
rUNSWift 2011 Vision System:

A Foveated Vision System for Robotic Soccer

Carl Chatfield (z3255311)
Bachelor of Computer Science

Supervisor: Bernhard Hengst
Assessor: Maurice Pagnucco

August 25, 2011

School of Computer Science & Engineering
University of New South Wales

Sydney 2052, Australia

Abstract

The vision module used by the 2011 rUNSWift team acts as the primary source of input for its
robots during a match of robotic soccer. Like all real time vision systems, the algorithms employed
must be fast and robust, however designing such a system for use with the Aldebran Nao used by
RoboCup Standard Platform League poses considerable challenges. The severe limitations of the
available hardware must be overcome using innovative methods that may have otherwise remained
unexplored. In particular, we achieved a major speed-up using an intelligent ball tracking “fovea”,
allowing us to reduce the number of processed pixels whilst preserving detection accuracy. In this
context, the concept of a “fovea” is defined as a rectangle of the image sampled at an arbitrary
resolution and is an underpinning feature of our design philosophy. The performance of the foveated
ball detector has been statistically analysed and compared to that of last year. Such detailed
analysis is a first for rUNSWift, and has revealed an unnoticed fruit in the previous year’s system.

Contents

1 Introduction 1

2 A RoboCup Vision System 3

2.1 Problem Definition . 3

2.1.1 Hardware: Aldebaran Nao . 3

2.1.2 The Field: Colours and Lighting . 4

2.2 Related Work: rUNSWift 2010 at a glance . 4

2.3 Design Overview . 7

2.3.1 VisionFrame . 8

2.3.2 Image Format . 9

2.3.3 Saliency Images . 9

2.3.3.1 Colour Classified Image . 9

2.3.3.2 Grey Scale Image . 10

2.3.3.3 Edge Image . 10

2.3.3.4 Sampling Density . 11

2.3.3.5 Colour Histograms . 11

2.3.4 Foveae . 11

2.4 Off-line Vision Debugging and Testing . 13

2.4.1 Logging . 13

2.4.1.1 Log Formats . 14

2.4.2 Visualisation . 14

3 Vision Test Suite 16

3.1 Image Classifier . 16

3.2 Vision Tester . 16

3.3 libvisiontest . 17

4 Ball Detection 18

i

4.1 Locating Candidates . 18

4.2 Foveating In . 20

4.2.1 Choosing a Sampling Density . 20

4.2.2 Choosing Appropriate Edge Weightings . 20

4.3 Revising the Candidate . 20

4.4 Locating Edge Points . 20

4.4.1 Radially Scanning . 21

4.4.2 Defining Edges . 21

4.5 Fitting a Circle . 22

4.6 Ball Tracking . 22

5 Results 24

5.1 Ball Detection Results . 24

5.1.1 Comparison of Detectors . 24

5.1.2 Test Sets . 24

5.1.3 Detection Ratio . 24

5.1.4 Positional Accuracy . 26

5.1.5 Radial Accuracy . 30

5.2 Team Results . 30

5.3 Future Work . 34

5.4 Conclusion . 34

A Image Classifier Manual 36

A.1 Object Classification . 36

A.2 Image Navigation . 37

B Ball Test Sets 38

B.1 Close Ball Test . 39

B.2 Far Ball Test . 41

B.3 Chase Test . 43

C Process to Reproduce Ball Statistics 44

C.1 bucket.pl . 44

C.2 offset.plt . 45

ii

Chapter 1

Introduction

RoboCup is an international robotics competition with a stated ultimate goal:

“By mid-21st century, a team of fully autonomous humanoid robot soccer players shall
win the soccer game, comply with the official rule of the FIFA, against the winner of
the most recent World Cup.” [11]

To those involved, robotic soccer represents the next major research milestone in the field of artificial
intelligence after IBM’s Deep Blue famously defeated Garry Kasparov, the then reigning world chess
champion. [10] [12]

rUNSWift, the University of New South Wales’ (UNSW) entrant into this competition, competes
in the Standard Platform League (SPL). The league is unique in that all SPL teams compete using
teams of identical Aldebran Naos, leaving only software to distinguish the competition’s victor.

In 2010, the team deemed it necessary to execute a complete rewrite of the rUNSWift code base [14],
granting themselves complete freedom when redesigning their system’s architecture. Their efforts
culminated in a fresh code base that was able to prove its metal on the international stage, placing
second in the world at the Singapore competition. Although impressive, the system in its youth
still lacked several desirable features that could not be implemented simply due to a lack of time.
The responsibility of filling these gaps fell to the 2011 team.

The vision module, with three dedicated members assigned to it, received the most attention over
2011. In order to remain competitive with the leading teams, two major features where the required:
field line detection [9] and robot detection [13]. Both are non-trivial problems and require significant
image processing to solve. With the 2010 system already running maximising its CPU utilisation,
it became necessary to rethink and optimise existing components of the vision pipeline before these
additions of this scale could be made. The ball detector, for example, has been rewritten to rely
on significantly less image preprocessing, thus freeing up resources for vision components.

This thesis explores several issues pertaining to the design of the 2011 rUNSWift vision system.

• Chapter 2 provides a high level overview of the vision system as a whole. We describe a
system based on the concept of a fovea: a rectangular region of an image sampled at an
arbitrary resolution. Foveae not only reduce the required computation needed to process an
image, but also mandate that our algorithms are generic and easily substitutable. These traits
are especially desirable for a UNSW RoboCup team which must rapidly develop, sometimes

1

incomprehensible, code only to then experience an almost complete student turnover at the
end of the year.

• Chapter 3 discusses the vision testing framework in detail. Although the framework itself
was completed, time ran out before it could be incorporated into the continuous integration
environment. We had hoped to generate performance metrics to chart progress made over
the course of the year, but instead we use the testing framework to statistically compare the
performance of the foveated ball detector against the detector of last year. It will also be
used to assess the benefits yielded by foveated ball tracking.

• Having discussed the testing framework, Chapter 4 now describes and assesses the foveated
ball detector. The ball detector was necessarily rewritten as part of the effort to reduce
CPU consumption. The new detector boasts improved detection accuracy whilst requiring
significantly less computation. The improvements are backed by statistical evidence, however
the analysis also discovered that last year’s detector performs surprisingly well on blurry
images. Before now, the properties of the 2010 detector had never been compared to the
properties of more conventional algorithms, and as a result this resilience to blur was never
touted.

2

Chapter 2

A RoboCup Vision System

2.1 Problem Definition

Identify, in the image space, objects of interest to playing the game of soccer. These include, but
are not at all limited to, the following: the ball, goals, field markings, the field itself, and both
friendly and opponent robots. The 2011 Vision system attempts to identify all of the aforementioned
objects.

The SPL domain in which rUNSWift competes has strict rules that place constraints on our system.
In particular, teams are tied to a single hardware platform and must efficiently utilise the robots
on board hardware. The rules also strictly define the physical appearance of all objects on the field
in terms of both shape and colour. In turn, this allows us to strictly define the demands of our
vision system.

2.1.1 Hardware: Aldebaran Nao

SPL soccer is played by teams of competing Naos, robots produced by a French company Aldebaran.
As the name Standard Platform suggests, the Nao is standard hardware used by all teams and may
not be modified.

Of specific interest to the vision module are the two cameras situated on the robot’s head, hori-
zontally centred with a vertical offset. One camera is positioned to look directly forwards whilst
the other points downwards towards the ground and the robot’s feet. Both cameras are capable of
snapping 640x480 images at 30 frames per second and have a 58 degree diagonal field of view [2].
Compared to a human, who has a diagonal field of view of about 225 degrees [3], the Nao’s field
of view is comparatively narrow. The cameras can not be used simultaneously, and therefore the
robots field of view is limited to a tiny window that often lacks visual context.

The Nao is also hurdled by its limited processing capabilities. In starch contrast to other real-time
vision systems, which may often use dedicated specialised hardware [4], the rUNSWift vision system
must run on a 500 megahertz AMD Geode processor [1]. Our system must therefore be extremely
economical with its available processing resources.

3

Figure 2.1: Field of View comparison: Human versus Nao

2.1.2 The Field: Colours and Lighting

Playing a competitive game of soccer against a human team is still far beyond the realm of today’s
computers. To compensate, SPL soccer introduces many simplifications over real soccer; the most
significant is the colouring of the environment. Goal posts are colour coded either bright blue or
yellow depending on which side of the field they stand. The field itself is a solid matte green, and
the ball is a distinctive orange colour. Artificial colouring greatly simplifies the task of writing an
SPL vision system, but there remain challenges. Between venues, the shades and reflectivity of
materials used vary. The field colour at the Turkey competition, for example, was a bright pale
green, whilst the colour used at the Singapore competition was considerably darker.

The other variant is the lighting used to illuminate the field. The SPL rule book states “The
lighting conditions depend on the actual competition site. Only ceiling lights may be used [6].” In
practice the luminosity of the field is usually around 500 lumen; the types of lighting can range
from uniform flood lighting to highly specular point lighting as was the case in Turkey. Whilst not
usually noticeable to humans, specular lighting can cause interesting phenomena that change the
appearance of objects in an image. Any vision system must be robust enough to handle varying
lighting conditions.

2.2 Related Work: rUNSWift 2010 at a glance

Placing second in the world at the 2010 Singapore world championship once again affirmed UNSW’s
position as a leading university in the competition. Such success can be partially attributed to a
well thought out design that has principally remained intact as the basis of the 2011 system. Within
the vision module, many ideas pioneered by the 2010 team have been reused, but are now more
formally defined in code. A brief overview of each vision component is provided for context.

4

Figure 2.2: Top: Field colour in Singapore.
Bottom: Field colour in Istanbul.

Saliency Image
Image processing begins by creating a colour saliency image: a reduced scale image where
each pixel colour has been classified using a predefined colour table. The image is down
scaled by four to one, i.e. only one in sixteen image pixels is classified. During this stage,
horizontal and vertical histograms representing the colour distribution across the image are
also generated.

Region Building
The saliency image is then passed along to the region builder. Its function is to identify regions
that are likely to contain detectable objects of interest. It works by vertically scanning over
the saliency image whilst heuristically attempting to determine what each column of pixels
may represent. Adjacent columns with similar properties are then grouped together to form
rectangular regions that can later be used to seed the various object detectors.

Field Edge Detector
The field edge detector identifies the edge of the field, allowing downstream detectors to ignore
the noisy region outside of the playing area. First, each saliency image column is traversed
downwards until a field coloured pixel is encountered. These pixels are assumed to lie on the
field edge, and lines representing these edges are then fitted using RANSAC [8].

Robot Detector
Relatively crude robot detection exists in the 2010 vision system. The region builder reports
any otherwise unclassified non-green regions that contain at least one robot coloured pixel as
a possible robot region. The robot detector performs several sanity checks on these regions

5

before reporting a robot. These robot regions are used by downstream detectors to help rule
out false positives.

Ball Detector
The ball detector is seeded using ball candidates reported by the region builder. Ball edges
are found by scanning over the region both horizontally and vertically whilst searching for
fluctuations in colour. Both classified colour changes and strong edges in the red image
channel are considered. Circle fitting is achieved by selecting three of the detected edge points
at random and constructing a circle. Several circles are constructed in the same manner using
a different sampling of points. Finally all circles are sorted by their radius and the median
result is reported as the detected ball.

Field Line Detection
Whilst present in the code base, the field line detector was not used at the 2010 competition.
It attempted to match visible field line points against a world field model using an iterative
hill climbing algorithm.

Goal Detector
Goals are detected by first analysing the colour histograms collected during the saliency image
creation phase to locate large goal coloured regions. The detector then searches the original
image for strong vertical edges in the vicinity and then fits a bounding box around the goal.
The approach is rather novel in that the histograms will respond to sparsely classified goal
regions, allowing the detector to locate goal posts even if they are poorly defined in the
saliency image.

6

2.3 Design Overview

Height
Width
Density
∙∙∙

Saliency Fovea

Sub Fovea

Height
Width
Density
∙∙∙

Field Edge
Detector

Ball
Detector

Other
Detectors

Kinematics
Snapshot

Time Stamp

Vision Frame

Colour Classification

Previous Vision Frame

Empty Output Storage

Vision Frame
Feature Detector Results

Camera

Figure 2.3: Flow of information through the 2011 system.

As previously alluded to in section 2.2, the 2010 vision pipeline has survived in its fundamental
form, although information is better structured and defined in the new code. Beginning from a
macroscopic perspective, consider the vision system to a simple black box that takes a set of inputs
and produces a set of outputs. All inputs are grouped into a single referee frame call a vision frame.
Conveniently, the vision frame also provides a buffer for vision output to be stored.

7

2.3.1 VisionFrame

The vision frame provides a well defined interface for invoking the black box vision system. The
input fields represent a snapshot of the robots present state, the state that the vision system will
process. After execution, detected objects are also stored in the frame, creating a mapping from
robot state to perceived world state within a single context.

struct VisionFrame
{

/∗ Constant input members ∗/
const struct
{

const u i n t 8 t ∗ image ;
const NNMC &nnmc ;
const CameraToRR &cameraToRR ;

} ;

/∗ Input members t ha t shou ld be constant ,
∗ however cannot be due to l im i t a t i o n s o f our code ∗/

i n t 6 4 t timestamp ;
WhichCamera whichCamera ;

/∗ Link to prev ious frame ∗/
boost : : shared ptr<VisionFrame> l a s t ;

/∗ Output members ∗/

std : : vector<Bal l In fo> b a l l s ;
s td : : vector<PostInfo> post s ;
s td : : vector<FootInfo> f e e t ;
s td : : vector<RobotInfo> robots ;
s td : : vector<Fie ldEdgeInfo> f i e l d E d g e s ;
s td : : vector<Fie ldFeature In fo> f i e l d F e a t u r e s ;

int ∗ startScanCoords ;
} ;

Input members, wrapped within the anonymous const struct, are as follows:

const uint8 t *image

Pointer to the image that will be processed.

const NNMC &nnmc

Colour classification table associated with the image. A separate table is used for both the
top and bottom cameras, and therefore the active colour table must be declared along side
the image.

const CameraToRR &cameraToRR

The kinematic chain of the robot’s current pose that allows points in the image space to be
projected onto the field plane.

int64 t timestamp

The time, in microseconds, that the image was captured.

WhichCamera whichCamera

The current camera being used, either top or bottom.

8

boost::shared ptr<VisionFrame> last

The previous frame processed by the vision system.

Chapter 4 will explain the purpose of the last member at greater length, however for now it is
sufficient to understand that it links each frame into a list representing the robots chronological
history. 1

The output fields are self explanatory, except for the externally irrelevant startScanCoords. Visual
inspection of the code should suggest that all output format is well defined and consistent in nature.
Disastrously complex interfaces were one of the reasons the 2010 team rewrote their system from
scratch, and it is hoped that keeping the new interfaces clean will improve the longevity of the
code.

2.3.2 Image Format

Before delving into the vision module’s internals, it is important to understand the exact format of
the image. The native operation mode of the Nao’s cameras produces images in the yuv422 format.
The three y, u, and v channels define the images colour. The y channel represents the luminance
across the image, and when viewed independently produces a grey scale image. Colour is defined by
the u and v channels which represent the blue and red levels respectively. These channels tend to
be less sharply defined and when viewed alone appear blurry. Because of this, the camera conserves
bus bandwidth by sharing u and v values between pairs of adjacent pixels. This is reflected by the
422 in the formats name, in every 8 bytes of data, there are 4 bytes that represent the y channel
and 2 that represent each of the colour channels.

2.3.3 Saliency Images

Processing of the vision frame begins with the creation of several saliency images, an idea taken from
the 2010 design. These images are a form of preprocessing that produce an intermediate output
applicable to several lower level object detectors. Although constructing the saliency images is
a costly operation, this cost is subsidised over the multiple detectors. The 2010 code also had a
second stage of image preprocessing, namely the region builder. This stage has been removed to
recover its heavy computational demands, but in its place two new types of saliency images have
been added making for a total of three: a colour classified image, a grey scale image, and an edge
image. An example of each can be seen in Figure 2.3.

2.3.3.1 Colour Classified Image

The colour classified image is analogous to the 2010 saliency image. It simply maps the true colour
values from the image to their respective classifications. The classification table used is the one
associated with the input vision frame.

1Images are never copied from the internal kernel buffer; as such, the image pointer will only be valid if the kernel
buffer is valid. There are 32 kernel buffers available, however we only protect one buffer during processing. Older
frames are not guaranteed to reference their original images.

9

2.3.3.2 Grey Scale Image

Perhaps better named the “single channel image”, the grey scale image is created by taking the
three true colour values, y u and v, and flattening them into a single value. First, each channel is
and multiplied by a scaler weighting and then summed into a single value. Customisable weightings
allow this image to serve different purposes under different circumstances. For example, the ball
detector is interested in the blue (u) channel of the image, whilst the field line detector operates
on the luminance (y) channel. Finally, coarseness introduced into the image by the low resolution
sampling grid is smoothed by applying a Gaussian blurring. The resulting image is not usually of
direct interest to the object detectors; it is an intermediary image required for the construction of
the edge image.

value =

∣∣∣∣∣∣
y
u
v

× (weighty weightu weightv
)∣∣∣∣∣∣

2.3.3.3 Edge Image

The edge image captures the intensity and direction of edges in the grey scale image. Intensity at a
given pixel is determined by inspecting the value differences between it and the surrounding pixels.
Let the images be two dimensional matrices indexed by x and y.

GreyImage =


G(0,0) G(1,0) . . . G(x,0)

G(0,1) G(1,1)

...
...

. . .
...

G(0,y) G(x,y)


As the images have two dimensions, each edge will also have two components: edgex and edgey.
Together, they form a vector whose magnitude represents the edge’s intensity and the argument
its direction. A simple way of calculating the vector would be to simply compare the pixel G(x,y)

with the two adjacent pixels G(x+1,y) and G(x,y+1).

edgex = G(x+1,y) −G(x,y)

edgey = G(x,y+1) −G(x,y)

In the above calculation, the pixel G(x,y) has been included twice and therefore has been given
an unfair weighting. A better solution is to include the pixel G(x+1,y+1) by applying the Robert’s
Cross. Unfortunately, the result calculated by the Robert’s Cross represents the edge weightings
along the 45 degree diagonal axes. To compensate, a rotation is applied to realign the values to
the x and y axes.

10

a = G(x+1,y+1) −G(x,y)

b = G(x+1,y) −G(x,y+1)

edgex =
√

2 ∗ (a + b)

edgey =
√

2 ∗ (a− b)

The above procedure can also be represented using matrix form.

(
edgex
edgey

)
=

(
sin π

2 cos π2
cos π2 − sin π

2

)
×
((

G(x+1,y+1)

G(x+1,y)

)
−
(

G(x,y)

G(x,y+1)

))

2.3.3.4 Sampling Density

Saliency images are sampled sparsely resulting into smaller images than the original. The 2010
system sampled every fourth pixel horizontally and vertically, whilst we sample only one pixel in
eight. Lower level detectors can process these smaller images relatively quickly, and in many cases
can extract all the necessary information from the saliency images alone. If greater precision is
required, the original image can always be accessed.

2.3.3.5 Colour Histograms

Colour concentrations are profiled using two histograms constructed from the colour saliency image.
These histograms tally the counts of classified pixels along both the x and y axes, and can later
used to locate large coloured regions. The histograms were part of the 2010 vision system and a
fuller description is available in the team report [14].

2.3.4 Foveae

Fovea are a generalisation of the saliency images. We have observed that in many situations that
all information required to process a frame is captured by the saliency images alone. Unfortunately,
there remain situations where it would be desirable to have a larger, higher resolution set of saliency
images available. This would of course come at a greater cost in both terms of creating the images
and processing them; however, most of the extra processing would be wasted as the finer details of
interest are usually confined to a small region. If the approximate location of the desired details are
known in advance, an obvious optimisation is to only sample the interesting regions. The foveated
infrastructure provides a simple way for detectors to achieve this.

In our vision system, a fovea is a set of saliency images sampled at an arbitrary resolution rep-
resenting a rectangular region of the image. As it happens, this definition also applies to the
aforementioned saliency images when the entire image is the region of interest. Indeed the 2010
saliency image has been replaced by a full image fovea, but the true benefits of the foveated frame-
work arise only when sub-sampling smaller rectangles within the image.

11

Figure 2.4: Zooming in using sub-foveae to locate the ball.

Fovea also function as a coupling between the heart of the vision system and the individual object
detectors. Instead of processing an image, object detectors now operate on a fovea leading to two
major advantages. The first is consistency, all information needed to invoke a detector is jointly
contained by a vision frame and a fovea. Compare the function prototypes for the current ball and
goal detectors with those of last year.

/∗ unsigned i n t ∗ s i s the seed f o r the random number genera tor ∗/
/∗ 2011 ∗/
void f i n d B a l l s (VisionFrame &frame , const Fovea &fovea , unsigned int ∗ seed) ;
void f indGoa l s (VisionFrame &frame , const Fovea &fovea , unsigned int ∗ seed) ;

/∗ 2010 ∗/
void f i n d B a l l s (ImageRegion ∗∗ ba l lReg ions , u i n t 1 6 t numBallRegions ,

CameraToRR ∗convRR , Vis ion ∗ v i s i on , unsigned int ∗ seed ,
RobotDetection ∗ robotDetect ion , u i n t 3 2 t ∗ startOfScan ,
const std : : pa ir<int , int> &hor izon) ;

void f indGoa l s (
XHistogram xhistogram [IMAGE COLS/SALIENCY DENSITY] [cNUM COLOURS] ,
YHistogram yhistogram [IMAGE ROWS/SALIENCY DENSITY] [cNUM COLOURS] ,
CameraToRR ∗convRR , u i n t 3 2 t ∗ startScanCoords , Vis ion ∗ v i s i on ,
int ∗endOfScan , u i n t 1 6 t numRobotRegions ,
RobotRegion ∗∗ robotRegions , const : : s td : : pa ir<int , int> &hor izon) ;

The second benefit is that by definition, if a function is able to operate on a fovea, then transitively
that function is also able to process any sub-region of the image at any resolution. Consider the
ball detector, which is optimised to detect circles with a radius of 12 pixels. In image space, the
balls radius can vary from 6 to 60 pixel depending on its distance from the camera. Rather than
developing and optimising several detectors for balls of various sizes, a clean and elegant solution
is to simply use the same ball detector, but have it operate using foveae of varying densities.

12

Figure 2.5: Using foveae of varying densities.

2.4 Off-line Vision Debugging and Testing

OffNao is the tool used by the rUNSWift team to connect to their robots and provide live feedback.
Several other functions are also consolidated into this tool, including the ability to run the vision
system off-line by replaying previously collected logs. Vision systems are notoriously difficult to test
and debug; the prime culprit being reproducibility. OffNao allows any issue captured by a log to
be reproduced and mended accordingly. Another inherent difficulty of vision systems is evaluating
spacial data masked in a numeric form. A visualiser built into OffNao insightfully displays output
data as a series of overlays over the image, enabling the vision team to interpret the systems
output. These two features alone make OffNao an invaluable debugging tool, however many other
features also exist including the vision specific colour classifier and camera calibrator. From a users
perspective, these features remain unchanged from 2010, and a full description can be found in the
2010 report. [14]

2.4.1 Logging

Obtaining a complete log from all the robots sensory inputs is a deceptively difficult task. A single
640 by 480 pixel image is just over 600 kilobytes in size. Multiply that by the thirty frames per
second processed by the vision system and suddenly the bandwidth required to stream a real-time
video from the robot becomes 18.5 megabytes per second. Even if the Nao’s networking hardware
was able to sustain this bandwidth, it can not, the extra CPU time required by the kernel to

13

transmit the data would cut into the vision thread’s time slice.

The solution introduced this year is to create the log files locally on the robot. File system latency is
minimised by writing the logs to RAM disk, a region of RAM masquerading as a high performance
writeable disk. In this configuration the robot is able to capture 10 frames per second, however the
log size is limited to the amount of available RAM, around 100 megabytes.

2.4.1.1 Log Formats

The 2010 version of OffNao supported two types of log files: OffNao records (.ofn) and yuv dumps
(.yuv). OffNao records contain a log of all information collected during a live debugging session
conducted over the network. They usually contain a low resolution saliency image along side a copy
of the current blackboard, the central information store for the entire rUNSWift system. Although
an OffNao record can be configured to stream raw images, network speeds makes this prohibitively
slow. To obtain a high frame rate log, a yuv dump must be created locally on the robot. A yuv
dump is simply a concatenation of raw image frames collected as the robot runs. They are useful
for colour classification, however they lack vital information stored on the blackboard needed to
actuate the vision system. Another weakness of both formats is that they are not synchronised with
the vision thread, making it impossible to exactly reproduce the behaviour of the on-line system.

We have introduced an additional logging format, the BlackBoard dump. Like a yuv dump, it is a
simple format created locally on the robot by concatenating a series of frames. Importantly, like the
OffNao records, this format can be configured to include a snapshot of the blackboard. Additionally,
the dumping processes is now synchronised with the vision thread. These two enhancements allow
the entire vision processes to be faithfully reproduced off-line. 2

2.4.2 Visualisation

The vision debugging visualiser has also been revamped to support the new features of the vision
system. The single saliency image used in 2010 has been replaced with an option to view any of
the colour classified, grey, or edge saliency image. Additionally, a field view has been added to help
visualise where points projected from the image lie on the ground plane.

2Because the BlackBoard dump is a raw format, it lacks the meta data stored in an OffNao Record. This problem
is remedied by opening a BlackBoard dump using OffNao, and then saving the file as an OffNao Record.

14

Figure 2.6: A doctored image showing all available views. From left to right: True Colour, Colour
Classified, Grey Image, Edge Image

Figure 2.7: The field edges as detected above, but projected into the ground plane and visualised
using the Field View.

15

Chapter 3

Vision Test Suite

The vision test suite is an automated program for statistically testing the performance of the
rUNSWift vision system. Vision testing was discussed earlier along side OffNao in section 2.4,
which allows allows us to visually inspect the results of the vision system. It does not, however,
provide statistical evaluation of system’s performance. The vision test suite was intended to fill
this void. Whilst work on the actual test suite itself was completed, the team’s original ambitions
to integrate vision statistics into our continuous integration environment were never realised. None
the less, it can still be used to analyse the performance of the vision system and will be used later
to evaluate the ball detector.

3.1 Image Classifier

Automated testing requires a set of inputs paired with a set of outputs assumed to be correct. The
vision test suite accepts as input OffNao Records containing the expected output stored as special
meta data. The meta data is added using the image classifier that has been added to OffNao. It
allows a human to define visual objects within the image that can later be analysed by an external
tool. Refer to the image classifier Manual located in the appendix for a full description of all
functionality.

3.2 Vision Tester

Classified frames require a tool for analysis. Currently, the only such tool is the vision tester, a
command line tool that opens a classified OffNao Record, analyses each frame, and then prints
out a performance summary. In addition to the input record, a configuration file is required.
This configuration file is of exactly the same format as the one used by the robot, meaning all
configuration options available to the robot are also available to the vision tester. Most importantly,
the configuration file allows for an appropriate colour classification to be loaded and used by the
vision system.

16

Figure 3.1: An image classified using the image classifier.

3.3 libvisiontest

All core functionality of the vision test suite is built into the shared library libvisiontest. Both the
image classifier and the Vision Tester require access to common code responsible for manipulating
and comparing shapes, so as a design decision it makes sense to bundle the shared functionality
into a library. It is also hoped that future rUNSWift teams may find the vision test architecture
useful and possibly introduced additional features, such as automatically locating and reporting
frames within OffNao where the vision system has performed poorly. The functionally contained
by libvisiontest should theoretically make the development of such features trivial.

Total (0 . 8 0) {
B a l l s (1 . 0 0) {

true p o s i t i v e s : 1/1
}
Blue Posts (1 . 0 0) {

true p o s i t i v e s : 2/2
}
Fie ld Edges (0 . 5 0) {

true p o s i t i v e s : 1/2
}

}

Figure 3.2: Sample output snippet from the vision tester.

17

Chapter 4

Ball Detection

The most fundamental aspect of playing soccer is to simply get to the ball, and part of that challenge
is simply being able to see it. The ball detector was rewritten from scratch this year, partially as
a result of the region builder being gutting out, and partially to cope with the lower resolution
saliency scan. The approach taken is fundamentally very simple: cheaply find a list of candidate
regions likely to contain a ball, then search those regions using a more intensive algorithm. The
new detector will be analysed using the vision tester for both the percentage of balls detected and
the accuracy of the reported measurements. For comparison, results will also be compared against
those of last years detector.

4.1 Locating Candidates

The SPL RoboCup competition uses the distinctly coloured orange ball. This provides a very
simple colour based method for classifying pixels likely to belong to the ball. Grouping these pixels
into clusters is slightly more complicated.

At a distance of six metres, a full field length, the ball can appear as a single orange pixel in
the saliency image. On the other extreme, a ball appearing at the robots feet may be fifteen by
fifteen saliency pixels large, occupying approximately 5 percent of the entire image. The grouping
algorithm must therefore be suitable to balls of all sizes. One common approach is to build disjoint
sets of adjacent pixels [7]. This approach, however, does not handle cases where pixels belong to the
same ball but are somehow separated, either due to blur, specular lighting, poor colour calibration,
or some other phenomena. A much more simple approach is to locate the top, left, bottom, and
right most orange pixels in the image and assume the bound the ball. This approach was used in
early prototyping, but is vulnerable to even a single misclassified orange pixel. We instead use an
approach inspired by the success of the goal detector, a remarkably simple solution that scales to
goal posts of all sizes.

In a similar fashion to the goal detector, the ball detector builds histograms of orange pixels
along both the x and y axis of the image. To eliminate noise present in the irregularity coloured
background, only the region of the image bounded by the field edge is considered. Peaks in the
histograms are then found and used to estimate the bounds of potential ball candidates. There
is one major caveat worth noting: by compressing two dimensional spacial information into one
dimensional histograms we have discarded information. When reconstructing the two dimensional
regions, artefact regions containing no ball pixels may appear, as illustrated by figure 4.2. An extra
sanity check is therefore required to test for the presence of orange before reporting the region as

18

Figure 4.1: Histograms used to locate candidate regions, outlined in white. Note the falsely
classified pixel in the shoe that has created a strangely shaped candidate region.

Figure 4.2: The introduction of a second ball causes two artefact regions to appear.

19

a possible ball candidate.

4.2 Foveating In

For each ball candidate, the ball detector next constructs a fovea covering the related region of the
image. The candidate fovea must satisfy two requirements to be of use:

1. The ball radius in the resulting fovea should be normalised between 6 and 12 pixels.

2. The edge intensities present in the edge image must be highest around the boundary of the
ball.

4.2.1 Choosing a Sampling Density

Normalising the ball radius has simplified the design of the ball detector by allowing us to only
focus on detecting balls with a specific range of radii. An appropriate ball radius can be obtained
by selecting an appropriate sampling density for the fovea. If the would be ball radius is less than 6
pixels, it can be doubled by doubling the sampling resolution. Likewise, if the ball radius is greater
12 pixels sampling at half the resolution will then half the resulting ball radius.

4.2.2 Choosing Appropriate Edge Weightings

The ball detector also relies on strong edges being reported around the ball’s edge. Unfortunately,
the luminance channel used to generate the saliency fovea is highly responsive to specular lighting
reflected from the ball’s surface. This can lead to false edges being detected in reflections on the
ball. As an alternative to using the luminance, it may seem logical that the edges of an orange ball
would be well defined in the red channel. Whilst edges in the red channel found to work very well in
most cases, edges were lost when the ball was set against a yellow goal post. Experimentation with
the blue channel on the other hand exceeded all expectations. Perhaps at first a little surprising,
we found the strongest variations between the ball colour and all other colours in the environment
to be present in the blue channel. Therefore, the foveae created by the 2011 ball detector use an
edge weighting that highlights the edges in this channel.

4.3 Revising the Candidate

A good estimate of the ball’s centre is required for the circle fitting stage of the algorithm. Therefore,
if a candidate fovea is of a higher resolution than the saliency fovea, then the bounds of the candidate
region ought to be refined. Fortunately, the exact same code that was used to locate the original
candidate can be reused for this purpose, except in this case the code will use the candidate fovea
in place of the original saliency fovea.

4.4 Locating Edge Points

By this stage the Ball Detector should have a fairly accurate estimate of the balls location and
dimensions, though so far we have only used statistical hints provided by the histograms. Points

20

Figure 4.3: Scanning radially outwards from the balls centre.

lying along the ball’s boundary are the first concrete features the ball detector searches for. The
process is relatively straight forward: start from the centre of the candidate fovea and scan radially
outwards until an edge is encountered. Defining an “edge” is a little bit more complicated and
relies on a somewhat fiddly heuristic.

4.4.1 Radially Scanning

In total, sixteen radial scans are performed from the centre of the fovea at angles that evenly divide
the circle. Traversing a two dimensional image in an arbitrary direction is somewhat non-trivial,
but we provide a utility called a BresenhamPtr that hides most of the involved complexity. As
the name implies, Bresenham’s famous integer line plotting algorithm is used internally [5]. Once
a BresenhamPtr has been correctly initialised, the traversal can be performed using the familiar
c++ iterator idiom.

4.4.2 Defining Edges

The simplest definition of the ball’s boundary would be the point with the strongest edge intensity
encountered during a radial scan. Unfortunately, this does distinguish between ball edges and
other types of edges. To prevent stray edges lying outside of the actual ball from being detected,
we prematurely terminate a scan if we encounter green or white pixels. Edges are also discarded if
an insufficient number of ball coloured pixels were encountered. The actual algorithm used can be
best summarised in the following pseudo-code.

ball count← 0

21

green white count← 0
total count← 0
current point← centre
while current point is inside fovea and green white count < 2 do

if current point is green or white then
green white count← green white count + 1

end if
if current point is ball coloured then

ball count← ball count + 1
end if
total count← total count + 1
if current point is strongest edge so far then
strongest edge← current point

end if
current point← next point

end while
if ball count/total count > 70% then
edge← strongest edge

else
discard edge

end if

4.5 Fitting a Circle

Circles are fit to the detected edge points using RANSAC [8]. First, three edge points are chosen
at random and then used to construct a circle. If several of the remaining edge points also lie near
to the circle, they are said to form a consensus. The strength of the consensus is defined by two
factors: the number of points in the consensus, and the summed squared distance from each point
to the circle. The strongest consensus is the one with the most points close to the circle. RANSAC
attempts to find multiple consensus sets by varying the initial three points and assumes the best
fitting circle is the one with the strongest consensus set.

The algorithm we use makes one simple improvement over a vanilla RANSAC implementation.
Because the radius of the circle can be roughly deduced from the candidate region’s dimensions, we
only search for circle sizes that fit the candidate. If three points construct an unrealistically large
or small circle, it is immediately discarded.

The algorithm is resilient to outliers, which makes it very good at detecting occluded balls. If an
occlusion has deformed the ball’s boundary, the points lying along the deformation will not fall into
the stronger consensus sets. Similarity, if a circle is constructed from one or more invalid points, it
will likely be void of other points needed to form a consensus. The result is that the ball detector
will only detect balls if a circular segment of the boundary is visible. This prevents circles from
being found in random point clouds that could potentially lead to false positives.

4.6 Ball Tracking

The major innovation introduced into the 2011 ball detector is the use of historical information to
track the ball when no candidate regions are found. There are many possible situations that could

22

cause a ball to be detected in one frame and not the next, but the most tragic is a ball not being
detected simply because the saliency resolution was too low. This years saliency resolution of one
in eight gives a distant ball ample wriggle room to hide in between the saliency grid. Therefore,
it stands to reason that if a small ball suddenly disappears, there is a possibility that it hasn’t
actually moved very far. If such a disappearance occurs, the new ball detector will scan the ball’s
last known location at a higher resolution.

The implementation of this feature is truly elegant. First, a higher resolution fovea is constructed
from the region of the image in which the ball was last detected. Constructing a new saliency
fovea, especially at high resolution, is expensive, but a major part of this expense is generating the
edge image. The edge image is not required by the ball detector, and fortunately its creation can
be disabled by specifying a zero edge weighting during the fovea’s construction. The rest of the
process is simple. Because the vision system is designed to work on foveae, not images, the ball
detector can simply be called recursively using the new fovea and the rest of the algorithm will run
exactly as it would have otherwise, except in higher resolution.

23

Chapter 5

Results

5.1 Ball Detection Results

5.1.1 Comparison of Detectors

We compare the performance of three detectors.

1. 2010 Ball Detector

2. 2011 Ball Detector without ball tracking

3. 2011 Ball Detector with ball tracking

As a disclaimer, these results are likely biased towards the 2011 detector variants, as the intricate
knowledge of the 2010 detector was lost with the departure of its original author, Adrian Ratter.
Although best efforts have been made to optimise its performance for testing, there likely remain
tweaks that would improve its results.

5.1.2 Test Sets

Each detector will be tested using three different test sequences, each designed to stress a different
aspect of the ball detector.

Name Description Game Scenario

Close Balls An assorted set of close range balls. General game play.

Far Balls A chronological sequence of a ball moving in the range
of 3-6m.

Distant ball location.
Goalie ball tracking.

Sprint A chronological sequence of the robot moving towards
the ball at high speed. Set is extremely blurred.

General game play.

Thumbnails of the test sequences have been provided in the appendix “Ball Test Sets”.

5.1.3 Detection Ratio

The simplest performance metric is simply the number of balls detected in the test sets. The ratios
below have been calculated by dividing the number of percepts reported by the detector by the

24

actual number of human classified balls. The percepts are only considered valid if they overlap one
of the human classify balls, otherwise the system reports a false positive. However, there were no
false positives reported in any of the test sets.

Table 5.1: Ball Detection Results

Close Close Far Ball Sprint

2010 17/22 (0.77) 15/34 (0.44) 42/45 (0.93)

2011 Tracking 22/22 (1.00) 34/34 (1.00) 39/45 (0.87)

2011 No Tracking n/a 32/34 (0.94) n/a

Although the 2011 ball detector reports a perfect score on both the Close and Far Ball sets, this is
a slightly biased result. These frames were captured in a highly controlled fashion for the purpose
of testing, and any issue found within these frames was promptly fixed during our development
cycle. A realistic game dump is unfortunately extremely difficult to obtain, as dumping at even
ten frames per slows the other modules running in parallel to a crawl. None the less, it is fair to
conclude that the ball detector is highly robust to the many situations represented by our tests.
In fact, in searching through all recent dump files created both in the lab and at competition, the
only undetected balls were in highly blurry frames.

In the Close Ball Set, the 2010 detector had difficulties detecting balls placed in front of a yellow
goal post, likely due to the lack of an edge in the red image channel. It also falsely detected a field
edge that in turn caused a ball, now appearing to lie outside of the field boundary, to be ignored.
Various improvements made to the 2011 field edge detector addressed these falsely detected field
edges, thus the new detector does not suffer the same problem.

Figure 5.1: Left: A falsely detected field edge resulted in the ball not being detected.
Right: The lack of a strong edge between the yellow and the orange regions causes an oversized

ball to be detected.

The 2010 Detector also had difficulty detecting long range balls, despite operating at twice the
resolution of the new detector. This is not a huge problem as long as the ball is at least occasionally
detected, as once the direction to the ball is known the robot can move towards it. The closer the
robot gets, the more reliably it can detect the ball. However, the development of an advanced
ball [15] model has increased the importance of reliable long distant ball tracking, especially for
the goalie. The 2011 detector was developed with this in mind, and is thereby able to reliably
locate and track distant balls. On the subject of distant balls, disabling the tracking fovea has only

25

resulted in two balls being missed. Despite operating at half the resolution, the 2011 detector is
still substantially better at locating distant balls even without any form of tracking.

The Sprint set is perhaps the most interesting of all, as the 2010 detector out performed the 2011
detector. The new method of circle fitting using RANSAC strictly requires a circular arrangement
of points. RANSAC is effective at ruling out oddly shaped regions of orange as false positives,
however blurred balls tend to be just that. Interestingly, the old detector seems able to robustly
detect these oddly shaped balls despite substantial blur in the image.

5.1.4 Positional Accuracy

Positional accuracy measures how closely the centre of a percept matches the centre of a human
classified ball. The position of the ball is required to project it from image space into the ground
plane, and is therefore extremely important. As the ball decreases in size, high positional accuracy
becomes even more important due to the inverse relationship between a ball’s size and its distance
from the camera. The positional offset is measured in terms of the ball’s radius. For example, a
score of 0.2 implies that the reported centre was offset by 0.2 radii from the human classified centre.

The scores have been aggregated into buckets that are 0.05 units in width and are then plotted
as a frequency histogram. The accuracy and consistency of the measurements is represented by a
bell curve fitted over the data and is listed in the form k ∗norm(mean offset, standard deviation).
Ideally, the mean offset should be zero and the standard deviation as low as possible. Note that
the distinction between the tracking and non-tracking versions of the 2011 detector has not been
made in the below plots as they yield equivalent results.

Both the 2010 and 2011 detectors produced impressive results, with offsets averaging no more than
0.2 times the length of the radius. In terms of consistency, the 2011 detector produced less variant
results, but the 2010 detector produced fewer extreme outliers.

A particularity surprising outlier was present in the results of the Far Ball test set. The 2011
detector detected 6 balls within 0.025 radii of their human classified position, whilst all other
offsets were centred around 0.2 radii. One possible explanation is that these balls were processed
by a higher resolution fovea than the others, and thus the properties of the detector. changed.
A blue curve that ignores this outlier has also been fitted to better represent the 2011 detectors
performance.

Another result worth noting is the accuracy of the 2010 detector over the sprint data set. Although
the scores are relatively variant, all measurements are within 0.5 radii of the balls actual centre.
This is very impressive given the blurriness of the test set. On the other hand, the 2011 detector on
average reported better and more consistent percepts, however several extreme outliers were also
reported. These results reiterate the robustness of the 2010 detector to blurry images, which not
only detects blurry balls but is also able to accurately define them.

Finally, somewhat expectedly, we see that over close ball set both detectors performed more or less
equally.

26

Figure 5.2: Close Ball Test Set: Offset Error Distribution.

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

F
re

qu
en

cy

Result (offset / radius)

2010 Distribution of Offset Error

freq
0.75*norm(0.03, 0.05)

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

F
re

qu
en

cy

Result (offset / radius)

2011 Distribution of Offset Error

freq
0.87*norm(0.06, 0.03)

27

Figure 5.3: Far Ball Test Set: Offset Error Distribution.

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

F
re

qu
en

cy

Result (offset / radius)

2010 Distribution of Offset Error

freq
0.68*norm(0.18, 0.06)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.2 0.4 0.6 0.8 1

F
re

qu
en

cy

Result (offset / radius)

2011 Distribution of Offset Error

freq
2.93*norm(0.12, 0.23)
1.27*norm(0.22, 0.07)

28

Figure 5.4: Sprint Test Set: Offset Error Distribution.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.2 0.4 0.6 0.8 1

F
re

qu
en

cy

Result (offset / radius)

2010 Distribution of Offset Error

freq
2.71*norm(0.17, 0.17)

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

F
re

qu
en

cy

Result (offset / radius)

2011 Distribution of Offset Error

freq
1.24*norm(0.13, 0.04)

29

5.1.5 Radial Accuracy

The ball’s radius is also a feature that can used to calculate its distance from the camera. Although
rUNSWift relies solely on positional information to make this calculation, it is likely that the
calculation could be refined by taking the ball’s radius into account. Therefore, our tests will also
measure the error in the radius as a ratio of reported length and actual length. Again, the below
bell curves are listed in the form k ∗ norm(mean deformation, standard deviation). Ideally, the
mean deformation should be 1, and the standard deviation should be low.

The radial accuracy graphs tell much the same story that the was told by the positional measure-
ments. The new detector yielded more consistent results, whilst last year’s detector yielded fewer
extreme outliers. In maintaining this sense of deja vu, both detectors performed almost identically
on the close ball set.

The strange outlier that was present in the far ball set has resurfaced, except that this time it
almost appears as though the data could be best represented using the sum of two distinct bell
curves. Perhaps this supports the theory that the properties of the new detector vary with the
resolution of the fovea.

Finally, the impressive resilience to blur displayed by the 2010 detector has again resulted in
impressive accuracy. Compared to the 2011 detector, results were equally variant, but lacked any
extreme outliers.

5.2 Team Results

With rUNSWift only placing among the top eight finalists, the teams aspirations were left some-
what unfulfilled. None the less, several key gains were made during the year preceding the 2011
competition. The first is that all visible features key to playing the game of SPL soccer are now
represented by a detector present in the vision pipeline. Secondly, the underlying vision frame-
work has been substantially reworked to allow individual detectors to be easily substituted and
experimented with. Finally, perhaps most importantly, a method now exists for evaluating any
modifications made to the system, whether they be incremental improvements or a completely sub-
stituted component. The combination of these improvements exposes many low lying fruits that
can hopefully be exploited by future rUNSWift teams.

Two voids that had always been present until 2011 were the lack of a field line detector and a reliable
robot detector. Both of these have been added to the vision pipeline, however at a substantial cost.
The field line detector alone consumes roughly half of all processing time available to the rUNSWift
system, and with the 2010 vision system already struggling to maintain the maximum frame rate,
making available the resources for two new detectors was no trivial task. None the less, the required
speed up has been achieved and there no longer exist any fundamental gaps in the vision pipeline.

In contrast to the 2010 team where Adrian Ratter by in large authored the entire vision system as
a solo effort, the 2011 team had three members dedicated to vision alone. Whilst this extra man
power undoubtedly helped rUNSWift compete with the larger teams, the state of the 2010 code
was not one that fostered collaborative development. The scope of the tangled web of dependencies
between the vision components was only truly revealed after a key component, the region builder,
needed to be gutted. Newly defined standards and interfaces have resulted in a much cleaner system
that allows for individual components to be modified in isolation without needing to redefine the
way information flows throughout the entire vision system. It is a fundamental requirement for any
team that its members can work without trampling on each others toes, and the requirements of

30

Figure 5.5: Close Ball Test Set: Radius Error Distribution.

 0

 1

 2

 3

 4

 5

 6

 0.6 0.8 1 1.2 1.4

F
re

qu
en

cy

Result (reported / actual)

2010 Distribution of Radius Error

freq
0.68*norm(0.97, 0.05)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.6 0.8 1 1.2 1.4

F
re

qu
en

cy

Result (reported / actual)

2011 Distribution of Radius Error

freq
1.02*norm(1.02, 0.04)

31

Figure 5.6: Far Ball Test Set: Radius Error Distribution.

 0

 1

 2

 3

 4

 5

 6

 0.6 0.8 1 1.2 1.4

F
re

qu
en

cy

Result (reported / actual)

2010 Distribution of Radius Error

freq
0.87*norm(0.71, 0.06)

 0

 2

 4

 6

 8

 10

 12

 0.6 0.8 1 1.2 1.4

F
re

qu
en

cy

Result (reported / actual)

2011 Distribution of Radius Error

freq
2.10*norm(0.88, 0.15)
1.00*norm(0.87, 0.04)

32

Figure 5.7: Sprint Test Set: Radius Error Distribution.

 0

 2

 4

 6

 8

 10

 0.6 0.8 1 1.2 1.4

F
re

qu
en

cy

Result (reported / actual)

2010 Distribution of Radius Error

freq
2.13*norm(1.16, 0.11)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.6 0.8 1 1.2 1.4

F
re

qu
en

cy

Result (reported / actual)

2011 Distribution of Radius Error

freq
1.88*norm(0.99, 0.11)

33

our team has now been addressed through careful code design.

Even with careful design, the vision system remains highly intricate system that will unavoidably
require more and more comprehensive testing as it evolves. Testing a vision system is by nature a
difficult problem, however we have provided for the first time a system for statistically measuring
our system’s performance.

Despite these improvements, making only the quarter finals was a disappointing result. Even so, our
vision system has already proved its metal against the other top teams, and this year’s infrastructure
upgrades and additions make it one of the most flexible and advance systems around.

5.3 Future Work

The immediate experiment that comes to mind upon viewing the ball detection results is to create
a hybrid detector and measure its properties. Both the 2010 detector and 2011 detector work by
first identifying a ring of ball edge points, and then fitting a circle. The superior detection rate of
the 2011 detector suggests that it does a better job of finding these edge points, whilst the 2010
method of circle fitting seems more robust to blur and the resulting shape deformation. Ideally, a
best of both worlds solution may be achievable.

Prioritising work to be done on the overall vision module is not as straight forward. RoboCup,
almost by definition, is a never ending torrent of future work. The improved hardware introduced
into the Nao version 4 will for the first time in the Nao’s history provide a reasonable amount
of processing power, and effectively utilising this extra processing processing will no doubt be a
challenge in itself. However, there remains one key hole in the vision infrastructure that was never
completed: fully automated vision metrics and testing.

Whilst a comprehensive testing system will not directly improve the vision module by itself, statis-
tically metering progress is a requirement for proving that modifications made to the system have
actually improved its performance. The fundamental functionality for such a system already exists
within the current vision test suite, however generating meaningful graphs and metrics remains a
manual process. Automating this process would be by no means a trivial task, but has the potential
to pay dividends.

5.4 Conclusion

This thesis has focused mainly the enhancements made to the existing system that were necessary
before additional features could be added. A huge amount of work was done to reduce the CPU time
consumed by the 2010 vision module, and these reductions have freed up the necessary resources
needed by the new robot and field line detectors. In this regard, the efforts were successful.

The more interesting results arose from the statistical analysis of the ball detector. Never before
has rUNSWift analysed a detector in such detail, and the results were somewhat enlightening. The
underpinning conclusion learnt is not that foveated ball tracking improves distant ball detection or
that last years circle fitting method is resilient to blur; the deeper lesson is that rUNSWift could
potentially gain an advantage over its competition by applying scientific principles when evaluating
its results. At face value the 2011 ball detector seems to detect more balls in more situations and
is therefore better. Had the statistical analysis not been carried out, the surprising properties of
the circle fitting method used by Ratter et al. may not have been realised. A potentially valuable
contribution to the rUNSWift system would have been thoughtlessly discarded, and I would have

34

been at fault. In conclusion, the use of scientific method could potentially result in discoveries that
are both applicable to the game of SPL soccer and also worthy of the title “science”.

35

Appendix A

Image Classifier Manual

A.1 Object Classification

The image classifier provides a simple interface for classifying regions of the image as objects.

Object Creation
To add a new object, simply click the corresponding button from the menu on the right of
the image. The newly created object will appear in the centre of the image.

Control Points
Each shape is defined by a set of control points. These points can be selected and dragged to
match the classified objects shape.

36

Movement
Sometimes it is more convenient to move the object as a whole instead of dragging each
control point individually. Clicking anywhere within an object and dragging the mouse will
translate all control points simultaneously.

Object Selection
Clicking either within an object or one of its control points will select the object. The currently
selected object’s edges are boldly highlighted.

Object Deletion
An object can be deleted by first selecting it and then pressing the delete key.

A.2 Image Navigation

Classifying small objects can be fiddly, but the image classifier includes several features to ease the
classification of fine details.

Zoom
Zooming in and out can be achieved using the scroll wheel. Intuitively, the region under the
mouse will remain centred in the image.

Side Scrolling
Once zoomed in, there are often times when it would be convenient to side scroll to a new
location instead of zooming out from the current location and back in on the new one. Right
clicking on an edge of the image will scroll the view port in that direction.

Side Scroll and Drag
Dragging an object whilst side scrolling will cause the object to be moved along with the view
port.

37

Appendix B

Ball Test Sets

38

B.1 Close Ball Test

39

40

B.2 Far Ball Test

41

42

B.3 Chase Test

43

Appendix C

Process to Reproduce Ball Statistics

1. Acquire the classified logs from 0xfaded.com/robocup/ball stats.tar.gz. This archive also
contains all snippets of code listed below.

2. Modify the vision tester print out error measurements. Currently, the vision tester only sup-
ports averaging of results and cannot produce histograms or fit bell curves. The compromise
is to print out each score individually and processes the scores using gnuplot. The lines below
need to be uncommented in VisionTestFrameResult.cpp.

/∗
s t d : : cout << ”r : ” << r ad i u s s c o r e << s t d : : end l ;
s t d : : cout << ”o : ” << o f f s e t s c o r e << s t d : : end l ;
∗/

3. Create a configuration file for the log. The only required options are those that specify the
classification file. An example has been provided.

[v i s i o n]
t o p c a l i b r a t i o n = /path/ to / top . nnmc . bz2
b o t c a l i b r a t i o n = /path/ to /bot . nnmc . bz2

4. Invoke the vision tester and save the output to a file.

. / v i s i o n t e s t e r −c /path/ to / c o n f i g . c f g −d /path/ to /dump . ofn > output

5. Bucket the results using bucket.pl. Both the radii and offsets need to be bucketed separately.

grep ’ r : ’ | cut −c4− | . / bucket . p l > r a d i i b u c k e t
grep ’ o : ’ | cut −c4− | . / bucket . p l > o f f s e t b u c k e t

6. Plot and fit the bucketed data using gnuplot.

gnuplot r a d i i . p l t
gnuplot o f f s e t . p l t

C.1 bucket.pl

44

#! / usr / bin / p e r l −w

$b u c k e t s i z e = 0 . 0 5 ;
sub bin {

my $x = s h i f t @ ;
my $s = s h i f t @ ;

return int (($x + $s /2) / $s) ∗ $s ;
}

$buckets {bin ($, $b u c k e t s i z e) } ++ while(<>) ;
p r i n t ” $ \ t$buckets { $ }\n” fo r each (s o r t keys %buckets) ;

C.2 offset.plt

r e s e t
unset t i t l e

s e t te rmina l p o s t s c r i p t landscape enhanced c o l o r s o l i d
s e t output ’ o f f s e t . ps ’

s e t boxwidth bw∗0 .6
s e t s t y l e f i l l s o l i d 0 .4

s e t t i t l e ”2011 D i s t r i b u t i o n o f O f f s e t Error ”
s e t xrange [0 . 0 : 1]
s e t yrange [0 : ∗]
s e t x l a b e l ” Result (o f f s e t / rad iu s) ”
s e t y l a b e l ”Frequency”

a1 = 0.88
mu = 0.16
sigma = 0.05
f i t t e d (x) = a1 ∗2.7182818∗∗−((x−mu) ∗∗2/(2∗ sigma ∗∗2)) /(s q r t (2∗ pi) ∗ sigma)

f i t f i t t e d (x) ’ o f f s e t n e w b u ck e t ’ using 1 :2 v ia a1 ,mu, sigma

p lo t ’ o f f s e t n e w b u ck e t ’ using 1 :2 smooth f requency t i ’ f r e q ’ w boxes , \
f i t t e d (x) t i s p r i n t f (”%2.2 f ∗norm(%2.2 f , %2.2 f) ” , a1 , mu, sigma)

45

Bibliography

[1] Nao Green Documentation.

[2] Nao Red Documentation.

[3] Design criteria standard mil-std-1472f. Technical report, August 1999.

[4] Yannick Allusse, Patrick Horain, Ankit Agarwal, and Cindula Saipriyadarshan. Gpucv: an
opensource gpu-accelerated framework forimage processing and computer vision. In Proceeding
of the 16th ACM international conference on Multimedia, MM ’08, pages 1089–1092, New York,
NY, USA, 2008. ACM.

[5] Jack Bresenham. Algorithm for computer control of a digital plotter. IBM Systems Journal,
4(1):25–30, 1965.

[6] RoboCup Techincal Committee. Robocup standard platform league (nao) rule book. Technical
report, May 2011.

[7] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Image segmentation using local variation.
In in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages
98–104, 1998.

[8] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model fit-
ting with applications to image analysis and automated cartography. Commun. ACM, 24:381–
395, June 1981.

[9] Sean Harris. Efficient Feature Detection Using RANSAC. Honours thesis, The University of
New South Wales, 2011.

[10] Feng-Hsiung Hsu. IBM’s Deep Blue Chess grandmaster chips.

[11] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa. Robocup:
The robot world cup initiative. In Proceedings of the first international conference on Au-
tonomous agents, AGENTS ’97, pages 340–347, New York, NY, USA, 1997. ACM.

[12] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawai, and Hitoshi
Matsubara. Robocup: A challenge problem for ai and robotics. In Hiroaki Kitano, editor,
RoboCup-97: Robot Soccer World Cup I, volume 1395 of Lecture Notes in Computer Science,
pages 1–19. Springer Berlin / Heidelberg, 1998. 10.1007/3-540-64473-3-46.

[13] Jimmy Kurniawan. Multi-Modal Machine-Learned Robot Detection for RoboCup SPL. Hon-
ours thesis, The University of New South Wales, 2011.

46

[14] Adrian Ratter, Bernhard Hengst, Brad Hall, Brock White, Benjamin Vance, David Claridge,
Hung Nguyen, Jayen Ashar, Stuart Robinson, and Yanjin Zhu. Runswift team report. Tech-
nical report, 2010.

[15] Belinda Teh. Ball Modelling and its Applications in Robot Goalie Behaviours. Honours thesis,
The University of New South Wales, 2011.

47

	Introduction
	A RoboCup Vision System
	Problem Definition
	Hardware: Aldebaran Nao
	The Field: Colours and Lighting

	Related Work: rUNSWift 2010 at a glance
	Design Overview
	VisionFrame
	Image Format
	Saliency Images
	Colour Classified Image
	Grey Scale Image
	Edge Image
	Sampling Density
	Colour Histograms

	Foveae

	Off-line Vision Debugging and Testing
	Logging
	Log Formats

	Visualisation

	Vision Test Suite
	Image Classifier
	Vision Tester
	libvisiontest

	Ball Detection
	Locating Candidates
	Foveating In
	Choosing a Sampling Density
	Choosing Appropriate Edge Weightings

	Revising the Candidate
	Locating Edge Points
	Radially Scanning
	Defining Edges

	Fitting a Circle
	Ball Tracking

	Results
	Ball Detection Results
	Comparison of Detectors
	Test Sets
	Detection Ratio
	Positional Accuracy
	Radial Accuracy

	Team Results
	Future Work
	Conclusion

	Image Classifier Manual
	Object Classification
	Image Navigation

	Ball Test Sets
	Close Ball Test
	Far Ball Test
	Chase Test

	Process to Reproduce Ball Statistics
	bucket.pl
	offset.plt

