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Abstract

This report considers two techniques in determining the proba-
bility distribution of a robot’s heading with respect to a predefined
map. These techniques examined are called Region binning and Cross-
Correlation and will be employed in the context of Robot Soccer. Sam-
ple images of the horizon will be extracted from a robot standing on
a standard Robocup soccer field in order to determine the corner of
the field it is facing.

Region Binning and Cross-Correlation have the potential to de-
velop into something practical. However these techniques are not
robust when dealing with distortion and other various field-related
errors. Addressing these issues is vital for these techniques to be of
practical use.
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1 Introduction

In previous Robocup SPL competitions the game was always played on the
field. Anything above the field was treated as noise and deemed too random
by nature to be practically useful. In particular in the early days of Robocup
there used to be beacons off the field to aid localisation. They eventually
disappeared and attention then turned to localising off the different coloured
goal-posts. Now that both goal-posts will be uniformly coloured from next
year onwards there is a need to localise off other features of play. Our mo-
tivation therefore is to utilise some features above the field to improve the
localisation of the Nao robot.

Although the methods and techniques presented in this report can be
applied to quite general situations the environment of the experiments pre-
sented will be on a soccer field inside a research laboratory, the robot being
the Aldebaran Robotics humanoid Nao.

1.1 Goals

The goal of this report is to provide, from any position of the soccer field,
P (z|x) - the probability distribution where z is the heading of the robot if
it was standing on the center of the field and x is the 360-degree view of the
horizon from the center.

1.2 Contribution

This report provides an analysis on two techniques, Region Binning and
Cross-Correlation, and how they process information from the horizon to
provide a probability distribution of the corner of the field a robot is facing.

1.3 Report Structure

The rest of the report is structured as follows: section 2 will provide a back-
ground of similar techniques in the area. Section 3 will provide the theory
behind the Region Binning and Cross-Correlation techniques. Section 4 will
provide details on the experiments performed along with their results which
is followed by section 5, an analysis of the results. Finally the last section
is the conclusion, addressing the techniques, goals and possibilities of future
work in this area.
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2 Background

On a large scale Natural Landmarks localisation is a subset of Simultaneous
Localisation and Mapping (SLAM). In order to take advantage of landmarks
surrounding the field some feature detection would be ideal. Lowe’s SIFT
algorithms[1] provides accurate feature detection by passing through a series
of techniques which aid robust object detection. These techniques however
are not ideal for the Naos as they are computationally too inefficient.

On a simpler level landmark localisation incorporates edge detection of
objects, in which there is a wealth of literature dedicated to finding accurate
yet computationally cheap algorithms. Marr and Poggio[3] outlined in their
seminal paper a way of detecting edges in Greyscale images by defining an
edge as having a local maximum/minimum at the first difference equation
and a zero-crossing point in the second difference equation. Figure 1 demon-
strates an illustration of this. The Sobel Operator is another measure of edge
strength where a scalar for each pixel is calculated by passing a kernel filter
through their image intensity values. For a 3x3 kernel a typical matrix is −3 0 3

−10 0 10
−3 0 3

 .

This measures edge intensity in the horizontal direction. The vertical
direction intensity would then be calculated using the below matrix: 3 10 3

0 0 0
−3 −10 −3

 .

Using the ideas of edge detection a stereo vision method of Natural Land-
marks localisation has been devised. By hard coding initial position coor-
dinates inside the robots, landmarks can be localised using stereo vision
methods. Then a disoriented robot can be relocalised using triangulation
methods. More details of this method are located in the appendix. However
this method is not robust when detecting landmarks with similar colours and
its landmark detection is sensitive to small measurement errors.

Therefore a new perspective of utilising natural landmarks is proposed -
one which considers the relative order of landmark colours observed by the
robot in order to perform localisation.

4



Figure 1: Edge detection using finite differencing by Marr and Poggio.
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3 Theory

3.1 Preliminary & Definitions

In this section an overview of the theory behind the Region Binning and the
Cross-Correlation technique is presented. For the rest of this report define
the initial ring of pixels as the 360-degree view of the horizon from the centre
of the map, represented by YUV pixels. Also define the current horizon
pixels as the pixels on the horizon of the current frame on the robot camera.
Define the centre-heading to be the heading of a robot if it was placed on
the center of the field.

In both techniques the aim is that a disoriented robot on the soccer
field can use the current horizon pixels to work out the center-heading using
an algorithm, given the initial ring of pixels. The centre-heading is not
the heading of the robot, but intuitively it is the corner of the map that a
robot is facing. All angle measurements are measured by the centre-heading
because it provides a measure that is relative to the initial ring of pixels and
irrespective of its field position, so between different robot frames the corner
of the field a robot is facing can be determined.

3.2 Region Binning

Region Binning consists of dividing the initial ring of pixels into a small
number of regions. Mathematically this means the 360-degree arc in the
initial ring of pixels is divided into n arcs of equal angle, where n is the
number of regions. Each region represents a corner of the map, having a
set of pixels associated with it. The distribution of the centre-heading is
then decided by a voting process, described by the following pseudo-code
algorithm

for every pixel in current_horizon_line

for every region in regions

for every pixel_region in region

if equal(pixel, pixel_region)

region->regionvotes++;

where equal(a, b) tests whether two pixels are equal based on threshold-
ing the sum of the difference of each YUV pixel value to a predefined number.
Experiments during stereo vision testing have shown that a threshold value
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of 30 provides an optimal balance between detection of objects in most situ-
ations. The votes of the regions make up the probability distribution of the
centre-heading.

3.3 Cross-Correlation

The idea of Cross-Correlation is to take the current horizon line and look at
where it could be on the initial ring of pixels. To do this the current horizon
line has to be compared to the initial ring of pixels at every displacement,
and each comparison needs to be measured with a value. The pseudo-code
is as follows:

int i, initPixNum = size(initial_ring_of_pixels);

for (i = 0; i < initPixNum; i++)

for (j = 0; j < size(current_horizon_line); j++)

cross_corr[i] +=

diff(initial_ring_of_pixels[(i+j)%initPixNum],

current_horizon_line[j]);

where cross corr stores the cross-correlation function and diff(A, B) is
the function to calculate the sum of the differences in YUV values between
pixel A and B. Therefore the best match occurs at the global minimum of
cross corr. Inverting the order of the cross corr values gives a measure of the
distribution of the centre-heading.

4 Experiment & Results

4.1 Experiment Method

The experimental method is as follows:

• Set up the horizon line detection on the robot. For more information
about the setup refer to the 2010 rUNSWift Report[4].

• Set up the initial ring of pixels. Place the Naos on the centre of the
field. Define zero degrees as the direction of the left corner facing the
opponent’s goal. Starting from zero degrees, record nine different pixel
arrays of the horizon line, each spanning 40 degrees. This should be
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done by aligning the left border of the camera image at zero degrees,
then recording one array, then turning the robot on the centre spot so
that the left border faces 40 degrees and record again, and so forth.
Then stitch the nine arrays together to form the initial pixel of arrays.
Note that nine arrays of 40 degrees was chosen because a standing Nao’s
horizon range on one camera frame is slightly in excess of 40 degrees.

• Record sample images from the Nao facing in random directions, stand-
ing anywhere on the soccer field. For this particular purpose the images
are recorded and stored via OffNao. Refer to the rUNSWift report[4]
about OffNao.

• Run the Region Binning and Cross-Correlation Algorithms on the set of
sample frames to produce the centre-heading distributions for analysis.

4.2 Sample Images

In order to demonstrate the performance of the algorithms in a suitable en-
vironment the results of the experiment was performed in the AI Research
Labs in the Faculty of Computer Science and Engineering K17 building. In
particular the sample images were generated from a standing Nao Robot on
a standard Robocup soccer field, observing a surrounding environment of
chairs, desks, boxes and cables. 200 sample frames of the surrounding envi-
ronment based on random field positions and headings was collected. The
emphasis of the sample images has been on extracting different angles and
distortions of the same image of pattern colours for analysis.

4.3 Results

Figures 2 and 3 show four images representing different angles of roughly
the same view. Below each image is the centre-heading distribution of the
Region Binning and the Cross-Correlation technique. The red line in each
distribution represents the ground truth centre-heading.

A summary of statistics based on the accuracy of the techniques per-
formed on the 200 frames is given in the first table. Accuracy in the follow-
ing is measured for each frame based on whether there is a local or global
maximum in the centre-heading distribution. A ratio of the local to global
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Figure 2: Pictures 1 and 2 with their distributions.
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Figure 3: Pictures 3 and 4 with their distributions.
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maximum percentages are included in the table. The ratio is an indicator
of how prevalent a global maximum is when a local maximum is found. In
other words, it calculates the sample probability of a global maximum, given
a local maximum.

Method Local Global Local/Global
Maximum (%) Maximum (%) Ratio

Region Binning 70.50 22.00 31.21
Cross-correlation 82.50 45.50 55.15

The below table provides basic performance statistics of processing each
frame with each algorithm and also with no algorithm, in order to test the
performance of overheads.

Method Average Speed (µs) Sample Standard Deviation (µs)
Region Binning 8614.17 2437.99
Cross-correlation 23921.67 2534.13
None 40.63 21.74

5 Analysis

5.1 Accuracy

The implementation of the techniques on the four pictures in the results
section was meant to test the algorithms on different camera angles of the
same region, however the algorithms returned mixed results overall. Except
for cross-correlation on picture 3, the techniques did not return maxima
for any of the pictures. A localisation method is considered robust if the
method can return similar results based on the detection of the same pattern
of objects, and the algorithms are inadequate in this regard.

However it must be noted that in the Cross-Correlation distributions the
ground truth is located in the middle of several consecutive high probability
mass values. Because the Cross-Correlation function has a discrete unit mea-
surement of one pixel, consecutive cross-correlation values are often similar.
Even if the measurement is off by a small number of pixels, as long as the
pixel colour ordering is preserved then consecutive cross-correlation values
should be similar. This implies that it might be more accurate to find a
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range of centre-headings to determine the ground truth. A flaw in this idea
however is that these ranges might not be the most prominent clusters, as
the results suggest. So finding a robust algorithm for this would also be a
challenge.

For the Region Binning method, a susceptibility of the algorithm to dis-
tortion might be a major factor in its ability to accurately determine the
ground truth. In picture 1, the right hand side of the frame represented a
heavily distorted view of one side of the field, which would be quite different
from the initial ring of pixels, taken from the centre of the field. This would
mean that on one hand, the current horizon line would match many regions
in the voting algorithm, because pixels of many regions are represented in
the current line. On the other hand there would be few votes for all re-
gions because there is not enough pixels belonging to one dominant region
of the map, because of distortion. The Region Binning method would work
best if the current horizon line had pixels belonging to one distinct region
of the initial ring of pixels, but judging by the results, the algorithm lacks
robustness.

Looking at the table of maxima detection there is a high percentage
of maximum detection in both methods and less so for global maximum
detection. The low local/global ratios mean that maxima detections were
predominantly local and because of this a large number of false positives
would arise if the ground truth was based on the global maximum. Of the
two methods Cross-correlation has both a higher rate of maxima detection
and a local to global ratio, meaning for the sample it yield more accurate
probability distributions. However it must be noted that a large portion
of the samples were on clear images which had distinct colour patterns in
its surroundings. Restriction of the sample images to the lab environment
hindered the reliability of the results in a practical scale.

5.2 Computational Performances

The average speed of the Cross-Correlation has be shown to be about thrice
as fast as the Region Binning. This comparison is reasonable because of the
extra processing the Cross-Correlation method needs to do to create a more
refined probability distribution. The processing time for overheads seems
insignificant compared to the processing time for the algorithms. Overall it
seems that in order to get a more refined and accurate probability distribution
there is a speed penalty involved.
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5.3 Errors

There were several errors encountered with the experiment that affected the
quality of our results. As previously mentioned the distortion of images
seen from different positions led to different probability distributions. Also
depending on the robot’s position on a field, the order of objects between
the different images could be seen differently. This would lead to a different
ordering of colours than the one expected on the initial ring of pixels. Another
practical error source could be field symmetry, where if large regions of the
map are similar on the horizon then the algorithms would return multiple
ground truth possibilities. In the worst case of a horizon line which is mostly
uniform in colour the methods described would be invalid. Addressing these
errors in future experiments would make the algorithms more robust to a
practical environment.

6 Conclusion

The experiments performed reached its goal in providing the probability dis-
tribution of the centre-heading of a robot given the initial ring of pixels,
based on the Region Binning and Cross-Correlation methods. Relatively,
the Cross-Correlation method gave a more refined probability distribution
over the Region Binning method at a slower speed and was also shown to
be more robust. Both methods show promise that they can provide some
information of the direction of the field a robot is facing regardless of its
position on the field.

However due to a variety of distortion and other field-related errors these
techniques are far from practical use. The algorithms need to be more robust,
so that no false positives arise in their results. Other than directly modifying
the algorithms to address these errorrs, other ideas include finding a heuristic
to deal with the region of detected colours in the binning methods and to
look at cheaper forms of scale-invariant edge detection techniques. Another
improvement that can be made is to look not only at the horizon pixels but
at a larger subset of the camera image, because in general more information
can be extracted if the given dataset is larger.
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8 Appendix

8.1 Stereo Vision Technique

8.1.1 Method

1. Two robots are placed at known positions with known headings, facing
one image.

2. The pixels on the horizon will be recorded in its YUV form.

3. Edge detection will be done. Between consecutive pixels the absolute
difference between their Y, U and V values is recorded. An edge is
recorded if their absolute difference is greater than a threshold number.
Empirical testing shows ∆(Y )+∆(U)+∆(V ) ≥ 30 is a good threshold
condition.

4. Edge filtering is done to filter out noisy and thick edges.

5. From the edges colour bands can be extracted for both robots.

6. The two colour bands are then passed through the modified edit dis-
tance algorithm (see later on in the Appendix) to find a subset of
matching colour bands that both robots can see. These colour bands
are the landmarks that both robots have detected.

7. From these colour bands, the robots perform triangulation to localise
each landmark on the map.

8. Whenever one of these two robots is moved to a new position. If it de-
tects these landmarks again it can use these landmarks to find possible
positions of its current location on the field map.

9. These clusters can be grouped to form a possible robot location on the
map.

8.1.2 Results

Edge detection using the gradient method and threshold was reliable, par-
ticularly in images where the colour transition was clear. On small images
further away it was also reliable, but became less so when the images were
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Figure 4: Results from localising off coloured paper on a billboard.

small (for example wires and cables). Also when the robot was moving there
was no detection at all. This might be because of the blurry image which
was observed. The fast movement might make YUV values for all consecutive
pixels very similar.

Landmark localisation initially was accurate for objects with distinct sep-
arate colour regions whilst it was less accurate for similar colours. Landmarks
localisation relied mainly on edge detection and thus shares most of its advan-
tages and disadvantages with it also. Furthermore detecting many natural
landmarks like poles, pillars, desks, chairs and boxes far away resulted in
wildly inaccurate measurements.

The many landmarks detected from the above paragraph meant that
there were many possible robot coordinates calculated. The number of robot
coordinates detected varied greatly, from none to 400. In most results a
dominant cluster could be found, in other cases most results lie on an arc
of the circle which intersected a majority of landmarks. Yet some cases still
existed where a dominant cluster could not be found.

8.1.3 Analysis

Before the gradient method was implemented both methods in the back-
ground were tested. Marr and Poggio’s method of differencing the respective
YUV values only gave very few results. Upon looking at the YUV values
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Figure 5: Some YUV values of consecutive pixels shown with a sample image.

this was probably because the changing YUV values were not enough to be
picked up by the first and second difference equations. It could not detect
clear edges. Noisy pixels were also significant enough for it to random detect
edges which were clearly not there.

The Sobel operator did a much better job, but compared to the gradi-
ent method, it detected lesser edges. It was found that the Sobel/Scharr
Operator was less flexible in its adjustments to edges and could not detect
all of them, whereas the gradient method could be changed by changing its
threshold value.

As mentioned before landmark localisation worked well for distinct (’un-
natural’) landmarks but did not work well in the practical scenario. One
possible cause is that from the image several colour bands are similar, espe-
cially brown boxes and white poles and pillars. This could in turn confuse
the modified edit distance algorithm into calculating an incorrect result as
some colour band sequences are particularly similar, but not equal. Other
prominent factors include measurement error, whether that comes from the
pose that calculates the horizon, or error from the initial hard-coding of the
primary robot positions and headings from which the landmarks can then
be relatively detected. But perhaps the most significant error is error from
measuring the subtended angle of the landmark from the image, as small
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error in the angle would create huge error in landmark location.
Robot localisation from natural landmarks relied on both landmark de-

tection to be accurate, which in turn relied on edge detection to be accurate.
So if there was huge error in one of the two, the error would be compounded
in robot localisation. When there was good landmark localisation many clus-
ters could be found, and filtering techniques were often accurate enough to
decide a single point. When landmarks were not accurate, possible robot
locations were often dispersed around the map, a result of the compounding
error.

8.2 Modified Edit Distance Algorithm

Problem: Let 0 ≤ m ≤ max(k, l) and S be the set of all ordered colour
bands. Given a sequence of two colour bands A = a1a2a3...ak and B =
b1b2b3...bl, A,B ∈ S, we wish to find C = c1c2c3...cm ∈ S, the sequence of
colour bands which will require the least deletions for ai’s and bj’s from A
and B combined.

So given A and B above we define the an edit distance matrix E, a (k+1)
by (l+1) matrix. For the (i, j)th element e[i, j], we further define δ(e[i, j]) to
be the minimal edit distance of colour bands a1a2a3...ai−1 and b1b2b3...bj−1

and s(e[i, j]) to be the colour bands that determine δ(e[i, j]).

The initial conditions for matrix E are that δ(e[0, 0]) = 0, s(e[i, 0]) = ∅
and for all i ∈ (1, 2..., k + 1), δ(e[i, 0]) = i, s(e[i, 0]) = a1a2...ai−1 and
j ∈ (1, 2..., l+1), δ(e[0, j]) = j, s(e[0, j]) = b1b2...bj−1. Define further β(e[i, j])
to be the largest consecutive set of recent deleted elements bjbj−1...bj − c in
determining s(e[i, j]) and α(e[i, j]) to be the same ajaj−1...aj − d in deter-
mining s(e[i, j]). s(e[i, j]) and δ(e[i, j]) are determined as follows:

if (a_i in alpha(e[i-1, j-1]) and b_j in beta(e[i-1, j-1])) {

Dist_1 = delta(e[i-1, j-1]);

} else {

Dist_1 = delta(e[i-1, j-1])+2;

}
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if(a_i in alpha(e[i-1, j]) ) {

Dist_2 = delta(e[i-1, j])-1;

} else {

Dist_2 = delta(e[i-1, j])+1;

}

if(b_j in beta(e[i, j-1])) {

Dist_3 = delta(e[i, j-1])-1;

} else {

Dist_3 = delta(e[i, j-1])+1;

}

delta(e[i,j]) = min(Dist_1, Dist_2, Dist_3);

if (delta(e[i,j]) == Dist_1) {

if(Dist_1 == delta(e[i-1, j-1])) {

s(e[i,j]) = s(e[i-1,j-1]);

} else {

/* without a_i and b_j */

s(e[i,j]) = s(e[i-1,j-1]);

}

} else if(delta(e[i,j]) == Dist_2) {

if(Dist_2 == delta(e[i-1, j])-1) {

s(e[i,j]) = s(e[i-1,j]);

} else {

/* without a_i */

s(e[i,j]) = s(e[i-1,j]) ;

}

} else {

if(Dist_3 == delta(e[i, j-1])-1) {

s(e[i,j]) = s(e[i,j-1]);

} else {

/* without b_j */

s(e[i,j]) = s(e[i,j-1]);

}

}

From here the sequence of colour bands that solves the problem is in
s(e[k + 1, l + 1]) with edit distance δ(e[k + 1, l + 1]).
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