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Abstract

RoboCup continues to inspire and motivate the research interests in cognitive robotics and machine
learning. The 2011 rUNSWift team carried out a major overhaul to the vision system and made
significant improvement to localisation and locomotion. Many innovations had been introduced to
behaviours and the rUNSWift code base to promote modularity.

Major re-implementation was made to the Robot Detection module to ensure compatibility with
the new vision architecture as well as introducing two major innovations, machine learning the
decision making process and the incorporation of multi-modal system.

This thesis report describes the research and development undertaken by Jimmy Kurniawan in
developing the Robot Detection module in the vision system, including the associated modules in
Sonar and Robot Filter as well as behaviours for 2011 RoboCup Competition.
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Chapter 1

Introduction

1.1 Opening

RoboCup [8] is an international scientific initiative with the goal to advance the state of the art
of intelligent robots, particularly in the area of autonomous soccer robots. The Standard Platform
League (SPL) is one of several leagues within RoboCup, where teams use identical robot platform,
called ’Nao’ by Aldebaran, to play soccer.

Artificial intelligence in the area of robotics faces many challenges, with specialities ranging from
world-perception, locomotion and vision. The primary area of research in this thesis project is
on the development of a computer vision algorithm. Specifically, on the need to develop a robust
Robot Detection algorithm for the 2011 rUNSWift team in the upcoming RoboCup competition.

1.2 Research Problems and Issues

Typically, there are multiple objects on the field that are highly desirable to be detected. These
objects provide vital information for the robot, particularly in the higher level decision making
behaviour. Such objects may include the ball, goal posts, field lines and other robots.

Since the robots must be autonomous and are not aided by human-operators or any other machines
around the field, it has always been difficult to develop a general purpose algorithm for each modules.
In this research project, one such module is Robot Detection.

The definition of Robot Detection is a vision algorithm that attempts to detect and identify the
shape of a robot on the SPL field. It is also desirable to produce enough information required to
calculate the relative distance and heading from the viewing robot, so that it can be used in other
modules, such as the robot filter.

Thus, the primary research problem is the need to develop a robust robot detection algorithm that
is fast and able to run in a limited resource environment, such as the Nao robots.
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1.3 Justification of the Research

Being able to detect other robots on the field, just as being able to detect any other objects,
provide great benefit to the general game-playing strategy. Specifically to this research project,
Robot Detection would allow the following advantages:

� High level path planning - The idea is to plan ahead of time an optimal path that optimally
approach the ball while avoid objects (other robots) in the process.

� Robot avoidance.

� Strategy play - such as passing the ball to an ally robot.

� The idea of utilising the area of largest empty space for various behaviours, such as
positioning and passing the ball.

On the other hand, the ill consequence of not having a Robot Detection will have shortcomings
such as:

� Bumping into other robots, causing locomotion odometry to fail or slip.

� Kicking the ball into the wrong direction or kicking into other robots, which may give the
opponents better positioning, thus disadvantaging the team.

� Inability to have optimal global positioning, such as when the ball is being kicked into an ally
robot and bounced off the field, where the team will be penalised.

1.4 Aim and Delimitation

The primary aim of the thesis project is to machine learned the presence of a robot and to be able
use the result from the machine learner to develop a robust Robot Detection algorithm. The specific
feature or implementation of the algorithm often changes from time to time as more requirements
are realised.

On the very least, the basic functionality that must be satisfied is to provide the information needed
to calculate the relative coordinate from the viewing robot to the detected robot.

The intention in the development of the algorithm shift from a simple leg detection to a proper full
body detection to include the waistband, while the mechanism shift from a multi-modal system
with predefined parameters to a machine learned decision tree to determine such parameters.

The delimitation of this research project will not include the following:

� Pose estimation which is the ability to tell which way the detected robot is facing relative to
the viewing robot.

� Sophisticated robot tracking and path estimation or modelling of motion.
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1.5 Methodology

The primary methodology in carrying out this thesis project is by using an agile-style programming
practice. The idea is to be able to adapt to changes when new requirement arises and it is common
to be consistently changing the requirements as deeper understanding of the software architecture
and hardware inner working are acquired. Thus the algorithm is routinely modified to reflect the
needed changes.

In addition, Bernhard Hengst philosophy of ”Fail Often, Fail Fast” will also be used. It is the idea
to have constant, fast practical experimentation as opposed to lengthy theoretical implications [6].

1.6 Outline

This research report will be structured in chapters starting with background and literature reviews,
and subsequently the major development of each module in the project, starting from the most
significant Robot Detection algorithm and the machine learned decision tree to the sonar and robot
filters and the development on behaviours for RoboCup 2011.

Each chapter contains a problem outline of the specific module, how it fits together with the entire
software architecture, as well as including the experimentation methods and testing results.

The chapter in behaviours will detail over the motivation on the design of the behaviours, the
compromises considered and the effectiveness of the behaviours.

1.7 Definitions

A number of specific and technical terms are used in this thesis report. The following table contains
the definition of the terms:

Term Definition

Absolute space The coordinate space that uses X and Y to refer to a particular
position on the actual RoboCup SPL fields.

Colour saliency
scan

The saliency scan with all the pixels converted into pre-defined pre-
calibrated colours.

Frame Typically one iteration of a particular process. Most commonly re-
ferring to the vision process, where the process performances are
measured in frames per second.

Heading The angle between two points using a specified north direction.

Image space The coordinate space that uses X and Y to refer a particular pixel
or area of pixels on a visual frame.

Relative space The coordinate space or system that uses relative distance and rel-
ative heading to refer to an object on the image from the viewing
robot.

Saliency scan Typically a down-sampled visual frame that is smaller in resolution
than the raw frame.

Visual frame An image
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Chapter 2

Background

2.1 Introduction

This chapter will outline the various background and literature materials used in developing the
Robot Detection algorithm. The materials consulted prior to the commencement of the project
include:

� 2010 rUNSWift Report.

� 2010 B-Human Report.

� Fabisch-Laue-Rofer Robot Recognition and Modelling Paper.

This chapter will provide an analysis of the methods used in the above materials and attempt to
find a gap which needs to be filled in terms of the development of Robot Detection as a whole.
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2.2 Literature Reviews

2.2.1 2010 rUNSWift report

The 2010 rUNSWift [1] vision code base makes heavy use of region building. The idea of region
building is basically to identify potential areas of interest on the field, through using groups of
coloured pixels and its shape to determine what the region most likely represents. This process is
primarily a scanline procedure over the visual frame.

In specific to Robot Detection, the algorithm commonly finds a group of white region around the
foot area and are joined together into a single bounding box. Given the position of the bounding
box in image coordinate, the algorithm subsequently attempts to find the waistbands, which are
also tagged by the region builder as a region of interest. Finally, candidate regions that successfully
pass the sanity checks will be returned as robot regions, while others are discarded. Notice that
one of the majority clue verified by the sanity checks is the existence of waistbands. The figure
below shows the result of the Robot Detection in the 2010 rUNSWift vision system.

Figure 2.1: 2010 rUNSWift Robot Detection
that shows the result of the algorithm

Please refer to the 2010 rUNSWift report for more details [1].

6



2.2.2 2010 B-Human report

The 2010 B-Human [12] vision code base deploys similar strategy to the 2010 rUNSWift vision
code. The method proposed by B-Human makes use of colour segmentation, which then proceed
to build a set of regions through the grouping of colours.

The B-Human Robot Detection placed higher emphasis on the waistband regions as it attempts
to find the orientation of the waistband and subsequently use this information to conduct various
horizontal and vertical sanity checks to verify the surrounding colours. The candidate region is
then returned as a result or discarded when the conditions could not be satisfied. Similarly, notice
how this algorithm makes heavy use of the waistband region during the detection. The figure below
shows the result of the Robot Detection in the 2010 B-Human vision system.

Figure 2.2: 2010 B-Human Robot Detection
that shows the result of the algorithm

Please refer to the 2010 B-Human report for more details [12].
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2.2.3 Fabisch-Laue-Rofer Robot Recognition and Modelling Paper

The idea proposed by this paper [2] in Robot Detection uses B-Human [12] vision code base as a
starting point and extensions are implemented on top of the code to include the more advanced
functionality. The goal of the paper consist of 2 parts, robot recognition and robot tracking. Only
robot recognition will be deeply analysed as it is the major segment of this thesis project.

The methodology implemented by this algorithm in the paper utlises the waistband region detected
by the B-Human’s region builder. Given the middle point of the waistband, the algorithm attempts
to search for the convex hull of the waistband through vertical and horizontal scan in a higher res-
olution. The availability of the convex hull will allow a more accurate estimation of the orientation
of the waistband. Subsequently, given the orientation, the algorithm proceeds with a number of
scan lines on the top and bottom of the waistband region that attempts to check for surrounding
colours and overall shape which essentially verifying the existence of other robots. Once again, take
note on the heavy emphasis on the need for visible waistbands. The figure below shows the result
of the algorithm.

Figure 2.3: Fabisch-Laue-Rofer Robot Recognition
that shows the result of the algorithm

Please refer to the related paper for more details [2].

2.3 Common Ideas

The common idea amongst the different implementations deployed in the materials above primarily
revolve around the following features:

� Generating regions from region builder.

� Running sanity checks on regions to verify the existence of robots.

� Heavy emphasis on the waistband where it is treated as the biggest clue when attempting to
detect robots in the visual frame.

These common features exist due to the direct tie with the other modules in the vision system.
Typically, the region builder attempts to find all the interesting regions and give such regions to each
individual vision module, such as ball detection or goal posts detection, to be processed separately.
Thus, having a system, such as this one, allow vision to run relatively fast on an embedded device
such as the Nao robots. This essentially allows the overall system to run optimally at the targeted
30 frames per second.
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2.4 Relevance

The materials reviewed are primarily on the area of Computer Vision with specific focus in Robot
Detection, which is in the same area of interest of this thesis project. The methodology proposed
and the algorithms implemented make use of similar common features (particularly the sanity
checks) to achieve the performance required to run on the Nao robots.

2.5 Emergence of Necessity

The major problem with the methodology proposed in the materials above are their heavy reliance
on the waistbands. All techniques treat the waistband as the central starting point of the algorithm
or take the waistband as the biggest clue when detecting a robot. In other words, if there are no
waistbands, then the candidate will be discarded and no result will be produced.

However, it is not uncommon too encounter scenarios where the waistbands are not visible. For
example, when the viewing robot does not have a full body view of the other robots or when the
waistbands are obstructed by other objects, such as the arms of the robot or by other robots. In
scenarios like these, no results are produced. It may prove to be fatal during the game and would
place the team in a disadvantaged position.

Thus the necessity emerged from this problem is to have an algorithm that is able to detect other
robots despite not having the waistbands in the visual frame. Implementing an algorithm that
treats the waistband as just one of the many clues or evidences when attempting to detect the
robot is the gap needed to be filled. The overall necessity is to have a full body robot detection.

Figure 2.4: The raw image of obstructed
waistband. The waistband is still visible

in this image as the image is in much
a higher resolution than

the saliency image.

Figure 2.5: The saliency image of obstructed
waistband. The waistband is barely visible on
the middle robot, while the waistbands at the

other robots on the back are completely
obstructed and unable to be seen.
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2.6 Conclusions

In conclusion, in the materials reviewed, all techniques make sure of region builder and have heavy
emphasis on the use of waistband information. The problem is in the scenarios where waistbands
are not visible and thus results are not able to be produced. The gap is then to employ an algorithm
that attempts to have a full body Robot Detection, which takes the waistband information as just
one of the many clues available.
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Chapter 3

Robot Detection

3.1 Introduction

This chapter will introduce the inner working of the Robot Detection algorithm. The algorithm
comprises several processing and logical steps, interleaved with a number of sanity checks. The
sections will be broken down into parts that are analogous the way the algorithm is implemented
into the rUNSWift 2011 code base. The outline of this chapter goes as follow: satisfying the
prerequisites, generating result candidates, bounding of candidates and finally applying the decision
tree.
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3.2 Concept

The basic premise utilised by the algorithm when attempting to detect a robot is simple. The
idea fits in well with the 2011 vision code base [3] where all the information required are already
available. The following is the simple step-by-step on how the algorithm works:

� In a visual frame, attempt to detect the edges of the field.

� If the field edges are found, then draw a line along the edge line with the condition that the
group of vertical coloured pixels between this line and the edge line must not contain any
green pixels. In other words, draw the line along the first green pixel seen from the edge line.

� The shape of this line will either touch on the edge line (meaning that the first green pixel is
the first pixel seen) or create an indentation from the edge line (meaning that the first green
pixel is some distance away from the edge line). When such indentations occur, it is a sign
that a candidate robot region exists.

� Attempt to bound close regions together and run several sanity checks to finally verify the
existence of other robots in the visual frame.

Figure 3.1: Concept of robot detection that shows the basic premise on how it works. The blue
line is the line generated from running the steps above. Notice the indentation near the robot.

Obviously, the above descriptions on the concept are highly simplified since it is only meant to show
the basic premise of how the algorithm works. Notice that no indentations are created around the
yellow goal post or the net behind the goal posts. These are one of the many sanity checks that
will be implemented into the algorithm that takes care of removing early non-robot regions.
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3.3 Prerequisites

Prior to executing the Robot Detection algorithm, which will be outlined in the next section, several
preconditions must be met. These conditions ensure the existence of visual data and any erroneous
visual data can be discarded as running the algorithm with such data might not produce a sensible
result. In addition, the data output from several of these preconditions also provide the necessary
data about a particular visual frame, where it can be of assistance to the algorithm, allowing a
more accurate result. These preconditions include:

� Colour Calibrated Visual Frame - The colour calibrated visual frame [3] [1] (referred to
as the colour calibrated saliency scan) is one of the two working base (the other one being
the edge saliency scan) for vision processing. The saliency scan is down-sampled from the
original resolution of 640x480 to a much smaller resolution of 80x60, the individual pixels are
then classified into several pre-defined colour using a pre-calibrated colour table. The figure
below is an example of a colour calibrated visual frame.

Figure 3.2: Colour-calibrated saliency scan that shows the type of data the vision system is
processing.

� Kinematics and Camera Transformation Matrix - The functionality provided by kine-
matics [1] are crucial as it provides the matrix transformation from image space to relative
space. In other words, given an x and y coordinate on the image, the point can be trans-
lated into the relative distance and heading from the viewing robot to the specified point on
the image. For more detail regarding this functionality, please refer to the 2010 rUNSWift
report [1].
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Figure 3.3: Kinematics chain that allows the generation of camera transformation
matrix for the use of coordinates translation from image space to relative space.

� Field Edge Detection - The subsequent step in the vision pipeline after acquiring a colour
classified saliency scan is to carry out the field edge detection [3]. The field edge information
is important to the Robot Detection algorithm as outlined in the concept section. It also
helps in reducing the search space, thus improving computing performance and removing
unnecessary noises. The figure below is an example of the result from the detection.

Figure 3.4: Result of Field Edge Detection.
The brown line represents the detected edge of the field.
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� Field Line Detection - The field line detection [5] is required in providing the algorithm
with the necessary input data to ensure that the distance and heading calculation is correct.
Robots may be stepping on the white lines and without the field line detector, the bounding
box may be extended and thus would provide an inaccurate result. The figure below is an
example of the result from the field line detection.

Figure 3.5: Result of Field Line Detection.
The points on the center-circle on the field denote the detected field lines.

� Sonar Data and Sonar Filter - Since the Robot Detection algorithm is meant to be a
multi-modal algorithm and beside the multiple evidence taken from the visual frame, it is
also necessary to incorporate the sonar information as an additional evidence to the final
decision making. The left and right sonar sensors on the robot provide a simple way to tell
whether obstacles are on the right, middle, or left of the robot. It is also essential to filter the
raw sonar information in order to be impervious to noise and spikes in the signal. A more
detailed explanation of this particular module will be available in the subsequent chapters.

Figure 3.6: A Sonar Histogram
that demonstrates how the filtered value is chosen, that is, the first maximum point.
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� Machine Learned Decision Tree - The machine-learned decision tree is the final line
of sanity checks before candidates are considered to be true results that can be used in
localisation and behaviours. The decision tree is learned using several sets of true and false
data instances, manually taken from the robot. A more detailed explanation of this particular
module will be available in the subsequent chapters.

Figure 3.7: A Snippet of the Decision Tree generated by WEKA using the J48 classifier.
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3.4 Candidate Robot Points Generation

3.4.1 Robot Points Search

The first step in the execution process of Robot Detection is the generation of candidate robot
points. In order to improve performance, the candidate points generated by the field edge detection
are recycled and used as the starting points to conduct the scanline search. Similarly, the candidate
points generated by field line detection are also recycled and used as the ending points, since it is
undesirable to consider the field lines as part of the robot.

Figure 3.8: The generation of candidate robot points that shows the first execution step of the
algorithm. The green points are the recycled field edge points, red line is the edge line and the

red points are the candidate robot points generated.

Referring to the figure above, the search process is a vertical downward search from the green points
(recycled field edge points) until the first green pixel. The various conditions used while carrying
out the search include:

� If the field edge points are above the field edge line, then discard the points and start the
search from the field edge line.

� If the field edge points are below the edge line, then attempt to search for the first green pixel
that has more than 1 neighbouring green pixel. This design decision will be explained later.

� If the green pixel that satisfies the above condition is found or the bottom end of the image
is reached, then mark the point as a possible candidate.

� If the field line points are reached before reaching the green pixels, then terminate the search
and mark the field line points as the candidate instead. Continue the search with the next
column.
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Completing these simple searches will generate the result shown in the figure above. Additionally,
by linking all the candidate points together we will get an indentation from the field edge as
previously mentioned in the concept section. The following figure is the indentation:

Figure 3.9: The generated indentation after the first search process shows the indentation created
from the field edge. The indentation is similar to how it was visualised in the concept section.
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3.4.2 Stage 1 Sanity Checks

The second step required to generate a proper set of candidate robot points is the need to run
several low-level sanity checks that work on the pixel level in order to remove some unwanted
indentations. During the search process in the first step, the following sanity checks or conditions
have already been used:

� Minimum number of neighbouring green pixels requirement. This is to avoid the
random appearance of a single speck of green pixel in the middle of the robot, which is
common due to the nature of the vision system that relies on colour calibration. The count
function can either use a 4-connected or 8-connected neighbours to find the number of green
pixels. The figure below will demonstrate one such scenario:

Figure 3.10: Random appearance of green pixels in robot that shows how it can happen. The
image is the same from above, but cropped to only show the relevant area. The blue circle

denotes the area of interest.

� Remove points too close to the field edges. The idea is that, such points either represents
a false positive, which is highly likely, or a robot that is standing far away from the viewing
robot (Typically over 3 meters away). Regardless, either scenarios are discarded and will not
be considered as a possible robot region.

� Remove points near goal posts. The goal posts are not robots, hence the lack of desire
to consider points near goal posts as candidate robot points. This sanity check is crucial,
particularly with the blue goal posts which contain the same colour as the blue waistbands.
If indentations are created near such goal posts, then false positives might be generated by
the algorithm. Thus removing the points in the first place is a good defence to take.
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During the search process and in conjunction with the sanity checks, a boolean array is used to
keep track of whether a particular point is eligible. This boolean array will be used in the later
stages when attempting to bound points together into regions. The values in the boolean array set
are solely based on the sanity checks defined above.

These sanity checks are important. The figure below shows the result of not enabling any of the
stage 1 sanity checks deployed.

Figure 3.11: A visual frame with all of stage 1 sanity checks disabled that shows what the same
yellow indentation line looks like without any of the sanity checks. Notice how the line is noisy

and create a number of unnecessary indentations that might generate false positives.

Therefore, the end result of completing the first two steps of the Robot Detection algorithm is
shown in the figure below. Unfortunately, despite the best effort to remove false candidates, it
still exists. The regions generated after this stage will be subjected to more sanity checks to be
completely confident of the result.

Figure 3.12: The end result after first two steps of the algorithm. Despite its best effort, there are
still unwanted indentations in the visual frame.
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3.5 Bounding of Points Into Boxes

3.5.1 Boxes from Points

The next step of the execution of the Robot Detection Algorithm is to generate regions based on
the points generated in the previous stage.

The grouping of points together is a simple matter of iterating through the boolean array generated
from the first stage. The bounding function attempts to find the first occurrence of a true point,
mark this index and continue iterating through the array until the next false point is detected.
Subsequently, given a starting point and an ending point, a region can be created. This process is
repeated until the end of the array.

The figure below demonstrate the result of the bounding of points. The bounding boxes are initially
bounded to the field edge lines. This will later be extended to the full body of the robot when
attempting to build up the evidence set.

Figure 3.13: Bounding of points into boxes that shows how a region is created based on the
candidate points generated from the first stage.
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3.5.2 Stage 2 Sanity Checks

The purpose of stage 2 sanity checks is basically two-fold. First is as a fast and simple method to
remove unnecessary regions and second is to improve performance by entirely skipping the evidence
building stage for false candidates.

There are only 2 sanity checks in this second stage. The first sanity check is to remove bounding
boxes that have unsuitable proportion. Basically, this is to remove boxes that have the following
characteristics:

� Too small in width, such as 2 pixels wide or less.

� Too big in width, such as spanning the entire horizontal space of the image.

Heights or width-to-height ratio are not considered at this stage as there are not enough information
to be able to positively tell whether a region is a true region or a false region. The implementation
of this sanity check should be robust as more conditions should be able to be added in later time
if found to be needed.

The second sanity check is to merge separated regions together. It is common to see each leg of
the robot being detected individually as the waist of the robot is above the field edge line. Thus,
it is necessary to merge these regions back together in order to be able to correctly generate an
evidence set in the later stages. The following figures are an example of the merging of regions.

Figure 3.14: Regions prior to merging that
shows the individual leg of the robot being

bounded separately.

Figure 3.15: Regions after merging that shows
both regions being merged together as one as it

should be.
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The method used to check whether regions should be merged are based on the following:

� For each region, find the middle point on the most bottom row of the bounding box. This is
meant to represent the base of the foot.

Figure 3.16: Middle point of the most bottom row of bounding box that shows the point used for
coordinate translation. The small red box near the bottom of the bounding box represents the

base of the foot.

� Use the camera matrix generated from the kinematics chain to find the relative distance and
heading to the specified point.

� The relative coordinate values can be converted to absolute coordinate first, but it is entirely
possible to do so using simple trigonometry for the next point.

� Attempt to match the regions by calculating the straight line distance from one robot relative
point of one region to robot relative point of another region. As mentioned before, this can
be done directly using relative coordinates.

� If the straight line distance is found to be less than the threshold then merge the regions
together, discard the regions and add the new merged region to the candidate list.

The reasoning behind using robot relative coordinate as opposed to direct pixels distance is due to
the fact that, it more precisely and more accurately reflect the distances in real life as opposed to
pixel distance. Pixel distance of 1 pixel can mean different things depending on how close or how
far away the object is.
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3.6 Building Evidence or Clue Set

The second last step in the execution of the algorithm is building up the evidence set before running
the decision tree. Similar to the parameters passed to the machine learner in learning the decision
tree, the following is the evidences available for use:

� The base of the foot. This is essentially the middle point of the most bottom row of the
bounding box.

� Height and width estimation, plus correction.

� Colour histograms and colour ratios.

� Waistband location.

� Sonar information

� Relative distance.

3.6.1 Height and Width Estimation, plus Correction

The height can be estimated solely by using the height of the robot and the relative distance to
such robots. While robots may be standing at different height, a rough middle value can be used.
This is not a concern as height correction will be carried out in the next stage. Afterward, the angle
can be calculated using simple trigonometry and then multiplied by angle-to-pixels ratio to find the
top most pixel of the height. The following figure demonstrate how the angle can be calculated.

Figure 3.17: How height is estimated in the process of building evidence.
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The aforementioned value of angle-to-pixels ratio are chosen through trial and errors from a range
of different values, which are then evaluated and values that correspond to the most correct output
will be selected. One example of this value would be for every degree in the angle, it represents 15
pixels in height.

The following figure is the result of height estimation.

Figure 3.18: Correct height estimation

The following figure is another result of height estimation. Notice that the height is incorrect as it
goes over the top of the robot. This will be corrected in the next step where height correction is
carried out.

Figure 3.19: Incorrect height estimation where the estimated height is well above the robot.

As seen in the figure above, height estimation can be incorrect, thus it becomes necessary to carry
out height correction. Height correction is done by the simple process of scanning downwards from
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the estimated point until the first white pixel is seen. The reasoning behind this design is that,
typically, background colours are not white and thus the first white pixel seen from the scanning
process will be the top of the robot’s head. Obviously, in the scenario where the background colours
are white height correction will not be useful.

The following figure is the result of carrying out height correction from the previously incorrectly
estimated figure.

Figure 3.20: Height estimation correction demonstrates how an incorrectly estimated height can
be corrected.

The width of the robot can be found by using a similar mechanism as the region merging formula-
tion. The process is basically as follow:

� Find the starting and ending point of the most bottom row of the bounding box.

� Convert these points into robot relative coordinate using the same camera transformation
matrix.

� Calculate the straight line distance between the two robot relative coordinates.
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The figure below demonstrates the 2 points used when attempting to calculate the straight line
distance, in other words, the width of the robot.

Figure 3.21: Width estimation that demonstrates the two points used when attempting to
calculate the straight line distance, in other words, the width of the robot.
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3.6.2 Colour Histograms and Colour Ratios

After both height and width estimations are completed, the bounding box is modified to incorporate
these information and is now properly bounding the full body of the robot. Given this full body
bounding box, building the colour histograms and calculating the colour ratios can be carried out.

Building the colour histograms are simple, as it basically involves iterating through every pixels in
the bounding box and increment the corresponding colour in the histograms.

Figure 3.22: The different coloured pixels inside the blue bounding box that shows what the data
looks like when attempting to build the colour histogram.

For this stage, the bounding box can be split into multiple sections and the colour histograms and
ratios can be calculated separately. This is particularly useful when attempting to separate actual
robots and false positives that contain groups of white at the top half of the bounding box (such
as white backgrounds).

Figure 3.23: Splitting the green bounding box can be useful in ways where false positives may
contain the correct amount of white pixels but are distributed unevenly. Notice how most of the

white pixels are on the top half of the bounding box.
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Finally, when the colour histograms have been completed, the colour ratios can be calculated. A
colour ratio is basically how much space a particular colour takes up in a bounding box. Thus, to
calculate the colour ratio, it can be done simply by dividing the count of a colour (from the colour
histogram) by the total number of pixels in the bounding box.

3.6.3 Finding The Waistband

The waistband of the robot can be found in 2 ways:

� Conduct a scan from the middle bottom point to top of the bounding box. The goal is to find
the occurrence of the first waistband colour, that is red or blue, and subsequently find the
next non-waistband colour. This establishes the starting and ending point of the waistband
in the vertical space.

� A similar technique to height estimation can also be used to find the waistband. Instead of
specifying the full body height, the height up to the waistband can be used in this instance.
Different robots tend to stand at different knee height, thus the estimation may be incorrect.
However the complement of the technique can instead be used. This is where, rather than
estimating the position of waistband from the foot, the estimation can be done from the top
of the robot’s head.

Generally the first method is more robust and would be able to give a more accurate result while
still maintaining a fast performance. The second method relies heavily on the height estimation
and correction being correct, otherwise the results will be highly inaccurate.

When the position of the waistband is established, a bounding box can be created and expanded
to include the whole waistband. This expansion is done using the following steps:

� Receive the middle point or the starting and ending vertical point of the waistband.

� Using the middle point, an outward scan can be conducted until the bounding box covers the
entire waistband.

� Using the starting and ending vertical points, a horizontal scan, to the left and right of the
point, from the bottom of the waistband to the top can be conducted until the bounding box
covers the entire waistband.
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The following is the result of waistband detection and waistband bounding box expansion.

Figure 3.24: Waistband detection and expansion that shows the blue bounding box covering the
entire waistband.
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3.6.4 Using Sonar Information

The sonar data is crucial in Robot Detection as it is common for robots to get close to each other.
When robots are in close proximity of each other, the vision system is unable to detect the robots
as the full height of the robot can not be seen, hence none of the above evidence set can be built
correctly. Thus the sonar information become an important clue in this scenario.

Using the sonar information requires the implementation of a sonar filter, which will be detailed in
the next chapter. 2 instances of the sonar filter is used for Robot Detection, one to represent the
left sonar and the other for the right sonar.

Robots detected by sonar take higher precedence than the robots detected by vision as the sonar
sensors are relatively accurate at distance of less than 1 meter. Obviously, it is also possible for
the sonar sensor to generate false data, hence the need for a filter, as well as the inclusion of many
sanity checks. The usage of sonar information is basically as follow:

� Consider both sonar and vision information when the robot’s head are facing forward, such
that the results from both modules can be used to verify each other. 2 verifications can be
done, that is, by comparing the relative distance and heading to the detected objects. If both
values greatly differ, then the result can be discarded.

� Directly use sonar information when the robot’s head are not facing forward, such as looking
over the shoulders or downwards to the feet.

3.6.5 Calculation of Robot Relative Coordinates

The second last step in the Robot Detection algorithm is to calculate the robot relative coordinates
by using the point on the base of the foot. As mentioned previously and used in the other steps,
the translation can be done using the camera transformation matrix generated by the kinematics
chain.
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3.7 Running through Machine Learned Decision Tree

The final step of Robot Detection is to gather up all the evidence built up in the previous section
and run the parameters through the decision tree. Using the decision tree requires the tree to be
trained in the first place. The process of conducting such actions are detailed in the next chapter.

The following is a snippet of the decision tree in valid C code:

A snippet of the decision tree in valid C code

//Using colour ratio

if (topRobotCRatio <= 0) {

if (botRobotCRatio <= 0) {

//Using Estimated Height

if (realHeight <= 333.784) isRobot = false;

if (realHeight > 333.784) {

if (botOtherCRatio <= 0.194444) {

// Using estimated width

if (realWidth <= 144.726) isRobot = false;

if (realWidth > 144.726) isRobot = true;

} else if (botOtherCRatio > 0.194444) isRobot = false;

}

} else if (botRobotCRatio > 0) {

if (botWhiteCRatio <= 0.3) isRobot = false;

if (botWhiteCRatio > 0.3) {

if (realHeight <= 575.327) isRobot = true;

if (realHeight > 575.327) isRobot = false;

}

}

.

.

.

The decision tree allows a binary classification of the region based on the given evidence set and the
result is directly used (the isRobot variable) to indicate whether or not a particular region should
be included in the result set.

32



3.8 Results and Discussions

The following is the parameters used in the current implementation:

The different parameters used in Robot Detection

ROBOT_FULL_HEIGHT 565 //full robot height

ROBOT_TOP_WAISTBAND_TO_HEAD 205 // waistband to head height

ROBOT_BASE_TO_WAISTBAND 245 //foot to waistband height

RD_DEGREE_TO_PIXEL 14.5 //degree -to -pixel ratio

RD_MAX_SONAR_FILTER_SIZE 20 // sonar window size

RD_SONAR_ACCEPT_COUNT 8 // minimum sonar histogram

value for usage

// Verifications use between sonar and vision robots

SC_MAX_SONAR_DISTANCE 800

SC_MAX_SONAR_HEADING DEG2RAD (15)

// Maximum detect -able robots

SC_MAX_DETECT_DISTANCE 3000

// Smallest possible robot height

SC_MIN_ROBOT_HEIGHT 140

// Distance from the edge line to be ignored when generating

points

SC_SCAN_IGNORE_DISTANCE 2

// Minimum number of neighbouring green pixels when generating

points

SC_MIN_GREEN_ACCEPT 3

// Minimum number of waistband colour when finding the

waistband

SC_WAIST_BAND_ACCEPTABLE 2

// Minimum size threshold in stage 1 sanity checks

SC_MIN_PIXELS_WIDTH 3

SC_MAX_PIXELS_WIDTH SALIENCY_COLS - 2

//The straight line distance threshold used for merging

regions

SC_SAME_ROBOT_WIDTH (230 * 1.1)

//Sonar: The head cameras pitch and yaw when determining

whether

//the robot ’s head is facing forward

TOP_CAMERA_MIN_PITCH -0.35

TOP_CAMERA_MAX_PITCH 1

BOT_CAMERA_MIN_PITCH -1

BOT_CAMERA_MAX_PITCH -0.15

MIN_YAW -0.75

MAX_YAW 0.75
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The robot detection algorithm generally has the greatest success when a full body bounding box
can be established as it allows the building of the entire evidence set. Partially bounded robot may
also be classified as a robot, however, it is often discarded as there are not enough information to
make an informed decision.

The following figures demonstrate where the robot detection algorithm is a success.

Figure 3.25: Successful robot detection No.1 that shows a robot being detected while standing in
front of the goal post.

Figure 3.26: Successful robot detection No.2 that shows a robot being detected from its back.
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Figure 3.27: Successful robot detection No.3 that shows two robots being detected despite the
waistbands are obstructed.

Figure 3.28: Successful robot detection No.4 that shows all three robots correctly identified with
the correct team colour. The green box denotes robots that do not have the waistband.
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The following figure is where robots are detected, but not perfect.

Figure 3.29: Partially successful robot detection that shows the robot on the left being correctly
detected, but the robot on the right, while detected, is not detected perfectly.

The robot detection also has a number of problems, these include:

� Incorrectly identifying the white triangle behind the goal posts as robot.

� Unnecessarily lengthen the bounding box when robots are standing on the field lines when
the field lines are not detected.

� Incorrect height estimation with white background.

� The arms of the robot being detected as separate robots.

� Unable to merge the regions around the arms of the robots into the main body region.
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The following figures will demonstrate the problems outlined above.

Figure 3.30: The white triangle behind goal posts being incorrectly detected.

Figure 3.31: Lengthening of bounding box when field lines are not detected.
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Figure 3.32: Incorrect height estimation when the background is white.

Figure 3.33: Mis-detection when the background
colour is white in raw image.

Figure 3.34: Mis-detection when the background
colour is white in saliency scan.
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Figure 3.35: Mis-detection on robot arms and merging failure that shows the arms of the robot
being detected individually and unable to be merged into the main body region.

In the current implementation, three out of four of these problems are actually solved. However,
the fix added to solve the problems are inelegant. All of these fixes are hard-coded restriction on
the results. Thus, there is a possibility that these fixes may discard actual true result.

The following is the list on how the hard-coded fixes are implemented:

� Solving the white triangle problem is done in 2 steps. The first step is by removing any
candidates that are found to be behind the goal posts. While the second step is to directly
remove any candidates that are in close proximity of the goal posts. The threshold used in
the second step is chosen to a value that is smaller than the circular cross-section of the robot.
Thus it is impossible for the robots to be in a position near the goal posts where it would not
be detected.

� Solving the lengthening of bounding box is done by scanning the surrounding neighbours of
the robot points inside the bounding box. Typically, the lengthening is caused by a small
number of spikes, thus, by scanning for neighbours, the spikes can be detected and removed.

� Solving the mis-detection on the robot arms are done by checking for neighbouring regions.
If the neighbouring regions are close, such as within several pixels, and contain waistband
information (that is, the waistband is detected), then the arm regions are directly discarded.

In the future, as more sophisticated tools and functionality are implemented, hopefully these hard-
coded sanity checks can be removed. Solving the problems outlined above will just become one of
the many steps in providing accurate evidence set.
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3.9 Conclusions

In conclusion, the algorithm used by robot detection is multi-modal and make use of the machine
learned decision tree as the last line of defence in sanity checks. The decision tree requires the build
up of evidence set, thus many of the functionality implemented are specific to providing accurate
evidence set while discarding any bad regions.

The detection has the highest success when a full body bounding box is available. Partially bounded
body can still be detected, but is typically discarded due to the lack of enough evidences. Several
edge cases that cause incorrect objects to be detected also exist in the algorithm, but are fixed
using several hard-coded sanity checks. These hard-coded sanity checks may be too strict with the
possibility of removing true candidates as well.
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Chapter 4

Machine Learning the Decision Tree

4.1 Introduction

This chapter will outline the design decision in implementing the decision tree, the usage, usefulness
and the result of using the decision tree in the robot detection algorithm. This module fits in
together in the software architecture as the final sanity checked carried out by the Robot Detection
algorithm before exposing the results to other modules.

4.2 Motivation

The decision tree is machine-learned due to the existence of many parameters when building up
the evidence set in the Robot Detection algorithm. It becomes highly undesirable and difficult
to maintain and determine the effect and usefulness of each parameters. Each parameter also
tend to have several threshold values. Finding and evaluating the threshold values manually are
undesirable. Thus it was decided that using a decision tree classifier would be much simpler and
easier to maintain the process of acquiring a working decision tree.

4.3 Software Used

The software used for machine learning the decision tree is called WEKA [10]. The software is a
Java [7] program that offers a Java implementation of the C4.5 [11] decision tree classifier called
J48 [10].
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4.4 Parameters

The following table lists all the parameters that are generated by the robot detection and are
available to be used for machine learning.

Parameters Variable Name Type

Height in millimeters realHeight REAL

Width in millimetres realWidth REAL

Robot Relative Distance rrDistance REAL

Is the Full Height of Robot Visible? isHeightClipped BOOLEAN

Filtered Value of Left Sonar Sensor leftSonar REAL

Filtered Value of Right Sonar Sensor rightSonar REAL

Detected Waistband Location Relative to the Bounding Box
Value 0 for bottom, 1 for middle and 2 for top waistBandLoc {0,1,2}
Bottom Section of Bounding Box Colour Ratio

Orange botOrangeCRatio REAL

Yellow botYellowCRatio REAL

Waistband Colour (Red and Blue) botRobotCRatio REAL

Green botGreenCRatio REAL

White botWhiteCRatio REAL

Black botBlackCRatio REAL

Other botOtherCRatio REAL

Top Section of Bounding Box Colour Ratio

Orange topOrangeCRatio REAL

Yellow topYellowCRatio REAL

Waistband Colour (Red and Blue) topRobotCRatio REAL

Green topGreenCRatio REAL

White topWhiteCRatio REAL

Black topBlackCRatio REAL

Other topOtherCRatio REAL

Is the Region a Robot? (Hand classified) isRobot BOOLEAN

Basic Robot Pose Estimation (Hand classified) robotPos {front,back
side}

It is common to dynamically enable and disable different parameters to test for different combina-
tions of parameters and the different results attained from it.
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The usefulness of any particular parameters are determined through analysing the data set for the
distribution of the results. In other word, it is an attempt to look for correlation in the data set
that could emerge as a pattern. This pattern can then be utilised to distinguish between true and
false data. For example, having most of the true result reside in the lower ranges of values, while
most of the false result would be on the higher range of values. Values in between are mixed and
would usually require the presence of other parameters to be completely positive. The figure below
will demonstrate an example of the pattern.

Figure 4.1: WEKA Visualiser: pattern in data et
that shows an example of how patterns emerge from the data set.

The blue bar represents the true data, which are mostly on the right, while the red bar represents
the false data, which are mostly on the left.

4.5 Data Gathering and Classification

Generally when using a machine learning classifier, a large data set is required, in order to have
enough sample data to train the classifier and test data to verify the policy learned. In the current
implementation, the method of acquiring the data set can unfortunately be time consuming. The
method used basically consist of processes such as:

� Taking a visual frame dump of the robot running around an empty field. If any candidates
are generated, then all of them will be classified as false.

� Taking another visual dump with multiple robots on the field. The mixture of static and
moving robots are highly desirable to partially simulate a real game. Afterward, for every
candidates generated from the frame dumps, manually check, verify and classify them.

These particular processes are very time consuming and in the future, an unified tool to allow
simpler gathering and classifying of the data and the running the classifier can be implemented.
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4.6 Running Through Classifier

In order to be able to dynamically turn any particular parameter on or off before running the
classifier, various information about a visual frame is first stored in a text file in its raw pre-
calculated form. For example, storing the actual number of white pixels in the bounding box as
opposed to directly storing the ratio of white pixel. However, storing raw information are not useful,
as it lacks any association amongst different parameters. This is especially true to the classifier as
it could not draw a valid conclusion with the given parameters. Thus, an intermediate program is
developed to specifically take in these raw data and convert them into usable parameters outlined
earlier.

The following texts below is an example of the raw storage format used for the intermediate
program.

An Example of the Raw Storage Format Used

#True Robot No.1:

578.878 #realHeight

240.815 #realWidth

38,38,38,38,38,...,43,43,43,43 #fieldEdgeYCoordinates

0,0,0,0,0,0,71,0,0,49 #topColourRatio

120 #totalTopPixels

0,1,0,0,0,27,25,0,33,34 #bottomColourRatio

120 #totalBottomPixels

448 ,168 528 ,360 #boundingBoxPosition

488 ,360 488 ,360 #detectedWaistbandPosition

2460.07 , -0.0584932 #robotRelativeDistanceAndHeading

no #isHeightClipped

true #isRobot

front #basicRobotPose
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The WEKA software also required the input file to conform to its standard formatting. Therefore,
the same intermediate program can be extended to include such functionality as well. The text
below is an example of the WEKA input format. Please take note that the example is not meant
to show the input file in its entirety as the actual input contains well over 1000 elements in the
data set, thus roughly equating to about 2000 lines of data. The example is only meant to show
the format used by WEKA.

An Example of the WEKA input format

% Robot detection data set

@RELATION RobotDetectionMachineLearning

@ATTRIBUTE realHeight REAL

@ATTRIBUTE realWidth REAL

.

.

.

@ATTRIBUTE isHeightClipped {true , false}

@ATTRIBUTE isRobot {true , false}

@DATA

41.8109 ,183.496 ,... ,0.0 ,0.0 ,0 ,1446.93 ,true ,false

42.8584 ,57.7365 ,... ,0.0 ,0 ,1483.18 ,true ,false
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4.7 Using The Result

The output of using the J48 classifier in the WEKA software is in the form of a decision tree.
The formatting of the tree is in a simple ASCII format that is easy to read and user-friendly.
Unfortunately, this format is not useful for programming purpose. The decision tree needs to be
converted into valid code to be useful. Thus, the same intermediate program mentioned previously
is once again extended to include this functionality as well. This can be done through analysing
the pattern of the output format and with several simple rules, the decision tree can be converted
into valid C code.

Example of WEKA Decision Tree Output

J48 pruned tree

------------------

topRobotCRatio <= 0

| botRobotCRatio <= 0

| | realHeight <= 333.784: false

| | realHeight > 333.784

| | | botOtherCRatio <= 0.194444

| | | | realWidth <= 144.726: false

| | | | realWidth > 144.726: true

| | | botOtherCRatio > 0.194444: false

| botRobotCRatio > 0

| | botWhiteCRatio <= 0.3: false

| | botWhiteCRatio > 0.3

| | | realHeight <= 575.327: true

| | | realHeight > 575.327: false

topRobotCRatio > 0

| botWhiteCRatio <= 0.5

| | topRobotCRatio <= 0.032051: false

| | topRobotCRatio > 0.032051

| | | topOtherCRatio <= 0.364286: true

| | | topOtherCRatio > 0.364286: false

| botWhiteCRatio > 0.5

| | topWhiteCRatio <= 0.433333

| | | botRobotCRatio <= 0.009615

| | | | realHeight <= 490.97: false

| | | | realHeight > 490.97: true

| | | botRobotCRatio > 0.009615: false

| | topWhiteCRatio > 0.433333: true
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Having this functionality can allow for quick testing and evaluation cycles as there is no need
to manually convert the tree by hand, which can be highly time consuming, especially with 8
parameters or more, where there would be over 20 individual if/else if statements, each with
different floating point values representing the thresholds.

Example of the Valid C Code Generated by The Intermediate Program
From WEKA Decision Tree Output

if (topRobotCRatio <= 0) {

if (botRobotCRatio <= 0) {

if (realHeight <= 333.784) isRobot = false;

if (realHeight > 333.784) {

if (botOtherCRatio <= 0.194444) {

if (realWidth <= 144.726) isRobot = false;

if (realWidth > 144.726) isRobot = true;

} else if (botOtherCRatio > 0.194444) isRobot = false;

}

} else if (botRobotCRatio > 0) {

if (botWhiteCRatio <= 0.3) isRobot = false;

if (botWhiteCRatio > 0.3) {

if (realHeight <= 575.327) isRobot = true;

if (realHeight > 575.327) isRobot = false;

}

}

} else if (topRobotCRatio > 0) {

if (botWhiteCRatio <= 0.5) {

if (topRobotCRatio <= 0.032051) isRobot = false;

if (topRobotCRatio > 0.032051) {

if (topOtherCRatio <= 0.364286) isRobot = true;

if (topOtherCRatio > 0.364286) isRobot = false;

}

} else if (botWhiteCRatio > 0.5) {

if (topWhiteCRatio <= 0.433333) {

if (botRobotCRatio <= 0.009615) {

if (realHeight <= 490.97) isRobot = false;

if (realHeight > 490.97) isRobot = true;

} else if (botRobotCRatio > 0.009615) isRobot = false;

} else if (topWhiteCRatio > 0.433333) isRobot = true;

}

}

Given the C code, the final step is to simply copy and paste the code into the Robot Detection algo-
rithm. Since the parameter names and variable names are kept the same, there is no modification
required to run the code.
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4.8 Result and Evaluations

The decision tree generated above in the previous section is run with the following configuration
into the WEKA learning suite:

WEKA J48 Classifer Configuration Parameters

#Default parameters value are used

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: RobotDetectionMachineLearning

Instances: 1209

Attributes: 18

realHeight

realWidth

botYellowCRatio

botRobotCRatio

botGreenCRatio

botWhiteCRatio

botBlackCRatio

botOtherCRatio

topYellowCRatio

topRobotCRatio

topGreenCRatio

topWhiteCRatio

topBlackCRatio

topOtherCRatio

waistbandLoc

rrDistance

isHeightClipped

isRobot

Test mode: 10-fold cross -validation
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The following is the result of running the classifier:

WEKA J48 Classifier Result

Time taken to build model: 0.17 seconds

=== Stratified cross -validation ===

=== Summary ===

Correctly Classified Instances 1182 97.7667 %

Incorrectly Classified Instances 27 2.2333 %

Kappa statistic 0.9535

Mean absolute error 0.0295

Root mean squared error 0.1476

Relative absolute error 6.1754 %

Root relative squared error 30.1819 %

Total Number of Instances 1209

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.985 0.027 0.959 0.985 0.972 0.982 true

0.973 0.015 0.99 0.973 0.981 0.982 false

Weighted Avg.

0.978 0.02 0.978 0.978 0.978 0.982

=== Confusion Matrix ===

a b <-- classified as

472 7 | a = true

20 710 | b = false

As seen above, using the J48 classifier provides great benefits overall. The J48 classifier is able to
achieve 97.7% accuracy with the 1209 instances in the given data set and able to learn a decision
in a short amount of time. It is entirely possible to be constantly modifying the parameters passed
into the J48 classifier to get 100% accuracy, however, it is often undesirable to do so since the
decision tree will not attempt to be a general purpose decision tree, but instead it will intentionally
fit itself into the data set, neglecting the fact that there may be unknown cases and new data sets.

Notice that sonar information is not incorporated into the learning process of the decision tree as
it proves to be highly difficult to attain the correct sonar value without a proper unified tool. The
sonar filter tends to exert lag and may gives an entirely incorrect value, hence why it was not used
in the first place as one of the parameters to train the decision tree.
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The use of machine learning in this scenario has greatly improved the overall performance, partic-
ularly, in both the accuracy of Robot Detection and the development time.

The development time has received the greatest impact overall with the usage of this module.
There are no more guessing game when determining the threshold values for each parameters. It
also removes the ambiguity and uncertainty of the effect of changing a single parameter threshold,
since the classifier take into account of every parameters when training the decision tree.

This method, unfortunately, also has its flaws. There are a few edge cases where false results
are generated. This is primarily caused by a pair of true and false candidates that exert similar
parameters value. An example of this scenario is when an indention is created and the background
colour above such indention happens to be white. As the major colour in the robot is white, it
is understandable how such scenario could be mistaken. The 2.2333% of inaccurately classified
instances can be attributed to this particular flaw.

The classifier is also vulnerable against data that are new or have not been included into the sample
data. There could essentially be more edge cases that could cause other major problems.

The result of the classifier may also be highly sensitive to the colour calibration. A major change in
the method of carrying out colour calibration will greatly affect the result. For example, a different
calibration that produces much lesser white would throw off the result.

In future implementation, with the unified tool, one could instead store the raw pixels directly
and apply the colour calibration on the fly in the intermediate program while generating a WEKA
compliant input file. In fact, WEKA J48 classifier could be integrated into such tool. More detail
about this future work is detailed in the future work chapter.

4.9 Conclusions

In conclusion, the machine learning is done through WEKA. All of the parameters are stored in raw
form and later converted into the proper input format. The decision tree is subsequently converted
to valid C code that can be used directly in the Robot Detection algorithm.

The use of machine learning to train the decision tree has greatly improved the performance and
accuracy of Robot Detection and its greatest impact is improving development time. Overall, it
greatly ease the process of constantly changing the parameters or adding new parameters to test
for its effect and usefulness as a whole.

The shortcoming of the current approach can be solved in the future with better tools and more
data set to train the decision tree.
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Chapter 5

Sonar Filter

5.1 Introduction

This chapter will outline the motivation behind implementing a sonar filter, its usage, usefulness
and the inner working of the algorithm itself as well as the evaluation on the result of using the
filter. The sonar filter fits in together with the whole architecture as one of the many evidences
built up by the robot detection algorithm to determine the presence of other robots in the viewing
robot forward vicinity.
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5.2 Motivation

The motivation behind using a sonar filter (or any filter in general) is to remove or minimise the
impact of noise in the data set. The figure below demonstrate the existence of noise from the sonar
sensor.

Figure 5.1: Noise in sonar sensor that demonstrates the presence of noise even if the objects being
detected is static.

Using the sonar data in its raw form will yield inaccurate, error-prone and inconsistent result as a
sudden jump in the input value will cause unexpected behaviour that may not be wanted, such as
triggering a function that deals with system shut down.

Similarly, in RoboCup SPL, the sonar sensor is usually used for detecting close objects, that are
not able to be detected by the vision system, such as other robots. When other robots are close, it
is often desirable to halt the current running behaviour, avoid the robot and resume the previous
behaviour. However, without filtering the sensor data, the robot may attempt to avoid nothing,
which is high undesirable, particularly during critical moments during the game.
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5.3 Algorithm

The basic concept, requirements and step by step process of the sonar filter algorithm is basically
the following:

� The algorithm uses a window size of N previous sonar values being given by the sonar sensors.
The window is a list storage that constantly add more data while removing the oldest data if
the size N has been filled up. The value of N is arbitrarily chosen or determined depending
on its usage, the data input rate and the processing power of the device.

� A higher value of N will give a more accurate result as there are more sample data that can
be drawn upon. On the other hand, a lower value of N will allow the system to be more
reactive as less sample data can lead to less process and perception lag. Generally there is
a need to find the balance between the two creteria. The figure below will demonstrate the
working of the window.

Figure 5.2: Sonar window example shows how the window mechanism works

� The sonar filter primarily utilise a histogram of input values from the window to determine
the filtered value. The histogram is essentially a count array that increments or decrements
a particular value range as more new data comes in and old data goes out. The bounds of
the histogram are arbitrarily chosen depending on the usage of the sonar filter, value of input
data and the maximum accurate range of the sonar.
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� Since the input sonar data are in the form of real value, the histogram needs to be divided
into several K parts of equal range size. The choice of the value of size K is again arbitrary. A
smaller value of K will gives a broader filtered value (less accurate), but more reactive, while
a higher value of K will give a narrower or tighter filtered value (more accurate), but may
cause more perception lag. The figure below will demonstrate the working of the histogram
of values.

Figure 5.3: A sonar histogram that demonstrates how new value comes in and old value goes out.
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� Choosing the filtered value from the histogram is simply done through executing a search for
the first maximum count value in the histogram. The index of which the maximum value
reside is then converted into the range of value. For example, index 5 represents the range of
[0.45-0.50). Afterward, the median value of the calculated ranges is then used as the filtered
value , but it is still in the raw form, so further conversion is needed. The figure below will
demonstrate how the filtered value is found.

Figure 5.4: A sonar histogram that demonstrates how the filtered value is chosen, that is, the first
maximum point.

� The filtered sonar value is subsequently converted into the same metric as the other module
in the software architecture so its usage can be consistent and simplified. The conversion is
based on a number of pre-recorded value between the sonar value and the actual distance
between the robot and the object. Thus using simple arithmetic and by interpolating across
the all recorded data point, the actual distance value can be obtained from raw sonar value.
This actual distance is in the same space as the relative distance from the relative space.

� Since the Nao has 2 sensors, that is, one on the left and the other on the right, all that needs
to be done is to keep 2 histograms fo values and thus producing 2 filtered values to represent
each side.
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5.4 Result and Evaluation

In the current implementation of the sonar filter a window size of 20 is used, while the bounds of the
histogram are ranged from 0.0 to 1.0 with the split size K of 20 slices or parts, which gives a range
size of 0.05. In other words, the range goes from [0-0.05), [0.05-0.10) and so on. Since the sonar
sensor in the Nao could not detect anything closer than of value 0.3 (which is meant to represent
30cm from the sonar sensor to the object), the first 6 histogram bars or values are truncated into
the 7th value range (that is, [0-0.35)). Furthermore, an additional bar is added to the end of the
histogram to represent anything of value of greater than 1.0 to signify no objects being presence in
the front vicinity of the robot.

The use of sonar filter has allowed the Robot Detection algorithm to be more accurate, as there
are less noise in the evidence set. There are still occasions where 2 or more histograms values are
close together, but is unfortunately not handled correctly in this implementation. The figure below
is an example of the flaws in the current implementation.

Figure 5.5: A sonar histogram that demonstrates the problem associated with the current
implementation

Ideally, similar values across some radial distance should be averaged together in order to produce
a more accurate and consistent representation of the true value.

The particular choice of the window size, histogram bounds and the split size in the sonar filter
has been working well, that it provides an accurate result with minimal lag. The lag of the filter is
roughly 4 to 7 visual frame. Since the Nao is configured to run at the average rate of 25 to 30 frame
per second, the perception lag produced by using the filter is roughly from 160 to 280 millisecond.
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The table below shows the result of taking measurements and comparing it with the result of the
filter.

Actual/True Distance Detected/Reported Distance Error

300 345 15%

350 395 12.86%

400 445 11.25%

450 445 1.11%

490 495 1.02%

500 495 1.00%

550 544 1.09%

600 594 1.00%

630 644 2.22%

730 744 1.92%

750 744 0.80%

820 795 3.05%

830 844 1.69%

870 895 2.87%

950 945 0.53%

As seen in the result above, the sonar filter is able to report the correct distance of the object. The
results of detecting close object (less than 450 millimeters away) may have a high error, however,
during a game, it does not pose any problems as a margin of error of around 50 millimeters are
acceptable.

The following is another set of tests that attempt to test the lag of the sonar filter. The reported
distances are taken while the objects are being moved away or into the robot. Since the sonar filter
can be configured to show the reported distance on every frame, it can be used to measures the
how long it takes for the sonar to settle into the correct value.

Actual Distance Reported Distance After
5 Frames

Reported Distance After
10 Frames

300-500 395 495

400-600 445 545

500-800 645 795

As predicted, the sonar filter has some lag in the system. Most results are correct by the 6th to
8th frames, which equates to roughly 260 millisecond. 260 millisecond is unfortunately longer than
expected and may cause an adverse effect on the game.

However, by reducing the window size to 10, the results below can be obtained:

Actual Distance Reported Distance After
5 Frames

Reported Distance After
10 Frames

300-500 495 495

400-600 545 545

500-800 795 795

Reducing the window size to 10 allows the sonar filter to be much more reactive, however, it starts
to become noticeable that the reported distances are starting to jump frequently.
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5.5 Conclusions

In conclusion, the implementation of the sonar filter is simple that is unable to correctly handle the
more sophisticated scenario. However, in the context of its usage in the RoboCup SPL matches,
it is adequate, that could provide a relatively accurate result, while maintaining minimal lag. The
filter is also fast in performance and thus does not add on unnecessary delay to the execution of
higher level behaviour.
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Chapter 6

Robot Filter

6.1 Introduction

This chapter will outline the motivation behind the need for a robot filter, the usage, usefulness
and the inner working of the robot filter algorithm. The result and evaluation of the algorithm are
also included towards the end of the chapter.

6.2 Motivation

The motivation behind a filter is to remove noise. This is the same case for robot filter. The Robot
Detection algorithm, despite its best effort to remove any false or inaccurate results, unfortunately
still produces them from time to time. Thus it becomes highly desirable to filter the result of the
robot detection. Filter the result allow the higher level behaviour to be more precise in such a way
that it does not produce unwanted behaviours or interfere with the vital behaviours.
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6.3 Algorithm

The robot filter is a simplified Kalman filter [9] that excludes many of the more complicated aspect
of Kalman filter. The robot filter is a simple model that only deals with static observation and
does not incorporate noise or in any way attempt to model movement of the other robots. One
of the primary requirement of the robot filter is to keep every hypotheses node in relative space.
Meaning that the position of the hypotheses nodes are not directly mapped to the absolute X and
Y position on the field, rather, it is mapped to the relative position from the viewing robot.

The reasoning behind such design decision is to completely exclude any filtered positioning infor-
mation from the current viewing robot, as an error in the localisation of the robot could completely
throw off the result of the robot filter, thus it is highly undesirable. If any higher level behaviours
require the absolute coordinate of these hypotheses, then through the use of simple trigonometry
(with the localisation information of the viewing robot), the absolute X and Y position can be
determined.

The execution of the robot filter requires the following modules or component in the programming
code:

� Odometry information from locomotion.

� Observations generated from the result of the Robot Detection algorithm.

� Variable to store the previous odometry information.

� A main list containing processed hypotheses.

� A secondary list containing queued hypotheses.

The step by step process of the robot filter progress as follow:

� Given the odometry information from locomotion, calculate the difference with the previous
odometry information in terms of forward, left and turn parameter values. Then update
previous odometry to the current odometry information.

� Iterate through the processed hypotheses list and remove any robot hypotheses that has
not appeared for MAX_ROBOT_LOST_COUNT frames. Conversely, this is similar to removing or
merging hypotheses that have high variances. The value of MAX_ROBOT_LOST_COUNT is chosen
arbitrarily and depends on the processing power of the device. In the current implementation,
a value of 125 is chosen and with the Nao being able to run at 25 to 30 frames per second,
this roughly equates to 5 seconds of timeout period.

� Similarly, repeat the same process with queued hypotheses. The idea of using a queued
hypotheses list is to avoid creating a hypothesis for an observation that only appears once.
The current implementation requires the observation to appear twice in a window of 5 frames.
If any candidates satisfy the condition, then it is added to the main list.

� For the remaining hypotheses in the main list, iterate through each node and proceed with
a process update. Each node is converted into relative coordinate to absolute coordinate
with a temporary assumption that the robot is positioned at the value of X and Y of (0,0).
Afterward, the odometry difference is added to the absolute coordinate and converted back
to relative coordinate. As mentioned previously, the robot filter is a simple model and does
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not attempt to model moving objects, thus only a constant process variance update is added.
This can be done by taking the square root of the current variance squared plus the constant
process variance.

Figure 6.1: The process update phase that demonstrates how the update is carried out.

� For each observation, estimate the variance by employing a simple model where the further
away the observation, the higher the variance becomes. The exact formulae used for this step
is contributed by David Gregory Claridge. The same formulae is also used when estimating
the variance of a field edge observation prior to a local localisation update. Please refer to
his honours thesis report for more details [4].

� For each observations, attempt to find the corresponding close hypothesis in the main list.
This can be done by simply iterating through the main list and calculate the straight line
distance between the observation and the hypothesis. Calculating the straight line distance
can be done in both relative coordinate and absolute coordinate. The current implementation
employs calculation in relative coordinate since doing conversations are expensive and the
resources saved could be better spent on other modules.

� If a matched hypothesis is found then proceed with a Kalman update. This is done by taking
into consideration of the variances of both nodes. Then pick a point in the straight line
distance closer to the node with lower variances. This new point will be the new hypothesis.

� If no match is found, then add the observation to the secondary list to be processed further
in the next iteration
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6.4 Results and Discussions

Using the robot filter allows the system to be more accurate in terms of knowing the position of
other robots. However, the nature of using a filter means that it contains lag and due to the lack
of a more sophisticated model, the filter is only suitable for long-term planning or plans involving
far robots.

Figure 6.2: One of the test scenario in testing the robot filter. This image contains three different
robots each with a different configuration of the waistbands.

Figure 6.3: The generated hHypotheses from visual observations shows the hypotheses being
plotted on the field from the visual observations above.
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The filter is not suitable for use in scenario where it involves close robots. This is primarily caused
by the method at which Kalman update is carried out. Since a constant threshold is used to find
a match between the hypothesis and the observation, hypotheses that are in close proximity to the
viewing robot may be progressively updated and would end up in similar position to the previous
position, despite being updated with odometry.

An example of this is when an observation is taken from sonar information. The sonar sensors often
still trigger despite the robot trying to move away from the object (such as turning on the spot to
the left or right away from the object), since the object is still in proximity of being detected by
the sensor. This scenario will cause the hypotheses, updated with odometry, to jump back to its
previous relative coordinate. Such scenarios are particularly undesirable when attempting to do
robot avoidance, since the robot may turn excessively until the sonar sensors no longer detect the
object.

Similarly, robots that are in motion, particularly fast robots, may end up being modelled as multiple
hypotheses in the algorithm. Unfortunately, none of these problems can be address due to the
simplistic nature of the filter.

6.5 Conclusions

In conclusion, the robot filter model is a simple model that only attempts to model static object.
The filter is fast and provide accurate data regarding far robots, however, due to the lack of more
sophisticated model, robots that are close or in motion may not be handled correctly.

The filter can certainly be improved to include the more sophisticated techniques and thusly able
to correctly tracking moving robots and close robots.
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Chapter 7

Robot Behaviours

7.1 Introduction

This chapter will outline the design decision in implementing the behaviours for RoboCup 2011,
the usage, usefulness and the performance of the behaviours. The behaviours developed for this
chapter are specific roles that have to be included and it is vital to have specific roles during the
game to accommodate to various strategy. Running all robots on the field with a single identical
behaviour is undesirable as there are various penalties and strategy disadvantages that may fall
upon the team.
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7.2 Team Role Switching Skill

Given the many specialised roles developed for the robot for use during the 2011 RoboCup compe-
tition, it becomes necessary and desirable to have a common skill that dynamically assign roles to
the robots. The idea is to use the distributed information such as the global positions of the robots
and the believe-state of the perception of the ball to determine which robots should be assigned to
what roles.

In the current implementation, the role switching skill is structured as a tree. The structure of the
tree can be seen in the figure below:

Figure 7.1: Role switching decision tree that shows how dynamic role switching is done. Green
circles denote terminal nodes, blue circles are decision making node, while text in black are

conditions to reach a node.
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Parameters are evaluated at each of the related node and when a terminal node is reached the
corresponding behaviour or role is returned to the main function. If a role that is different to
the previous role is received, the robot will be assigned to the new role. Since information are
distributed, all the remaining robots will be aware of this role switch and will also dynamically
switch their role if necessary. For example, a midfielder is transitioned into a striker, hence causing
the previous striker to transition out of the role and become one of the supporters.

The development of role switching skill has proved to be difficult prior to the competition as testing
the behaviour requires coordination of a full team of robots and it is often difficult to correctly tell
the current role of the robot before it is well developed into the role.

Another negative side effect of this problem is when two robots are constantly switching in between
two roles and eventually would settle into a dead zone where both robots are assigned to the
same role since the robots are within the threshold of each other. This is the most common when
determining which robot should become midfielder and defender since the parameters used require
the information of the other supporters. A sudden false jump in the localisation of one of the
supporters will also throw off dynamic role allocation since the implementations are not able to
correctly handle mis-localised robots.

Overall, the development of role switching skill is important. The most important aspect of role
switching skill is the transition into striker. This includes the transition from supporters and goalie
into striker when certain condition holds. Such transition are usually strict and intentionally done
so to avoid having multiple strikers. Scenarios where the role switching excels include:

� The goalie being transitioned into striker when the ball gets too close to team own goal while
the previous striker transition out of its role as to avoid kicking the ball into own goal.

� Transition into supporters for positioning and afterward transition into striker when condition
holds, such as, after blocking the opponents kick or retrieving the ball after a fail kick.
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7.3 Supporters - Midfielder and Defender

The supporter behaviours primarily consist of the role of midfielder and defender. The idea of
having a midfielder is to place the robots on the opponents side of the field to handle a number
of scenarios such as ball passing or retrieving the ball after a fail kick by the striker (for example
being bounced off other robot or the goal posts), while the idea of having a defender is to place
the robots on the team’s own side of the field for various defending scenarios, such as blocking the
straight line ball path from the opponents’ strikers or the ball to our own goal.

In this thesis project, the development on supporters are divided among two rUNSWift members,
thus only the development that has direct responsibility will be detailed. The supporters behaviour
are a collection smaller sub-behaviours that are put together in a format similar to a decision tree.
Traversing the decision tree require an analysis of the current situation and evaluating a number of
parameters, such as the relative distance to the ball, the global absolute position and the relative
positioning information of the striker.

Specific to this thesis projects, there are three sub-behaviours developed. These are:

� A routine that programmed the robot to return to its predefined global position after a time
frame at which the ball could not be seen.

� A routine that intentionally blocks (move into) the ball-goal line path between the ball and
our own goal.

� A routine that avoid the ball-goal (move away from) the ball-goal line path between the ball
and the opponents goal.

The remaining sub-behaviours are developed by Yongki Yusmantia and are related to the positioning
of both the supporters and defenders during the game. Please refer to the related report for more
information [13].

The definition of the ball-goal line path is basically the straight line between the ball and the
middle vertical point of the goal posts. Avoiding the line path require the robot to avoid the
triangle region created from joining the ball to the individual goal post. Where as blocking the line
path involves intentionally stepping into the triangle region. The figure below will demonstrate the
triangle region used in the behaviour.
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Figure 7.2: Ball-Goal Triangle Line
that shows how the ball-goal triangle line is established.

The dark blue lines are the triangle region, where as the yellow dashed line is
the straight line path between the ball and the middle of goal posts

The supporter behaviours have proved to be a success during the 2011 RoboCup competition where
the following scenarios have occurred that change the tide of the game:

� The defender successfully blocked the ball and charge forward to become the striker.

� The defender, being positioned well, was transitioned into a striker by role switching skill
when all the other robots are unable to see or approach the ball optimally.

� The midfielder successfully avoided the striker when the striker attempts to kick the ball
towards the opponents goal.

� The midfielder successfully retrieved the ball after a fail kick and transitioned into a striker
by the team switching skill to continue the dominance.
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7.4 Penalty Striker

The penalty striker is a specialised behaviour developed for the penalty phase of the game. The
major part of penalty striker is a derivation from the striker skill, which in itself is highly similar
to the 2010 rUNSWift code. Thus, please refer to the related report [1] for more details.

The extension developed for the penalty striker behaviour is the inclusion of the Robot Detection
algorithm. The behaviour attempts to find the optimal target for the ball to be kicked towards.
The step by step process of the progression of the behaviour goes as follow:

� Approach the ball that is placed on the penalty spot. The striker skill routine is called in this
phase of the behaviour with the special flag enabled indicating a penalty shootout so that a
special behaviour branch can be executed, which leads to the next point.

� The robot stops and attempt to pan the head left and right for a specified amount of time.
The panning scan is intended to look for goal posts and the opponents goalie. In the current
implementation, if only one post is seen, then the other post is estimated using the current
localisation information.

� When information regarding the two goal posts and the opponents goalie are available, the
robot will attempt to find the straight vertical distance from the opponents goalie to both of
the goal posts and essentially favoring the one with the larger distance. In other words, to
find a target location that has the biggest opening.

� During the panning scan, having multiple targets are common and could be caused by various
reasons, such as slipped localisation or false robot detection. In order to counter this problem,
a histogram of targets are built and at the end of the panning scan, the target location with
the highest frequency is chosen as the primary target.

� When the primary target has been established, the special penalty shootout flag is disabled
and the penalty striker behaviour will return to striker routine. The striker routine will then
proceed to line up routine and kick the ball towards the target position.

Unfortunately, during the 2011 RoboCup competition, this behaviour is not used, since none of
the games played proceed to the penalty phase. During the development of this behaviour, various
tests are carried out and the robot is able to find the correct target position and kick the ball into
the goal. Several occasions occurred where despite producing the correct target, the ball was not
kicked towards the target. Upon closer observations, this is primarily caused by the margin of error
in the line up routine where speed is prioritised over accuracy when a position is considered to be
good enough.

Overall, this behaviour is solid, but is unable to be used during the competition. Hopefully, this
routine can prove to be useful in future RoboCup competition.
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Chapter 8

Future Work

8.1 Introduction

This chapter will outline various extensions to the current implementation of the Robot Detection
algorithm that are unfortunately unable to be included within the given time frame. This chapter
are divided into 2 major sections. One is the addition of tools and modifications to the current
implementation such that existing functionality can be better maintained and improved over time,
while the other section is on extensions of the algorithm to include new features and making the
detection more powerful.
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8.2 Tools and Modifications

8.2.1 Unified Data Gathering and Decision Tree Learner Suite

This tool is specifically related to the machine learned decision tree developed for the Robot Detec-
tion algorithm. In the Machine Learning The Decision Tree chapter, it is outlined that the major
flaws in the techniques used is the difficulty of maintaining the process of acquiring and classifying
the data sets and modifying or removing current parameters and adding new parameters.

The ambition of implementing this tool is the unification of all the individual steps into one single
tool, as opposed to the current use of 4 different tools, which are, manual data gathering and
classifying, raw data conversion to WEKA input format, the WEKA software and the conversion
of the decision tree to valid C code. Another major flaw with the process is the many manual
intermediate process between the use of each tools where a large number of files are constantly
being moved and scripts being run. This is error-prone and difficult to notice.

The tool should have a method to smoothly transition from one tool to another and preferably
transparent from the users. The tool could also incorporate a way to speed up the classification
process and automate certain aspects of it (such as using the test suite database). The tool should
also be incorporated into the rUNSWift code base, sharing the same architecture such that many
of the common modules do not need to be duplicated in a different set of programs.

8.2.2 Lesser Dependency to Colour Calibration

This modification is specifically related to the machine learned decision tree and the Robot De-
tection algorithm. The current implementation is highly sensitive to colour calibrations, where
a change of significantly different colour calibrations may cause the result to be inaccurate and
error-prone.

One way to achieve this modification, prior to converting the raw information to WEKA input
format to learn a decision tree, is one could store such information as raw pixels as opposed to the
current colour calibrated pixels. Afterward, the specified colour calibration can be applied on the
fly when generating the input format.

This modification highly complements the unified tool mentioned in the previous section, where the
process of on the fly calibration application can be done transparently and require no user input.

Typically, robots have different camera setting and during the competition, teams may be required
to play on more than one SPL field. It is common to have multiple colour calibrations for each
robot and each field. Thus, by default, it is undesirable to have one single decision tree for all
robots and all the fields, and hoping that it would work. This modification and the addition of the
tools may produce different decision tree for each robots and could be deployed easily depending
on the scenario.
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8.3 Extensions

8.3.1 Robot Pose Estimation

This extension directly relates to the Robot Detection algorithm. The current algorithm only
attempts to find the relative distance and heading to the detected robot from the viewing robot,
which, essentially allowing behaviours to find the global x and y positions of the other robots.
While this can be sufficient in terms of basic strategy play, it is unfortunately lack the depth in the
deeper strategy game play.

Robot pose estimation basically refers to the estimation of where the other robots are facing. The
granularity of the pose estimation may vary depending on the usage. In most scenario, being able
to tell whether the other robots are facing towards or away from the viewing robots can provide
a massive advantage to the team, in a sense that, forward facing robots should be avoided and
backward facing robots can be ignored. The more advanced implementation of being able to tell
exactly the degree of where the other robots are facing can provide an even greater advantage,
essentially closing the gap in terms of high level decision making with real soccer game.

8.3.2 Robot Filter Using Distributed Information

This extension directly relates to the robot filter algorithm. The current robot filter is a simple
model that lacks many of the more sophisticated feature that could prove to be useful. The infor-
mation generated by the robot filter is unfortunately tied to a single robot and is not transmitted
to another robot in anyway. While a single robot can correctly map the other robots on the field,
the robots have blind spot in the camera and most of the times, the behaviours deployed will not
intentionally look for other robots on the field. In other words, Robot Detections are done on the
fly while looking for the more important objects, which are the ball and the goal posts. Thus, it
becomes highly desirable to have a single robot filter that incorporates all the information from all
the robots to create a global map.

The addition of a global mapping of other robots on the field can provide a massive advantage to
other modules and the high level strategy game play. One advantage would be to re-localise lost
robots. Being able to detect own team mates will allow lost robots to quickly localise itself again
solely from using the global map. Verifications in the lost robots can be carried out to confirm the
position by simply looking at key objects from the proposed position. Another advantage is the
ability to incorporate strategy playing, such as passing the ball, path planning, robot avoidance
and opponents ball kicking prediction (such as predicting when the opponent is going to kick the
ball into the goal).

72



8.3.3 Distributed Robot Finding Routine

This is an extension to the behaviours where instead of relying on other behaviours to accidentally
detect the presence of other robots on the field, the behaviour will allow a coordinated method of
looking for other robots. The idea of coordinated behaviour is such that, robots with the more
important behaviour, such as the striker, should be allowed to keep going, while those with less
important roles can transition to other behaviours that could benefit the team as a whole, such as
running this particular behaviour.

The addition of this behaviour can keep the global map updated and thus able to constantly use
the map in its most accurate form. Having an accurate map means a more precise behaviour and
would be a great advantage to the team.

8.3.4 Robot Avoidance Planner

This is an extension to the behaviours of the robot. The current implementation of robot avoidance
is primarily based on using the sonar sensor when the other robots are in close proximity. While
sufficient in basic terms, it is common to observe the lag in the sonar sensor that cause a delay in
the robot avoidance routine. Such delay proves to be fatal during the game as the robots tend to
bump into other robots, getting stuck and having the odometry slipped or in the worse case reset.
Either way, an off odometry is erroneous for both the localisation module and the robot filter as
the results are no longer accurate and it may take a while for the hypotheses to be correct again.

Hence, the ambition of having a robot avoidance planner is so that, robot avoidance can be planned
in advance and be executed as part of the walk planner in such a way that the robot may approach
the ball optimally while avoiding other robots. In order to be able to achieve this extension, the
global map mentioned in the previous point is highly essential.

8.4 Conclusions

In conclusion, the addition of the unified tools and the modifications to the current implementation
will allow the Robot Detection to be more accurate while the extensions proposed will massively
improve the functionality of the detection to include the more advanced techniques that will provide
an even better result.

The extension to the behaviours to include various Robot Detection routine can be useful in terms
of building up the global map and maintain the map during the game. The map can then be used
by other modules to provide an even greater advantage that benefits the team as a whole.
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Chapter 9

Conclusions

9.1 Overview

This thesis project has addressed the main research in three-fold. First is successfully incorporate a
machine learned module in attempting to detect the presence of other robots on the field. Second is
the transition into a multi-modal system that gather many evidences and build up the confidence in
the result. Finally, achieving robustness and compatibility with the new vision software architecture
where new features can be added with minimal changes and impact to the current implementation.
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9.2 Summary

All the modules implemented for this thesis project has achieved significant result. The following
is the concluding summary of each modules and algorithms.

� Robot Detection - has produced reliable results when a full body bounding box is available
as the evidence set can be built up accurately for use by the machine learned decision tree.
The problems on the mis-detection of objects have been addressed with several hard-coded
sanity checks, but could be further improved and integrated into the core steps, particularly
into the machine learned decision tree.

� Machine Learning the Decision Tree - the J48 algorithm in the WEKA learning suite [10]
is able to achieve a correct classification rate of 97.7% with over 1200 data instances. Data
are mixed with both true and false data in order to build up a respectable data set that is
sufficient to train the tree and to conduct cross validations. The remaining 2.3% of incorrect
classification are essentially the same problem outline in robot detection and caused by false
data that have similar characteristics to true data, such as the white triangles behind the
goal posts.

� Sonar Filter - the filter is able to produce accurate result with an acceptable amount of lag.
The result data has shown an average error of roughly 4% between the measured distance and
the reported distance. 4% roughly equates to less than 15 millimeters of difference, which is
completely acceptable for use during the game. The implementation of sonar filter is robust
where many parameters can be modified to suite the new of new requirements.

� Robot Filter - the filter employs a simplified Kalman filter [9] that attempts to model the
placement of other robots on the field. Unfortunately it does not attempt to model moving
robots. The implementation of robot filter can be extended and improved with the more
sophisticated techniques of Kalman filter and other localisation techniques.

9.3 Closing

The implementation done on robot detection in this thesis report has its significance in the employ-
ment of a multi modal system and the usage of machine learning to train the decision tree. The
multi modal system allows the algorithm to still detect the presence of robot despite the lack of
visible waistbands in the visual frame, which all of the algorithm proposed in the literature reviews
are unable to do. In fact, all of the algorithms have heavy emphasis on the presence of waistband.

The use of machine learning also means the algorithm would only improve over time as more data
instances are gathered and with the inclusion of the many future works tools and modifications that
can be incorporated into the algorithm, particularly the unified tools, the process of conducting
machine learning will only become simpler, easier, faster and more accurate, in terms of gathering
and classifying new data set.
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