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Abstract. This paper introduces an extremely computationally inex-
pensive method for estimating monocular, feature-based, heading-only
visual odometry - a visual compass. The method is shown to reduce
the odometric uncertainty of an uncalibrated humanoid robot by 73%,
while remaining robust to the presence of independently moving objects.
High efficiency is achieved by exploiting the planar motion assumption in
both the feature extraction process and in the pose estimation problem.
On the relatively low powered Intel Atom processor this visual compass
takes only 6.5ms per camera frame and was used effectively to assist
localisation in the UNSW Standard Platform League entry in RoboCup
2012.

1 INTRODUCTION

Bipedal robots need to walk on a variety of floor surfaces that can cause them
to slip to varying degrees while walking. They can also be bumped or impeded
by undetected obstacles. Accurate navigation therefore requires an autonomous
robot to estimate its own odometry, rather than assuming that motion com-
mands will be executed perfectly.

If a robot is fitted with one or more cameras, visual odometry algorithms
can be used to estimate the relative motion of the robot between subsequent
camera images. However, these methods are typically computationally expensive
for resource constrained robots operating in real time. To overcome this problem,
this paper exploits the planar motion assumption in both the image feature
extraction process, and in the calculation of relative pose estimates. The result
is an extremely computationally inexpensive method for estimating heading-
only visual odometry using a monocular camera and 1-dimensional (1D) SURF
features.

This technique was developed and used in the RoboCup Standard Platform
League (SPL) robot soccer competition, and implemented on an Aldebaran Nao
v4 humanoid robot. The Nao is equipped with a 1.6 GHz Intel Atom processor
and two 30 fps cameras. These cameras have minimal field of view overlap,
necessitating the use of monocular visual odometry methods. As the Nao is not
fitted with a vertical-axis gyroscope, heading odometry can only be estimated
using visual methods.



On the soccer field, the combination of fast motion and collisions with other
robots exacerbates the difficulties of biped navigation, making robot soccer an
excellent test domain for this technique. However, the technique itself in no way
relies on the characteristics of the robot soccer application domain.

Although the use of heading-only visual odometry has some limitations, prac-
tical experience suggests that when a bipedal robot manoeuvres, the greatest
odometric inaccuracy is observed in the robot’s heading, which can change very
quickly when the robot slips, rather than in the forward or sideways components
of the robot’s motion. The visual heading odometry is therefore used in con-
junction with the odometry generated by assuming perfect execution of motion
commands (which we will refer to as command odometry). Results suggest that
the combination of this technique with command odometry results in a dramatic
improvement in the accuracy of odometry information provided to localisation
filters. A further benefit of the visual odometry module is the ability to detect
collisions and initiate appropriate avoidance behaviour.

The remainder of this paper is organised as follows: Section 2 outlines related
work, Section 2.1 provides a brief introduction to 1D SURF image features,
Section 3 describes calculation of heading odometry using 1D SURF features,
and Section 4 presents experimental results.

2 BACKGROUND

If robots are fitted with multiple cameras with overlapping fields of view, stereo
visual odometry algorithms can be used to recover the relative 6 degree of free-
dom (DoF) motion of the robot. This is typically achieved by measuring the 3D
position of detected image features in each frame using triangulation [1]. A robot
fitted with a single camera must use monocular visual odometry methods, which
cannot solve the general 6 DoF relative motion estimation problem. Generally,
in this case only heading information can be accurately obtained as the effect
of translation is small compared to that of rotation, while the absolute scale of
motion is unobservable.

To simplify the 6 DoF visual odometry problem for monocular cameras, a
number of previous papers have used constraints on the motion of the agent.
Approaches that use the planar motion assumption, such as [2], [3], typically
rely on the detection of repeatable local image features that can be tracked over
multiple frames. These features are then used to recover the relative robot pose
using epipolar geometry; the assumption of planar motion on a flat surface makes
relative pose estimation simpler and more efficient. Even greater efficiencies in
pose estimation have been demonstrated when the planar motion assumption is
coupled with the nonholonomic constraint of a wheeled vehicle [4] [5].

The planar motion assumption has also been used to develop monocular
methods to determine the scale of motion [6]. These methods use the surface
context approach developed by [7] to split a single image into three geometric
regions: the ground, sky, and other vertical regions. Using this technique, scale
can be determined based on the motion of features on the ground plane.



A unifying feature of these previous works is that although the planar mo-
tion constraint has been applied to the pose estimation problem, it has not
been applied to the feature detection and extraction process. This process is
computationally expensive, for example, using the OpenCV implementation, [8]
demonstrated that SIFT and SURF feature extraction took on the order of 50 -
100 ms on a desktop PC for relatively small images. As a result, the most effi-
cient pose estimation processes such as [4] have found that the overall frame-rate
is limited by the feature extraction process, in this case using SIFT, Harris, and
KLT image features. The computational cost of these feature extraction methods
is prohibitively expensive for resource constrained robots such as the Nao.

Although impressive results have been reported using visual odometry in
many application areas, the use of visual odometry in dynamic environments
containing many independently moving objects remains challenging. Typical
approaches to feature-based relative motion estimation are sensitive to wrong
feature matches or feature matches on moving objects, even with the use of
RANSAC based outlier rejection schemes [9]. To overcome these issues in dy-
namic environments, authors such as [9] have used image patch classification to
improve rejection of independently moving objects such as other cars.

2.1 1D SURF FEATURES

1D SURF is an optimised feature detector designed to exploit the planar motion
constraint. We implemented the algorithm developed by authors in [10] for fast
mobile robot scene recognition. It consists of a modified one dimensional variant
of the SURF [11] algorithm. As shown in Figure 1, the algorithm processes
a single row of grey-scale pixels captured from a 30 pixel horizontal band at
the robot’s camera level (the robot’s horizon). The horizon band is chosen for
feature extraction because, for a robot moving on a planar surface, the identified
features cannot rotate or move vertically. For a humanoid robot, the position
of the horizon in the image is determined by reading the robot’s limb position
sensors and calculating the forward kinematic chain from the foot to the camera,
or by using an IMU.

As shown in [10], the use of a 1D horizon image and other optimisations
dramatically reduces the computational expense of SURF feature extraction,
exploits the planar nature of the robot’s movement, and still provides accept-
able repeatability of the features. Consistent with the original SURF algorithm,
the extracted features are robust to lighting changes, scale changes, and small
changes in viewing angle or to the scene itself. On a 2.4GHz Core 2 Duo laptop
1D SURF runs more than one thousand times faster than SURF, achieving sub-
millisecond performance. This makes the method suitable for visual navigation
of resource constrained mobile robots; on the Nao v4 we find the mean extraction
time of 1D SURF features is 2 ms.



Fig. 1. Image captured by the Nao robot showing superimposed 30 pixel horizon band
in red, and the extracted grey-scale horizon pixels used for 1D SURF feature extraction
at the top of the image.

3 RELATIVE POSE ESTIMATION

The 1D SURF visual odometry algorithm is of the monocular, feature-based,
heading-only variety. Although it is possible to estimate the scale of camera mo-
tion using a monocular system as in [6], 1D SURF features are found only on the
robot’s horizon, not on the ground plane, and therefore do not lend themselves
to these techniques. The error in the heading component of the robot’s command
odometry has a much greater effect on localisation accuracy than the errors in
the forward and sideways components.

The soccer field is a dynamic environment with multiple independently mov-
ing objects in the form of other robots, referees, and spectators in the back-
ground, as illustrated in Figure 2. To help prevent the movement of other robots
on the field from influencing the visual odometry, in this application domain a
visual robot detection system is used to discard features that are part of other
robots. This system uses region-building techniques on a colour classified image
to detect other robots. It is similar in spirit to the feature classification approach
used by [9]. However, the system is also robust to the movement of undetected
robots and referees in front of the camera, as described further below.

To estimate the relative heading motion between two subsequent camera
frames, the horizon features in each image are matched using nearest neighbour
matching with a distance ratio cutoff as outlined in [10]. For each corresponding
feature pair, the horizontal displacement in pixels of the feature between frames
is calculated. Using this data, only a single parameter needs to be estimated:
the robot heading change between the two frames. Since this can be estimated
using only one feature correspondence, it is not necessary to use RANSAC for
robust model estimation. Similarly to [4], histogram voting can be used, which
is more efficient than RANSAC.

Using the histogram voting approach, the robot’s heading change between
two frames is estimated by the mode of all feature displacements in a feature



Fig. 2. A typical camera frame captured by the Nao during a soccer match could
include both other robots and the referee. In this case the robot is detected and it’s
horizon features (indicated as blue and red blobs) are discarded. The referee cannot be
detected, constituting an independently moving object.

displacement histogram, as illustrated in Figure 3. Knowing the resolution and
horizontal field of view of the camera, it is trivial to convert the robot’s heading
change from pixels to degrees or radians, and to adjust for the movement of the
robot’s neck joint between frames.

Provided the stationary background is always the largest contributor of fea-
tures in the image, the histogram mode will remain unaffected by the introduc-
tion of independently moving objects. If there are many or large moving objects
in the frame, and the identification of the static background is uncertain, the dis-
tribution of feature displacements will be strongly multi-modal. Multi-modality
enables this scenario to be easily detected, in which localisation filters can fall
back to using command odometry only. In contrast, when the visual odome-
try is reliable, the distribution of feature displacements will be approximately
uni-modal, and localisation filters can use visual odometry in preference to com-
mand odometry for heading. Using this approach makes the system relatively
robust to the movement of undetected robots and referees, as shown in Figure
3. At all times the forward, sideway, and turn components of odometry used for
localisation are generated by command odometry.

On the soccer field, robots are frequently bumped or impeded by other robots
and obstacles that are not visible. It is advantageous to detect these collisions
to prevent robot falls. This can be done by differencing visual heading odometry
with command odometry. When an exponential moving average of this quantity
breaches certain positive and negative bounds, it indicates that the robot is
slipping with a rotation to the left or right respectively. In the robot soccer
domain, we have found that reducing the stiffness of the Nao’s arms at this
point is sufficient to avoid a significant number of falls.
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Fig. 3. The distribution of feature displacements over subsequent camera frames in-
dicates two modes: one representing the viewing robot’s heading change, measured
against static background features, and the other representing the independent motion
of the referee. In this case, the larger mode can be easily identified and visual head-
ing odometry determined using this mode. If the two modes are similar in size the
algorithm is able to fail gracefully by reverting to command odometry.

3.1 Reducing drift

Computing visual odometry by integrating over all adjacent frames of a video
sequence leads to an accumulation of frame-to-frame motion errors, or drift. To
minimise this drift, many visual odometry techniques make periodic optimisa-
tions over a number of local frames, known as sliding window bundle adjust-
ments. In this paper, adjustments to the estimated robot trajectory are made
at each step by choosing to potentially discard some frames from the image se-
quence. This allows the system to remain robust in the presence of single frames
corrupted by horizon location error, blur, or feature occlusion.

To implement this adjustment, whenever a new frame is obtained the heading
change between the new frame and each of the three previous frames is calcu-
lated. The current heading odometry is then calculated relative to the ‘best’ of
these three prior frames. The notion of the ‘best’ prior frame takes into account
two factors. The first is the confidence level of the heading change estimate be-
tween the prior frame and the new frame. The second is the reliability of the prior
frame’s own odometry estimate (itself a recursive function of confidence levels).
More formally, at time ¢ the robot’s heading odometry is calculated relative to
prior frame at time ¢t — by, with b; € {1,2,3} given by:

by = arg max{min{reliability,_, confidence;_j+}}
ke{1,2,3}
where the reliability of the odometry at time ¢ is determined recursively
by the reliability of the best prior frame odometry and the confidence of the
heading change estimate between ¢t — b, and ¢:



reliability, = min{reliability,_s,, confidence;_p, ¢}

reliabilityy = oo

The measure of the confidence of the heading change estimate between two
frames could be calculated in several different ways. It should always reflect
higher confidence when the distribution of feature displacements is more uni-
modal, and lower confidence when the distribution is more multi-modal (indi-
cating difficulty in resolving independently moving objects from the stationary
background).

Our approach was to calculate confidence based on the difference in the count
of the first and second modes of the feature displacement histogram. Overall, the
choice to consider three previous frames in the odometry calculation represents
a trade off between computational cost and drift reduction. If the robot changes
heading quickly there is little to be gained from increasing the size of this sliding
window.

4 RESULTS

In order to evaluate the performance and robustness of 1D SURF visual odome-
try in comparison to naive command odometry, a quantitative benchmark test is
required. In this paper the University of Michigan Benchmark test (UMBmark)
is used [12]. In addition, tests are undertaken that include obstacle collisions
that disrupt the natural motion of the Nao, and repeated observations of inde-
pendently moving objects at close range.

By way of background, UMBmark is a procedure for quantifying the odo-
metric accuracy of a mobile robot. In the test, the robot is pre-programmed to
move in a bi-directional square path, in both the clockwise and anti-clockwise
directions, and the accuracy of the return position is assessed. Although the test
was designed for assessing wheel odometry error in differential-drive robots, sev-
eral results of the paper are also relevant for bipedal robots. In particular, the
paper illustrates that a uni-directional square path test is unsuitable for evalu-
ating robot odometric accuracy due to the possibility of compensating turn and
forward motion errors. Using the bi-directional square path test, however, these
errors are revealed when the robot is run in the opposite direction.

To assess the performance of visual odometry on the Nao, the UMBmark
square path procedure was repeated five times in the clockwise direction, and five
times in the counter-clockwise direction. In recognition of the greater inaccuracy
of bipedal robots compared to wheeled robots, the side lengths of the square path
were reduced from 4 m to 2 m. Prior to this test, the command odometry was
calibrated to provide reasonable performance using the same settings across five
robots, but it was not calibrated to suit this particular robot.

The test was conducted on the SPL field, and the robot was controlled to
ensure that in each test it walked as near to a perfect square path as possible,



at a speed of approximately 15 to 20 c¢m/s, including turning on the spot at
each corner, and returning to the starting position. The position of the robot
calculated using command odometry dead-reckoning was then compared with
the position of the robot using visual odometry dead-reckoning.
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Fig. 4. Clockwise (top) and Anti-clockwise (Bottom) odometry track of an uncalibrated
Nao robot walking in a 2m x 2m square path.

The estimated odometry tracks for the first trial in each direction are shown
in Figures 4, illustrating a substantial deviation from the true square path in
the case of the command odometry, and a much smaller deviation when the
1D SURF visual odometry was used. It is evident from these diagrams that
the robot used for the test has a systematic left turn bias. In order to walk
around the square field, continuous right turn corrections were required, which
can be observed in the paths generated by odometry dead reckoning. The use
of visual odometry has compensated for a significant proportion, but not all, of
this systematic bias.

Figure 5 illustrates the final positioning error using both odometry methods
at the end of five trials in each direction. Using the centre of gravity approach
outlined in [12], the command odometry has a measure of odometric accuracy
for systematic errors of 306 cm, relative to the visual odometry approach with
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Fig. 5. UMBmark results for an uncalibrated Nao robot walking in a 2 m x 2 m square
path in both clockwise (CW) and counter-clockwise (CCW) directions. Results indicate
a significant increase in accuracy using visual odometry relative to naive walk-engine
generated odometry.

an accuracy of 84 cm; a reduction of 73%. These results suggest that the 1D
SURF visual odometry technique can compensate for a significant proportion of
the systematic odometry error of an uncalibrated robot. The standard deviation
for the walk-engine return positions is 550 cm, relative to 160 cm for the visual
odometry return positions. This indicates that the visual odometry technique
also compensates for non-systematic odometry errors.

In the next test, the robot performed five trials of a simple out-and-back
manoeuvre along a 2 m long straight line. On both legs of the path, a block of
wood was placed in front of one shoulder of the robot to cause a collision. Figure
6 illustrates an odometry track for a trial during which the robot experienced a
gentle collision on the way out, and a more significant collision on the way back
to the starting position that resulted in an uncommanded turn. Over five trials
of this test, the command odometry had a measure of odometric accuracy of
140 cm with standard deviation of 102 c¢m, versus the combined visual odometry
approach with an accuracy of 43 cm and standard deviation of 53 cm.

The final test of 1D SURF visual odometry was designed to illustrate the
performance of the system with multiple visible moving objects. For this test,
the Nao was programmed to maintain position in the centre of the SPL field while
walking on the spot, while a number of people wearing blue jeans (simulating
referees as in the RoboCup soccer application domain) were instructed to walk
in front of the Nao at a range of around 50 cm. The first five people walked in
the same direction, from right to left. Figure 8 illustrates that at this range the
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Fig. 6. Odometry track from an uncalibrated Nao on a single 2 m out and back trial
with collisions in both directions.
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Fig. 7. Final positioning error over five out and back trials with collisions. Results
again indicate a significant increase in accuracy using visual odometry relative to naive
command odometry.

referees jeans will typically fill approximately half of the robot’s horizontal field
of view.

During this test, the robot’s visual odometry was monitored to see if the
movement of the objects in front of the camera could trigger a false positive
heading change. As illustrated in Figure 9, during this process there is no ap-
parent drift in the robot’s visual heading odometry in over one thousand frames
(approximately 33 seconds). The oscillating pattern of the heading is attributed
to the robot’s constant adjustments to maintain position in the centre of the
field. During these experiments, the mean execution time of the visual odome-
try module on the Nao v4 (including the execution time required to extract 1D
SUREF features from the camera image) was 6.5 ms. This equates to a theoretical
maximum frame rate of around 150 fps (although in practise the Nao camera is
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Fig. 8. Moving object tests as they appear to the Nao robot. Approximately half of
the robot’s horizontal field of view was obscured by the moving object. Although the
person’s jeans appear very dark, features are still detected in this area as indicated by
the red and blue blobs.

limited to 30 fps and the remaining computational resources are used for other
tasks).

| i .M ﬂ,M I
T Y

3 69 135201267 333399465531597663 729795861927 993
Frame Number

-10 4

-15 4

Visual Heading Odometry (deg)
&
1

Fig. 9. Visual heading odometry with the Nao walking on the spot during the moving
object test. There is no evidence of large spikes which would indicate false positive
heading changes, or heading drift, during this 33 second period. An oscillating pat-
tern can be seen which reflects the robot’s actual movement adjustments to maintain
position while walking on the spot.

The visual compass was used by the UNSW team in the 2012 Standard
Platform League with great effect to help localisation accuracy [13].
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5

CONCLUSIONS

We have presented a robust and extremely computationally inexpensive method
for estimating monocular, feature-based, heading-only visual odometry using
1D SURF features. Further work is required to investigate the feasibility of full
planar visual odometry (including both heading and translation) using the same
features.
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