
THE UNIVERSITY OF NEW SOUTH WALES

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Automated O✏ine Colour Calibration
using a

Feature Templating System

Calvin Tam
z3376392

ctam@cse.unsw.edu.au

COMP3902 (Special Project B)

Submitted: June 10, 2013

Supervisor: Dr. Bernhard Hengst

Assessor: A. Prof. Maurice Pagnucco

Acknowledgements

I would like to thank my supervisor, Dr. Bernhard Hengst, for his continued mentoring and
support.

Thanks go to this year’s rUNSWift team consisting of Alex, Beth, Dan, Jack, Richard and
Stephen for putting in a lot of e↵ort into this year’s competition. Thank you Jayen and Sean
for your enthusiasm and providing helpful advice along the way.

Finally, I would like to thank my dear Vivian for her unwavering support and encouragement.

2

Abstract

The aim of this project is to address the significant time and e↵ort required to perform manual
colour calibration by automating the process altogether. A feature templating system is pro-
posed as a method to achieve automation, with two automatic colour calibration techniques:
Scaled Fovea and GrabCut, compared against the existing manual colour calibration process.
Using images taken from the competition field, the various techniques were applied to extract
the required training data and produce a colour lookup table. The method were then evaluated
based on the performance of their colour lookup tables in correctly classifying the pixels of new
test images. Experimental results demonstrated that the automated Scaled Fovea approach
has the same accuracy as the existing manual approach but with significantly less time and
e↵ort, and thus is a viable alternative. This proof-of-concept lays the foundation for integrating
automatic colour calibration into the competition preparation routine.

3

Contents

1 Introduction 7
1.1 RoboCup SPL . 7
1.2 Aldebaran Nao . 7
1.3 rUNSWift . 7
1.4 Feature Detection . 7
1.5 Colour Calibration . 8
1.6 Aims . 8

2 Background 9
2.1 rUNSWift Vision Overview . 9
2.2 Colour Calibration . 10
2.3 Related Work . 10
2.4 Goal of the project . 12

3 Manual Colour Calibration -
The Ground Truth 13
3.1 Motivation . 13
3.2 The Ground Truth . 13
3.3 Colours . 13
3.4 Criteria for classifying pixel colour . 14
3.5 Conclusion . 14

4 Manual Colour Calibration -
Existing Method 16
4.1 Motivation . 16
4.2 Existing Manual Colour Calibration . 16
4.3 Procedure . 16
4.4 Conclusion . 17

5 Templating using Annotated Bounding Boxes 18
5.1 Motivation . 18
5.2 Template Definition . 18
5.3 Camera Alignment . 20
5.4 Environment Setup . 20
5.5 Conclusion . 21

4

6 Automatic Colour Calibration -
Scaled Fovea 22
6.1 Motivation . 22
6.2 Scaled Fovea . 22
6.3 Calculating the Scaled Fovea . 22
6.4 Procedure . 23
6.5 Conclusion . 23

7 Automatic Colour Calibration -
GrabCut 26
7.1 Motivation . 26
7.2 GrabCut . 26
7.3 OpenCV Implementation of GrabCut . 27
7.4 Procedure . 28
7.5 Conclusion . 28

8 Generating the Colour Lookup Table 31
8.1 Motivation . 31
8.2 Colour Lookup Table . 31
8.3 Training Data . 31
8.4 Weight Distribution using Gaussians . 31
8.5 Creating the Colour Lookup Table . 32
8.6 Conclusion . 32

9 Results 33
9.1 Motivation . 33
9.2 Methodologies . 33
9.3 Measure of Performance . 33
9.4 Test Suite . 33
9.5 Experimental Results . 34

9.5.1 Experiment 1 . 36
9.5.2 Experiment 2 . 38
9.5.3 Experiment 3 . 40
9.5.4 Experiment 4 . 42
9.5.5 Experiment 5 . 44
9.5.6 Experiment 6 . 46

9.6 Evaluation . 48
9.7 Discussion . 48

10 Future Work 50
10.1 Motivation . 50
10.2 User-friendly way to create templates . 50
10.3 Template overlays on camera feed . 50
10.4 Gaussian radii tuning . 50
10.5 Skewed Features . 51

5

11 Conclusion 52

Appendix 1 55

6

Chapter 1

Introduction

1.1 RoboCup SPL

The RoboCup Soccer competition consists of five leagues, but for this project the main focus
will be the Standard Platform League (SPL). In the SPL, teams use the same hardware, which
allows them to focus on creating innovative software solutions. In 2013, the SPL introduced
some major changes, notably increasing the field size from 6 x 4m to 9 x 6m and the number
of playing robots from 4 to 5. The former poses perhaps the greatest challenge since the robots
continue to be of the same specification, while the latter has severely a↵ected the mechanics of
team play, both of which means the existing code has to be updated to reflect the change.

1.2 Aldebaran Nao

The Nao is a programmable, 57-cm tall humanoid robot developed by Aldebaran Robotics,
France. It is widely used as a research tool by academics from all over the world, mainly
because of its large degrees of freedom, wide range of sensors and a↵ordability. The Nao is the
standard hardware platform on which the SPL uses for competition. For the 2013 competition,
the Nao’s used were the Version 4 (V4) H25, which has 25 degrees of freedom.

1.3 rUNSWift

rUNSWift is the team from The University of New South Wales in Sydney, Australia, and
has competed in every RoboCup competition since 1999. It mainly consists of undergraduate
students who perform research on a plethora of topics such as vision, behaviour, motion and
localisation, and have been ranked among the top four within the RoboCup SPL.

1.4 Feature Detection

The main way to detect objects in the robotics fields continues to be vision. However extracting
information from 2D computer vision continues to be an inherently di�cult problem due to
the fact that the data originates from a 3D environment. In the context of the RoboCup

7

competition, all objects are colour-coded (ball, goal, field lines, etc) and thus the dominant
feature detection algorithms in the league remain heavily reliant on colour information. The
camera images retrieved tend to be negatively a↵ected by factors such as lighting intensity,
angle of light projection and colour discrepancies of the objects themselves, which means that
with the continued trend of relaxing the requirements of the competition environment setup,
the computer vision algorithms employed must be increasingly robust to these fluctuations.

1.5 Colour Calibration

As a result of lighting fluctuations which bring about colour distortion, it is necessary for the
robot to perform colour calibration whereby colours in the new domain are remapped to their
true colour. This is so that the robots can continue to rely on the camera to perform feature
detection. Traditionally this procedure was done manually for each camera on each robot since
there tended to be noticeable di↵erences in each camera, but this amounted to repetitive and
time-consuming work. Typically (and in the case of the rUNSWift team) this is performed
manually o✏ine via a graphical user interface and the output is a colour lookup table that
allows for constant time lookup during competition. In recent years, teams have moved towards
automated online and o✏ine colour calibration with varying degrees of success.

1.6 Aims

This project aims to present a proof-of-concept which addresses various criteria:

• Accuracy - The new methodology should be able to produce a colour lookup table with
a similar or better accuracy than those produced by the existing manual process.

• Speed - Currently the manual process of performing colour calibration is time-consuming
and repetitive, which should instead be automated so that the time spent on colour cali-
bration is reduced from about 1 hour to 5 minutes.

• Compatibility - The end result of the new method should produce the same files as
the old method, which has the e↵ect of allowing the colour calibration methodology to
be swapped easily. This modularity would allow for quick switching between the manual
and automatic way without having to modify other components in the rUNSWift vision
pipeline.

• Practicality - The method used to automate the colour calibration process must be
suitable in a time-scarce competition setting. This means that the user should not need
any fine-tuning or further adjustments.

8

Chapter 2

Background

2.1 rUNSWift Vision Overview

The very first step of the rUNSWift vision pipeline involves the extraction of the raw images
from the robot camera. In the new V4 Naos cameras, the maximum resolution is 960p but this
is rarely used because of the extremely low frame rate, and as such the lower resolution of 640
x 480 pixels is used instead. This is a YUV422 formatted image stream which is then processed
through a multitude of steps to produce saliency images that are relied upon by the rest of the
rUNSWift system. The saliency images produced are at a reduced size of 160 x 120 pixels (top
camera) or 80 x 60 pixels (bottom camera), and consists of:

1. Grey Scale Saliency - only luminance information is stored (Y component of YUV) and
is used to detect edges for the Edge Saliency image (Figure 2.1b)

2. Edge Saliency - provides candidate edges that are used to perform field line detection
(Figure 2.1c)

3. Colour Saliency - classifies each individual pixel into one of the mapped colours which
are used for detecting the ball and goalposts and as a sanity check for field line detection
(Figure 2.1d)

a) b) c) d)

Figure 2.1: from left to right: a) Original RGB image, b) Greyscale Saliency image, c) Edge
saliency image, and d) Colour saliency image

9

2.2 Colour Calibration

This project targets the production of the colour saliency image described in the previous section,
whereby the aim is to provide an alternative pathway to colour calibration by replacing the
manual colour calibration process with an automated one (Figure 2.2).

Figure 2.2: Flowchart showing the part of the rUNSWift vision system that is being targeted
for automation

2.3 Related Work

Teams in the SPL have worked towards automatic colour calibration in both online and o✏ine
contexts with various degrees of success. There are a variety of strategies employed with a focus
on retrieving training data from the image pixels and also statistical methods for colour class
separation.

Sridharan and Stone [6] aim to remove the need for manual colour calibration altogether. The
authors utilised a colour-coded map of the environment and the known positions of field features
in the environment to perform automatic colour calibration in less than five minutes. Though
there was no need for labelled training data, the trade-o↵ is that the position of the robot on
the map must be determined. The caveat of this approach is that it assumes full availability
of the field, which in a competition setting is highly unlikely as many teams share the same field.

Guerrero et al. [7] deviate from most automatic colour calibration methods, combining both
o✏ine and online work. The authors used the spatial relationships between colour classes in a
given colour space to progressively train the system to di↵erentiate colours. The benefits of an

10

online approach is that it was able to adapt to changing lighting conditions during competition.
Though the authors were able to demonstrate the use of such a method online, they did note
that there was a significant computational resource usage which rendered it ‘not good enough
to play soccer’.

Furtig, Friedrich and Mester [8] performed supervised learning over on a large set of manually
labelled images with varying lighting conditions. The authors then relied on the distribution
and spatial relationship of colour in terms of their colour class to fit their model of the compe-
tition environment. The classifier was ultimately done online, and the end result was a colour
lookup table. However this approach relied heavily on a priori knowledge of the distribution of
the colours, which may not necessarily map well for ambiguous colours such as the ball’s orange
and the robot jersey’s and goalposts’ yellow.

Khandelwal et al. [9] presented a rather interesting approach whereby the hardware param-
eters of the camera were automatically adjusted to match the color perceptions of a separate
high-quality camera, allowing the re-use of the same color table. This approach is particularly
interesting because with the adoption with the newer Nao V4s, there is more scope to use both
the top and bottom camera simultaneously. However each camera tended to have significant
enough discrepancies that made it unreliable to use the same colour classification table. Un-
fortunately this approach required the use of a ‘known good camera’ to essentially define the
‘true’ colour of the given pixel and then reference that image with the Nao’s, and this must be
done with a relatively static background image. This in practice is di�cult to achieve on the
competition field as many teams share it.

Henderson, King and Chalup [10] converted the YUV colour space to the HSI space and used
that instead as additional information to automate the colour separation process. An expecta-
tion maximisation algorithm is then performed to estimate the parameters of the multivariate
Gaussian mixtures needed to do the colour separation. The trade-o↵ between the traditional
manual calibration and this method are the holes present in the colour space. This method tends
to ‘over-segment’, creating artificial boundaries that can cause misclassification that would oth-
erwise have been made ‘unclassified’ or at least ‘ambiguous’.

Zrimee and Wyatt [11] used supervised machine learning to train the vision system to recognise
the field objects. The authors aim to make it robust against changing lighting conditions. Edge
detection using the Sobel filter is used to form regions, in which the average colour in each region
is computed, and then fed into the C4.5 machine learning algorithm to progressively improve.
However only red, green and blue were determined to be suitable for such learning and as such
is not suitable for competition use where there are far more colours to be classified.

There is a common theme of either using a statistical approach with a priori knowledge of
what the general structure of the colour classes are, or a machine learning approach whereby
the focus is then on how to extract training data in the form of images from the field and
progressively improving its colour perception model. There is also a caveat with attempting an
online approach as this would constrain the computational power available, but on the other
hand attempting an o✏ine approach would mean the robot is unable to adapt to changing

11

environmental conditions. In this project, the machine learning approach is used in an o✏ine
context as the aim is to replace the original manual o✏ine colour calibration process in order to
save time during the setup process.

2.4 Goal of the project

In this project, human defined bounding box templates are used to guide the user in aligning
the camera. This allows for the extraction of the required training data which is then used
to produce a colour lookup table. The key to automating the colour calibration process is to
develop algorithms that are able to select good training data in the form of colour pixels, these
namely being the Scaled Fovea and GrabCut [5] algorithms. The Scaled Fovea algorithm scales
down the bounding box by a fixed percentage and uses the pixels in the new bounding box as
training data, while the GrabCut algorithm uses the textures and edges of the image to surround
the feature of interest and thereby the source of the training data.

The ultimate aim is to automate the existing manual colour calibration procedure, saving prepa-
ration time during competition and debugging. The use of automatic colour calibration for
rUNSWift would bridge the gap between the other teams in the league, and thus the aim is for
this project to address this need.

12

Chapter 3

Manual Colour Calibration -
The Ground Truth

3.1 Motivation

In order to compare the methodologies presented in this project, there needs to be a control
from which a performance benchmark can be obtained. In this chapter the construction of the
ground truth image is shown.

3.2 The Ground Truth

The point of reference in comparing the manual and automatic methodologies will be a man-
ually classified, hand-tuned calibration which shall be called the ‘ground truth image’. This
di↵ers from the existing manual calibration which uses the existing O↵nao debugging utility
(see Chapter 4), as the process allows noise to be removed with pixel-by-pixel rectifications in
an image-editing tool such as GIMP, whereas in O↵nao the utility only provides a quick and
rough tool for competition use. The process for creating the ground truth image is described in
Algorithm 1.

This type of manually labelled data forms the testing suite for comparing the colour lookup
tables produced by the various methodologies presented in this project in the form of a pixel-
by-pixel error comparison.

3.3 Colours

In order to compare the di↵erent methodologies, the classified colours must map to the same
colour (Table 3.1). The mapped colour can be any arbitrarily defined colour but for simplicity
the saturated version of the colour was chosen.

13

Feature Type Mapped Colour
Ball Orange
Robot blue waistband Dark cyan
Goalpost Yellow
Robot red waistband Dark red
Field green Green
Field line White
Other/ Unclassified Cyan

Table 3.1: Mapping between feature type and colour

a) b)

Figure 3.1: a) Original raw camera image, b) Ground truth image

3.4 Criteria for classifying pixel colour

Each object will have a spectrum of colours within it, which could be a shadow, sheen or even
scu↵ marks. Thus pixels must be selectively classified even within the proximity of the feature as
some pixels may not necessarily be representative of the feature itself and adding these candidate
points can cause a pollution of the data.

3.5 Conclusion

In this chapter the foundation of comparison in the form of a hand-classified image was demon-
strated, which paves the road for showing how well the methodologies explain in the next few
chapters perform.

14

Algorithm 1 Manual Colour Calibration Procedure (The Ground Truth)

truthImage a downsampled RGB image of the original
for all pixel 2 truthImage do

pixel (colour 2MappedColours) . see Table 3.1 for MappedColours
end for
for all pixel 2 truthImage do

if pixel /2MappedColours then
pixel UNCLASSIFIED . as per Table 3.1, UNCLASSIFIED = Cyan

end if
end for

15

Chapter 4

Manual Colour Calibration -
Existing Method

4.1 Motivation

In this chapter, the existing manual and ground truth colour calibration processes demonstrate
the need for automation and also how the di↵erent methodologies were compared in terms of
performance.

4.2 Existing Manual Colour Calibration

rUNSWift has traditionally used manual methods to do colour calibration. Before a new game,
a team member would be responsible for moving the robot on the field, placing objects in the
robots field of vision so that a representative snapshot of the colours could be recorded in the
teams O↵nao debugging utility. The video feed would be played back o✏ine and paused at the
required images to do the manual colour calibration.

4.3 Procedure

Algorithm 2 presents the current methodology employed by the rUNSWift team for colour
calibration. Performing colour calibration for all the robots and for both the top and bottom
camera amounts to a large amount of tedious, manual labour, considering that in a typical
competition setting there are 5 robots each with 2 cameras, giving a total of 10 cameras to
calibrate. This is necessary as the cameras on each of the robots are su�ciently di↵erent in
manufacturing quality. Currently, the rUNSWift team performs calibration for both cameras
on just 1-2 robots and then duplicates the colour lookup table across the fleet. This concession
is less than ideal, thus the automatic colour calibration procedure aims to remove the need for
such tedious labour.

16

4.4 Conclusion

In this chapter the existing manual colour calibration method was shown to be a tedious and
laborious task, which will be automated using the techniques described in the following chapters.

Algorithm 2 Manual Colour Calibration Procedure (Existing)

manuallyCalibratedImage image from the calibration tab in the Offnao utility
kernel 3D colour classification matrix storing the mapped colour and weight
yRadius 10 . see Table 8.1 for the predefined Gaussian radii
uRadius 20
vRadius 20
weight 1
for all robots do

for all cameras do
for all colour 2MappedColours do . see Table 3.1 for MappedColours

while colour is not fully classified do
if undo then

remove last kernel update
else

select a (y, u, v) pixel in manuallyCalibratedImage to be classified as the colour
update kernel with addGaussian(y, u, v, weight, colour, yRadius, uRadius, vRadius)

. see Section 8.4 for the addGaussian procedure
end if

end while
end for
colourLookupTable convert the kernel to a colour lookup table

end for
end for

17

Chapter 5

Templating using Annotated Bounding
Boxes

5.1 Motivation

In the manual process, the human user is able to quickly identify the features in the video stream.
This chapter lays the foundation for the transition from manual to automatic by developing a
system that can quickly approximate the location of the feature, which provides guidance to the
Scaled Fovea and GrabCut algorithms.

5.2 Template Definition

The templates contain predefined bounding boxes annotated with data that will be used by the
automatic colour calibration procedures (Table 5.1).

Data Field Comments
colour An integer representing the di↵erent colours in the SPL

(e.g. white for the field lines, orange for the ball, etc)
x An integer representing the x pixel coordinate of the top-left

corner of the bounding box
y An integer representing the y pixel coordinate of the top-left

corner of the bounding box
width An integer representing the pixel distance along the x axis
height An integer representing the pixel distance along the y axis

Table 5.1: Data fields in the feature templates

OpenCV convention dictates that the top-left corner of the image be the origin (0, 0) and as
such the positive x axis runs to the right and the positive y axis runs downwards.
The format of the templates are plain text files with whitespace delimiting the data fields (no
leading whitespace is allowed however). A feature is a line of 5 integers, and the rest are ignored
as comments. The purpose of the templates is to allow for quick runtime changes during the

18

debugging phase of creating the initial template itself and also gives the user a plethora of
templates to pick from for their custom purposes.

Figure 5.1: Definition of origin and the positive x- and y- axes in OpenCV convention

Figure 5.2: Screenshot of a typical features template

19

5.3 Camera Alignment

With the templates defined, the user then has to align the robot on the field such that the
features are within the bounding boxes. Note that the templating system essentially provides
a rough estimate of the location of the feature and not a pixel-perfect definition of its location.
The main purpose of this is to make it lenient enough for the user to quickly position the camera
to the features but bounded enough such that the Scaled Fovea extracts only the core of the
feature. It is very important that the Scaled Fovea only select pixels that are certain to be part
of the feature, otherwise the fovea used will cause degraded performance for both automatic
colour calibration processes.

Figure 5.3: Bounding boxes (red) overlaid over raw camera image representing each feature
stored in template file: a) Green - field, b) Yellow - goalpost, c) Yellow - goalpost, d) Blue -
robot blue waistband, e) Orange - ball, f) Red, robot red waistband, g) Yellow - goalpost, h)
White - field line

5.4 Environment Setup

In the colour calibration process, there is a trade-o↵ between time and accuracy of the training
data extraction. To save time, the environment can be setup to contain all the features of the
field in the one camera image and then allow the automatic colour calibration run once. On the
other hand to increase accuracy, the environment can be set up more sparsely by taking multiple
runs of the calibration for several point of views of the field. The former is the most ideal way
as the core focus of this project is to significantly reduce the time for calibration, which would
be fitting for a competition setting.

20

5.5 Conclusion

In this chapter, the first step of creating templates for the new automatic colour calibration
process was examined, which shall provide the context for the pixel extraction algorithms to
work under.

21

Chapter 6

Automatic Colour Calibration -
Scaled Fovea

6.1 Motivation

Once a template has been defined, there is then the need to extract training data within the
bounding box. In this chapter, the use of a Scaled Fovea provides an algorithm on its own to
obtain the training data and also provides a heuristic for the GrabCut algorithm.

6.2 Scaled Fovea

A Scaled Fovea is simply a scaled-down area of the bounding box. For good results and retaining
generality, it is best to scale down each dimension by the same amount to retain a similar shape
and also centre the fovea to avoid extracting extreme candidate points that have a misleading
colour representation. Since the templates essentially defines the approximate location of the
feature, a Scaled Fovea would be able to extract most, if not all, of the strong candidate points
as training data.

6.3 Calculating the Scaled Fovea

OpenCV has a variety of ways of constructing a rectangular region. For this project, it was
chosen to be defined by the (x, y) coordinates of the top-left corner of the region with the width
(w) and height (h).

Let SCALE be a proportionality constant in the range 0-1 (in this project SCALE (=0.20)
was chosen based on empirical results). Then the Scaled Fovea can be defined by a rectangle
with the following (x0, y0, w0, h0):

22

x0 = x+
1

2
w(1� SCALE)

y0 = y +
1

2
h(1� SCALE)

w0 = SCALE ⇥ w

h0 = SCALE ⇥ h

Figure 6.1: Bounding box (outer rectangle) and the Scaled Fovea (inner rectangle).

6.4 Procedure

With the Scaled Fovea calculated, the final process is to select the pixels that will become
training data (Figure 6.2). The algorithm then proceeds to pass all pixels within this Scaled
Fovea to generate the colour lookup table.

Algorithm 3 presents the proposed new methodology. This assumes the template has already
been written beforehand, which only needs to be done once for a given scenario and can be
shared between the Scaled Fovea and GrabCut approaches. Writing the template is a simple
matter of populating a plain text file with data that describes the feature location and colour.
The aim of this new procedure is to delegate the task of selecting the training data to the
proposed algorithms, being guided by the use of templates.

6.5 Conclusion

In this chapter, the first automatic colour calibration method was demonstrated.

23

Algorithm 3 Automatic Colour Calibration Procedure (Scaled Fovea)

autoFoveaImage image from the calibration tab in the Offnao utility
kernel 3D colour classification matrix storing the mapped colour and weight
SCALE 0.20 . see Section 6.3
yRadius 2 . see Table 8.1 for the predefined Gaussian radii
uRadius 4
vRadius 4
weight 1
for all robots do

for all cameras do
for all f 2 featureTemplate do

x0 f.x+ 1
2(f.w)(1� SCALE)

y0 f.y + 1
2(f.h)(1� SCALE)

w0 SCALE ⇥ f.w
h0 SCALE ⇥ f.h
fovea extract pixels in rectangle defined by (x0, y0, w0, h0)
for all pixel 2 fovea do

update kernel with addGaussian(y, u, v, weight, colour, yRadius, uRadius, vRadius)
. see Section 8.4 for addGaussian

end for
end for
colourLookupTable convert the kernel to a colour lookup table

end for
end for

24

Figure 6.2: (Top left) Bounding box for the ball; (Top right) Extracted foreground pixels of the
ball using Scaled Fovea; (Bottom left) Bounding box for the field lines; (Bottom right) Extracted
foreground pixels of the field lines using Scaled Fovea

25

Chapter 7

Automatic Colour Calibration -
GrabCut

7.1 Motivation

The bounding boxes in each template define only the rough location of features. In the previous
chapter the Scaled Fovea used a down-sized bounding box to select the pixels as training data.
In this chapter, the GrabCut algorithm is proposed as a novel approach which is able to extract
foreground features by using features from the Scaled Fovea algorithm. The aim of this approach
is to compare the performance between using all of the pixels defining the feature and using the
centre region of the feature as per the Scaled Fovea approach.

7.2 GrabCut

Rother, Kolmogorov and Blake [5] devised the GrabCut algorithm to e�ciently extract fore-
ground images, utilising colour information in the form of texture and edges to iteratively ‘sur-
round’ the feature of interest. In each iteration, the features boundary is improved by ‘energy
minimization’, whereby the histogram of the foreground and the background depict the ‘energy
levels’. However this relies on having the foreground being distinct from the background enough
such that a fairly distinct border can be formed to separate the two.

The main motive for using GrabCut was the minimal human intervention required to extract the
foreground pixels, all that is required is a bounding box with the target object clearly being the
main focus of the image. Typically the creation of such bounding boxes is interactive whereby a
human user can drag the box over the target region. However since the aim is for an automated
calibration process, the bounding boxes can instead be fixated, which only requires the human
to position the robots camera to align the features to fit the template. The algorithm extracts
the feature in its entirety based on colour. This makes it an immensely powerful tool for pixel
extraction. It must be noted however, that this would also mean extracting pixels that may be
similar to other features colour due to environmental di↵erence and as such can pollute the data
set.

26

7.3 OpenCV Implementation of GrabCut

OpenCV provides an implementation of the GrabCut algorithm. The function prototype that
is of interest is shown below, with the parameters of interest explained in context of this project:

void grabCut(InputArray img, InputOutputArray mask, Rect rect,
InputOutputArray bgdModel, InputOutputArray fgdModel,
int iterCount, int mode=GC_EVAL)

• img - Input 8-bit 3-channel image; this is the RGB colour image converted from the raw
YUV colour image from the robot’s camera

• mask - Input/output 8-bit single-channel mask. This marks points on the image where the
user thinks to be a certain/probable and foreground/background pixel. After performing
GrabCut, it stores the segmentation result which can be used to generate the segmented
colour image.

• rect - bounding box containing a segmented object. The pixels outside of the region of
interest are marked as ‘certain background’. The parameter is only used when the mode
is GC_INIT_WITH_RECT and is provided by the template definition.

• bgdModel - Temporary array for internal use, not used for tweaking.

• fgdModel - Temporary array for internal use, not used for tweaking.

• iterCount - Number of iterations the algorithm should make before returning the result.
The GrabCut algorithm is able to refine the segmentation using an iterative process,
however in practice this option is only useful for high-resolution images that require fine-
tuning and is unnecessary for this particular application.

• mode - there are various modes of operation for the GrabCut algorithm that a↵ect the
way it initialises the mask

There are two main modes that can be used with the GrabCut algorithm: 1) When the mode
is GC_INIT_WITH_RECT, the area outside of the rectangle is labeled as background pixels, the
area inside as probable foreground pixels; 2) When the mode is GC_INIT_WITH_MASK, a single-
channel image denotes which pixels are certain/probable and foreground/background, and the
area defined by the Scaled Fovea are all marked as certain foreground pixels. Mode 1 requires
the least human intervention as it only requires a single bounding box for the feature, however
the colour distribution of the foreground object and the background must have a su�ciently
di↵erent profile for a clean segmentation. On the other hand, Mode 2 requires selection of certain
foreground pixels on top of the features bounding box, but this selection can be automated as
well by reusing the area defined by the Scaled Fovea. Mode 2 tended to provide the best
empirical results and thus was selected as the basis for the GrabCut algorithm.

27

7.4 Procedure

The initial setup procedure for using GrabCut is the same as the Scaled Fovea approach, however
the di↵erence is the algorithms approach to extracting pixels (Algorithm 4). Provided a colour
image, the GrabCut implementation can have one of two results:

• A well-segmented image containing the feature, this means GrabCut is returning all pixels
marked as ‘probably foreground’ (Figure 7.1)

• A small window of pixels within the Scaled Fovea, this means GrabCut is returning all
pixels marked as ‘certain foreground’

The second result is the fallback mechanism that the GrabCut algorithm will revert to, so that
in the worse case that GrabCut cannot extract the foreground image properly, it will be the
same as the Scaled Fovea approach for that particular feature.

The foreground pixels are then processed as training data for the colour lookup table in the
same way described with the Scaled Fovea approach.

7.5 Conclusion

In this chapter we saw the GrabCut algorithm as a way of extracting the features with minimal
human intervention and providing the training data necessary for the next step of generating
the colour lookup table.

28

Algorithm 4 Automatic Colour Calibration Procedure (GrabCut)

autoGrabCutImage image from the calibration tab in the Offnao utility
kernel 3D colour classification matrix storing the mapped colour and weight
SCALE 0.20
yRadius 2 . see Table 8.1 for the predefined Gaussian radii
uRadius 4
vRadius 4
weight 1
for all robots do

for all cameras do
for all f 2 featureTemplate do

x0 f.x+ 1
2(f.w)(1� SCALE)

y0 f.y + 1
2(f.h)(1� SCALE)

w0 SCALE ⇥ f.w
h0 SCALE ⇥ f.h
fovea extract pixels in rectangle defined by (x0, y0, w0, h0)
for all pixel 2 fovea do

pixel CERTAIN FOREGROUND
end for
extractedFeatureImage perform grabCut on the image with the marked fovea
if extractedFeatureImage is empty then

candidatePoints fovea
else

candidatePoints extractedFeatureImage
end if
for all pixel 2 candidatePoints do

update kernel with addGaussian(y, u, v, weight, colour, yRadius, uRadius, vRadius)
. see Section 8.4 for addGaussian

end for
end for
colourLookupTable convert the kernel to a colour lookup table

end for
end for

29

Figure 7.1: (Top left) Bounding box for the ball; (Top right) Extracted foreground pixels of the
ball using GrabCut; (Bottom left) Bounding box for the field lines; (Bottom right) Extracted
foreground pixels of the field lines using GrabCut

30

Chapter 8

Generating the Colour Lookup Table

8.1 Motivation

The end product of the colour calibration step is the generation of the colour lookup table. This
reference table gives the constant time lookup necessary for the robot to classify the raw pixel
colours it perceives and produce a saliency image for the rUNSWift vision pipeline. The aim of
the automatic colour calibration is to produce such a lookup table in minimal time.

8.2 Colour Lookup Table

The colour lookup table is essentially a 3D array indexed by the Y, U and V components of a
given pixel. This therefore allows for constant time lookup suitable for use during competition
for online creation of the colour saliency image.

8.3 Training Data

The training data are the extracted pixels provided as the result of each algorithm. In the
manual method, these were determined by the human user, while in the automatic methods
these were calculated based on the feature template.

8.4 Weight Distribution using Gaussians

For each pixel in the training data, a 3D Gaussian with axes in the YUV colour space is used
to upvote the neighbouring pixels in the colour classification kernel according the the Gaussian
distribution. The primary aim is to quickly populate the colour space and this is where the
Gaussian distribution fills in most of the voids quite nicely with the appropriate weighting. This
greatly reduces the input points needed to build the colour table, at the expense of the ability
to fine tune.

To better understand the nature of this Gaussian update, consider the following pseudo-function
prototype which forgoes the implementation specificity in the existing rUNSWift codebase:

31

addGaussian(y,u,v,weight,colour,yRadius,uRadius,vRadius)

On a high-level view it updates the colour classification kernel with a 3D Gaussian: centred
at the (y,u,v) pixel coordinate that has been selected, radii (yRadius,uRadius,vRadius), weight
defined arbitrarily as 1 (it is only used on a relative basis) and finally colour as defined in Ta-
ble 3.1.

Comparing the YUV radii parameters of the Gaussians between the manual and automatic
calibration methods, we observe a ratio of 5:1. This value was empirically determined. The
reason behind the downscaled radii is that the automatic colour calibration methods have sig-
nificantly more candidate points than the manual calibration method. The result is that the
new method is able to fill the colour space with smaller Gaussians, resulting in a fine-grained
colour lookup table.

Axis Original Radii - New Radii -
Manual Calibration (px) Automatic Calibration (px)

Y 10 2
U 20 4
V 20 4

Table 8.1: Comparison between the Gaussian radii along each axis

Note that the Y radius is less than the U and V radii, which is mainly to reduce the e↵ect that
luminance has on the weighting procedure. In terms of visualising this 3D Gaussian, we can
imagine it as an ellipsoid.

8.5 Creating the Colour Lookup Table

Once all the pixels have been processed, the point cloud generated is now used to create the
colour lookup table. For each pixel in the YUV space, a nearest neighbour algorithm determines
what that pixel value should be classified as. This produces an ‘.nnmc’ file that forms the basis
for creating the above mentioned colour saliency images.

8.6 Conclusion

In this chapter the final step in the colour calibration process of generating the colour lookup
table was outlined.

32

Chapter 9

Results

9.1 Motivation

In this chapter, the results produced from both manual and automatic colour calibrations are
shown and their performance compared and evaluated.

9.2 Methodologies

Using the manually created ground truth images as the point of reference, the following method-
ologies will be compared:

• Existing Manual Colour Calibration

• Automatic Colour Calibration with the Scaled Fovea algorithm

• Automated Colour Calibration with the GrabCut algorithm

9.3 Measure of Performance

A pixel by pixel comparison was made between the target methodology with the reference ground
truth image. If it was misclassified, upvote by one point, otherwise disregard it. The error rate
was then calculated to be a percentage, where:

Error Rate =
Number of misclassified pixels

Total number of pixels
⇥ 100%

9.4 Test Suite

As with many supervised machine learning approaches, there is the need for a set of training
data and also a separate set of testing data. However the major deviation from traditional
machine learning approaches and their benchmarking practices is that the training data was not
meant to be a representative set with similar characteristics to the test data. The reason behind
this disparity lies in the fact that the produced colour lookup table needs candidate points for

33

all of the colours in the SPL. In the majority of the scenes in competition, it is highly unlikely to
see all colours in the same frame, hence the need for an artificial setup (much alike the existing
manual colour calibration methodology).

In order to test the performance of the produced colour lookup table, the selection of the test
suite was based upon typical images seen by the robot during a competition game. This would
involve a variety of scenarios such as goal post with a ball, many robots with lots of field green,
etc which would not necessarily include all classified colours. Note that this is di↵erent from the
artificial setups used in the training process. Having created the ground truth images for all the
test data, any new training data would be immediately run against the test suite automatically
using a script, providing instant feedback on the colour lookup table’s performance.

a) b) c)

d) e)

Figure 9.1: Typical set used to evaluate the calibration procedures: a) Original raw camera
image, b) Ground truth image, c) Manually calibrated image, d) Automatically calibrated image
using Scaled Fovea, and e) Automatically calibrated using Grabcut

9.5 Experimental Results

A total of 6 training images were used, run against 10 testing images (see Appendix 1), result-
ing in 6 x 10 = 60 colour classification experiments. The pixel-by-pixel comparison was then
performed, on which the mean error rate and the standard deviation were then calculated based
on these experiments (Table 9.1).

34

Manual Automatic (Scaled Fovea) Automatic (GrabCut)
Mean Error Rate 34.06% 34.58% 53.75%

Standard Deviation 8.14% 10.36% 16.84%

Table 9.1: Summary table comparing the performance of the di↵erent methodologies

Figure 9.2

35

9.5.1 Experiment 1

Figure 9.3: Original Raw Image

Figure 9.4

36

Figure 9.5

Figure 9.6

37

9.5.2 Experiment 2

Figure 9.7: Original Raw Image

Figure 9.8

38

Figure 9.9

Figure 9.10

39

9.5.3 Experiment 3

Figure 9.11: Original Raw Image

Figure 9.12

40

Figure 9.13

Figure 9.14

41

9.5.4 Experiment 4

Figure 9.15: Original Raw Image

Figure 9.16

42

Figure 9.17

Figure 9.18

43

9.5.5 Experiment 5

Figure 9.19: Original Raw Image

Figure 9.20

44

Figure 9.21

Figure 9.22

45

9.5.6 Experiment 6

Figure 9.23: Original Raw Image

Figure 9.24

46

Figure 9.25

Figure 9.26

47

9.6 Evaluation

From Table 9.1, it can be observed that the manual and automatic Scaled Fovea methods have
statistically similar mean error rates and standard deviations. This suggests that the Scaled
Fovea approach is a viable alternative to the manual colour calibration process. On the other
hand, the automatic (GrabCut) methodology had significantly higher error rates and larger
standard deviations. This makes the GrabCut method a rather unreliable method. A possible
explanation of the large spike with the GrabCut method lies in the way the pixels are extracted.
Though GrabCut is good at extracting most if not all of the feature pixels, this ’hard segmen-
tation’ characteristically leaves a rather jagged surrounding edge. Even with border matting
whereby partial transparency is applied to produce a smoother edge, this introduces a lot of
other colours labelled with the classified category to the resulting colour lookup table, essentially
polluting the data and the likelihood of misclassifying new data.

From the experiments performed:

• Manual performed best 4/6 times

• Automatic Scaled Fovea performed best 2/6 times

• Automatic GrabCut performed the worst in all experiments

In most experiments, the manual and automatic Scaled Fovea produce quite similar results,
except in Experiment 2 where the latter performed significantly better due to having more uni-
form lighting than the rest. The automatic GrabCut algorithm tended to perform significantly
worse than the other methods when strong ambient light was present. The data shows that a
degradation in performance of the colour calibration occurred with low colour saturation level
(Experiment 6) and ambient light (Experiments 3 & 5).

9.7 Discussion

The error rates are largely a↵ected by the colour calibration methods ability to classify the field
green. Taking into account that fact that the size of the soccer field has been increased from 6 x
4m to 9 x 6m, the amount of green typically seen in an image will therefore increase substantially.
The second largest contributor is the yellow goal post, which can vary largely depending on the
robots position on the field. The rest of the colours: orange, red, blue, have a disproportionate
representation when determining the error rates and thus the error rates should be used only as
an indicator when evaluating the relative performance of the colour calibration techniques.

In this proof-of-concept, the following criteria were addressed successfully:

• Accuracy - The automated Scaled Fovea approach was indeed able to colour classify as
accurately as the existing manual calibration approach and as such is a viable alternative
in future, however the GrabCut approach was deemed an inadequate candidate.

• Speed - Both automatic colour calibration methods used very little computational and
setup time (using a modern standard laptop/desktop), being able to complete the task on

48

the order of seconds whereas in comparison the manual colour calibration would require
time on the order of minutes.

• Compatibility - All calibration methods produced a colour lookup table with the same
existing format and therefore the methods can be easily integrated into the rUNSWift
vision pipeline.

• Practicality - The templating system only requires the user to align the camera with
the features and thereafter does not require further intervention. This makes it a rather
simple and practical procedure compared to the fine-tuning skills required in manual colour
calibration.

49

Chapter 10

Future Work

10.1 Motivation

This project is a proof-of-concept for the idea of automating the colour calibration process by
using templates. However there is still work to be done for this to be a practical utility that can
be incorporated into the rUNSWift teams workflow and for use in debugging and competition.

10.2 User-friendly way to create templates

Currently the set of templates used are enough to perform calibration with a given scenario.
However in future, if there is a change of the field features, it would be necessary to create
new templates. This process can be tedious and unintuitive, and thus there is scope for a GUI
utility that would allow the user to describe the bounding boxes with a simple drag-and-drop
functionality.

10.3 Template overlays on camera feed

To aid the user to align the robots camera with the template, the template can be overlayed on
top of the video stream to provide feedback to perform any adjustments if required.

10.4 Gaussian radii tuning

In the currently rUNSWift codebase, the Gaussian radii are all hard-coded, having been em-
pirically determined to be the most practical given the trade-o↵ between simplicity, colour
sensitivity and the amount of manual pixel selection. However this limitation can make it di�-
cult to fine-tune the colour lookup table for di↵erent environments. This limitation also applies
to the methods presented in this project, since at the present moment they are also empirically
determined. It may be a good idea to move the constants to a configuration file and being
exposed in the O↵nao debugging utility for manual tuning. There may also be further work into
optimizing the automatic calibration by running a Hill-Climbing-like algorithm to determine the
best parameters for a given environment.

50

10.5 Skewed Features

In this project the bounding box defined in the template are rectangles. However this may not
necessarily be the best shape to describe the approximate location of a feature. For example a
ball may perhaps be better defined with a circular bounding ring, or the white field lines may
be better defined with a quadrilateral since the cameras perspective will observe the field lines
and their intersections at a skewed angle. An investigation into the benefits of doing so while
taking into account the additional computational costs and complexity would be an interesting
improvement to the current method of describing features with templates.

51

Chapter 11

Conclusion

The aim of this project was to replace the time and e↵ort of the existing manual colour calibration
procedure with an automatic one. A feature templating system was used and two automatic
colour calibration techniques assessed: the Scaled Fovea and GrabCut algorithms. The project
was successful in demonstrating the Scaled Fovea approach as a viable alternative to the existing
manual colour calibration method as it has similar accuracy yet requires significantly less time
to perform.

52

Bibliography

[1] Carl Chatfield. rUNSWift 2011 Vision System: A Foveated Vision System for Robotic Soccer
(2011). Honours thesis, The University of New South Wales.

[2] Adrian Ratter, Bernhard Hengst, Brad Hall, BrockWhite, Benjamin Vance, Claude Sammut,
David Claridge, Hung Nguyen, Jayen Ashar, Maurice Pagnucco, Stuart Robinson, and Yanjin
Zhu. rUNSWift Team Report 2010 Robocup Standard Platform League (2010). Only available
online: http://www.cse.unsw.edu.au/~robocup/2010site/reports/report2010.pdf

[3] Sean Harris. E�cient Feature Detection Using RANSAC (2011). Final Year Thesis, The
University of New South Wales.

[4] OpenCV Dev Team. OpenCV 2.4.5.0 documentation: Miscellaneous Image Transforma-
tions - grabCut (2013). Available at http://docs.opencv.org/modules/imgproc/doc/
miscellaneous_transformations.html#grabcut

[5] Carsten Rother, Vladimir Kolmogorov, Andrew Blake. ‘GrabCut’ - Interactive Foreground
Extraction using Iterated Graph Cuts (2004). Microsoft Research Cambridge, UK. Available
at http://research.microsoft.com/pubs/67890/siggraph04-grabcut.pdf

[6] Mohan Sridharan and Peter Stone. Towards Eliminating Manual Color Calibration at
RoboCup (2004). Available at http://redwood.cs.ttu.edu/~smohan/Papers/robosym05_
autocolorlearn.pdf

[7] Pablo Guerrero, Javier Ruiz-del-Solar, Josu Fredes, Rodrigo Palma-Amestoy. Auto-
matic On-Line Color Calibration using Class-Relative Color Spaces (2008). Available
at http://www.captura.uchile.cl/bitstream/handle/2250/17105/Guerrero_Pablo_
Automatic.pdf?sequence=1

[8] Andreas Frtig, Holger Friedrich, Rudolf Mester. Robust Pixel Classification for
RoboCup (2010). Available at http://www.vsi.cs.uni-frankfurt.de/download/
Fuertig10ClassificationPreprint.pdf

[9] Piyush Khandelwal, Matthew Hausknecht, Juhyun Lee, Aibo Tian and Peter Stone. Vision
Calibration and Processing on a Humanoid Soccer Robot (2010). Available at http://www.
cs.utexas.edu/~pstone/Papers/bib2html-links/HUMANOIDS10-khandelwal.pdf

[10] Naomi Henderson, Robert King, Stephan K. Chalup. An Automated Colour Calibration
System using Multivariate Gaussian Mixtures to Segment HSI Colour Space (2008). Available
at http://www.araa.asn.au/acra/acra2008/papers/pap150s1.pdf

53

[11] Tatjana Zrimec, Andy Wyatt. Learning to Recognize Objects - Toward Automatic Calibra-
tion of Color Vision for Sony Robots (2001). Available at http://www.cse.unsw.edu.au/

~icml2002/workshops/MLCV02/MLCV02-TZWayt.pdf

54

Appendix 1 - Test Images

55

