
Remote Control and Global Obstacle Detection for the RoboCup

SPL

Benjamin Vance

bvance@cse.unsw.edu.au

August 24, 2011



Abstract

In the RoboCup SPL, autonomous robots compete in soccer matches. However, during development
and testing phases, a remote-control system whereby a human operator can directly control a robot
is rather useful. Hence, a remote-control system for this purpose was implemented, tested and used
during said development and testing phases. Separately, a system to globally track obstacles - such
as enemy robots - was also developed. This system is based upon a set of corroborated per-robot
global grids.



Contents

1 Introduction 1

1.1 Remote Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Global Obstacle Tracking using Grids . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Remote Control 3

2.1 Off-Nao Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 On-Robot Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Global Obstacle Tracking using Grids 5

3.1 The local Global Obstacle Tracking Grid . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 The team Global Obstacle Tracking Grid . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Use of the team Global Obstacle Tracking Grids to refine localisation hypotheses . . 6

3.4 The use of Off-Nao to examine the grid/s . . . . . . . . . . . . . . . . . . . . . . . . 6

i



Chapter 1

Introduction

This is a report for rUNSWift work performed in pursuit of a standard 6-unit Special Project A
course (COMP3901) in Semester 1, 2010, assessment continuing to Semester 1, 2011. Assessors are
Maurice Pagnucco and Bernhard Hengst.

1.1 Remote Control

During the RoboCup SPL competition itself, the robots on each team can communicate with each
other, but are, for obvious reasons (the competition is all about autonomous robots), not allowed
to have any information conveyed to them from an ’outside’ source. Thus, a remote-control system
is not directly and immediately useful in the competition itself.

However, if one takes a step back, then it becomes somewhat apparent that a remote-control system
is useful for a myriad of purposes - enabling easier configuration of walk parameters for new surfaces,
for instance, and in fact many other kinds of calibration as well - say one wishes to get the head at
a particular angle to calibrate some aspect of the camera image settings. Further, a remote control
system is useful during development in a vast array of scenarios - basically, any scene where the
robots need to be in a particular place, be looking at a particular item, or perform a particular
action, in order to test everything from vision tasks to behavioural reactions. Remote-control
systems can also be used to aid machine learning.

Thus, a remote-control system was desired by the rUNSWift RoboCup SPL team. The system thus
produced allows control of a robot in a familiar fashion (e.g. use of the WASD keys to move the robot
in an intuitive way) from the already-existing rUNSWift ’Off-Nao’ runtime-diagnostics / debugging
tool. The system was integrated into existing infrastructure, and sends a standard serialised motion-
command (including movement of both the body and the head and camera selection) to a fixed
UDP port opened on the robot for just this purpose.

1.2 Global Obstacle Tracking using Grids

A RoboCup SPL match involves 4 robots on each side, often all moving at once. 7 other robots on
the field apart from the current robot in question can be rather difficult to track, even with inter-
robot communication from other robots on the same team providing cues about both friendly and
enemy robots. Often, it is not necessary for a robot to track the positions of all other robots, even

1



if this would be an essential situation. In particular, information about robot locations relevant to
immediate goals (such as robots between the robot in question and the goal, when the robot has
possession of the ball) is rightly prioritised over less immediately relevant information. Further,
as robots are often moving about the field, their positions can change rapidly enough to quickly
invalidate specific observation information.

With these considerations in mind, a grid-based obstacle mapping system was architectured in
such as fashion soas to allow all robots to have a general idea about the state-of-affairs, whilst still
prioritising information more immediately relevant to itself - and keeping other factors in mind
such as errors in localisation not just in regards to the current robot, but also all the other robots
on the same team.

Each robot maintains its own grid-based obstacle map in a grid kept in global coordinates, with
adjustments made based on changes in odometry over a limited timeframe before being rolled into
the aforementioned global grid for good, slowly decaying soas to reflect increasing uncertianity
about the relevance of information due both to the constant movement of robots about the field
and also errors in localisation, robot detection and odometry.

These global-grids are then distributed between all the robots on the team, and blended - each
robot prioritising its own grid above others’. The grids have the purpose of informing behaviours,
both on a general level (”there are lots of enemy robots to the right of the enemy goal”) and a
more specific level (”there’s a robot moving to intercept our striker”), but not the purpose of very
specific observations - say, for instance, being relied on to line up a shot on goal rather than the
robot observing the goal itself more accurately determining the relative positions of the goal with
respect to itself. Further, the grids can be used to inform robots uncertain about their position
to rely on teammates’ observations to more accurately choose a position hypothesis - this was
implemented and successfully demonstrated.

2



Chapter 2

Remote Control

2.1 Off-Nao Interface

The Remote-Control piece was designed from the start to integrate into the existing diagnostic /
visualisation aid ’Off-Nao’ tool (This tool had been in existence since 2010 [3]), and as such, a tab
was created containing information about the supported remote-control commands, and an option
added to the existing menu-bars to turn remote-control on and off when connected to a robot.

Keys are intercepted regardless of which screen the user is focused on on the Off-Nao application,
allowing for the remote-control functionality to be conveniently used concurrently with vision-
calibration tabs, sensor tabs or just the overview tab (usually used to view a high-framerate saliency
image for basic, low-latency visual feedback). A wide variety of commands are supproted (see Fig
2.1), and as many as the robot can physically perform at once can be sent concurrently. Varying
power levels / speeds can be used.

The Off-Nao application itself then creates the appropriate action-command as required, serialises
said action-command, and sends it to the relevant robot over UDP port 4000. As latency is more
important in this situation than accounting for packet loss, no provision was made to account for
lost packets - in the worst case, one can usually just trigger the same command to be sent once
more, and as explained above, the Remote-Control system is not used directly during competitions,
nor is such a purpose useful.

2.2 On-Robot Components

The Remote-Control piece listens on port 4000 for UDP traffic. If a recieved packet successfully
deserialises into a valid action-command object, said object is then used to override any exist-
ing action-commands being sent to the motion thread. To account for concurrency, these actions
are double-buffered to ensure an action-command is not being read and written at once. Action-
commands are only sent when the command changes; this is to avoid unnecessary network band-
width use, as well as to reduce the complexity of both the sender and receiver (which is of more
impact on the receiever side due to the tigher hardware and software limitations in place).

Expected latency is at most the amount of time taken for the remote-control listener to run (it
is locked when there are no incoming messages) and the motion-executor thread to run (plus net-
work latencies, network card latencies, ethernet stack latencies, et cetera), plus reasonable thread-
scheduling operation, given (in particular) the 500Mhz Geode [4] processor on-board the Nao SPL

3



Figure 2.1: The remote-control help / information tab, integrated into the existing Off-Nao tool.

robots. Given the vagarities of thread-scheduling, this it not specific. Generally, however, the
remote-control system was found to run with a more than acceptable latency in practice.

Failsafe procedures are in place to ensure that the robot at no time recieves a blank motion-
command, as this would cause the robot to collapse on the spot. The remote-control system itself
times out after a configurable timeframe (60 seconds by default).

4



Chapter 3

Global Obstacle Tracking using Grids

The Obstacle Tracking Grids are expressly designed to track both allied and enemy robots, and not
any other obstacles. The system has been designed with often somewhat-large input error (from
the robot-detection piece) as well as changes in the state of the robots on the field over time in
mind. This approach differs from previous approaches [5] used by the rUNSWift teams over the
years by utilising and focusing on a grid in the global (i.e. field) coordinate space, and sharing these
grids amongst the team. The robot begins by building a local Global Obstacle Tracking Grid.

3.1 The local Global Obstacle Tracking Grid

The robot considers all of the robot-observations it recieves, then, accounting for error, keeps track
of robot-observations for configurable a period of time, adjusted for odometry for a period of time
(by default, 30 frames). The odometry adjustment is in place to maintain accurate observations
while the robot is moving rapidly, or, in particular, rotating its head. After this threshold, obser-
vations are locked-in to a particular grid square/squares. This odometry adjustment was found to
greatly add to the accuracy of the produced grid. The ’base’ grid containing all finalised observa-
tions is kept separately to the odometry-adjusted observations (kept in a vector of robot-relative
coordinated, for transform speed and accuracy, until finalised).

The grid is subject to decay, both for odometry-adjusted observations and observations permenently
locked into the grid. The decay rate is configurable, and is by default 4%, applied every 5 frames.
Observations are stackable in each grid-square - that is, a single observation cannot saturate a
grid-cell, and multiple observations make a grid-square ’more likely to contain an obstacle’. This
grid, then, is the local Global Obstacle Tracking Grid.

Before this grid is sent out to teammates, however, it is merged with data from the robot’s team-
mates (if available). This process is described in the next section.

3.2 The team Global Obstacle Tracking Grid

If the robot detects any Global Obstacle Tracking Grids incoming from its teammates, it then
merges the grid with its own grid, on a ratio of 50

This reinforcement method is desirable as detection errors are unlikely to be of a nature whereby
multiple robots have a spurious detection in roughly the same global (i.e. field-relative) position

5



at roughly the same time, and thus multiple observations in the same area by different robots are
highly likely to have substance.

Note that the result of this is that the team Global Obstacle Tracking Grid is different for each
robot. The robot then sends out this team Global Obstacle Tracking Grid to its teammates over
the standard team-data-synch system, which runs at roughly 5Hz [3]. This results in a slight
propagation latency, which actually further strengthens the rejection of bad candiate detections,
except in the case of very fast-moving robots. In the case of fast-moving robots - either allied or
enemy robots - even the locally-detected locations are usually inaccurate due to detection error, or
the information becoming very quickly out-of-date.

Optionally, the robot can filter out its own known location (if said location is known accurately
enough) out of the grid it sends. When this feature is used, the use of team robot localisation data
(in behaviours) is critical, as otherwise accurate observations of well-localised robots on the same
team will not be reinforced sufficiently to support the use of this system to track teammates from
these Global Obstacle Tracking Grids. This feature is especially useful due to the high distance
error in robot detections - in particular, distances are often reported as being shorter than 30cm
for objects a metre or so away). Further, the sonar can be used for robot detection, but this is
quite inaccuracte and often less useful in a global-grid context, especially given the importance of
inter-robot sharing and the intended uses of the grid filter.

3.3 Use of the team Global Obstacle Tracking Grids to refine lo-
calisation hypotheses

A feature was developed utilising the team Global Obstacle Tracking Grids of all but the current
robot to improve the robot’s hypothesis of its own location (using the rUNSWift 2011 localisation
system as the source of said hypotheses [1] by biasing the robot hypothesis choice based on these
observations taken from the other robots on the same team. This feature weights all received grids
equally. This feature is usually run with the robot filtering out its own location (as mentioned in
the previous paragraph), to prevent inaccurate hypotheses from being locked.

Various metrics are used when deciding how to shift the primary hypothesis. Usually, this pools
obstacle likelyhoods in the area immediately around the centre of the hypothesis, and takes the
hypothesis variance into account, changing the primary hypothesis if the obstacle likelyhood is
sufficiently higher than other likelyhoods to compensate for variance differences between hypothesis.
Currently, this is based on a simple linear relationship, and will change to any hypothesis if the
variance is sufficiently low. This method could certainly be a target for improvement in the future.

3.4 The use of Off-Nao to examine the grid/s

A feature was added to Off-Nao to display the currently connected robot’s team Global Obstacle
Tracking Grid. This is overlaid on top of the field display which also shows localisation / ball
detection data, and so forth. Hypothesis-based robot detections (i.e. detections maintained using
a particle-type filter [2]) can also be simultaneously displayed. As the obstacle likelyhood increases
for a particular grid cell, it shows up more strongly in the GUI. This proved extremely useful when
used for diagnostic / development purposes.

6



Figure 3.1: The grid-data as it appears in Off-Nao. The pink dots indicate locations where a
obstacle is likely located.

7



Bibliography

[1] David G. Claridge. Multi-hypothesis localisation for the nao humanoid robot in robocup spl.
August 2011.

[2] Jimmy Kurniawan. Multi-modal machine-learned robot detection for robocup spl. August 2011.

[3] Adrian Ratter, Bernhard Hengst, Brad Hall, Brock White, Benjamin Vance, Claude Sammut,
David Claridge, Hung Nguyen, Jayen Ashar, Maurice Pagnucco, Stuart Robinson, and Yanjin
Zhu. Runswift team report 2010: Robocup standard platform league. October 2010.

[4] Aldebaran Robotics. Developer documentation for the nao (green). http://users.aldebaran-
robotics.com/docs/site en/greendoc/getting started/motherboard.html, July 2010.

[5] Oleg Sushkov. Robot Localisation Using a Distributed Multi-Modal Kalman Filter, and Friends.
Honours thesis, The University of New South Wales, 2006.

8


	Introduction
	Remote Control
	Global Obstacle Tracking using Grids

	Remote Control
	Off-Nao Interface
	On-Robot Components

	Global Obstacle Tracking using Grids
	The local Global Obstacle Tracking Grid
	The team Global Obstacle Tracking Grid
	Use of the team Global Obstacle Tracking Grids to refine localisation hypotheses
	The use of Off-Nao to examine the grid/s


