
THE UNIVERSITY OF NEW SOUTH WALES

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

rUNSWift Robocup SPL 2013

Special Project A Report

Dan Padilha

ddp@cse.unsw.edu.au

August 17, 2013

Supervisors: Bernhard Hengst, Maurice Pagnucco

School of Computer Science & Engineering
University of New South Wales

Sydney 2052, Australia

Abstract

This report documents the work done by Dan Padilha for UNSW’s Robocup Standard Platform
League (SPL) team rUNSWift during Semester 1, 2013.

The report describes 2013’s Open Challenge entry, which applied Reinforcement-Learned sagittal
and coronal stabilisation policies to the robots. This aimed to combine the research of previous
rUNSWift contributors to demonstrate self-stabilisation in various bipedal behaviours. The entry
achieved third place overall in the Open Challenge.

Documentation for the new behaviours framework, known as NewSkillz, is also provided. The
framework makes writing robot behaviours a much simpler process by abstracting away much of
the complexity and redundancy involved in state changes, and its consistent API allows for the
easy implementation of a behaviours simulator. A port of 2012’s behaviours is demonstrated to
work on both the robots and in the simulator with no changes necessary between them.

Finally, the 2013 Drop-In Player Challenge is described and rUNSWift’s implementation and per-
formance detailed.

Contents

1 Outline 1

2 Reinforcement-Learned Stabilisation 2

2.1 Introduction . 2

2.2 Background & Related Work . 3

2.3 Theory & Implementation . 4

2.4 Results . 11

2.5 Evaluation . 12

2.6 Future Work . 12

2.7 Conclusion . 13

3 NewSkillz Behaviour Framework 14

3.1 Introduction . 14

3.2 Theory . 14

3.3 Implementation . 16

3.4 Future Work . 19

3.5 Conclusion . 19

4 Drop-In Player Challenge 20

4.1 Introduction . 20

4.2 Implementation . 20

4.3 Results & Evaluation . 21

4.4 Future Work . 21

i

1

Outline

Reinforcement-Learned Stabilisation

This section describes rUNSWift’s entry to the 2013 Standard Platform League (SPL) Open Chal-
lenge. This involved demonstrating the application of Reinforcement-Learned bipedal control poli-
cies on the Nao robots.

A simple introduction to Reinforcement Learning is given, demonstrating the lead-up work done by
researcher Bernhard Hengst. [5] Further state measurement work by Roger Liu is also discussed. [6]
Finally, the implementation of control policies, in a redesign of the work done by Brock White, is
described. [9] This defines a generic way to interpret Reinforcement-Learned control policies on the
Nao hardware.

Some simple tests allow a proof-of-concept to be demonstrated, and, perhaps most importantly,
major focus points for future research are identified.

All work implemented has been merged into the master branch of the rUNSWift codebase.

NewSkillz Behaviour Framework

This section describes the new behaviours framework for future use in the rUNSWift codebase. As
the justifications for the new framework are made in other reports [2], this section only touches
briefly upon these. Instead, the focus of this section is primarily to document the NewSkillz frame-
work and provide a gentle learning curve for future skills implementation.

All work implemented exists in the new skillz branch of the rUNSWift codebase.

Drop-In Player Challenge

This section describes the 2013 Drop-In Challenge, which involved robots from different competition
teams being required to demonstrate communication and team-work as a soccer team. Described
are the communication standard implemented and the observed results from the Challenge. As the
Challenge is expected to be run again in the future, some points of further work are also identified.

All work implemented has been merged into the master branch of the rUNSWift codebase.

1

2

Reinforcement-Learned Stabilisation

2.1 Introduction

A major goal of the RoboCup Standard Platform League is the development of improved bipedal
control of the Nao robots. The teams aim to demonstrate that the robots are able to execute in-
creasingly human-like bipedal behaviours, whether it be walking, kicking a ball, or self-stabilisation.
The ability to execute these types of movements, to be able to switch between them fluidly, and
to react against external forces to avoid falling over is a key research area in robotics. The respon-
siveness required by such movements is what is to be expected of future robots particularly when
emulating human behaviours, as in playing a game of soccer.

Such behaviour is extremely difficult or practically impossible to be programmed directly into a
robot. Careful study and analysis of human movement is required and mathematical models must
be derived to approximate it. Even then, such models tend only to work in ideal situations, such
as walking over a perfectly smooth and flat ground. In order to approach the behaviour that is
inherent in humans – that of adapting to any possible situation – it is necessary that machine-
learning principles are considered in order to adapt to any change in the robot’s environment. For
example, a hand-programmed walk will react differently over a rough and bumpy surface than over
a flat and smooth surface, as it is confined to a small subset of possible robot states, whereas a
machine-learned walk should in theory be able to react to either.

For the 2013 Open Challenge, we explored the application of Reinforcement-Learned behaviours for
bipedal movements on the Nao robots. We aimed to demonstrate that simulator-learned behaviours
could be applied directly to the Nao robots without the need for significant tuning in software. The
Open Challenge entry was titled “Stability Control through Machine Learned Behaviours” [7].

The learned behaviours aimed to react to a greater number of states than hand-programming would
allow for and to allow relatively simpler implementation of more advanced behaviours. Applied to
the Naos, we aimed for self-stabilisation without the need for hard-coding in a variety of states
including: changing support feet at different frequencies (walking on the spot); standing upright;
standing on either foot; and seamlessly switching between these.

2

2.2 Background & Related Work

Reinforcement Learning (RL) is a method of deriving software models for behaviour through ma-
chine learning. RL is used to automatically determine a model for actions to be taken given an
environment state such that a reward is given. The sum of future rewards is the value of the action
in a given state. In the context of stability control for bipedal robots, RL results in a software
model known as a policy. The policy states how the robot should actuate its motors given that it
is in some environment state, wants to reach some position (defined by the reward function), and
wants to do so optimally (by maximising value).

An RL model is defined by: [5]

States – the set of all states the robot can be expected to act in.

Actions – the set of all actions the robot can potentially take.

Transitions – the definition of how states transition into other states.

Reward – the definition of how good being in a certain state or doing a certain action is.

RL works by finding a function for the value of taking a particular action when in a particular state
and following the optimal policy thereafter. The optimal value is therefore the beset one of the
possible actions that can be taken in a given state. The value of each state-action is dependent on
the reward – taking actions which lead to rewards quickly is of higher value, taking actions which
lead to slow or negative rewards is of lower value.

The work presented in this report relies primarily on the application of RL research done by
Hengst [5]. Hengst’s work involved the use of a simulated environment for the robot, allowing
for fast reinforcement learning of optimal policies for various behaviours (defined by their reward
functions), including:

� Standing upright and still.

� Standing on one leg.

� Rocking between both legs.

Hengst’s work allows for a much simpler implementation of the policies in real hardware with less
need for manual learning or tuning. Testing this is one of the primary aims of the work outlined in
this report.

White’s [9] 2011 implementation of a simulator-learned policy for a walking gait on the Naos is
also an important motivator. White was able to show that a simulator-learned walk running on
the Naos was able to react to obstacles significantly better than one with no RL policy. However,
White also found that state measurement was very difficult due to noisy sensors and limited data,
and the work was not merged into the competition code.

Further work by Liu [6] in 2012 focused primarily on improving state measurement by introducing
heavy filtering of the Inertial Measurement Unit (IMU) located in the chest of the Naos. While
the demonstrated filters worked well, Liu found that the filtered values were not sufficient when
introducing more complex motion such as a walking gait. This was due to the filter’s underlying
assumptions that the robot was standing still and upright, and approximated an inverted pendulum
model.

3

2.3 Theory & Implementation

The work presented involves an attempt to combine the previous works of Hengst, White, and
Liu in order to produce these self-stabilising behaviours, and to explore the application to walk
stabilisation. Below we detail the theory and implementation of the major aspects of this work,
which include: learning the control policies, measuring the current state, and interpreting the
policies in the software.

2.3.1 Learning the Control Policies

In learning the policies for the behaviours, Hengst [5] defines a robot model, including as much
accuracy in the links, joints, masses, etc. as possible – an example of this is seen in Figure 2.1.

Figure 2.1 – The Nao robots modelled as a 23DOF (Degree of Freedom) system in (b). [5]

Hengst defines the state of the robot using two variables:

� position of the middle of the torso in meters

� velocity of the middle of the torso in m/s

The goal or reward function of a behaviour is therefore based on getting to some state (as in
standing still) or reaching some states at a certain time (as in rocking back and forth). Example
policies can be seen in Figure 2.2.

Figure 2.2 – Example of learned policies in the two state variables (position and velocity). The
policy defines what actions to take which will lead to the state approaching some
goal (for example, zero position and velocity for standing still, as in (a)). [5]

4

Knowing how the state of the environment changes based on actions is what the transition function
defines. The transition function is calculated by observing the change between states of the simu-
lation when subjected to a random choice of actions (from the set of actions that could be taken) –
the random simulation essentially explores the state space of the model through the actions. This
is a computing-intensive process – taking upwards of several hours to complete depending on the
resolution – but is also practically impossible to define through real-life tests due to the complexity
of analysing the environment, something a simulation can do very easily.

Once the state transitions are known, it is a simple case of calculating the value of each state-action
for any given reward function, and then finding the optimal action to take for a given state-action
(that is to say, the action to take depends not only on the current state, but also on the previous
action taken). The list of optimal actions for each state-action is then known as the optimal policy.
A reward function can be easily created for any goal desired, such as standing still or walking on
the spot, so long as the goal states are in the set of explored states. Knowing the state transitions
also allows for quick switching between behaviours by simply picking which policy to follow.

A total of 7 goal states were defined: 6 in the coronal plane (side-to-side motions), and 1 in the
sagittal plane (front-to-back motions). These goals were as follows:

1. Standing still (sagittal)

2. Standing still (coronal)

3. Fast pace rocking between feet

4. Medium pace rocking between feet

5. Slow pace rocking between feet

6. Standing on right leg

7. Standing on left leg

The RL process learns the actions required for optimal stabilisation of these goals, and the result
can be used to easily transition between the goals by simply following the policy of a new goal. The
optimal policies, which define the action required for each possible state, are then defined. Some
simplified example policies can be seen earlier in Figure 2.2.

The optimal policies are then given as a simple output of numbers, being the state-action pair and
the corresponding optimal action to take. An example output from a control policy can be seen in
Figure 2.3. This is known as a policy file, which can then be interpreted by the robot’s software.

2.3.1.1 Sagittal Goals

In the sagittal plane, only one goal is defined: standing still and upright.

As described by Hengst [3], the goal defined for standing still is to return to a neutral torso position
(with no velocity and at a zero position) and then take no action.

As a sagittal policy, we are concerned with movement of the torso in the sagittal plane (in other
words, leaning forward or back). The possible actions involve actuating the hip and ankle pitch
in order to return the leaning torso to the neutral position. The motor adjustment is defined very
simply as:

5

// Policy table for 6 Coronal behaviours

// State-action is defined by: Goal, lateral torso position,

// lateral torso velocity, last action taken

// Action: 0 for ankle roll left, 1 for none, 2 for ankle roll right

// state-action action

0 -0.08 -0.4 0 0

0 -0.08 -0.39 0 1

0 -0.08 -0.38 0 1

0 -0.08 -0.37 0 2

Figure 2.3 – An excerpt of a control policy for coronal behaviours.

δ = 0.01 ∗ (action− 2) (2.1)

The value of δ is the adjustment in radians added to the hip and ankle pitch angles. We let action
be an integer from 0 to 4, so that Equation 2.1 defines a ±0.02, ±0.01, or +0 radians adjustment
to the motors.

On every tick, the current state is measured, the next action is looked up from the policy, and the
motor angles are adjusted:

f loat ac t i on = sag i t ta lRL−>getAct ion (0 , pos , ve l , l a s t a c t i o n) ;
f loat adjustment = 0.01 * (ac t i on − 2) ;
j o in tAng l e [Jo int . LAnklePitch . iD ()] += adjustment ;
j o in tAng l e [Jo int . RAnklePitch . iD ()] += adjustment ;
j o in tAng l e [Jo int . LHipPitch . iD ()] += adjustment ;
j o in tAng l e [Jo int . RHipPitch . iD ()] += adjustment ;

2.3.1.2 Coronal Goals

In the coronal plane, six goals are defined. The policies for these goals are a little more complex
than for sagittal, so further information should be sought in the technical documentation provided
by Hengst. [4]

The coronal goals include: standing still; fast, medium, and slow pace rocks from foot to foot; and
standing still on either leg.

As some of the goals require a swaying of the robot’s hips from side to side to shift the weight
between either foot, part of the policy defines a hip sway variable as simply a constant multiplied
by the current lateral position of the torso.

For the coronal plane, only side-to-side movement is important, so the actions involve actuating
the hip and ankle roll motors. The adjustment to the motors is defined as:

δ = 0.045 ∗ (action− 1) (2.2)

where δ is the adjustment in radians, and actions are 0 to 2, such that the possible adjustments
are ±0.045 or +0 radians.

Again, on every tick the current state is defined, the next action is looked up from the policy, and
the motors are adjusted. It is important to note that some other updates and calculations are also

6

performed depending on which goal is required (for example, lifting up the legs when necessary).
Notice that the hip sway adjustment is added to the ankle and hip rolls in opposition to each other,
in order to maintain the center of mass over the support foot.

f loat ac t i on = coronalRL−>getAct ion (goal , pos , ve l , l a s t a c t i o n) ;
f loat adjustment = 0.045 * (a c t i on − 1) ;
f loat hipSway = 4 * po s i t i o n ;
j o in tAng l e [Jo int . LAnkleRoll . iD ()] = −hipSway + adjustment ;
j o in tAng l e [Jo int . RAnkleRoll . iD ()] = −hipSway + adjustment ;
j o in tAng l e [Jo int . LHipRoll . iD ()] = hipSway ;
j o in tAng l e [Jo int . RHipRoll . iD ()] = hipSway ;

2.3.2 State Measurement on Hardware

The Nao robots contain an Inertial Measurement Unit (IMU) in their chest, consisting of 2 gyrom-
eters and a three-axis accelerometer. [1] By knowing the location of the IMU, most importantly its
height from the bottom of the feet (dimensions given by Aldebaran Robotics), and ensuring this
matches with the simulator, one can use simple trigonometry to calculate the required position and
velocity state variables.

As seen in Figure 2.4a, we can define a simple axis system from the IMU, with the x-axis pointing
towards the front of the robot, the y-axis towards the side, and the z-axis pointing down to the
ground. This coordinate system applies to the three-axis accelerometer, which provides a m/s2

acceleration reading for each of these axes. The accelerometer readings can be used to help calibrate
the gyrometer, as the accelerometer should expect to read 9.81m/s2 for the z-axis and 0m/s2 for the
x- and y-axes when the robot is standing upright and still.

(a) Axes (b) State variables

Figure 2.4 – (a) The definition of the x-, y-, and z-axes from the IMU’s accelerometers, and the
lean angles from the gyrometers.
(b) The coronal state variables are the lateral position and velocity along the y-axis
of the IMU. θ is the coronal roll angle given by the gyrometer.

The position and velocity of the IMU is taken with respect to its neutral position, when the robot

7

is standing upright. In this way, it is expected that the coronal (side to side) position of the IMU
is exactly centered between the two feet. The two gyrometers provide an angular measurement of
the torso, being the angle of lean about the x-axis (which we shall call the coronal roll) and the
lean about the y-axis (the sagittal pitch), as seen in Figure 2.4a. When standing upright the torso
is expected to be at a pitch angle of 0° relative to the hip pitch (which depends on the way the legs
are bent while in a standing position), and a roll angle of 0°.

If we assume small perturbations to the torso (in other words, only small pitch and roll angles will
be in the state space of the policy), then we can approximate the position of the torso by simply
using the gyrometer measurements and the known height of the IMU from the base of the feet. As
seen in Figure 2.4b, which shows a lean in the x-axis (or a coronal roll), we can easily calculate the
horizontal displacement of the IMU with:

xt = H ∗ sin θt (2.3)

where xt is the position state variable at time t, H is some constant (the height of the IMU), and
θt is the angle of the torso lean at time t.

Furthermore, for small angles of |θ| < 30°, we know that sin θ ≈ θ (in radians). Thus, we can
approximate the lateral position of the IMU by simplifying Equation2.3:

xt = Hθt (2.4)

The velocity can be found in one of two ways:

� Integrate the accelerometer readings in the desired axis over time, or,

� Differentiate the position readings of the desired axis over time.

Both of these are relatively simple to achieve. In theory, integrating the accelerometer readings
should provide an accurate velocity at all instants of time. Differentiating the position however
means that only the instantaneous velocity is reported, as in:

vt = (xt − xt−1) ∗ f (2.5)

where vt is the velocity at time t, xt is the position at time t, and f is the tick rate of measurements
(i.e. 100Hz for the motion thread). This gives a m/s measurement as required.

For the sagittal pitch, a similar process is followed. If we project lines extending out from the
feet in the orientation they are facing, and take a line exactly in between them, then the position
of the body in the sagittal plane is the distance of the torso from its neutral position, as seen in
Figure 2.5.

Work was done on similar state measurement by Liu [6] through extensive filtering of the IMU’s
measurements. This had resulted in an inverted pendulum model which calculated a filtered angle
for the torso lean. This filter remained in place for angular measurements. In order to maintain a
relatively stable position state variable, a simple filter was used:

x?t = α ∗Hθt + (1− α) ∗Hθt−1 (2.6)

8

Figure 2.5 – The sagittal x-axis is always defined as being forward from the IMU (or center of the
torso). The neutral point (i.e. the origin) is the location of the IMU when the robot
is in a standing pose, shown here as the red dot.

For the filter, x?t is the filtered position state variable at time t, Hθt is as in Equation 2.4, and α
is a filtering rate between 0 and 1 (how much of the current measurement to use in the filter).

Attempts were made to also measure the state variables through integration of the accelerometer
data, but, as the results in Section 2.4 show, these measurements were too unstable to be of any
use.

2.3.3 Generic Policy Interpreter

As defined in Section 2.3.1 and seen in Figure 2.3, the reinforcement-learned control policies are
output as a policy file of (state-action, action) tuples. For the sake of generality, we will now refer
to these as (state, action) pairs. The policy files are then parsed by the Nao’s software during
runtime initialisation and used as necessary for making decisions about actions to take. A simple
parser and interpreter was used by White for the 2010 RL implementation. [9] The work presented
here is a redesign of White’s RLPlanner, as well as the application of the improved policies created
by Hengst.

2.3.3.1 Generic Policy File

First, we define a generic policy file format as in Figure 2.6:

// Comments are lines beginning with //

// The first non-comment line defines the resolution

1 0.002 0.01 1

// Each subsequent line defines a (state, action)

// goal pos vel last action

0 -0.080 -0.40 0 0

0 -0.080 -0.39 1 1

1 -0.080 -0.38 0 1

1 -0.080 -0.37 1 2

Figure 2.6 – Definition of a policy file.

9

We define some terms:

State – A list of values defining a state. For Hengst’s RL policy files, we use the tuple of (goal,
position, velocity, last action taken) – these four values are defined as the state of the robot
at any given time.

Action – A single value of type Action which defines what action to take. The Action type is
defined in the codebase, currently as an integer type.

Resolution – This line contains exactly one number for every state variable. This number defines
the exact distance between states for the respective state variable. In the example above, the
third state variable (velocity) can only differ in steps of size 0.01 exactly. Thus, −0.40 and
−0.39 are valid velocity states, but −0.395 is not.

2.3.3.2 RLPlanner

On initialisation, the class parses a generic policy file and stores it in a lookup table. Depending
on the resolution of the files, this may take up to several seconds per file.

A generic policy file is parsed by creating a map from states to an Action type. The mappings are
stored in a C++ map<vector<int>, Action> variable, essentially an n-dimensional lookup table,
where n is the number of state variables.

First, a vector of state variable resolutions is stored.

Next, each state is parsed. To allow for simpler state approximation and mapping lookup, each
value is converted to an integer by dividing the resolution of the variable. For example, a value
of −0.39 in a resolution of 0.01 becomes the integer −39. The values of the state are stored as a
single integer vector.

A simple interface function can be used to lookup an action from this table:

// Get the next ac t i on g iven the s t a t e v a r i a b l e s x1 , x2 , . . . , xn
Action a = r lp l anne r−>getAct ion (x1 , x2 , . . . , xn) ;

The getAction function automatically rounds the state variables to the nearest state before per-
forming the lookup.

2.3.3.3 Using the RLPlanner

A motion generator may use a policy file by creating an instance of the RLPlanner class.

A motion generator, such as StandGenerator (which defines the behaviour for standing upright
and still), simply creates an instance of RLPlanner for each required policy file, then on every tick
looks up an action to perform, and then performs it. The actions performed are those defined in
Sections 2.3.1.1 and 2.3.1.2.

Initialising a new policy simply requires:

RLPlanner * corona l = (RLPlanner *) (new RLPlanner (”/path/ to / po l i c y . r l ”)) ;

10

2.4 Results

Several policies were tested through the StandGenerator with mixed success. The sagittal standing
still controller proved to be most successful and is described in more detail below. The similar
coronal controller resulted in random oscillations of the robot due to the extra hip sway. These
random oscillations sometimes diverged and quickly destabilised the robot, even with extremely
heavy filtering of the gyrometer measurements. Due to a lack of reasonable results with the coronal
policies, the goals of rocking from foot to foot were not tested at all.

Sagittal self-balancing control when standing still was found to be an improvement over no control
policy. Upon being disturbed, the robot would actuate its hip motors and oscillate its body back
into an upright position. When reacting to pushes by human touch, the difference with and without
the control policy was readily visible, though it proved somewhat difficult to quantifiably verify.

Simple tests were performed of releasing a mass suspended on a pendulum such that it would strike
the standing robot with a given force – however, finding a mass that was heavy enough to cause a
noticeable impact, yet soft enough as not to cause damage, proved somewhat difficult. The set-up
for these tests can be seen in Figure 2.7.

Figure 2.7 – A simple experimental set-up for testing the stabilisation reaction in the robots upon
impact. A mass (in red) is released from a height such that the pendulum is parallel to
the ground. Unfortunately no suitable masses could be found to provide quantifiable
results.

Instead, a different test was performed. This involved releasing the robot from an angled backward
lean such that the only the heels of the robot were in contact with the ground. The response of the
robot from release until a stable upright position was timed. The results of these tests can be seen
in Table 2.1 below. The tests clearly show an improved response time for self-stabilisation when
using the sagittal control policy.

no controller sagittal controller
1 2 3 avg 1 2 3 avg

5° 2.16 2.23 2.05 2.15 1.58 1.40 1.77 1.58
10° 2.68 2.28 2.47 2.48 2.19 1.91 2.39 2.16
15° 2.77 2.80 2.69 2.75 2.45 2.37 2.65 2.49
20° 3.26 2.98 3.09 3.11 2.99 3.30 3.07 3.12
25° – – – – – – – –

Table 2.1 – Table of time taken for robot to self-stabilise after being released from a sagittal lean.
Times are in seconds. If the robot did not become stable, a time of – is given.

11

This work was presented at Robocup 2013 in The Netherlands for the Standard Platform League
Open Challenge. Hengst’s theoretical results [5] were described, a short video of simulated policies
was shown (also by Hengst), and the functional sagittal standing policy was demonstrated against
a robot with no control policy. rUNSWift’s Open Challenge entry was awarded 3rd place.

2.5 Evaluation

The results of the stability response test show that for small perturbations the robot could re-
cover stability significantly better with a control policy. Furthermore, the results also showed that
performance did not ever degrade when compared to no control policy, so the sagittal control pol-
icy was not observed to cause diverging oscillations. This is not the case for the coronal control
policies, where diverging oscillations could not be dampened even through heavy filtering of state
measurements.

A minor point to be made was when the robot was in a standing still state, very tiny adjustments
were still being made by the motors, causing a very small (barely perceptible) oscillation of the
torso back and forth. It is likely that this was caused by the significant noise apparent in the
gyrometer measurements – however, due to the nature of the noise, defining some noise threshold
for adjusting the motors was not a simple task. The constant actuation of the motors is undesirable
as it could potentially cause more wear and tears than without the control policy.

The three-axis accelerometer was found to be too noisy to be of any significant use for any state
measurements. While standing still, the accelerometer would report a large acceleration reading in
the z-axis (as expected due to gravity), but also non-zero and wildly fluctuating accelerations in the
x- and y-axes. Heavy filtering of these was found to be ineffective, as the offset from zero tended
to drift randomly and in a non-Gaussian manner (making it difficult to filter). Integrating the
non-Gaussian noise of course lead to a runaway velocity, which made the accelerometer unusable
for measuring state.

Similar issues were observed with the gyrometers, which provided extremely noisy measurements.
However, the gyrometers provided a somewhat more stable and accurate reading for the torso angle
than the noisy accelerometers. The angle measurement was enough for the sagittal goal to work as
mentioned above.

2.6 Future Work

State measurement is currently the biggest obstacle to overcome. Finding a reliable and accurate
way to measure the robot’s body state is by far the biggest contributor to future stability work.
More complex state measurement may involve the use of the Nao’s joint position sensors to create a
map of the robot’s body in three-dimensional space, along with accelerometer and gyrometer data
to determine attitude.

It is possible that simpler state measurement, such as tried in the work presented, may still allow for
sufficient results through the use of more advanced filtering. The seemingly non-Gaussian nature
of the noise in the sensors presented a challenge not able to be overcome by the author. However,
as the results showed, even crude filtering could be used to some effect for the simpler stability
problems like standing still.

It is quite likely that relying on just the angle measurement of the torso for coronal policies is not
sufficient, at least in the real-life tests. A potential theory for this may be the opposing forces of

12

the hip sway on the ankle and hip joints acting to restore the torso to a zero angle but leaving the
torso in a laterally displaced location. However, as the position state variable is calculated only
based on torso angle, it’s possible that the robot would assume it to be back in a neutral position
in this case. Further investigation is required.

Further improvements can also be made to the generic policy file interpreter. Most importantly,
sharing a single policy file between multiple generators is a function that should be added, as
currently the system may read and store in memory the same policy file multiple times if called by
multiple motion generators. No memory or performance issues were found during testing, but it is
possible that large C++ maps may not be the most efficient structure for storage, and this should
be further investigated if deemed necessary.

2.7 Conclusion

The overall contributions of the author are as follows:

� The implementation of a generic RL Policy Interpreter with the use of generic policy files for
future use in RL applications.

� The identification of areas where significant future work must be done for successful applica-
tion of RL work.

� A self-stabilising upright stand as a proof of concept of Hengst’s RL work being applicable to
the Naos.

� A 3rd place entry in the SPL Open Challenge of Robocup 2013.

The work presented proves that control policies learned on simulations of the robots can be suc-
cessfully used to perform self-stabilisation on the robots. This proves that the theory is sound and
applicable to real-life hardware, and eventually applicable to more stable bipedal behaviours. A
generic policy file format has been defined and an improved policy interpreter written – both tools
can be further improved for use in future exploration of RL applications.

Major failure points have been identified in state measurement. If the work presented here is to
be expanded on, more must be done on improving the accuracy of measuring the robot’s current
position and velocity, or some other way of defining the robot’s state must be found.

13

3

NewSkillz Behaviour Framework

3.1 Introduction

The work presented here describes the new behaviours framework for rUNSWift and is the combined
effort of the following authors: Beth Crane, Jack Murray, Dan Padilha, Stephen Sherratt, and
Alexander Whillas.

The NewSkillz behaviour framework is a new implementation of the Python-based control logic for
the rUNSWift codebase. The new framework aims to replace the existing Python skills by allowing
for a much easier learning curve, easily understandable code, the removal of redundancy through
abstraction, and less need for complex state transition models. Furthermore, the framework is
abstracted in such a way that allows the same behaviour code to be run on the robots as well as in
simulators with no modification required.

The 2012 behaviours were ported in a mostly-working state to the NewSkillz framework, as a
proof-of-concept. Examples in this section will stem from this proof-of-concept implementation.

As it required the effort of many authors, information about NewSkillz is spread throughout various
reports. In particular, more information about the integration with a simulator and the reasoning
behind the framework can be found in the report by Crane and Sherratt. [2] The focus of this section
therefore is to provide a gentle introduction to implementing skills using the NewSkillz framework,
as well as documentation of its major features. Note that the terms behaviour, skill, and sometimes
state, are used interchangeably throughout the text.

3.2 Theory

The behaviours framework is what controls the behaviour of the Nao robots when playing soccer.
Specifically, this refers to all high-level decisions the robots must make. That is to say, the be-
haviours do not define how a robot’s body moves in order to make it walk, how the robot analyses
a video image to find the ball, or how a robot communicates with its team-mates.

Instead, the behaviours framework defines how a robot decides whether to go for the ball or move
to another position, whether to kick the ball or line itself up at a better angle, whether to dive for
the ball as a goalie, and so on. This high-level decision-making requires rapid development during
the competition in order to adapt to the opposing team strategies. For this reason, a high-level
programming language (Python) is used for the greatest ease of development.

14

The NewSkillz framework differs from the 2012 skills framework in that it is not programmed
explicitly as state-machines. Instead, the states arise from inherent properties of the framework
while still being as simple to reason about. State is chosen through a tree-like structure of skills
where each skill decides whether to delegate its decision to another skill, or to perform some action
in a tick.

The skill tree can therefore be thought as a form of decision tree or state-machine. Each skill in
the tree is expected to delegate a decision down to a skill below it. Leaf skills – those which do not
need to delegate – are required to perform some sort of action in the real world, such as kick the
ball.

To better illustrate this concept, the skill tree for the proof-of-concept port of the 2012 skills is
shown in Figure 3.1.

Figure 3.1 – Tree of the proof-of-concept port of the 2012 skills. Skills in bright green are leaf
skills (which must perform some action). Skills in dark green are un-expanded nodes
(i.e. the skills they delegate to are not shown). An arrow from a skill represents a
delegation to another skill.

Notice that the tree contains two root nodes, being TopLevelSkill and TopLevelHeadSkill. This
allows for decisions to be made for the body and head separately.

The skill tree system provides cleaner and less redundant code through the delegation mechanism.
It is easy to imagine this by taking the state machine of the head as in the example provided by
Figure 3.2.

While the 2012 state machine may look simpler, code inspection reveals a much more complex
system. For starters, each skill (which we will refer to as a state) in the 2012 framework must
include a state transition function defining when to transition to a different state. States can
transition to states which transition back to the parent states, or they can transition in only one-
way – this requires redundant checks for the condition to transition back into a state. Furthermore,
any state can potentially cause an action or only perform state transitions. While this framework
allows for much flexibility, it requires a much greater learning curve and unintuitive coding style.

15

(a) 2012 framework (b) NewSkillz framework

Figure 3.2 – Example of the state machine approach of the 2012 skills framework, and the
NewSkillz skill tree approach.

By contrast, the NewSkillz skill tree may look equally complicated, but becomes significantly easier
to understand and write for once the required properties are understood:

� All state transitions are one-way.

� A state/skill may only transition to another state, or perform an action, but not do both.

These properties inherently create a state-machine, so they allow for the same flexibility as the 2012
framework, albeit not in the same way. For example, a NewSkillz skill cannot possibly be written
in such a way that it can do both state transitions and perform an action. Instead, the programmer
is forced to partition the skill into a decision and its possible actions, leading to simpler modular
code.

3.3 Implementation

3.3.1 Codebase

The rUNSWift codebase is split into the C++ backend and the Python behaviours framework. The
behaviours framework is run through the Perception thread (running at 30Hz) in

runswift/robot/behaviour/python/PythonSkill.cpp

This defines the C++ to Python interface. It also ensures that live-reload for skills works – a
robot can be left running in a crashed state, modified skills can be pushed to it, and it will simply
continue running as if it had never crashed.

The Python entry-point is located in runswift/image/home/nao/data/behaviours/cpp glue.py

On every tick, cpp glue ticks both the TopLevelSkill and TopLevelHeadSkill. Because the
body’s TopLevelSkill is ticked after the head, any skills in the body skill tree can choose to
delegate to a skill in the head tree and thus override the head tree’s actions.

All skills are located in runswift/image/home/nao/data/behaviours/skills

16

3.3.2 In Real Life (IRL)

The IRL class is an abstraction of the state of the robot, and also an interface to perform actions,
such as moving the head, walking, or kicking the ball.

The IRL abstraction works to such that skills can rely on the state (known as Sense) and Actions,
regardless of whether they come from the rUNSWift codebase, or from the simulator. [2] This
clearly allows for the same skills to be used for both platforms, with only the Senses and Actions

being written separately.

3.3.2.1 Sense

The Sense IRL defines a set of functions which provide the state of the robot at any instant. Run-
ning on the robots, the Sense IRL works simply as a wrapper for the rUNSWift Blackboard, which
provides a shared state between all threads. Examples of Senses include: is ball visible(),
game state(), is lost(), and so on.

Senses are defined in runswift/image/home/nao/data/behaviours/robot sense.py

Any skill can access the Sense functions by simply calling self.irl.sense.some sense function() .

3.3.2.2 Action

The Action IRL defines a set of functions for interacting with the

Any leaf skill can perform an action by calling self.irl.action.some action(argument) . By
definition, actions are only allowed to occur inside the tick function of a skill (see Section 3.3.3.1).

3.3.3 Skills

The Skill class is the “bread and butter” of the NewSkillz framework. This class abstracts away
state transitions entirely from the programmer and provides the IRL to all skills automatically. The
class also defines the argument-passing interface for skills.

Every skill in the skill tree is a subclass of Skill. Skill provides two functions: tick and delegate.
When implementing a skill, exactly one of these functions must be overloaded, depending on
whether the skill expects to delegate its decision to another skill, or tick an IRL Action.

Both the tick and delegate functions can be defined with required and optional arguments.
These arguments are supplied when skills delegate to other skills. This process is described more
in Section 3.3.3.2.

3.3.3.1 Tick

The tick function is defined only for leaf skills which do not expect to delegate to any other skills,
and instead expect to perform some IRL Action.

Good design is to have very atomic leaf skills that perform a single action, perhaps with some
parameters, but with little to no conditional logic.

17

3.3.3.2 Delegate

The delegate function is defined only for skills which expect to delegate to another skill to perform
some action. These skills perform all the logical decisions about states.

Good design should ensure that skills cannot possibly delegate in a cyclic manner (i.e. traversing
the skills tree should guarantee arrival at a leaf skill).

3.3.4 Geometry

A simple geometry library is implemented which defines some Vector-like objects and all associated
functions.

The geometry library is in runswift/image/home/nao/data/behaviours/geometry.py

There is one primitive class defined in geometry known as a Point. A Point simply represents
an (x, y) tuple. Three subclasses are defined: Vector, UnitVector, and DirectionVector. All of
these perform in exactly the same way, and differ only by their initialisations:

Point takes an x and y coordinate.

Vector takes a length and a direction in radians.

UnitVector takes a direction in radians and becomes a vector of length 1.

DirectionVector takes a direction in either degrees or radians and becomes a unit vector.

These geometry classes should be used for any representations of points on the field, direction
facing, point to walk to, relative distances, and so on. The Point superclass defines many useful
vector functions, including rotations, lengths, subtractions, etc.

An example works as such: if a robot is located at a robot pos = Point(x, y), is facing in the
robot facing = DirectionV ector(45°), and wants to turn towards the ball at ball pos = Point(x, y),
then the amount the robot needs to turn is given by the angle:

(robot pos� ball pos).rotate(robot facing).angle() (3.1)

Here, the� (right-shift) operator returns the vector from robot pos to ball pos. This vector is then
rotated such that the robot facing vector becomes the x−axis. This gives the vector to the ball
relative to the robot’s facing direction. Finally, one can extract the angle which the robot needs to
rotate to in order to face the ball.

Alternatively, and even more succinctly:

robot facing.angle to(robot pos� ball pos) (3.2)

The geometry library thus allows for much simpler calculations to be made for many vector oper-
ations.

18

3.3.5 Debugging

All Python runtime exceptions and errors are caught by cpp glue. cpp glue keeps watch on the
skill-tree in order to print debug information about it, and catches all Python exceptions in order
to place the robot into “Emergency mode”.

Under “Emergency mode”, the robot stops all movement, flashes all its LEDs in random colours,
and audibly requests to be picked up. The stack trace produced by Python shows the faulting skill
as well as its parent skill, but no further back. If a bigger stack trace is required, simply print out
the skill name in the tick function of Skill.

Thanks to the live-reload functionality built into cpp glue, new skills can be pushed to the robot
while in “Emergency mode”. Once a Python file is modified on the robot, NewSkillz reloads all
skills and the robot continues from whatever state it was in (as the Blackboard state is preserved).

3.4 Future Work

Further work needs to be done on the NewSkillz framework. The architecture is in place and the
design works well both for writing skills and for implementation within a simulator, so future work
should look at improving the design where necessary. Some possible improvements include:

� Implement a method of locking state to a specific leaf skill. When, for example, the robot
decides to kick by calling a KickBall leaf skill, the framework should not switch to another leaf
skill until the action is completely done. As safeguards are already in place in the underlying
C++ code (no further actions can be performed until a kick is finished), this has yet to be an
issue, but it may be in future.

� A graphical interface, most probably with an ncurses library, for dynamically displaying
the skill tree while the skills are running. This could show the current decision path taken
through the skill tree at any given moment, giving an easy way to diagnose bugs.

Currently only a semi-working port of the 2012 skills framework exists which runs on the robots.
Any further work on rUNSWift behaviours should focus primarily on continuing the porting of
the older skills framework which provide advanced competition-ready behaviour. It is also worth
noting that the 2012 skills were improved during 2013, so the port should focus on the latest.

3.5 Conclusion

A major advantage resulting from the NewSkillz framework is the significant cut down in redundant
code due to the IRL abstraction. By design, all skills have access to the IRL, and therefore to
the Blackboard – which needed to be passed around to everything in the 2012 framework. The
standard Skill class also helps to abstract state transitions away, allowing for a simpler skill tree
while retaining the flexibility of state transitions.

The NewSkillz framework therefore allows for simple implementation both on hardware and in
a simulator. Future work on rUNSWift should ensure that the behaviours are written to a
competition-ready state. The framework allows for more readable and easier to understand code,
which should help significantly ease the pain of rapid development and debugging during the
Robocup competition.

19

4

Drop-In Player Challenge

4.1 Introduction

One of the challenges in the 2013 SPL competition was the Drop-In Player Challenge, which required
robots to communicate and cooperate on teams comprising robots from other teams. This work
expands on rUNSWift’s existing modular framework as defined by the 2010 design [8].

4.2 Implementation

The challenge expected robots to communicate using a common C structure, sent as a single network
packet and broadcast to the entire team on a specific port. The necessary broadcast structure, seen
below, was extremely close to the one already existing for robot communication by the 2010 design.

struct DropInBroadcastInfo {
char header [4] ; // ”PkUp”
int playerNum ; // 1−5
int team ; // 0 i s red 1 i s b l u e
f loat pos [3] ; // po s i t i o n o f the robo t in cm, x , y , t h e t a
f loat posVar [3] ; // po s i t i o n covar iance
f loat bal lAge ; // seconds s ince t h i s robo t l a s t saw the b a l l . e l s e −1
f loat ba l l [2] ; // po s i t i o n o f the b a l l
f loat bal lVar [2] ; // covar iance o f p o s i t i o n o f the b a l l
f loat ba l lVe l [2] ; // v e l o c i t y o f the b a l l
f loat pena l i z ed ; // seconds the robo t has been pena l i z e d or −1
f loat f a l l e n ; // seconds the robo t has been f a l l e n or −1

} ;

The only change deemed necessary for a cooperative robot was therefore to swap the Receiver and
Transmitter modules with ones capable of converting between the DropInBroadcastInfo structure
and rUNSWift’s BroadcastInfo structure.

New variables required, such as ball velocity, were easy to implement as they were already calculated
and stored in the Blackboard by the perception thread. Some rUNSWift specific variables, such as
current action being performed, had to be removed. The result were two new modules: DropInRe-
ceiver for analysing information from team-mates, and DropInTransmitter for broadcasting data
to team-mates.

20

One can easily switch between the DropIn and normal Receiver/Transmitter modules by setting
the configuration option game.type to DROP IN.

4.3 Results & Evaluation

As expected, rUNSWift’s robots reacted as if they were playing on teams with their own robots.
They demonstrated team work with the other robots by switching roles depending on their team-
mates’ positions. The behaviour was enough to give rUNSWift a 3rd place overall in the challenge.

While no issues with the implementation were observed, it is worthy of noting that for this year
the DropInBroadcastInfo structure was considered an optional part of the challenge. Reading the
broadcast packets showed that at least half of the teams were not sending the same structure, and
as such could only be considered to be sending garbage (as there is no way of determining what
information they were providing). This resulted in less team-work than expected, as some robots
were effectively not communicating.

4.4 Future Work

The lack of standardisation for communication was acknowledged by the judges in hindsight; the
competition is expected to be run again in the future with tighter restrictions. As such, there is
enough reason for improvements to be made to the system.

Furthermore, it is possible that defining and proposing a communications standard to be used by
all teams may be something to look into. Passing the ball between robots is expected to be a major
aspect of the competition in the near future and drafting a proposal may give the teams room to
add more advanced features, such as robots calling when they are open to accepting a pass, or to
where they are passing to.

21

Bibliography

[1] Aldebaran Robotics. NAO Software 1.14.3 documentation – NAO H25 Inertial Unit.
http://www.aldebaran-robotics.com/documentation/family/robots/inertial robot.html.

[2] Beth Crane and Stephen Sherratt. “rUNSWift 2D Simulator; Behavioural Simulation Integrated
with the rUNSWift Architecture”. UNSW School of Computer Science and Engineering, 2013.

[3] Bernhard Hengst. File-Note: “Reinforcement Learned Sagittal Balancing Policy for Nao”, 2013.

[4] Bernhard Hengst. File-Note: “Reinforcement Learned Sideways Stepping Policies for Nao”,
2013.

[5] Bernhard Hengst. “Reinforcement Learning of Bipedal Lateral Behaviour and Stability Control
with Ankle-Roll Activation”. In WSPC Proceedings, 2013.

[6] Roger Liu. “Bipedal walk and goalie behaviour in Robocup SPL”. UNSW School of Computer
Science and Engineering, 2013.

[7] Dan Padilha and Bernhard Hengst. rUNSWift 2013 Open Challenge Entry: “Stability Control
through Machine Learned Behaviours”, 2013.

[8] Adrian Ratter, Bernhard Hengst, Brad Hall, Brock White, Benjamin Vance, David Claridge,
Hung Nguyen, Jayen Ashar, Stuart Robinson, and Yanjin Zhu. “rUNSWift Team Report 2010”,
2010.

[9] Brock White. “Humanoid Omni-Directional Locomotion”. UNSW School of Computer Science
and Engineering, 2011.

22

	Outline
	Reinforcement-Learned Stabilisation
	Introduction
	Background & Related Work
	Theory & Implementation
	Results
	Evaluation
	Future Work
	Conclusion

	NewSkillz Behaviour Framework
	Introduction
	Theory
	Implementation
	Future Work
	Conclusion

	Drop-In Player Challenge
	Introduction
	Implementation
	Results & Evaluation
	Future Work

