
Generation of Python Interfaces for RoboCup SPL Robots

David Claridge

davidc@cse.unsw.edu.au

University of New South Wales

February 2011

Contents

1 Introduction 1

2 Related Work 2

3 Implementation 3

3.1 rUNSWift Software Architecture . 3

3.2 The Robot Python C Extension Module . 4

3.2.1 Wrapping the Blackboard with SWIG 5

3.2.2 Modifications to Generated Code . 8

3.3 The Behaviour Pure Python Module . 9

3.4 Directory Monitoring with inotify . 10

3.5 Embedding, Loading, and Unloading . 12

4 Maintenance and Future Work 16

5 Conclusion 16

1 Introduction

Software used for participation in the annual RoboCup SPL Competition2 is often devel-

oped at a rapid place in small highly-dynamic teams in the few months leading up to the

competition. As such is essential to make use of efficient software engineering techniques,

including:

• Using a streamlined build system

• Having a rapid test-development cycle

• Taking a fail-fast approach to developing new ideas

Perhaps the most dynamic component of an SPL software system is the behaviour sub-

system, which is responsible for choosing the robot’s intention based on the various sensor

inputs and world models that are available to it. This module determines both the high-level

strategy of a team of soccer-playing robots, as well as the particulars of individual skills such

as dribbling, passing or walking to a desired location.

This module is evolved as the underlying infrastructure is improved, as well as in reaction

to the strategies and capabilities of opposition teams at the competition. It is therefore

necessary to utilise a framework that allows behaviours to be very rapidly modified, or even

completely rewritten, during the week of the RoboCup competition.

One approach that satisfies all these goals is to use a dynamic programming language

that lends itself to short development time, whilst trading off some performance compared

to compiled machine code4. In this report we present a method for integrating the Python

programming language with a C++ robotic software system, that provides full access to the

C++ system’s internal state as well as the ability to reload behaviours at runtime, greatly

reducing developer overheads.

1

2 Related Work

A number of SPL teams, including rUNSWift, have attempted to make use of dynamic lan-

guages for describing robot behaviour in the past:

In 2010 rUNSWift utilised the Python C API to hand-craft wrappers for each of their

C++ data types, allowing Python behaviours to be dynamically reloaded at runtime5. Un-

fortunately this approach required a huge amount of developer effort to maintain, since it

was very easy for Python wrappers and C++ types to become out of sync. It also suffered

from issues of memory leaks, due to the complexity of tracking all Python object references

throughout the wrapper code.

In 2008 rUNSWift attempted to integrate the Ruby programming language into their C++

system, however complications using the Ruby C API led to this approach being abandoned

before the 2008 RoboCup competition1.

Since 2004 the SPL German Team, and more recently B-Human, the reigning world-

champions, have been using a behaviour-description language called XABSL6. XABSL allows

hierarchical finite-state machines to be described using a simple syntax; rUNSWift’s 2010 team

experimented with XABSL during their development, but found the overheads of integrating

it with an existing C++ system to be too great. Similar to the rUNSWift 2010 Python

method, it required manual conversion of complex data types into a format the XABSL can

understand. Whilst not implemented by the German Team, a runtime re-loading system

utilising inotify, would be possible with the XABSL runtime.

2

3 Implementation

This section will describe the various tools and methodologies that were used to integrate a

Python interpreter with support for run-time reloading into the rUNSWift robotic software

system.

Before diving into the details of the Python-C++ interface, one must first understand the

overall architecture of the system and how its various components interact.

3.1 rUNSWift Software Architecture

The core functionality that allows rUNSWift’s team of Nao robots to play soccer is encapsu-

lated in the runswift executable program, which is a stand-alone application, linked against

standard Linux system libraries such as libc, and third-partly libraries such as Boost, Eigen

and libpython2.6. The runswift executable communicates with the robot’s hardware via a

shared-memory interface to a NaoQi extension library called libagent, details about which

can be found in the rUNSWift 2010 Team Report5.

There are two primary threads in the runswift executable: ‘motion’ and ‘perception’.

Motion is a real-time thread, running at 100Hz, which is responsible for the movements and

stabilisation of the robot. The perception thread is responsible for sensing, world-modelling

and decision-making, it runs at a maximum of 30Hz (IO-bound by the camera device), but

usually fewer due to the computationally intensive nature of vision processing. It is the final

decision-making part of the perception pipeline, called ‘behaviour’, which is the target for our

automatic reloading using Python.

As can be seen in Figure 1, the behaviour module receives inputs from vision about

detected features, and the world-model’s state estimates of various objects and agents. The

behaviour-loading sub-module is invoked on startup and whenever an change to the Python

code is detected by the inotify watcher. Finally the behaviour execution sub-module will

use the information provided to it, to choose an action command which can be posted for

processing by the motion thread.

3

Figure 1: A data-flow diagram for the runswift perception thread

3.2 The Robot Python C Extension Module

In order for pure Python code, such as the Behaviour module (see Section 3.3) to access data

stored in C++ data structures, a Python C Extension module must be used. The Python-C

API provides methods that can generate PyObject structures from basic C types such as

ints, longs, floats and null-terminated strings. To convert more complex types, one would

usually create various Python proxy classes using the C API, and convert each of the fields

to PyObjects on demand.

A major downside to this approach is the need to maintain this complex C extension

module, and keep all the type wrappers synchronised with any changes to the underlying C++

data types. Furthermore, the C API requires the programmer to carefully track all references

to objects, lest the Python garbage collector decide that a critical object is no longer needed

and deallocates it, or conversely, if the reference count is not correctly decremented, a memory

4

leak could easily be caused. With the Python Behaviour module running at approximately

30Hz, any memory leak in this part of the code will very rapidly cause a complete loss of all

available system memory on the Nao, which only has 256MB of RAM.

To avoid having to maintain this unwieldy module, which in rUNSWift’s 2010 code con-

sisted of over 10,000 lines of code, whilst only providing wrappers for a small subset of data

available to other C++ modules; we are now making use of the Simplified Wrapper and Inter-

face Generate (SWIG), an open source toolsuite that generates bindings for various dynamic

languages, including Python, given C/C++ header files and an interface descriptor file.

3.2.1 Wrapping the Blackboard with SWIG

The runswift executable utilises a central data store called the ‘Blackboard’ to share infor-

mation between modules. Each module has an ‘Adapter’ which reads its required inputs from

the Blackboard, calls the relevant module logic, and posts updated outputs from the module

to the Blackboard. Providing Python behaviours with read access to the Blackboard is the

simplest way to ensure that behaviour authors can access all the information they need.

In order to generate a Python C wrapper module, we provide SWIG with an interface

descriptor file:

1 %module robot
%{

3 #include ” blackboard /Blackboard . hpp”
%}

Listing 1: robot.i

The first directive specifies that SWIG will be generating a dynamic language module

named ‘robot’. This is followed by any C code that must be prepended to the generated

module; in this case, we just need to include the header file for the Blackboard.

%inc lude ” s t d s t r i n g . i ”
6 %inc lude ” s t d v e c t o r . i ”
%inc lude ” ca r rays . i ”

8 %a r r a y c l a s s (f loat , f l oa tAr ray)

5

10 /∗ s t d i n t ∗/
%typedef signed char i n t 8 t ;

12 %typedef short int i n t 1 6 t ;
%typedef int i n t 3 2 t ;

14 %typedef long int i n t 6 4 t ;
%typedef unsigned char u i n t 8 t ;

16 %typedef unsigned short int u in t 16 t ;
%typedef unsigned int u in t 32 t ;

18 %typedef unsigned long int u in t 64 t ;

20 %inc lude ” e igen . i ”

Listing 2: robot.i

By default, SWIG does not recursively process included header files, since this would lead

to wrappers being generated for several very large standard C and C++ system libraries. In

order for types not specified directly in Blackboard.hpp to be made available to Python code,

we must provide SWIG directives to wrap them. Standard wrappers are available for C-style

pointer arrays as well as C++ std::string and std::vector types. We also explicitly list

typedefs for types used on the Blackboard that SWIG would not recognise.

We are using the libEigen matrix library’s types in several of our data structures, however

we do not want to wrap libEigen in its entirety, so we have written a SWIG interface descriptor

file giving specific typemaps for the parts of libEigen that we use:

%typemap (out) Point {
2 PyObject ∗x = PyInt FromLong ($1 . x ()) ;

PyObject ∗y = PyInt FromLong ($1 . y ()) ;
4 PyObject ∗p = PyTuple Pack (2 , x , y) ;

Py XDECREF(x) ;
6 Py XDECREF(y) ;

$ r e s u l t = p ;
8 }

Listing 3: eigen.i

SWIG’s typemap system allows us to explicitly specify which Python C API calls should

be used to convert an object of type Point (which is a typedef for an Eigen::Vector2f), into

a PyObject. If we wished to return libEigen vectors from Python back to C++, would would

also need to specify an ‘in’ typemap in addition to this ‘out’ typemap.

When SWIG encounters a type it is unaware of, it treats it as a raw pointer. This still

6

allows Python code to pass references to objects from one C++ data structure or function

to another, but not access their contents. Therefore, we include the header files for all the

custom C++ types that are used on the blackboard, we that would like to have access to in

Python, this will generate SWIG Python proxy classes for each of them:

%inc lude ” u t i l s /body . hpp”
22 %inc lude ” u t i l s / boo s tSe r i a l i z a t i onVar i ab l e sMap . hpp”

%inc lude ” u t i l s /SPLDefs . hpp”
24 %inc lude ” u t i l s / speech . hpp”

%inc lude ” percept i on / k inemat ic s /Parameters . hpp”
26 %inc lude ” percept i on / v i s i o n /RobotRegion . hpp”

%inc lude ” percept i on / v i s i o n /WhichCamera . hpp”
28 %inc lude ” percept i on / k inemat ic s /Pose . hpp”

%inc lude ” gamecont ro l l e r /RoboCupGameControlData . hpp”
30 %inc lude ” types /BehaviourRequest . hpp”

%inc lude ” types /Point . hpp”
32 %inc lude ” types /BBox . hpp”

%inc lude ” types /ActionCommand . hpp”
34 %inc lude ” types /ButtonPresses . hpp”

%inc lude ” types /Odometry . hpp”
36 %inc lude ” types / Jo intValues . hpp”

%inc lude ” types / SensorValues . hpp”
38 %inc lude ” types /RRCoord . hpp”

%inc lude ” types /AbsCoord . hpp”
40 %inc lude ” types /BroadcastData . hpp”

%inc lude ” types /RobotObstacle . hpp”
42 %inc lude ” types /FootInfo . hpp”

%inc lude ” types / Ba l l I n f o . hpp”
44 %inc lude ” types / Post In fo . hpp”

%inc lude ” types /RobotInfo . hpp”
46 %inc lude ” types / Fie ldEdgeIn fo . hpp”

%inc lude ” types / F i e ldFea tu r e In f o . hpp”

Listing 4: robot.i

Finally, we instantiate any templates we are using on the Blackboard, and include the

Blackboard header file itself:

48 namespace std {
%template (FootInfoVector) vector<FootInfo >;

50 %template (Ba l l In f oVec to r) vector<Bal l In fo >;
%template (Post In foVector) vector<PostInfo >;

52 %template (RobotInfoVector) vector<RobotInfo>;
%template (Fie ldEdgeInfoVector) vector<Fie ldEdgeInfo >;

54 %template (F i e ldFeature In foVecto r) vector<Fie ldFeature In fo >;
%template (AbsCoordVector) vector<AbsCoord>;

56 %template (RRCoordVector) vector<RRCoord>;
}

7

58

%inc lude ” blackboard /Blackboard . hpp”

Listing 5: robot.i

This interface descriptor file can now be processed by swig2.0, with the following command

in our CMakeLists.txt:

swig2 . 0 −Wextra −python −c++ −I$ {CMAKE CURRENT SOURCE DIR} −o RobotModule . cpp $
{CMAKE CURRENT SOURCE DIR}/ robot . i

Listing 6: SWIG command

This will generate two files: RobotModule.cpp, which contains the SWIG proxy classes

using the Python C API, and robot.py, which is a pure-Python proxy to the C extension

module. In a future version of SWIG it may be possible to import the C extension module

directly, bypassing the need for a proxy module.

3.2.2 Modifications to Generated Code

The code generated by SWIG can be used as-is, with the exception of the Blackboard proxy

class constructor. Usually SWIG is used to allow Python modules to create instances of C++

classes, but since we are embedding Python, we need to add a constructor parameter that

allows us to pass a pointer to a C++ Blackboard object into the Python wrapper module.

This can be achieved by applying the following patch to robot.py:

−−− robot . py . be f o r e 2011−02−02 12 :17 :41 .484491364 +1100
+++ robot . py 2011−02−02 12 :17 :58 .585838992 +1100
@@ −1655 ,8 +1655 ,9 @@

swig ge tmethods = {}
g e t a t t r = lambda s e l f , name : sw i g g e t a t t r (s e l f , Blackboard , name)
r e p r = sw i g r ep r

− def i n i t (s e l f , ∗ args) :
− t h i s = robot . new Blackboard (∗ args)
+ def i n i t (s e l f , t h i s=None , ∗ args) :
+ i f t h i s == None :
+ t h i s = robot . new Blackboard (∗ args)

try : s e l f . t h i s . append (t h i s)
except : s e l f . t h i s = t h i s

sw i g d e s t r o y = robot . de l e t e B lackboard

Listing 7: robot.py.patch

8

How this constructor is utilised to create a SWIG wrapper of the existing Blackboard

object will be demonstrated in Section 3.5.

3.3 The Behaviour Pure Python Module

The behaviour code itself resides in a series of Python files that make up the ‘behaviour’

module. These files are not pre-compiled, and are stored in the robot’s home directory at

runtime.

The C extension module described in Section 3.2 has wrapped two key C++ data types in

Python proxy classes: Blackboard, and BehaviourRequest. The Blackboard is a central data

store that behaviour will use to read the robot’s state, in particular the outputs of the vision

and localisation modules are of interest, so behaviour Python code will take a reference to the

Blackboard as a parameter.

In order to give the motion module actuation commands, our Python behaviours return

an BehaviourRequest structure, which contains the desired state of the walk, the head, the

robot’s LED indicators, and which camera to switch on.

The top level class in the Python Behaviour hierarchy is as follows:

import robot
2 import sys

4 s k i l l I n s t a n c e = None

6 def t i c k (blackboard) :
s k i l l = blackboard . behaviour . pythonClass

8 global s k i l l I n s t a n c e
i f s k i l l I n s t a n c e == None :

10 exec ” from s k i l l s .%s import %s ” % (s k i l l , s k i l l)
s k i l l I n s t a n c e = eva l (s k i l l+” () ”)

12

return s k i l l I n s t a n c e . t i c k (blackboard)
14 print ’ Python Loaded ’

robot .SAY(’Python loaded ’)

Listing 8: behaviour.py

This top-level behaviour exists simply to delegate responsibility to lower level behaviours.

The blackboard variable ‘behaviour.pythonClass’ is specified in a configuration file, and op-

9

tionally overridden as a command line option, allowing developers to specify which behaviour

they would like to run. The blackboard pointer is passed on to those lower-level skills, and

they are also expected to return an BehaviourRequest structure.

A more substantial behaviour that may be called from this top-level behaviour and utilises

several blackboard variables and action commands, is the go-to-ball skill:

1 import robot
import actioncommand

3 import math
from TrackBa l l Sk i l l import TrackBa l l Sk i l l

5

class GoToBal lSk i l l (ob j e c t) :
7 def i n i t (s e l f) :

s e l f . t r a c kB a l l S k i l l = TrackBa l l Sk i l l ()
9

def t i c k (s e l f , b lackboard) :
11 behaviour = s e l f . t r a c kB a l l S k i l l . t i c k (blackboard)

13 body = actioncommand . walk ()
i f blackboard . l o c a l i s a t i o n . bal lLostCount < 10 :

15 r r = blackboard . l o c a l i s a t i o n . bal lPosRr
x = r r . d i s t anc e () ∗ math . cos (r r . heading ()) − 170

17 y = r r . d i s t anc e () ∗ math . s i n (r r . heading ())
i f x > 250 or abs (r r . heading ()) > math . rad ians (20) :

19 body = actioncommand . walk (i n t (x) ,0 , r r . heading ())
else :

21 body = actioncommand . walk (i n t (x) , i n t (y) ,0)

23 behaviour . a c t i on s . body = body
return behaviour

Listing 9: behaviour.py

This behaviour demonstrates accessing the blackboard, delegating parts of the behaviour

to lower-level skills (in this case the TrackBallSkill sets the head action command), and

overriding a subset of the action command parameters, in this case only the ‘body’ action.

3.4 Directory Monitoring with inotify

In order to allow programmers to actively make changes to Python code whilst the robot is

running, substantially reducing development time overheads, we use inotify to monitor the

filesystem for changes. Inotify is a subsystem of the Linux kernel that provides a collection

10

of system calls that user-space applications can use to be notified about filesystem events. In

particular, we use inotify init() and inotify add watch() to subscribe to chagnes that

occur in the directory used for storing Python skills.

32 void PythonSk i l l : : s t a r t I n o t i f y () {
i n o t i f y f d = i n o t i f y i n i t () ;

34 int wd;
wd = ino t i f y add watch (i n o t i f y f d , path ,

36 IN MODIFY | IN ATTRIB | INMOVED FROM | IN MOVED TO
| IN DELETE) ;

i f (wd < 0) {
38 l l o g (ERROR) << ” Fa i l ed to s t a r t watching d i r e c o t r y : ” << path << endl ;

}
40 wd = inot i f y add watch (i n o t i f y f d , (s t r i n g (path) + ”/ s k i l l s ”) . c s t r () ,

IN MODIFY | IN ATTRIB | INMOVED FROM | IN MOVED TO |
IN DELETE) ;

42 i f (wd < 0) {
l l o g (ERROR) << ” Fa i l ed to s t a r t watching d i r e c o t r y : ” << path << endl ;

44 }
i n o t i f y t imeou t . t v s e c = 0 ;

46 i n o t i f y t imeou t . t v u s e c = 0 ;
}

Listing 10: PythonSkill.cpp

Each cycle, before the behaviour tick function is executed (see Section 3.5), the file de-

scriptor provided by inotify is polled for information. If a new event is available, the affected

filename is compared to a regular expression, which ensures it is indeed a Python script. If

that is the case, the Python loading mechanism is called prior to that cycle’s execution.

196 bool PythonSk i l l : : i no t i f y Check () {
bool reloadNeeded = fa l se ;

198 FD ZERO(& i n o t i f y f d s s) ;
FD SET(i n o t i f y f d , &i n o t i f y f d s s) ;

200 int s e l r e t = s e l e c t (i n o t i f y f d + 1 , &i n o t i f y f d s s , NULL, NULL, &
i n o t i f y t imeou t) ;

int i , l en ;
202 i f (s e l r e t < 0) {

l l o g (ERROR) << ” s e l e c t on i n o t i f y fd f a i l e d ” ;
204 } else i f (s e l r e t && FD ISSET(i n o t i f y f d , &i n o t i f y f d s s)) {

/∗ i n o t i f y event (s) a v a i l a b l e ! ∗/
206 i = 0 ;

l en = read (i n o t i f y f d , i n o t i f y bu f , INBUF LEN) ;
208 i f (l en < 0) {

l l o g (ERROR) << ” read on i n o t i f y fd f a i l e d ” << endl ;
210 } else i f (l en) {

11

while (i < l en) {
212 struct i n o t i f y e v e n t ∗ event ;

event = (struct i n o t i f y e v e n t ∗) &i n o t i f y b u f [i] ;
214 i f (event−>l en) {

boost : : regex matchRegex (” . ∗ \ \ . py$”) ;
216 i f (regex match (event−>name , matchRegex)) {

l l o g (INFO) << ”Detected change in ” << event−>name << endl ;
218 reloadNeeded = true ;

break ;
220 }

}
222 i += s izeof (struct i n o t i f y e v e n t) + event−>l en ;

}
224 }

}
226 return reloadNeeded ;
}

Listing 11: PythonSkill.cpp

With this functionality in place, a developer would typically make modifications to Python

behaviours, and upload them to the robot while it is still running. Since the Motion module

runs in a separate thread to Perception, the robot’s walk engine is not interrupted and the

loading of Python behaviours does not impact the Nao’s stability.

3.5 Embedding, Loading, and Unloading

When the runswift executable starts, or when the Python code is changed on the robot at

runtime (see Section 3.4), the Python C API is used to initialise the interpreter and load the

necessary modules.

This functionality is encapsulated in a class called ‘PythonSkill’, which stores references

to several key PyObjects, and SWIG run-time type information:

class PythonSk i l l : Adapter {
. . .

private :
. . .

PyObject ∗behaviourModule ;
PyObject ∗behaviourTick ;
PyObject ∗pyKeyboardInterrupt ;
PyObject ∗pyBlackboard ;

12

sw i g t yp e i n f o ∗SWIGTYPE p Blackboard ;
sw i g t yp e i n f o ∗SWIGTYPE p BehaviourRequest ;

} ;

Listing 12: PythonSkill.hpp

The behaviourTick object needs to store a reference to the top level method in the Be-

haviour module, which will be called each cycle. The pyBlackboard object will store a SWIG-

wrapped proxy object to the blackboard, passed as the argument to behaviourTick.

First the Python interpreter needs to be shut down if it is already running, freeing any

memory not yet claimed by the Python garbage collector, then the interpreter is re-initialised.

48 void PythonSk i l l : : s tartPython () {
i f (P y I s I n i t i a l i z e d ()) {

50 Py Fina l i z e () ;
}

52

// S ta r t i n t e r p r e t e r
54 Py I n i t i a l i z e () ;

Listing 13: PythonSkill.cpp

When Behaviour code attempts to import robot, first the modules dictionary is checked,

then pure Python modules and dynamically linked libraries are searched for on the PYTHONPATH

and in PYTHONHOME. We directly initialise the C extension module defined in RobotModule.cpp,

this loads the module into the Python modules dictionary so that it can be found at runtime.

56 i n i t r o b o t () ;

Listing 14: PythonSkill.cpp

For the behaviour module itself to be found, we need to add the directory on the robot

where Python code is being stored to the sys.path object. This is done by borrowing a

reference to the system path object, and calling the append method on it. We also obtain a

reference to the KeyboardInterrupt exception, to be later used in error handling code.

With the path updated, the pure-python wrapper around the SWIG robot module can be

imported and stored in the robotModule PyObject.

13

PyObject ∗ sysPath = PySys GetObject ((char ∗) ”path”) ; // borrowed r e f e r ence
58 PyObject ∗appendRet = PyObject CallMethod (sysPath , (char ∗) ”append” , (char

∗) ” s ” , path) ;
Py XDECREF(appendRet) ;

60

// Obtain KeyboardInterrupt excep t i on
62 PyObject ∗ exceptionsModule = PyImport ImportModule (” except i on s ”) ;

pyKeyboardInterrupt = PyObject GetAttrStr ing (exceptionsModule , ”
KeyboardInterrupt ”) ;

64 Py XDECREF(exceptionsModule) ;

66 // Import robo t
PyObject ∗ robotModule = PyImport ImportModule (robotModuleName) ;

68 PyErr Check () ;

Listing 15: PythonSkill.cpp

With this module in hand, we obtain a reference to the Blackboard wrapper class, and call

its modified constructor with a SWIG-wrapped Blackboard proxy as the first argument. To

get this parameter, we use the SWIG NewPointerObj method, with the blackboard pointer

and the SWIG run-time type struct pertaining to the Blackboard class as arguments. We also

load the run-time type information for a BehaviourRequest at this point, for use later when

returning objects from Python behaviour code.

70 // Obtain Blackboard c l a s s
PyObject ∗ robotBlackboardClass = PyObject GetAttrStr ing (robotModule , ”

Blackboard”) ;
72 PyErr Check () ;

74 // Find sw i g t y p e i n f o s t r u c t u r e s f o r our wrapped c l a s s e s
SWIGTYPE p Blackboard = SWIG TypeQueryModule (SWIG Python GetModule () ,

SWIG Python GetModule () , ”Blackboard ∗”) ;
76 i f (SWIGTYPE p Blackboard == NULL) {

throw new std : : runt ime e r ro r (”Unable to f i nd SWIG type f o r Blackboard”) ;
78 }

SWIGTYPE p BehaviourRequest = SWIG TypeQueryModule (SWIG Python GetModule () ,
SWIG Python GetModule () , ”BehaviourRequest ∗”) ;

80 i f (SWIGTYPE p Blackboard == NULL) {
throw new std : : runt ime e r ro r (”Unable to f i nd SWIG type f o r

BehaviourRequest ”) ;
82 }

84 // Construct SWIG wrapper o b j e c t around the r e a l b l ackboard
PyObject ∗pyBlackboardPtr = SWIG NewPointerObj (SWIG as voidptr (blackboard) ,

SWIGTYPE p Blackboard , 0) ;
86 i f (pyBlackboardPtr == NULL) {

14

throw new std : : runt ime e r ro r (”Unable to c r e a t e SWIG po in t e r wrapper
around Blackboard”) ;

88 }
pyBlackboard = PyObject CallFunctionObjArgs (robotBlackboardClass ,

pyBlackboardPtr , NULL) ;
90 i f (pyBlackboard == NULL) {

throw new std : : runt ime e r ro r (”Unable to c r e a t e SWIG proxy around
Blackboard po in t e r ”) ;

92 }

94 Py XDECREF(robotBlackboardClass) ;
Py XDECREF(pyBlackboardPtr) ;

Listing 16: PythonSkill.cpp

Finally, the pure-Python behaviour module itself is imported, and we store a reference to

the tick() function, to be called each cycle.

96

pythonError = fa l se ;
98

// Import behav iour
100 behaviourModule = PyImport ImportModule (behaviourModuleName) ;

i f (PyErr Check ()) {
102 Py XDECREF(behaviourModule) ;

behaviourModule = NULL;
104 pythonError = true ;

}
106

// Obtain t i c k () f unc t i on
108 i f (! pythonError) {

behaviourTick = PyObject GetAttrStr ing (behaviourModule , ” t i c k ”) ;
110 i f (PyErr Check ()) {

Py XDECREF(behaviourTick) ;
112 behaviourTick = NULL;

pythonError = true ;
114 }

}
116

i f (pythonError) {
118 SAY(”Python import e r r o r ”) ;

}
120 }

Listing 17: PythonSkill.cpp

At each step, the Python interpreter’s error state is checked, and we abort after logging

a stack trace and vocalising a warning to the user, in the case that one of the imports has

failed. Most often this occurs due to a syntax error in the imported Python code, which is

15

printed to the terminal on the robot, allowing a developer to fix it and upload a new version

of the Python behaviours before continuing.

4 Maintenance and Future Work

The most likely addition of features to this system will be the introduction of new data types on

the Blackboard that must be wrapped using SWIG. In most cases, simply adding the relevant

header file to the SWIG interface descriptor file will suffice, however in some cases the type may

need to be modified before becoming SWIG-compatible. Refer the SWIG documentation7 for

specifics of how to mangle header files that the generator finds troublesome.

In more unusual cases, such as with the Eigen matrix library, attempting to completely

wrap the header file with SWIG will not be possible, so custom typemaps will have to be

written for the needed classes or structures. Refer to the Python C API Documentation3 for

details on converting low-level types into their PyObject representations.

5 Conclusion

This project has provided an effective means for rUNSWift developers to rapidly evolve the

behavioural software on the Nao humanoid robot, by taking advantage of the features of the

Python scripting language, and the Linux inotify subsystem. Compared to previous methods

it does not require active maintenance of the Python-C wrappers and converts, since these

are generated by SWIG, making the system more robust as well as further saving developer’s

time.

16

References

[1] Adam Brimo. COMP3902 Project Report - RoboCup. http://www.cse.unsw.edu.au/

~robocup/2008site/reports/AdamBrimo-RobocupReport.pdf, 2008.

[2] RoboCup SPL Technical Committee. Robocup Standard Platform League. http://www.

tzi.de/spl/, 2010.

[3] Python Foundation. Python 2.6 C API Documentation. http://docs.python.org/

release/2.6.6/c-api/index.html, 2011.

[4] John K. Ousterhout. Scripting: Higher level programming for the 21st century. IEEE

Computer magazine, March 1998.

[5] Adrian Ratter, Bernhard Hengst, Brad Hall, Brock White, Benjamin Vance, David

Claridge, Hung Nguyen, Jayen Ashar, Stuart Robinson, and Yanjin Zhu. rUNSWift

2010 Team Report. http://www.cse.unsw.edu.au/~robocup/2010site/reports/

report2010.pdf, 2010.

[6] Max Risler and Oskar von Stryk. Formal behavior specification of multi-robot systems

using hierarchical state machines in xabsl. In AAMAS08:Workshop on Formal models and

methods for multi-robot systems, May 2008.

[7] SWIG Development Team. SWIG 2.0 Documentation. http://www.swig.org/Doc2.0/

SWIGDocumentation.html, 2010.

17

http://www.cse.unsw.edu.au/~robocup/2008site/reports/AdamBrimo-RobocupReport.pdf
http://www.cse.unsw.edu.au/~robocup/2008site/reports/AdamBrimo-RobocupReport.pdf
http://www.tzi.de/spl/
http://www.tzi.de/spl/
http://docs.python.org/release/2.6.6/c-api/index.html
http://docs.python.org/release/2.6.6/c-api/index.html
http://www.cse.unsw.edu.au/~robocup/2010site/reports/report2010.pdf
http://www.cse.unsw.edu.au/~robocup/2010site/reports/report2010.pdf
http://www.swig.org/Doc2.0/SWIGDocumentation.html
http://www.swig.org/Doc2.0/SWIGDocumentation.html

	Introduction
	Related Work
	Implementation
	rUNSWift Software Architecture
	The Robot Python C Extension Module
	Wrapping the Blackboard with SWIG
	Modifications to Generated Code

	The Behaviour Pure Python Module
	Directory Monitoring with inotify
	Embedding, Loading, and Unloading

	Maintenance and Future Work
	Conclusion

