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Abstract

Amajor component of any soccer game is the knowledge and control of the ball. Thus, in preparation

for rUNSWift's entry into the RoboCup Standard Platform League, improvements had to be made

to the existing ball model. The problem with the current model was that it only recorded the

ball's position using a very simple �lter. However, by using an Unscented Kalman Filter, the ball's

velocity could also be �ltered, with more accurate and weighted estimates being produced. This

additional information was then utilised for ball tracking, in particular for goalie behaviours. New

motion stances also had to be developed to accommodate for new goalie reactions to the ball. This

report presents the research and development undertaken as part of this Taste of Research project

over the summer of 2010-2011.
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Chapter 1

Introduction

1.1 Robocup

Robocup is an international organisation aimed at advancing the �eld of arti�cial intelligence by
pitting robots against each other in competitions of soccer. Speci�cally, the Standard Platform
League in which this project is under involves hardware-standardised humanoid robots (Aldebaran's
Naos) so only the programming di�ers between teams. The ultimate goal is to be able to have a
team of robots playing against a team of humans by 2050.

1.2 Ball Model

In order to control the ball, the robot must �rst be able to locate its position and track its velocity.
The former was already in place, however without knowledge of the ball's velocity, the robot would
easily lose track of the ball. For example, even if the goalie could see the ball, it would not know
which direction the ball was travelling in. As such, the robot would not know how to move to block
the goal e�ectively. If the robot had just lost sight of the ball, velocity could once again be used
to calculate where to look for. Thus, it was of key signi�cance that the ball model be adjusted to
accommodate the ball's velocity.

1.3 Report Outline

The rest of this report discusses the issues involved in implementing the new ball model and related
features. Chapter 2 provides some insight into the background behind ball tracking, while Chapter
3 continues on to the methods actually used. Chapter 4 presents the results and �ndings of the
project overall, and �nally, Chapter 5 suggests how future work could expand on this project and
the possibilities it creates.
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Chapter 2

Background

2.1 Existing Work

The problem of tracking an object's velocity is not a particularly new one, especially considering
Robocup's soccer history. There are also many similarities with the methods used in localisation,
as such, the system described in this report is based on foundations the past have provided.

2.1.1 rUNSWift

Although rUNSWift has not yet modelled the ball's velocity in the Standard Platform League, this
was not the case in the 4-Legged League from pre-2008. In 2004, a multi-modal Extended Kalman
Filter was used to track the state of the robots with a separate �lter for the ball, and by 2006 these
had been combined into one extensive �lter which took advantage of the correlation between robot
pose and ball position and velocity.1 Although the hardware is di�erent in the Standard Platform
League and not all the robots would be tracked in the same �lter, a similar approach could be taken
for the ball �lter.

2.1.2 B-Human

As the current reigning champions of Robocup's Standard Platform League, it is no surprise that
B-Human have quite a sophisticated ball �ltering system in place. Twelve Kalman Filters alone are
used to track the ball, which of note include �lters modelled speci�cally for a stationary ball,2 as
this eliminates the erratic velocities resulting from the noise produced despite the ball being still.

B-Human also has an advanced system compared to ours in that their goalie can react to incoming
balls instead of simply standing in the middle, presumably due to their vast knowledge of the ball
position and velocity. Their motion module is similar to rUNSWift's in that they manually specify
the joint angles in order for their goalie to perform dives, however there is more room for �exibility.
Namely, they are able to specify the sti�ness for each joint, not just the robot overall, and it is this
feature that allows them to move the goalie in the least damaging way possible by breaking it's
diving fall.

1Oleg Sushkov, Robot Localisation Using a Distributed Multi-Modal Kalman Filter, and Friends. (Undergraduate
Honours Thesis, University of New South Wales, 2006).

2Thomas Rofer, Tim Laue, Judith Miller, et al, B-Human Team Report and Code Release 2010. (University of
Bremen, 2010)

4



2.2 Issues

It can be di�cult to evaluate the success of a velocity tracking system considering the inaccuracies
involved in a human manually measuring a ball's velocity. Though with the help of O�-Nao,
rUNSWift's graphical debugging system, the movement of the ball can be visualised on the screen
and then compared to its physical movement to test its accuracy. Tracking a ball's absolute co-
ordinates proves even more unreliable as this depends on the robot's location, which is handled by
the localisation module.

The ultimate test would be in how the behaviour performs, although once again, the goalie movement
would also depend on the motion module. Although the workings of a goalie dive are in place, one
must always be careful of damaging the robots despite needing to test them.
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Chapter 3

Method

3.1 Speed = Distance / Time

In order to become familiar with the existing code base, a simple start was made. Since the existing
ball �lter already tracked position, the distance between each respective position was calculated
and divided by the time that had passed. The next step was to display this data on O�-Nao.
Unsurprisingly, considering the single frame-to-frame calculations with all the noise each frame
presents, there were large inaccuracies. However this step was useful in getting used to the code
base and con�rming that all the raw data was there, it simply needed to be treated appropriately.

3.2 Unscented Kalman Filter

As mentioned earlier, there are many similarities to the localisation module through the way both
needed to �lter information. As such, it was decided that a generic Unscented Kalman Filter would
be created as a base class for both localisation and ball tracking. It was chosen over a typical �lter
due to the addition of sigma points around the mean and covariance, which would provide for truer
weighted estimates. This method would require certain calculations, such as the square root of a
matrix through Cholesky Decomposition, and so the libeigen library was chosen to handle these
operations.

In order to accommodate the di�erent uses of the �lter, several modi�cations had to be made.
Firstly it was turned into a template class, in particular to handle the di�erent dimensions of the
localisation's and ball's states and observations. The time update and observation update functions
also had to be generalised for each subclassing �lter.

Figure 3.1: Sigma points around the mean and covariance of an Unscented Kalman Filter
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3.2.1 Absolute Co-ordinates

Initial work begain on �ltering the more intuitive absolute cartesian co-ordinates in the form of
(x, y) for position and (x', y') for velocity. The time update simply used the passed time to add
the relevant amount of (x', y') to (x, y) to form the new mean, ie. using x = x + x′t. As for the
covariance, the following motion matrix was used to relate the ball's position and velocity, where 0.9
were chosen as the friction constants for updating velocity. This follows from taking the derivative
like the Jacobian matrix used in Extended Kalman Filters, hence the 1s in the cross-section of
position and velocity.1

CovarianceUpdateMotionMatrix =


1 0 1 0
0 1 0 1
0 0 0.9 0
0 0 0 0.9


Now observations from the vision module were in the form of ball distance and heading and the
�lter co-ordinates were stored in x and y distance. In order for the prediction format to match the
observation format for calculating the Kalman gain, they �rst had to be converted. This also had
to be added to the pose of the robot itself. Thus the prediction was calculated as follows:

distance =
√
(xrobot − xball)2 + (yrobot − yball)2 + variancedistance

heading =
π

2
− arctan(xball − xrobot, yball − yrobot)− θrobot + varianceheading

where xball, yball, variancedistanceand varianceheadingare represented by the sigma points sigma[0],
sigma[1], sigma[4] and sigma[5] respectively.

3.2.2 Robot Relative Co-ordinates

Since the absolute �lter relied on the localisation of the robot and the observations themselves were
passed in robot relative format, it was decided that a robot relative �lter should also be created to
further reduce inaccuracies. This system would also be more relevant for a goalie, as when viewing
a ball at the goal, absolute co-ordinates would not be nearly as useful.

The time update for the robot relative �lter proved identical to the absolute �lter, just that instead
of the mean being expressed as (x, y, x', y'), it would actually be (ball distance, ball heading, ball

distance', ball heading'). The prediction in the observation update proved even simpler, as there
was no need to incorporate the robot's pose. Thus (ball distance, ball heading) was just updated as
follows:

distance = distanceball + variancedistance

heading = headingball + varianceheading

1Oleg Sushkov, Robot Localisation Using a Distributed Multi-Modal Kalman Filter, and Friends. (Undergraduate
Honours Thesis, University of New South Wales, 2006).
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where distanceball, headingball, variancedistanceand varianceheadingare represented by the sigma
points sigma[0], sigma[1], sigma[4] and sigma[5] respectively.

3.2.3 O�-Nao

To test that the �lter was actually working, its output was ported to O�-Nao to be visualised. First
the values of the mean state of each �lter were printed out onto the variable view tab, however, this
was not particularly intuitive to the human mind. As such, drawing code was added to visually
print the ball's current and expected location on the �eld view tab. 0.7 of the velocity was added
to the current ball position to estimate the future location, with a red circle signifying the absolute
�ltered ball and a yellow circle signifying the robot relative �ltered ball. A line was drawn between
the current �ltered position and the estimated position to represent the vector between them, as
the longer the line, the faster the ball would be travelling.

Figure 3.2: O�-Nao showing the predicted ball location from the absolute �lter

3.2.4 Re�nement

There were several modi�cations that needed to be made to improve the �lters. Since the ball's mean
state was always initialised to 0, when averaged with the �rst observation, the resulting velocity
tended to be rather inaccurate. As such, the mean state would be set to the �rst observation, and
then the �lter would be applied with the observations thereafter. Now if the robot lost sight of
the ball only to �nd it again travelling in the opposite direction, the �lter would take some time to
adjust and converge to the new state. Thus the �lter would be reset after losing sight of the ball
for more than a certain period of time.
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3.3 Behaviours

The ultimate test of the �lters would be through a robot's behaviour. The aim was to implement
a goalie that could di�erentiate the ball's direction and thus react appropriately to save the goal.

3.3.1 Absolute Filter

Since the absolute �lter was the �rst to be implemented, the initial behaviour depended on absolute
values to determine the ball's location and velocity. Due to the nature of the �eld's centre being
the origin, for ease of calculation, it was �rst assumed that the goalie would be at the right-hand
positive side of the �eld.

Figure 3.3: Absolute �lter assumption in global cartesian co-ordinates

If x′ > 0, then it could be assumed that the ball was travelling towards the goalie. Using the
speed = distance

time formula for x, calculations could be made to �nd the time taken to reach the robot,
or rather the line the robot was standing on. This time t could then be subbed into a similar
equation for y to �nd where along this line the ball would intersect.

Behaviourally, if the ball's estimated y position was greater than the robot's, then the robot should
move to the right. Similarly if the ball's estimated y position was less than the robot's, then the
robot should move to the left. Some adjustments were also made so that the robot would remain
still if the ball was within range of the robot's centre. For further clarity on the actions of the robot,
the eye LEDs were programmed to display di�erent colours depending on what the robot chose,
and its choice would also be voiced out loud.
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Figure 3.4: Use of absolute �lter in goalie behaviours

3.3.2 Robot Relative Filter

Considering the inaccuracies of the current robot localisation module and the mathematical com-
plications of the di�ering quadrants around the �eld, the robot relative �lter was adopted in favour
over the absolute �lter. This time it was assumed that the line of the robot would be the x axis
while the y axis would be straight through the front of the robot, ie. when the ball's heading is 0.

First, the distance and heading would be converted into cartesian co-ordinates relative to the robot.
The typical use of cos for x and sin for y are switched due to the nature of the robot relative
co-ordinate system and the assumption of the axes.

xp1 = distance× sin(heading)

yp1 = distance× cos(heading)

The velocities would then be added to this point, p1, to extrapolate the next point of the ball, p2.
As a sanity check, the ball would only be rolling towards the robot if yp2 < yp1. Once con�rmed,
the equation of the line of the ball could be derived from these two points. Assuming that the line
of the robot is equivalent to the equation y = 0, the point of intersection between these two lines
can be easily obtained. This results in an estimated x position along the robot's line and x axis.

m =
(yp2 − yp2)

(xp2 − xp1)

yp1 = mxp1 + b

Subbing y = 0,

xestimate =
−b
m
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Once again, behaviourally, if the estimated x position is less than the robot's, it should move left.
If the estimated x position is greater than the robot's, it should move right. Finally, if the estimate
is close to the centre of the robot, then it should remain still.

Figure 3.5: Robot relative co-ordinate system and its use in goalie behaviours

3.4 Motion

The next step of the behaviour was to have the goalie physically react to the ball in a manner that
could actually save the goal. To understand how to produce a goalie dive, a case study was �rst
performed on the motion module from B-Human. Since their joint angle �les were in a di�erent
format, a perl script was written to convert them to rUNSWift format for ease and understanding.
It was found that they used the �exibility of being able to set the sti�ness of each joint to their
advantage. Our current system was only able to specify a sti�ness value for all the joints, so this
was �rst redone with Brock White.

3.4.1 Goalie Sit

Before a dive could be developed, the lead in position had to be developed �rst. This became
known as the goalie sit position, which involved the goalie squatting down so it could spring up
again with additional power. The robot's arms would also be slightly raised in preparation, all with
the ultimate aim of reducing the time taken to perform the dive overall.

3.4.2 Goalie Dive

It was found that the one of the major components to the goalie dive that was lacking was the
fall of the robot. Thus through the tweaking of joint angles, the creation of a working left dive
for rUNSWift's goalie had begun. B-Human would remove the sti�ness of the left arm as it fell
onto it, thus breaking the robot's fall. As such, a similar method was adopted, though the arm
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positions were changed slightly to cover more ground once lying down. Another key tactic B-Human
used was to roll forward after diving for a quick transition back to standing up. This strategy was
implemented for our robot by rolling the left arm out of the way and twisting the hips towards the
ground. Finally, another perl script was written to port the joint angles symmetrically over to the
right dive.
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Chapter 4

Evaluation

4.1 Results

The project was ultimately successful in that the robot could track the ball's velocity, and thus
what direction it should react in when at the goal, whether it be dive left, right, or centre. However,
the saving of the goal was not always quite perfect.

The timing of the goalie dive would sometimes be too late, meaning that the ball would get through
to scoring. The robot would not always perform a perfect fall either, resulting in di�culties when
standing back up.

The more serious issue would be the error margin in the data. There would be occasional and
seemingly random appearance of NaNs in the �lters' states. The �lter would also sometimes take
a long time to converge and display very large values. The problem with the noise of a stationary
ball also caused problems, with a robot thinking it should dive even if the ball were still.

4.2 Discussion

The diving issue of the goalie is still a work in progress, and was more of an extension on the ball
velocity in preparation for future work. This area was more of the experimental section involving
motion and more work is still to be done, so it should be improved further. In particular, more care
must be taken to prevent damage to the robot.

As for the NaNs, the source was pinpointed down to two sections of the code - the Cholesky
Decomposition of the covariance matrix and the inverse of the prediction matrix. It would cause
the robot to ignore all the behaviours related to the �lters, and thus would not react to the ball at
all. Once again, this was dependent on the libeigen library, though there are considerations being
made to �nd alternatives means of square rooting a matrix, or perhaps even rewrite some of the
formulas. For the convergence and convariance, methods such as incorporating the movement speed
of the robot's head are being looked at to re�ne the update stages.

It would also have been bene�cial if a more accurate method of testing the data produced had been
developed. Though the �ltered velocities of the ball generally looked correct from the drawing code,
it was hard to tell what the margin of error was. This kind of information would certainly be more
useful when introducing re�nements and to measure the extent of the improvements.
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Chapter 5

Conclusion

This project has demonstrated the ability of robots to improve their ball tracking ability through
the use of an Unscented Kalman Filter. In particular, the addition of ball velocity to the ball model
has bene�ted the goalie skills in that they can now di�erentiate how and where they must move
to save a goal. It has also been shown to be possible to manipulate the robot's joints in such a
way that it can dive to save that goal. These new features will certainly prove useful in the overall
competition as maintaining knowledge and control of the ball is key to any soccer game.

5.1 Future Work

Though this project has achieved its goals, they are but part of the base of an infrastructure that
is yet to be completed. In motion, there is a lot of work to be done to improve the goalie dive, such
as reducing its fall damage and making it dive faster. There is currently no goalie position for a
ball in the centre, so this must also be developed.

Figure 5.1: A possible centre position for a goalie with its widespread legs and low stance

On the behavioural level, ball velocity information can be applied in many other ways apart from
the goalie. Firstly, the ball tracking behaviours could use the velocity of a recently lost ball to
estimate where to �nd it again. Secondly, if the ball is being passed between two opponents, the
robot could use the ball's velocity to estimate where to intercept the pass. Finally if the pass is
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from a friendly team member, then the velocity could be used to predict the best reachable spot to
receive the pass.

In the terms of the actual �lter, there are also many improvements to be made. As mentioned earlier,
incorporating the state of the robot and its head into the covariance equations could signi�cantly
improve the convergence rate of the �lter, while �xing the NaNs with alternate equations would
result in less behaviour crashes. One of the major re�nements to be made is to make the �lter
multi-modal. It is particular important that a separate �lter be made to estimate the possiblity of
the ball being stationary, as the noise produced from a still ball can have disastrous e�ects on the
interpreted velocity. Ideally, the observations from all teammates �lters would be combined into
one to improve the world model of the ball even further. This would have many bene�ts for ball
tracking as even if a robot couldn't see the ball directly, for example if an opponent was obstructing
its view, it could still use the information from its teammates to chase after the ball.
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