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Nimble bipeds are expected to execute a rich repertoire of movement behaviours
and switch between them seamlessly without falling over. A good example de-
manding this responsiveness is playing a game of soccer. This paper explores
a less well studied approach to biped locomotion using model-based multi-
goal reinforcement learning. We apply this approach to learn the side-to-side
movement of a small humanoid robot in simulation. By on-line learning one
transition function, it is possible to modify the behaviour of the robot vary-
ing the cost function. Behaviours include: changing support feet at different
frequencies; standing upright; standing on either foot; and switching between
these behaviours, subject to the imposed constraints. The behaviours are sta-
ble over much of the experienced phase domain. They respond optimally to
disturbances and when switching.
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1. Introduction

Future bipedal robots are expected to be more agile, exhibiting a variety of
behaviours. It is difficult to hand-code these behaviours and to transition
seamlessly between them.

In this paper we take a reinforcement learning (RL) approach to learning
and controlling behaviour. We apply this approach in simulation, specifi-
cally to tackle the problem of lateral (frontal or coronal-plane) behaviour
to aid bipedal locomotion. The novelty is in a combination of:

e A random action routine to learn the system state transition func-
tion on-line rather than the action-value function Q(s, a) as is more
usual in RL.! We do not rely on a (linear) inverted pendulum
model, or any other model, but perform automatic system iden-
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tification.

e Using the reward function to craft multiple behaviours such as side-
to-side rocking at different frequencies, standing still and balancing
on one leg.

e Seamlessly switching between behaviours. The behaviour response
to switching is theoretically guaranteed to be optimal.

e Stability of the behaviours to disturbances. The response to any
disturbance is an optimal trajectory back to the continuous cycle
or state behaviour required to minimise overall cost.

In the rest of this paper we will briefly review related research, present
our method and approach, and provide results showing the system be-
haviour under changing goals, and with disturbances. We conclude with
a discussion and planned future work.

2. Related Work

We briefly mention some prominent research on bipedal walking.

Passive-dynamic walkers, originally developed by McGeer? based on a
“rimless wheel” model, were improved by others and powered to walk on
level ground.? These machines have no explicit controllers yet exhibit hu-
manlike motions, but are limited in their repertoire of behaviour.

Another research direction is the control of the Zero Moment Point to
stay within the support polygon. Exemplified by the work of Kajita, et al,*
the use of a (linear) inverted pendulum model allows 3D bipedal gaits to
be developed. This control-theoretic approach relies on preview control® -
a needed more responsive feed-forward method.

Much research has been devoted to planar bipedal locomotion. An ex-
tensive exposition is given by Westervelt et al.5 Planar research has been ex-
tended to 3D.” Grizzle reminded researchers that even the simplest bipedal
locomotion is challenging, let alone aperiodic walks, non-flat ground, etc.®
These approaches follow the control system methodology where system
identification is manual and specified using differential equations.

Despite some early promises for RL, and while the literature on bipedal
walking is extensive, there has been relatively few RL approaches to bipedal
locomotion. Exceptions include frontal plane control using an actuated pas-
sive walker;” point-feet placement;'®'2 temporally extended actions applied
to swing foot placement underpinned by semi-MDP theory.'°

In this paper we propose to exploit the properties of RL to model non-
linear, discrete and continuous dynamics and to learn optimal control for
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several different behaviours via reward functions.

3. Method
The general method we employ has the following steps:

Construct and constrain the system, specifying joints, links, etc
Define a Markov state and available control actions
Learn the state transition function through exploration

(1)

(2)

3)

(4) Define cost functions to achieve various behaviours

(5) Learn the optimal action-value @ function for each cost function
(6)

Execute the behaviours by switching between optimal policies

We now describe the application of the above method to learn lateral
bipedal motion behaviours.

3.1. Construct and Constrain

For real or simulated systems, this involves a specification of both the phys-
ical and software constraints. In our case we model a 23 DoF Aldebaran
Robotics Nao humanoid robot with the Open Dynamics Engine (ODE)
physics simulator (see Figure 1 ).

(c)

Fig. 1. (a) the Aldebaran Nao Robot, (b) ODE simulation showing the pos variable,
and (c) the hip and ankle roll - they are equal, except for an additional control action
described in Section 3.2.

To aid lateral movements we set the hip and ankle rolls to follow in
direct proportion the perpendicular projection of the centre-of-mass (CoM)
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of the torso unto the line through the feet CoMs with the origin at the half-
way point. We call this variable pos (see Figure 1). The support foot is
determined by the sign of pos. The swing foot starts to lift immediately on
change of support foot and moves up and down under constant acceleration
with a period determined manually.

3.2. Specify State and Actions

RL is defined by the tuple (S, A, T, R) where S is the set of states, A the set
of actions, T a stochastic transition function, and R a stochastic reward or
cost function.! One would expect that rigid body physics could be modelled
by point distributions, but even the ODE simulator generates noise due to
the random nature of collision detection.

We define the lateral dynamic state of the Nao by the triple
(pos, vel, act), where pos is a continuous variable defined in Section 3.1,
vel is the velocity of pos, and act is the discrete control action applied at
the last time-step to model the motor delay (of the simulator) of 2ms.

The three discrete actions A are {—6,0,+d}, where § is an additional
amount of roll added to the ankle joints. In our application § = 0.045
radians. These actions may accelerate the robot to the left or right.

3.3. Learning the Transition Function

At each time-step we record the transition between states in S given an
action from A. Since the sub-state space (pos,vel) is continuous we model
the transitions at discrete grid-point values and use radial basis function
approximation to generalise the transition function for off-sample states.

We explore and learn the transition function through a random action
routine without lifting the swing-foot foot (but see discussion). Actions are
generated at random using Equation 1 to adequately explore actions that
persist.

(1)

. random action from A 10% of the time at random
action = ) )
last Action otherwise

A portion for the learned transition function is depicted in Figure 2.
Depending on the resolution of the grid, resPos and resVel, learning may
take several hours on the simulator.

3.4. Define the Cost Function

The cost function specifies the immediate rewards in RL (cost being the
negative of reward). In our implementation we specify three components:
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Fig. 2. Part of the transition function centred at (pos = 0,vel = 0) learned on-line
showing the next state transition from grid-points for each of the three ankle roll actions.

the cost of taking an action; the cost when reaching a desired set of goal
states in the (pos, vel) space; and the cost of switching actions (to minimise

motor usage). For example, the reward function for the robot to stand still
is specified by Equation 2.

50 if |pos| < resPos and |vel| < resVel
reward = § —2 if action # last Action (2)

—1 otherwise

Rocking from side-to-side can be similarly specified by rewarding a ve-
locity value at the time of switching the support foot. The magnitude of
the velocity will determine the period of the rock. To stand on the left leg
we reward states near (CoM-left-foot, 0).

3.5. Learning the Optimal Control Policy

We use standard RL policy iteration (PI) on the discrete @ action-value
function.® The optimal function, Q*(s, a), is the future cost of taking action
a in state s and following the optimal policy thereafter. The only subtly
is the handling of the temporal difference backups as the next state for
transitions from the grid-points is unlikely to be another grid point in the
continuous state-space. However, it is straight forward to estimate the @)
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functions for the next states by calculating a radial-basis weighted average
value from neighbouring grid-points.'? Assuming the function approximator
is well behaved, the control policy is guaranteed to be optimal, a result that
follows directly from MDP theory.! The @ values for the cost functions in
Section 3.4 are learned and stored separately. Since the hard work is already
done in Section 3.3, PI takes about a minute on a standard PC to learn six
different policies: stand still; stand on one of each the two legs; and three
sideways rocking motions at different frequencies.

3.6. Execution

The control policy is obtained from the optimal @ function, i.e. the opti-
mal action = argmax,Q*(state,a). Control is a matter of calculating the
optimal action on-line at each time-step from the stored ) values given the
current state and activating the motors accordingly.

4. Results and Discussion

After implementing all the steps in Section 3 we test the various behaviours
by switching between them and observing the rendered robot. We also plot
the evolution of the pos and wel state as a time series and with phase

portraits.
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Fig. 3. Time series showing the value of pos, vel and the action for the series of be-
haviours described in Section 4. Note the quick recovery after the sideway impact dis-
turbance and the smooth transitions between behaviours.
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Fig. 4. Example phase portraits, switching between policies: (a) T=0.7sec rock to stand-
ing upright, (b) standing upright to T=0.7sec rock, (c) T=0.7sec rock to standing on
right leg, (d) standing on left leg to standing upright.

The combination of switching and durations for the behaviours is infi-
nite, so we show results for an example series of behaviours, namely: from
a standing start, execute a rock with period 0.5 seconds for 2 second, then
stand on the left leg for 2 seconds, followed by a rock of period 0.7 sec-
onds for 1 second, and back to the standing upright position. During the
2 second rock we impart a sideways impact force (delivered by shooting a
cannon-ball at the machine). The results are plotted in Figures 3. Figure 4
shows phase portraits switching between several behaviours. Both Figures
show stable behaviour for each policy and when switching.

If the transition function in Section 3.3 is instead learned while lifting
the swing foot, the RL will use the replacement of the foot to increase
the acceleration of the body. This is a consequence of maximising future
reward. In practice this may cause the robot to thump its feet, increasing
wear and tear. For this reason we settle for learning without lifting the foot.
The downside is that introducing the lifting action subsequent to learning,
introduces what appears as a disturbance to the natural cycle and hence
the kink in the limit cycles seen in the phase portraits in Figure 4.

The sideways rock was combined with an open loop forward (sagittal)
and a sideways gait. Both performed well for small step-sizes, but there is
much do to. With a RL sagittal gait under our belt'* the next step is to
combine and synchronise the two orthogonal motions.

Another step is to adapt the simulated results to the real Nao. An
advantage of our approach is that the transition function learned on the
simulator can be used as a starting point and adjusted on the real robot
hopefully with less training time. The actions (in our case ankle rolls) are
discrete. A fruitful development would to introduce continuous actions by
function fitting and interpolation.
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5. Summary

In summary, we have presented a promising approach to tackle more versa-

tile stable biped locomotion, generating multiple behaviours from the one

learned transition function, and seamlessly and optimally switching between

the behaviours.
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