsidises the cost of generating them. For this thesis, for example, the edge saliency fovea is

of particular importance - in this image, the value of each pixel is a measure of the magnitude

of the colour change between it and the neighbouring pixels in the original image. Hence, the

edge saliency fovea is important for determining those points which are likely to lie on line

boundaries in the original image.

From here, the saliency foveae are fed to a series of feature detectors, including a field edge

detector, a ball detector, and a field line detector [3]. It is important to note that the feature

detectors run in a specific order and that the output of each feature detector is available to the

next [10]. In particular, our heading detector will run immediately after the field line detection,

and the output of the field edge detector will be known to us, an observation that will be useful

for this thesis. The outputs of these detectors are stored back in the vision frame, and will be

subsequently used to localise the robot.
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2.1.2 Image Plane vs Ground Plane

An important concept in this thesis is the distinction between the image plane and the ground

plane [10]. Points in the image plane are referenced according to the co-ordinates of that pixel in

the image - in the rUNSWift code base, (0,0) is taken to refer to the top left corner of the image.

Points in the ground plane, however, refer to the physical location of the observed point on the

ground relative to the robot’s feet. In the rUNSWift code base, co-ordinates on the ground

plane are taken with the point (0,0) at the robot’s feet, the first co-ordinate measuring the

distance in the sagittal plane and the second co-ordinate measuring the distance in the coronal

plane. Hence the point (1000,0) would represent the point on the ground 1000 millimetres in

front of the robot [10]. As seen in Figure 2.2, points in the ground plane are much more useful

because they more accurately reveal whether lines are parallel or perpendicular, a key piece

of information in this thesis. In order to use this information, points must be mapped from

the image plane to the ground plane. This is achieved by determining the robot’s perspective

and compensating for it. The kinematic chain developed by the rUNSWift team is able to

determine this relationship by taking all of the robot’s joint angles into account [21].

Figure 2.2: In the image (left), the field lines do not appear perpendicular, but when projected
onto the ground plane (right), it becomes apparent that they are. Taken from [10, p. 5].

2.2 General Line Finding Algorithms

This section will aim to provide further background by exploring general line finding algorithms

used in computer vision — merge-and-split, the Hough transform, and random sample consensus.
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2.2.1 Merge-and-Split Algorithm

The merge-and-split algorithm, also known as the Ramer-Douglas-Peucker algorithm, is one

of the earliest proposed line-fitting algorithms [20]. This algorithm seeks to create a simple

approximation of a curve using a series of connected line segments. This makes it an interesting

approach for detecting RoboCup field lines, which can essentially be considered to be connected

line segments.

In the merge-and-split algorithm, both the input and output consists of an ordered list of points

representing the end-points of connected line segments:

{(x1, y1), (x2, y2), (x3, y3), ..., (xn−2, yn−2), (xn−1, yn−1), (xn, yn)}.

The aim is for the algorithm to remove points from the input list to create an output that is a

simpler representation of the curve [20].

The recursive algorithm begins by marking both the first and end points to be kept (representing

the segment joining the start and end points of the curve), and then uses a divide and conquer

approach to improve its approximation as follows [15]:

• The perpendicular distance from every remaining point to the line segment is calculated.

– All points within a certain error threshold ε are assumed to belong to that line

segment and are immediately discarded.

• Of the remaining points, the point with the greatest distance from the line segment is

marked as kept, in effect splitting the existing line segment into two.

• The algorithm reruns on each line segment, until all points have been either discarded or

marked as kept.

Figure 2.3: A hand-drawn illustration of the algorithm on a set of points.

This algorithm boasts a number of advantages, including simplicity and easy detection of valid

corner points, which can assist with localisation enormously. However, there are a number
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of obvious robustness issues which would need to be addressed in any implementation for

RoboCup:

• It requires some knowledge of the ordering of points, and in particular the start and end

points at the very least.

• In the algorithm’s unmodified state, the input must always be a curve with a single start

and end-point, however certain features of the RoboCup field will not fulfil that definition

(for example, T-intersections).

• It is extremely sensitive to noise - there is no mechanism to deal with situations where a

random point appears somewhere in the image.

2.2.2 Hough Transform

The Hough Transform is a commonly used vision processing algorithm. The problem of noise

is addressed in the Hough Transform using a voting mechanism.

Figure 2.4: A line with (r, θ)

co-ordinates.

In the Hough Transform, the aim is to deduce the equations of all

lines inside an image. One of the key modifications to the Hough

Transform after it was originally proposed was to represent lines

using (r, θ) polar co-ordinates [5]. A line with (r, θ) co-ordinates

in this representation is tangent to a circle with radius r, at the

point where the radius forms an angle θ with the x-axis. This

representation is used, as opposed to the (m, b) parameters of

the traditional line equation, because the latter is incapable of

representing vertical lines.

By trigonometry, the equation of a line (r, θ) is:

y = −cos θ

sin θ
x+

r

sin θ

Or, when rearranged [5]:

r = x cos θ + y sin θ

The basic operation of the algorithm consists of iterating through the input points and tallying

votes for all possible lines that pass through it in an accumulator array [13], which is essentially

a two dimensional array indexed on r and θ. This array will contain a discretisation of every

possible value of r (given the size of the input image) and every possible value of θ, and hence

encapsulate every possible line in the image. After this tallying process is complete, the local

maxima of the accumulator array are selected as the lines present in the image. The pseudo-code

is as follows.
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Algorithm 1 The Hough Transform

initialise all entries of accumulator[][] to 0
for all input points (x, y) do

for every discrete value of θ do
r ← x cos θ + y sin θ
accumulator[r][θ]← accumulator[r][θ] + 1

end for
end for
initialise lineList as empty list
for all entries in accumulator[][] do

if current entry is greater than all surrounding entries then
Add current (r, θ) pair to lineList

end if
end for
return lineList

Note that this is the most basic version of the algorithm, as many optimisations exist to improve

both speed and accuracy. For example, a Gaussian blur is commonly applied before the process

of finding the local maxima [13].

This algorithm has the advantage of robustness, and the fact that all lines can be detected

in a single pass through the input points. However, it suffers from the fact that lines are

represented in a form without a start or end point, making it difficult to use in applications

where this knowledge is required. Furthermore, the Hough Transform has a reputation for

being computationally intensive due to the large size of the accumulator array, and cannot be

run in the constrained environment of RoboCup without heavy optimisations [14].

2.2.3 Random Sample Consensus

The Random Sample Consensus algorithm, also known as RANSAC, uses heuristics coupled

with randomisation techniques in an attempt to speed up the line finding process. These

heuristics are able to effectively deal with noise by incorporating aspects of voting and techniques

such as measuring the mean squared error of line estimates.

At its core, the RANSAC algorithm works according to the following method [7]:

• Fit a line based on a randomly selected subset of the input points.

• Perform a heuristic measure of how ’good’ the line is in fitting the input points.

• After a fixed number of iterations, or when a sufficiently good line is found, end the

process and select the best line.

This process is repeated for as many lines as required.
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An important aspect of this algorithm is the use of inliers [16], or points which fit a certain

data model, as opposed to outliers, which do not fit the model and can be considered to either

be noise or to fit to some other model. In the context of the algorithm, an inlier is defined

as a point that is within a pre-defined distance from the line. Frequently, when a line does

not have enough inliers, the line is immediately discarded, and the heuristic measure is not

applied. Sometimes, when the line has sufficient inliers, it will first be refitted based only

on the inliers identified. This can generate more accurate line estimates before the heuristic

measure is applied.

Another important aspect of this algorithm is the choice of heuristic used to evaluate lines and

parameter values. Commonly, the heuristic will account both for the number of inliers and

some measure of the average error of the inliers from the line [16]. There are also a number

of parameters to consider, including the number of points used to generate line estimates, the

distance from a line within which a point will be considered an inlier, the minimum number of

inliers required for a line, and the number of iterations used to find a line.

This algorithm is well-suited to cases where the proportion of inliers is high, as this results

in a high probability of correctly guessing the line and terminating early. The difficulty with

RANSAC is the high level of randomness, with volatility in run-time varying significantly

depending on the quality and volume of the input points. Furthermore, the RANSAC algorithm

has a heavy dependence on a large number of parameters that require a large amount of tuning

based on the specific application. However, if these weaknesses are adequately addressed, the

RANSAC algorithm can potentially be made to run very quickly when compared to other

general purpose algorithms.

2.3 Line Finding in RoboCup

In this section, we will explore these line finding systems in practice, with an emphasis on

novelties introduced to existing algorithms to enable them to function in the RoboCup competition.

We will explore the existing random sample consensus algorithm of rUNSWift, the Hough

transforms of the Northern Bites and the UPennalizers, and finish with an overview of the

clustering algorithm used by B-Human.

2.3.1 rUNSWift

Implementation

The 2011 rUNSWift team used an implementation of RANSAC running on the robot. One of

the interesting aspects of this particular implementation is the emphasis on generating quality
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candidate points. A number of steps were taken to ensure the quality of the input points were as

high as possible, including sanity checks such as checking for field line colours [10]. To increase

the accuracy of the algorithm, the points were also projected from the image plane into the

ground plane. The RANSAC process was further sped up by identifying field line boundaries

(green-white edges) in order to combine edge points from either side of the field line into one

point in the centre of the line.

The 2011 algorithm was also able to detect circles. As the RANSAC line algorithm would

often detect parts of circles, and the RANSAC circle algorithm would often detect parts of

lines, Harris [10] compromised by combining the two algorithms and running them in parallel,

before selecting the better result out of the two. The difficulty lay in devising a heuristic that

could accurately determine which shape was better, however he found that a relatively simple

variance calculation was sufficient.

Results

Figure 2.5: The RANSAC algorithm detecting the centre circle even when only a part of it was

visible [10].

The vision algorithm developed in 2011 was a huge step forward for the team as no equivalent

system had existed previously. It was able to accurately detect lines and match them to

field features correctly in a large variety of situations, as well as distinguish lines from circles,

providing a vast improvement in competition performance.

However, it also suffered from a number of flaws. It was unable to detect lines further than

1.5 metres away [10], largely because it operated on an 80 x 60 edge saliency fovea. This in

turn had its root in the performance of the algorithm, which struggled with the busier frames

even at this resolution. Figure 2.6 shows the high volatility in the run-time of the algorithm,
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particularly in terms of the candidate point selection. However, this improved somewhat in the

following years as processing power, and hence fovea resolution, increased on the robots.

Figure 2.6: The performance of the RANSAC algorithm [10].

From previous analysis using GProf [12], we concluded that the process of generating candidate

points takes up an overwhelming majority of the computation time. This is consistent with

the description of the large amount of effort taken to sanity check these points, transform

them into the ground plane, and to merge points from either side of the field line into one.

Unfortunately, speeding up this process is non-trivial; for example, if points from either side of

the field line were not merged, the line detection algorithm could be expected to take double

the computation time.

Binning Algorithm

An interesting aspect of the 2011 paper [10] was its description of another approach that was

originally taken. The novelty was to pre-group the input points by using the gradient direction

outputted by the edge detection algorithm. Once these points had been pre-grouped, the

RANSAC line algorithm could be run in each group independently and detect the lines in

minimal time, due to the high proportion of inliers. Furthermore, a RANSAC circle algorithm

could be run on the remaining points to detect circles.

Unfortunately, while this approach was successful in detecting lines, it was unable to adequately
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differentiate between lines and circles. More specifically, the centre circle generated a large

number of short line segments.

Figure 2.7: The RANSAC algorithm detecting line segments in the centre circle [10].

Although this approach was not successful, it remains promising and could potentially be

adapted in some way. The pre-grouping of the points based on gradient angle, for example,

could be used as a pre-processing step to the Hough Transform. The use of the points’ edge

gradient information is interesting and another way of using this information will be explored

in Northern Bites’ Hough Transform.

2.3.2 Northern Bites

In 2012, the Northern Bites implemented a Hough Transform which was notable for its heavy

use of optimisations to speed up the process. Some of these optimisations, detailed in their

Symposium paper on the Hough Transform, included [14]:

• Removing the use of floating point angles, and instead representing angles with single 8-bit

chars. This meant that instead of a scale from 0 to 2π, a scale from 0 to 255 was used to

represent a full revolution. This served to shrink the size of the accumulator array (and

hence speed up the process of finding maxima), as well as speed up the calculations in the

algorithm. It also meant that more values could be loaded into registers simultaneously,

which will be detailed later on.

• Pre-computing the costly arctangent function, as well as the division operation, for all

possible values in the edge detection process. This was enabled by the restrictions on the

angle values, which reduced the size of the lookup table.

• Using the original edge gradients of the points. Instead of incrementing the accumulator

array at every possible line passing through a point, only lines with an angle of ±5 were

incremented. This would likely have also increased the accuracy of the lines detected.
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However, the most significant novelty in their approach was to strategically write parts of the

algorithm in assembly language. This enabled them to use certain native features of the Geode

processors of the Naos which were not fully utilised by the C++ compiler, in particular [14]:

• Concurrent hardware pipelines. The Geode LX processor had both Integer Unit and

Floating Point Unit pipelines that could be operated simultaneously.

• Vector instructions in the Floating Point Unit. The Geode LX processor could operate

the x86 MMX instruction set, which was capable of performing complex operations on

multiple values in a single 32-bit or 64-bit register. In essence, this meant that, for

example, four angles could be loaded into one register, and an operation could be applied

on all of them simultaneously.

• Cache management. By pre-fetching values into the fastest cache using the 3DNow!

instruction set, the I/O bound of the algorithm could be reduced to nearly zero.

These processor optimisations were used all throughout the algorithm, but particularly in the

Hough voting process. In every clock tick, vector instructions on the Floating Point Unit were

used to compute locations to be incremented, while the Integer Unit was simultaneously used

to increment array locations identified in previous ticks [14].

The result of these optimisations was that the implemented Hough Transform could run at full

speed on images with resolutions of 320× 240 pixels, with a factor of six improvement over the

same implementation in C++ [14].

No comment was made on the accuracy, however the paper makes the observation that there

is very little dependency on colour calibration. This helped to reduce the complexity of the

algorithm, which has only three parameters.

This is a promising approach that could be used in the future to speed up the RANSAC

algorithm or the candidate point generation.

2.3.3 UPennalizers

The UPennalizers implemented a Hough Transform for field line detection. Like rUNSWift,

colour information was used to identify candidate points. This involved a simple process

of identifying white pixels which neighboured green pixels. The 2011 team report [9] is not

detailed in the description of their implementation or results, however it did describe the key

innovation of speeding up the process by only considering lines that were either parallel to or

perpendicular to the global maximum in the Hough accumulator array. This is an effective

use of the knowledge that all straight field lines are either parallel to or perpendicular to each

other, and was the inspiration for the core idea behind this thesis.
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2.3.4 B-Human

B-Human used a tailored clustering algorithm based on the approach used by Heyer et al. [11]

to detect lines. They paired input points into line segments and represented them using the

Hesse Normal Form, which expresses a line in terms of its direction and distance from the

origin. By doing so, they were able to cluster segments with similar properties based on their

Hesse Normal Forms [18]. Given enough segments in a cluster and that sanity checks were

passed, these clusters were classified as a line using the given properties of the cluster.

To detect circles, B-Human used the remaining segments and calculated the intersections of

their perpendicular bisectors. If they generally intersected at a distance roughly equal to the

radius of the centre circle, the segments would be classified as a circle [18].

This approach has proven to be very effective in competition, operating at a reasonable accuracy

at a resolution of 320 × 240 on the Nao Version 3. However, the O(n2) run-time of the algorithm

came at the expense of optimality and simplicity. Smaller line segments were often discarded

[18], and many sanity checks (and accompanying parameters and thresholds) were required to

ensure that false positives were detected. This makes the algorithm very specific to the team

for which it was implemented.
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Chapter 3

General Approach

The key aim of this thesis is to generate a ’signature’ from which the robot’s heading can be

deduced. This is primarily achieved by using the global knowledge that all straight lines on

the RoboCup field will be either parallel or perpendicular to each other. If there was a way

to generate a histogram of detected angles relative to the robot, and shift this to match the

expected distribution of four angles 90 degrees apart, we could then use the amount of shift to

determine possible values of the robot’s heading.

In this thesis, two methods of generating a signature were attempted - using the edge gradient

values of salient points in the image, and using the robot-relative angles of straight lines detected

from these salient points. In both cases, a ’binning’ approach inspired by Harris [10] was used

to pre-cluster the points based on gradient. In the first case, a gradient histogram could be used

to form an ’impression’ of the orientation of the field, and in the second case, the pre-clustered

groups could be used as a starting point for a RANSAC line matching algorithm.

3.1 Salient Points

Before anything could be done, salient points from the image were selected. These points were

chosen based on how strong of an edge they represented (via their magnitude) and whether

they were likely to be a local maxima (to avoid duplicate edge points).

Algorithm 2 Salient Point Selection

for each input point with edge values dx and dy do
magnitude← dx2 + dy2

if magnitude is greater than points above and below or magnitude is greater than points
to the left and right then

if magnitude > THRESHOLD then
Save input point

end if
end if

end for

Some simplifications were made for efficiency here. For example, the magnitude calculation here
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does not reflect the real magnitude, but this is sufficient to generate a monotonically increasing

relationship for our purposes. As well as this, points were only required to be a local maxima

in one direction so as to avoid ruling out legitimate points when the line they belonged to was

close to vertical or horizontal. Note also that colour information has not been used here at

all, to reduce dependency on colour calibration. However, some colour information could be

used in future as a sanity check to rule out commonly misleading points, such as those on the

boundary of goal posts.

3.2 Point Buckets

Once the points were selected, they needed to be bucketed according to angle. Because these

buckets needed to be discrete, 360 angles were used for the sake of simplicity. This was

calculated using the following simple algorithm. Note the negative dy sign - this is simply

to compensate for the fact that in our image plane, the y axis points downwards instead of

upwards.

Algorithm 3 Discrete Angle Mapping

for each input point with edge values dx and dy do
theta← atan2(−dy, dx)
discreteTheta← theta×360

2π

if discreteTheta < 0 then
discreteTheta← discreteTheta+ 360

end if
end for

This angle was then used to index into an array of point lists, in which the point was stored.

3.3 Signature Generation

The output of the previous step is subject to significant noise. The aim of this step is to

successfully neutralise the noise and select the dominant angles at which the greatest amount

of points lie. This was achieved by tallying the number of points at each angle and applying a

strong Gaussian blur, with a kernel of length 31 and σ2 set to 64.

Once this had been achieved, local maxima were selected to represent dominant angles. The

best results were achieved when each angle was checked to be the largest within a big radius

(of size 20). Furthermore, a pre-Gaussian blur threshold and a post-Gaussian blur threshold

were used to sanity check for peaks that were too small to be significant.

Through this process, two ways could be used to generate a signature. In Chapter 4, we

describe a method by which each salient point’s edge gradient was mapped to the ground plane
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before clustering, creating a signature that is immediately usable after this step is complete. In

Chapter 5, the salient points were left in the image plane, and the clustered groups identified

by this process were used to find straight lines which could be then mapped into the ground

plane and used to generate a signature. This will be described more in those chapters.

3.4 Heading Deduction

Regardless of the method of signature generation, the output of the above process is a list of

robot-relative line angles. The process of deducing a heading hypothesis once the signature

has been generated is remarkably simple, and based on the observation that, regardless of the

number of lines observed, there will always be four possible hypotheses of the robot’s heading,

each 90 degrees apart.

The justification for this observation is as follows - given an observation of a robot’s relative

orientation to one line, there are two possible locations of the robot relative to that line, 180

degrees apart. However, it is important to note that the line itself can be in one of two different

orientations relative to the field, with each orientation being 90 degrees apart. With this in

mind, there are four possible orientations of the robot relative to the field (as opposed to the

line). When an observation of two or more perpendicular lines is made, the rationale is similar

- the same process of logic can be applied to both line angles, and the result is that there are

four possible hypotheses for the robot’s position, each 90 degrees apart.

Based on this observation, we note that there will always be one robot hypothesis that lies in

the range [0, 90) degrees, and hence it would be more compact to represent all four possible

headings using this ’primary’ angle. At this stage, deducing the angle becomes simple, and can

be done as follows.

Algorithm 4 Simple Heading Deduction

for each robot relative angle θ do
heading ← θ mod 90

end for

This method of heading deduction can simply be envisioned as follows - we continuously rotate

the line by 90 degrees (as we do not know how the line is oriented relative to the field) until

our field-relative heading falls into the range [0, 90). This also has the nice side effect of

side-stepping the issues caused by the fact that the robot-relative co-ordinate plane and the

field-relative co-ordinate plane are 90 degrees apart.

As well as this, this method of calculation is strongly reinforced when the field has a distinct

signature, and weakened when the angles given are not consistent. In other words, provided

that the input angles are strictly parallel or perpendicular, this method of calculation will
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collapse all of the input angles to the same robot heading. However, if the input angles are not

consistent, the output headings will not be consistent either.

By analysing the distribution of output angles, we are therefore given a measure of uncertainty

(albeit a crude one that does not account for systematic errors). We can exploit this information

to rule out outliers, provide an uncertainty estimate as an output to a localisation filter, and

even to discard frames where the information is inconsistent, such as when too many center

circle points have been included. Here, we can see the benefits of using both sides of each field

line to reinforce observations, and we are able to exploit our global knowledge of how field line

angles must be distributed, something that is not directly utilised in feature-based approaches.

Although the localisation filter would then need to disambiguate between the four possible

angles generated, we argue that this is a very worthwhile contribution when combined with

other information to provide a coherent world view. As mentioned previously, this practice

of correlating multiple sources of information to produce a globally consistent hypothesis has

proven to be very powerful [2]. Furthermore, it is likely that a localisation filter would be

able to apply this information over several time-steps and maintain a dominant hypothesis. At

the very least, this approach will provide fine-tuning to complement the heading generated by

existing methods and provide an estimate in some cases where existing (feature-based) methods

fail.

One difficulty with this approach lies in the fact that the output is circular (an angle of 90

degrees is equivalent to an angle of 0 degrees). This makes it difficult to apply concepts such

as expected value, mean and median, which are typically used for distributions that are linear.

The median in particular becomes much less useful, as selecting a start and end data point

by which to order the data set can often be debatable. As well as this, the mean suffers from

wrapping problems - for example, the average of 89 degrees and 1 degree should be 0 degrees,

not 45 degrees.

Fortunately, there exists an established body of literature dedicated to the analysis of circular

data [8] [4]. One of the simpler approaches to calculating the mean is to map each data

point from an angle to a cartesian co-ordinate on the unit circle. We can then average these

co-ordinates (on x and y separately) to produce the mean, which will be at an angle that best

represents a middle ground between all the input angles. If we think about this a bit more

carefully, we are essentially representing each angle with a unit vector and averaging all of

these vectors to produce a mean vector. Note that the mean vector will have length 1 when

all data points are identical, and length 0 when the data points are in complete disagreement

(on opposite sides of the unit circle). The length of this vector can therefore give us a final

heuristic for the consistency of the data [8].

To detect outliers, we followed a very simple algorithm. As long as there existed a data point

that was greater than 15 degrees from the mean, we discarded that data point and recalculated
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Algorithm 5 Mean Heading Computation
sumY ← 0
sumX ← 0
for each data point θ in the range [0, 90) do

sumY ← sumY + sin 4θ
sumX ← sumX + cos 4θ

end for

meanY ← sumY

numPts

meanX ← sumX

numPts

mean← atan2(meanY,meanX)

4

consistency ←
√
meanY 2 +meanX2

the mean. If there is ever a stage where we have less than 3 data points, there is not enough

certainty in the frame and no heading observation is reported for that frame. This has some

desirable effects:

• Because our goal is to only provide estimates that are reliable, our 15 degree threshold

ensures that the data set we use to calculate our estimate will always be reasonably

consistent.

• If the results are simply inconsistent in general, then the algorithm will keep discarding

points until there are less than 3 data points, at which point it will give up on the dataset.

Note that it is almost impossible for more data points to be discarded than left over - in

general, there are at most 6 data point candidates in any one frame.

• The threshold of 3 data points is just enough to have a good estimate (provided the

consistency between these points is good), and not so prohibitively high that too many

frames will be discarded.

Once this process is complete, we also use the consistency value we calculated from the length

of the mean vector as a sanity check. It is important to note that the consistency value doesn’t

decrease linearly with angular spread. In particular, the length of the mean vector will decrease

slowly initially as angular spread increases, before decreasing at an accelerating rate. For this

reason, we choose to accept a heading estimate only if the consistency value is greater than

0.85.

We are now able to supply our heading to a localisation filter. It is also desirable to provide

some kind of uncertainty estimate - it is unclear whether the consistency value we calculated

will be a satisfactory measure. As an alternative, we also calculated the standard deviation

from the mean using the traditional approach. We will look at how well these reflect error in

the results sections of the following chapters, but for now we leave both measures available to
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be tested in a localisation filter. Of course, it is worth noting that there are multiple sources

of error, and both our consistency estimate and standard deviation calculation only accounts

for these indirectly:

• Kinematics

• Raw gradient values

• False lines.
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Chapter 4

Point Signature

4.1 Methodology

The point-based approach was the first attempt at generating a signature, relying on analysing

the edge gradients of salient points to create an ’impression’ of the orientation of the field. In

order to fully exploit the property that all field lines on the field must be either parallel or

perpendicular, it was necessary to map the edge gradients of these points from the image plane

to the ground plane so that they could be analysed.

However, some properties of this mapping must be taken into consideration. In particular,

parallel lines in the image plane do not necessarily map into parallel lines in the ground plane,

reflecting the fact that this mapping depends on the position of the point as well as the angle of

its gradient. With this in mind, this mapping needs to be done on a per-point basis, before any

bucketing occurs, so that the end result of the process described in Chapter 3 is a histogram

of edge gradients in the ground plane.

The method by which an angle can be mapped from the image plane to the ground plane

is non-trivial. Because a mechanism of mapping an image plane location to a ground plane

location already existed in the rUNSWift codebase, we sought to adapt the existing mechanism

to map angles, rather than attempting to write our own method from scratch. Our first

approach was as follows.

Algorithm 6 Discrete Angle Mapping

function GroundPlaneGradient(p1, dx, dy)
p2← (p1.x− dy, p1.y + dx)
rrp1← convertToRobotRelative(p1)
rrp2← convertToRobotRelative(p2)
θ ← atan2(rrp2.y − rrp1.y, rrp2.x− rrp1.x)
discreteTheta← theta×360

2π

if discreteTheta < 0 then
discreteTheta← discreteTheta+ 360

end if
end function
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In essence, this approach involved projecting a second point p2 perpendicular to the direction

of the edge gradient for p1 (simulating another point on the line which p1 would theoretically lie

on). Once p2 had been calculated, both points were mapped into the ground plane, mimicking

the action of mapping the line into the ground plane. Finally, once this has been achieved, the

angle of the line in the ground plane is calculated.

There are some interesting points to observe here.

Firstly, this approach relies on the fact that a line in the image plane will always map to a line

in the ground plane, and hence the second point p2, if it lay on the same line, should have the

same gradient in the ground plane as p1. Note that we cannot map the edge gradient of p1

directly, because a right angle in the image plane is not necessarily a right angle in the ground

plane.

Secondly, the use of the atan2 function to calculate the gradient of the ground plane line is

what allows for us to map opposite sides of a field line to point in opposite directions, 180

degrees apart, in the ground plane. By keeping the order of p1 and p2 constant in our atan2

function, we are in effect calculating the angle of a vector pointing in opposite directions on

the line. Because this vector has p1 as its base, a beneficial side effect of this approach is that

we obtain the ground plane co-ordinates of p1 in addition to its gradient.

Thirdly, we note that the final angle is not in fact the equivalent gradient angle that we

started with, but gives the angle of a vector pointing along the direction of the line rather than

perpendicular to it. It is possible to get the perpendicular of the line once again by shifting

our final result by 90 degrees, but in practice this is not important because we already have

our signature regardless. Another observation is that the robot-relative co-ordinate system is

different to the image co-ordinate system, with the y axis pointing forwards from the robot and

the x axis pointing to the left. In our implementation, for the sake of more intuitive angles, we

mapped this angle to a co-ordinate system where y points forwards and x points to the right.

This has been omitted here for simplicity.

Although this was a promising approach in theory, we quickly ran into an error. In practice, the

computed edge values dx and dy had large values in our code, and projecting points using these

values frequently created points that were below the bottom of the image or above the horizon

line, causing undefined mappings to occur. Furthermore, it is easy to imagine our margin of

error becoming significant as we approach the horizon. As a fix to these problems, we scaled

dx and dy down to a maximum value of 20, and ignored points for which the computed vector

extended beyond the image boundaries or field edge. In future, it may be better to derive a

gradient mapping directly, perhaps by doing something akin to differentiating the ground plane

co-ordinate mapping function.
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4.2 Results

As mentioned in the previous section, the end result of this process is a histogram of angles in

the ground plane, with particularly dominant angles identified. In theory, this would result in

a signature consisting of angles separated by 90 degrees. Unfortunately, we found that this was

rarely the case.

Figure 4.1: An image with points mapped in the image plane, displayed in a custom tab in the
offnao debugging tool.

Figure 4.2: The corresponding image with points mapped in the ground plane.

In the graph on the right of the above figures, the x axis represents the angle in degrees, and

the y axis represents the number of points. The red curve displays raw point counts, with the

green curve displaying the smoothed result and the black peaks showing the maxima selected.

As we can see, the peaks are very clearly defined in the image plane, but completely degrade

in the ground plane, failing to produce any discernable signature.
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Despite a lot of investigation and code review, we were unable to determine the root cause

of this problem. Some analysis of the potential causes will be provided in Chapter 6. What

became clear, however, is that we needed to try a different approach. In the following chapter,

we attempt to create a ’line signature’ by first using RANSAC to identify lines within each

(image plane) bucket, and then mapping each resulting line into the ground plane to get our

signature. This has the advantage that, by effectively aggregating points into a line first and

mapping the end points of the line itself, the error in ground plane mapping will be significantly

reduced.

Nonetheless, it is a shame that this approach was not successful, as it used a feature of the field

that was very distinct from anything used by any other current vision module, and did so in a

way that could be considered elegant. In future, the problem could potentially be addressed by

calculating a method of converting an image plane angle into the ground plane directly, rather

than using the makeshift method of mapping two points. This would also provide a significant

speed up to this algorithm, reducing the number of ground plane mappings that need to be

done.
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Chapter 5

Line Signature

5.1 Methodology

The second approach attempted was to leave the points in the image plane, use our pre-clustered

points to run very efficient RANSAC line matching algorithms, and generate our signature from

the angles of the resultant lines. This approach was attempted for a number of reasons:

• By effectively aggregating points into a line first and mapping the end points of the line

itself, the error in ground plane mapping will be significantly reduced.

• By significantly decreasing the number of points that need to be mapped into the ground

plane, the performance of the algorithm can improve dramatically.

• The ’line signature’ algorithm is not bound by the same constraints of a normal field line

detection algorithm, in particular:

– It detects both sides of the line, providing more information.

– It has no interest in the center circle.

– It can use the principle that all lines must be parallel or perpendicular to ensure

information is consistent, and throw away information that is not. For example,

it can sanity check circle segments using this principle. If the circle segment just

happens to be parallel or perpendicular to the rest of the detected lines, it simply

reinforces the existing heading estimate.

– It does not need to identify field features such as corners or t-intersections. It can

therefore even afford to miss several lines and still be able to determine the heading

of the robot where a field line detection algorithm would not be able to (for example,

when facing just the side-line).

– It could be used as the starting point of a complete field line detection system, similar

to the one attempted in [10].

In order to do this, we grouped the point buckets from Chapter 3 into overlapping ’windows’ of

30 degrees, before selecting the strongest point windows in which to run our RANSAC algorithm
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by using a simple local maxima. As well as this, we reused the lines detected by the field edge

module, which serve as a very effective addition to the data set produced by this approach.

However, this approach generated problems of its own. In particular, leaving the points in the

image plane could cause perpendicular lines to appear to have a similar angle in the image,

and parallel field lines to appear to be different angles in the image. Because our method of

identifying candidate points relies on detecting peaks, a smaller peak could be ’hidden’ in a

bigger peak and not be selected, causing that line to not be detected.

Figure 5.1: In this image, only two peaks are identified in the image graph, instead of the four
expected.

In Figure 5.1, we note that only two peaks are identified in the image graph, instead of the

four expected. Upon closer inspection of the graph, we can observe that there are actually four

peaks, however they are close enough and at the right height to give the impression of only two

peaks, as identified by the green trend line. Fortunately, in this case points from both of the

lines were included as part of each ’unified’ peak, rather than one of the lines being excluded.

We chose to address this problem as follows. Firstly, we set our windows to be very large, with a

leeway of 30 degrees on either side of an angle, and ran our RANSAC algorithm 6 times within

each window. This meant that although the smaller peaks could sometimes be ’swallowed’ in

the larger peaks, the large size of our point windows meant they could be included anyway

and matched by RANSAC. Secondly, because our windows could now overlap significantly, we

selected peaks that had the most points out of all other angles within 20 degrees. This served

to reduce the overlap considerably, while allowing overlap to occur in some cases where it is

uncertain which window the points would be better placed in.

For the RANSAC algorithm, we reused much of our existing RANSAC module, with several

parameters modified. Firstly, because we used information from both sides of each field line

rather than attempting to find the centre point, along with the fact that we used image plane

points rather than the mapped ground plane equivalent, we could be much more strict about
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what constituted an inlier, setting the threshold to be 2 pixels wide. Secondly, we sanity-checked

lines based on whether they were ’floating’ in the image. In other words, if a line had start and

end points that were both not at image boundaries, this line was not ’cut off’ and we could

afford to be much stricter about the length it must be in the ground plane. Finally, we tuned

thresholds to reflect points that lay in the image plane rather than the ground plane. This

proved to remove most of the noise created by robots and, in particular, the center circle, as

we will see in the next section.

5.2 Results

The goal of these experiments was to test the accuracy of the algorithm as well as the performance

across different field features and distances. These experiments were conducted by recording

dump files at a number of fixed locations, and then running the algorithm on the dumps offline,

ensuring consistency. For each angle tested in each experiment, a minimum of 6 frames were

analysed (depending on the number of frames in the dump, to prevent selection bias). Following

this, the statistics for each angle in each experiment were averaged across all of the frames.

The raw experiment data is provided for reference in Appendix A.

Because these experiments were run offline, the run-times recorded will not directly reflect

run-times on the Nao’s. The experiments were run on the following hardware:

Architecture: i686

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 2

On-line CPU(s) list: 0,1

Thread(s) per core: 1

Core(s) per socket: 2

Socket(s): 1

Vendor ID: GenuineIntel

CPU family: 6

Model: 15

Stepping: 10

CPU MHz: 2000.000

BogoMIPS: 3989.97

Virtualisation: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 4096K
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Because of this discrepancy, a percentage ratio was generated on our hardware by comparing the

run-time of our headings module with the run-time of the existing field line detection module.

This will be by no means completely accurate, and is intended to give a rough idea of order

of magnitude. Furthermore, these run-times were generated simply by taking the difference

between the system time at the beginning and end of each module. This would create further

inaccuracies, specifically when the running thread is interrupted. However, given that we are

measuring in the microseconds, measuring run-times is difficult regardless, given the overheads

generated by traditional benchmarking methods. Despite these flaws, however, the run-time

ratio was remarkably consistent across experiments, and is likely to be suitable for its intended

purposes of producing a rough estimate.

It is important to note that in each angle of these experiments, the field was marked with two

points - one for the position of the robot, and one for the position the robot was to face. The

robot was placed on the first point, and was turned until it faced the second point, using a

process of judgement with the naked eye. With this in mind, there is potential for human error

in the ground truth heading in these experiments, estimated to be ±10◦.

5.2.1 Experiment 1

Figure 5.2: Experiment 1, focusing on a field corner. Simplified headings are 0, 60, 45, and 30
degrees respectively.

The first experiment was deliberately constructed to be simple, to verify that the algorithm

works as expected. For the most part, this produced good results, with the margin of error

within the 10◦ bound.

True

Heading

(◦)

Calculated

Heading

(◦)

True

Error

(◦)

Lines Consistency

Standard

Deviation

(◦)

Headings

Time (us)

Field Lines

Time (us)

Time

Ratio

0 89.2 0.8 3.8 1.00 0.6 1165 3200 36%

60 65.0 5.0 5.0 0.95 3.2 1163 3058 38%

45 45.8 0.8 6.0 0.99 2.4 1169 2964 39%

30 26.8 3.2 5.3 0.98 2.8 1499 2964 51%
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5.2.2 Experiment 2

Figure 5.3: Experiment 2, focusing on the penalty box. Simplified headings are 0, 60 and 30
degrees respectively.

The second experiment was constructed to be somewhat more complicated. In Figure 5.4 we see

that, because of strict ground plane length threshold settings, neither the smaller lines in the

penalty box nor the partial line segment on the right of the image are detected. Furthermore,

we see that due to a colour calibration quirk, the algorithm has been given a false edge (which

is consistent across multiple frames).

Figure 5.4: In the third phase of the experiment, there was a false edge in many frames.

However, the results remain good. In the algorithm, the false edge is detected as an outlier

and removed due to its disagreement with the mean, and the mean is then recalculated. As

well as this, despite the smaller line segments not being picked up, there remain enough large

segments to compute a reasonably confident estimate.

32



True

Heading

Calculated

Heading

True

Error
Lines Consistency

Standard

Deviation

Headings

Time (us)

Field Lines

Time (us)

Time

Ratio

0 0.3 0.3 5.1 1.00 0.8 2204 5002 44%

60 65.7 5.7 5.1 1.00 1.6 1737 3759 46%

30 23.8 6.2 6.7 0.99 1.7 1677 4091 41%

Note that, although the error can be as much as 6.2 degrees, the results still show a high level

of confidence, with the consistency value as high as 0.99 and the standard deviation only 1.7 for

the third angle. It seems likely that this discrepancy could be caused by errors in placement.

5.2.3 Experiment 3

Figure 5.5: Experiment 3, focusing on the center circle and a wide view across the rest of the
field. Simplified headings are 0, 45 and 45 degrees respectively.

The third experiment was constructed to test the ability of the algorithm to deal with the

center circle, as well as to test the distance from which line signatures could be produced. In

Figure 5.6, we see that the algorithm is unable to detect any of the goal line at this distance,

although most of the sideline was detected (allowing us to see where the algorithm cuts off).

As well as this, we see that in spite of very strict threshold settings, there is a false positive

detected in the center circle (a yellow line), and one of the field edges is slightly flawed.

Again, the false positive in the center circle is discarded. The flawed field edge, however,

was integrated into the algorithm, but the mean calculation was just barely able to produce a

satisfactory estimate. This frame was somewhat exceptional out of the frames in this phase of

the experiment - the center circle false positive showed up in roughly 50% of frames, and the

flawed edge rarely showed up at all.

True

Heading

Calculated

Heading

True

Error
Lines Consistency

Standard

Deviation

Headings

Time (us)

Field Lines

Time (us)

Time

Ratio

0 88.6 1.4 3.1 1.00 1.4 2559 6451 40%

45 46.2 1.2 5.0 0.98 2.8 1582 3632 44%

45 43.9 1.1 5.8 0.98 3.2 1631 3794 43%
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Figure 5.6: A view of the third phase of the experiment.
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Chapter 6

Evaluation

From the last two chapters, we observed a big discrepancy between the point signature and line

signature approach.

In Chapter 4, we found that the point signature approach suffered from a fundamental flaw -

the edge gradients of points in the image plane could not be mapped accurately into the ground

plane to produce a signature.

There are many possible sources of error here, some more likely than others:

• Errors in the kinematic chain, particularly when walking

• Noise in the original edge gradients

• Errors compounding from mapping two points to the ground plane and using this to

calculate the angle

• Camera lens distortion

Figure 6.1: An image with points mapped in the image plane, displayed in a custom tab in the
offnao debugging tool.
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Figure 6.2: The corresponding image with points mapped in the ground plane.

It is particularly hard to guess what the impact is when these errors are compounded. One

possible explanation for why the image plane graph is so clearly defined where the ground plane

graph is not, is as follows. If we inspect the image plane graph (Figure 6.1) carefully, we will

note that there is a peak very close to 90 degrees. This is the direction intended to be normal to

the green points identified on the image. However, one would expect, by looking at the image,

for this angles to be slightly greater, perhaps at 110 degrees or a little more. Furthermore,

there are points on the edge of the penalty box that are green, despite clearly not being at the

identified angle. Now, because the image plane mapping depends also on the location of the

point being mapped, this would cause the resulting error in the ground plane gradient mapping

to be of a different magnitude depending on where the point was located in the image. Because

there are green points across the whole image, this would cause a range of different error values,

creating the general noise and diffusion of peaks we observe in the ground plane image. As well

as this, we can also observe that the horizon line (identified in pink above the field) is lower

than we expect and not quite parallel to the field edge. This could also compound the error,

contributing to the ground plane mapping that we observe.

Of course, this is purely conjecture. Nonetheless, this was a promising approach, and if a

method of calculating the gradient directly from kinematics were devised, it could serve to

simultaneously improve the accuracy of the algorithm, speed up the ground plane transformation,

and maintain its simplicity.

In Chapter 5, we produced good results within our line signature experiments. The heading

estimates generally showed a very high level of consistency and low standard deviation, while

mostly staying within 5 degrees of the true value (which is small enough to be indistinguishable

from human error). As well as this, the mechanism for removing outliers was seen to operate

effectively. The algorithm generally ran in approximately 30-40% of the time that it took to

run the field lines module, which is an acceptable result, although there is still room for further
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improvement.

However, it is worth noting that the experiments were performed under very controlled conditions.

It would be a good test to run the algorithm on a walking robot, which would effectively serve to

test the accuracy of the kinematic chain under noisy conditions. As well as this, the experiments

lacked the kind of visual noise that would be present in game situations, specifically when a

large number of robots are present in the image (although there are a number of mechanisms

that have been built and tested to address this, outlined in Section 5.1).

One of the weaknesses of both approaches is the dependency on kinematics. Although this

is worse for the point-based approach, the line-based approach also needs very accurate input

headings in order to work effectively. Although it could be argued that kinematics is crucial

to localisation in general, discrepancies in heading are much less of an issue in a feature-based

approach such as the one currently used in vision, where features such as corners and intersections

can be recognised even when some of the line headings involved have an error greater than 10

degrees.

Of course, the line signature approach is currently the more reliable one, as it effectively removes

noise by aggregating points into lines before analysing them. However, it is worth considering

the potential of integrating this into the field line detection module, due to the overlap that

is present. For example, the current field line detection module already translates all points

into the ground plane, effectively saving some of the computational cost required to calculate

each point’s ground plane gradient. If an accurate mechanism for calculating the ground plane

gradient directly could be devised, the point signature could be used as a precursor to the

full field line detection algorithm and the generated heading could be used as a sanity check

in addition to an output for a localisation filter. Likewise, the simple lines detected by the

current field lines module could be used to generate the line signature rather than detecting the

lines again for the line signature separately. However, because the current module only detects

a single line at the center of each field line, some of the accuracy gained from correlating

consistent information would be lost here due to the reduced number of lines available in any

image. Finally, the heading module itself could be evolved into a field line detection module to

replace the current one, which currently needs to run much faster.
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Chapter 7

Conclusion

Localisation is an important problem in robotics, where it is crucial to every task a robot

must perform. In the RoboCup competition, with the context of an increasing field size

and symmetrical field features, tracking a robot’s heading accurately has become particularly

important, especially in positions where the robot’s location cannot be disambiguated. This

report has explored an idea for deducing a robot’s heading that can be used to augment existing

localisation systems.

One of the key differences of this approach is that it does not rely on a landmark-based approach

to localisation, effectively decoupling the process of deducing a robot’s heading from the process

of deducing its location. The angular distribution of lines and points on the field, and the

matching of this distribution to a known, 90 degree separated distribution of lines, effectively

serves as a ’meta-feature’ of the field.

This new approach provides some unique advantages. Firstly, it is able to use global information

not explicitly used before to ensure consistency in its results. This is particularly the case when

it can use both sides of field lines to reinforce observations compared to, for example, a single

false positive detected in a robot body. Secondly, it does not require the robot’s location to

be known, allowing it to deduce a heading even when other modules have failed to identify

landmarks on the field.

This approach also has some disadvantages. Firstly, it has a strong reliance on accurate

kinematics. Secondly, it provides four equally probable hypotheses at any point in time, in a

manner that is analogous to how localisation of position currently provides two symmetrically

flipped hypotheses at any point in time. As with the latter, it is hoped that this algorithm will

make a meaningful contribution when filtered with a combined set of observations to form a

cohesive world view.
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Chapter A

Raw Experiment Data

A.1 Experiment 1

Lines Outliers True Heading (◦) Mean (◦) Consistency Standard Deviation (◦) New Time (us) Old Time (us)

4 0 0 89 1 0 1101 3305

4 0 0 89 0.999543 0.57735 1178 3209

3 0 0 89 0.997835 1.224745 1179 3159

4 0 0 0 0.999391 0.816497 1189 3178

4 0 0 0 1 0 1201 3320

4 0 0 89 0.999543 0.57735 1178 3193

4 0 0 89 0.999543 0.57735 1159 3219

4 0 0 89 0.998782 0.816497 1166 3153

4 0 0 89 1 0 1129 3161

3 0 0 89 0.999459 0.707107 1173 3150

4 0 0 89 0.998325 1 1160 3148

5 0 60 66 0.997079 1.224745 1086 3108

4 0 60 65 0.995891 1.414214 1238 2981
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3 0 60 66 0.993149 1.870829 1239 3151

5 0 60 65 0.998051 1 1122 3028

6 0 60 65 0.995337 1.612452 1084 3036

6 0 60 64 0.970087 3.872983 1077 3002

5 0 60 66 0.994552 1.802776 1090 3120

4 0 60 65 0.990635 2.104417 1260 3428

7 0 60 63 0.637911 13.693064 1275 2666

6 0 45 45 0.9682 3.974921 1179 2762

6 0 45 47 0.9913 2.144761 1181 2755

6 0 45 45 0.986722 2.569047 1168 2759

6 0 45 46 0.986518 2.607681 1159 2816

6 0 45 45 0.995605 1.48324 1170 2664

6 0 45 47 0.993714 1.843909 1158 4025

5 0 30 26 0.97615 3.349959 1358 2958

5 0 30 26 0.986656 2.472066 1354 2963

5 0 30 27 0.986783 2.494438 1362 2893

5 0 30 27 0.990858 2.054805 1301 2902

6 0 30 27 0.975186 3.361547 1811 3066

6 0 30 28 0.976248 3.301515 1807 2999

A.2 Experiment 2

Lines Outliers True Heading (◦) Mean (◦) Consistency Standard Deviation (◦) New Time (us) Old Time (us)

5 0 0 0 0.999415 0.707107 2158 7178

5 0 0 1 0.997663 1.118034 2204 4610

6 0 0 1 0.99885 0.774597 2183 4873
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5 0 0 2 0.999415 0.707107 2208 4869

5 0 0 0 0.99961 0.5 2245 4840

5 0 0 1 0.998441 1.118034 2182 4751

5 0 0 0 0.997663 1.118034 2149 4602

5 0 0 0 0.999415 0.866025 2173 4692

5 0 0 89 0.999026 0.707107 2280 4597

5 0 0 0 0.999415 0.707107 2393 5505

5 0 0 0 0.99961 0.5 2124 4802

5 0 0 0 0.99961 0.5 2145 4706

5 0 60 66 0.995526 1.581139 1737 3745

5 0 60 66 0.994168 1.732051 1762 3647

5 0 60 65 0.997468 1.224745 1768 3660

5 0 60 66 0.998441 1.118034 1739 3781

5 0 60 65 0.989909 2.291288 1690 3762

5 0 60 66 0.991646 2.179449 1721 3800

5 0 60 66 0.99262 2.061553 1734 3746

5 0 60 66 0.999415 0.707107 1775 3825

5 0 60 65 0.998636 0.866025 1727 3638

5 0 60 65 0.993196 1.870829 1718 3837

5 0 60 65 0.99281 1.936492 1731 3761

6 0 60 67 0.996754 1.264911 1737 3907

7 1 30 23 0.997566 1.095445 1763 3480

7 1 30 24 0.996418 1.341641 1635 6723

6 1 30 25 0.996494 1.5 1650 3760

7 1 30 23 0.994322 1.67332 1693 3433

7 1 30 23 0.993174 1.843909 1703 3456
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6 1 30 25 0.987963 2.5 1615 3693

A.3 Experiment 3

Lines Outliers True Heading (◦) Mean (◦) Consistency Standard Deviation (◦) New Time (us) Old Time (us)

3 0 0 88 0.996213 1.581139 2541 6127

3 0 0 89 0.999459 0.707107 2581 6425

3 0 0 88 0.991354 2.345208 2611 6457

3 0 0 1 0.98866 2.645751 2533 6415

3 0 0 89 0.999459 0.707107 2596 6605

3 0 0 88 0.996213 1.581139 2534 6492

3 0 0 88 0.995132 1.732051 2523 6424

3 0 0 0 0.991354 2.345208 2524 6388

4 1 0 87 0.992972 2.12132 2576 6321

3 0 0 89 0.999459 0.707107 2685 6556

3 0 0 87 0.992972 2.12132 2696 6521

4 0 0 89 0.998782 0.816497 2494 6357

3 0 0 89 1 0 2523 6448

3 0 0 0 0.999459 0.707107 2628 6339

3 0 0 88 1 0 2444 6354

3 0 0 87 0.995132 1.732051 2457 6981

5 0 45 47 0.987749 2.54951 1551 3600

5 0 45 45 0.989332 2.345208 1562 3519

5 0 45 47 0.978284 3.354102 1596 3613

5 0 45 46 0.982937 3 1547 3723

5 0 45 46 0.989896 2.291288 1535 3635
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5 0 45 46 0.982537 3 1606 3620

5 0 45 46 0.985055 2.783882 1567 3684

5 0 45 45 0.990859 2.179449 1589 3846

5 0 45 47 0.97904 3.354102 1583 3493

5 0 45 46 0.987366 2.54951 1520 3649

5 0 45 47 0.975365 3.570714 1633 3551

5 0 45 47 0.981944 3.122499 1617 3579

5 0 45 45 0.98873 2.44949 1659 3702

6 1 45 42 0.94607 5.315073 1594 3643

5 0 45 43 0.968073 4.062019 1666 3643

5 0 45 43 0.977701 3.391165 1637 3821

5 0 45 45 0.99552 1.581139 1632 3688

6 0 45 45 0.982497 2.966479 1572 3729

5 0 45 45 0.980037 3.278719 1637 3695

7 2 45 43 0.978654 3.316625 1664 4811

6 1 45 44 0.985038 2.783882 1664 3682

7 2 45 44 0.97904 3.316625 1620 3773

6 1 45 45 0.991635 2.179449 1613 3704

6 1 45 45 0.990857 2.179449 1662 3669

6 1 45 43 0.966535 4.1833 1613 3666
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