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Abstract

This thesis details the various methods and techniques applied to the localisation system

of team rUNSWift for the RoboCup Standard Platform League. Extended Kalman Filters

were used extensively with an emphasis on accurate transition and noise models. For

robot pose localisation in particular, there was a focus on providing a stable and accurate

main estimate by selectively applying observed feature matched estimates to a dual-modal

system. This and the other techniques used proved successful during the RoboCup 2012

held in Mexico City.
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Chapter 1

Introduction

1.1 Motivation

Autonomous robotics is a relatively new and rapidly developing field of research, the aim

of which is to develop robots capable of performing with little to no human interaction or

guidance. This autonomy is particularly desirable in situations where a human presence

would be considered uncomfortable or dangerous, as well as where constant remote human

control isn’t guaranteed – such as space exploration or investigating disaster affected

areas.

Ideally, an autonomous robot would have the ability to plan intelligently into the

future and react to their surrounding environment with some rational set of actions.

However, in order to do this effectively, a robot must first gain information about the

environment it is situated in. For example, whilst playing a game of soccer, to successfully

kick a ball into the goal, a robot must first know the position of itself in relation to

the position of the ball and the goals, as well as any obstacles that may be in the way.

Localisation systems are used to interpret sensory observation data and create an estimate

of the world state, in this way allowing the robot to localise itself by becoming aware of

its surroundings as well as its own position within the environment.

This thesis is concerned with the continued development of localisation systems
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Figure 1.1: Aldebaran Nao Humanoid

within the domain of the International RoboCup Soccer World Cup, and in particular the

University of New South Wales’ team rUNSWift – participants of the Standard Platform

League (SPL). The RoboCup SPL is a competitive soccer league with teams consisting

of identical autonomous humanoid robots: the Aldebaran Nao (see Figure 1.1). The

game of soccer provides a complex and interesting challenge for the robots as well as

an exciting spectacle, while the competitive nature of the tournament encourages inno-

vation and progress with each passing year. Furthermore, the standardised hardware

platform of the league allows the developing teams to focus on the complex software

systems required. As such, the RoboCup SPL provides an ideal domain and standard-

ised performance measure for the development of localisation systems. The RoboCup

Federation also approved a UNSW project to provide a game management, robotic com-

mentary and refereeing system. This provided a simple initial starting point, requiring

a less complicated localisation system that focuses on tracking the position and velocity

of the ball as seen by four stationary sideline referee robots [1].

Localisation systems within the RoboCup SPL benefit from having accurate knowl-

edge of the dimensions and layout of the field that the competition is played on. However

measures must be taken to account for noisy partial observations from the sensors, false

positives, as well as inaccurate motion controls. Historically, two main types of recursive

Bayesian filters have been used by teams participating in the league to overcome these
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obstacles and provide a robust and accurate localisation system [2–4]. Monte-Carlo par-

ticle filters use particles and statistical resampling to represent and approximate world

states, allowing for observations which do not linearly map to a world state, as well as

the tracking of multiple state hypotheses [5]. However, accurate prediction necessitates

that a large number of particles must be used, meaning that this is significantly more

computationally expensive than the other popular approach – Kalman filters.

In previous competitions, rUNSWift has predominantly employed Kalman filters

because of their relative efficiency [2]. Basic Kalman filters use a normal Gaussian dis-

tribution to represent or approximate a belief (probability distribution) of the world

state [6, 7]. Whilst efficient, this method quickly falls apart in situations where a single

Gaussian distribution is not sufficient – for example the non-linear observations as men-

tioned previously. Throughout the years rUNSWift members have experimented with

various improvements to, and adaptations of, the Kalman filter in an effort to overcome

its limitations and improve the effectiveness of the team’s localisation system [8–10].

In 2006, a combined robot Kalman filter used a complex multi-modal state space

to encapsulate information of multiple robots as well as the ball into one filter [8]. Whilst

quite successful, this is no longer feasible as the complexity of the approach scales ex-

ponentially – an increasing concern as the number of robots in competition matches

increases over the years. In 2010, a simple hybrid of the particle and Kalman filters

was pursued, switching between the two where appropriate: using the particle approach

to refine the hypotheses down to one most probable estimate, then moving to the less

demanding Kalman filter [2]. Unfortunately this approach was prone to compounding

errors if the chosen hypothesis was inappropriate. To avoid the necessary fluctuation

between the two approaches when observations clashed with the chosen hypothesis, a

multi-modal Kalman filter was developed in 2011 which could handle multiple hypothe-

ses [9]. However, the majority of 2011 development time was focused on the development

of an Unscented Kalman Filter (UKF) that was abandoned due to complications and un-

promising results, and hence the multi-modal Kalman Filter remained in relative infancy

and had ample room for improvement.
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1.2 Aims

The aim of this thesis is to continue the development of an effective localisation system

that adequately fulfils a variety of necessary criteria;

• The system must provide both accurate and reliable information on the robot’s

own position as well as the position and velocity of the game ball. This knowledge

is essential for effective soccer performance and strategy, such as the ability to

accurately kick the ball towards the opponent’s goal, respond to ball movement in

order to successfully defend against incoming shots, and make informed decisions

regarding team role assignment and positioning.

• The system must be robust against inevitably noisy sensory data (such as inaccurate

odometry readings from the motion controls) and inaccurate position estimates of

visual features, especially over large distances (this includes the ball, landmarks,

and field features). Also of particular importance are the occasional falsely classified

visual features, the presence of which can easily disrupt filters and systems that are

not designed to cope with false positive information.

• The “speed” of the system is significant in more ways than one. It is imperative

that the robot runs in real time using only the available on-board hardware – there-

fore, the computational complexity and processing requirements of the implemented

system are strictly limited and enforced.

• The localisation itself must also be as fast as possible, with the goal being to

maximise the reactivity and efficiency of the robot’s play by minimising the amount

of time spent actively localising – pausing and scanning or looking away from the

ball with the specific purpose of gathering data to help pinpoint a location. The

importance of the speed in which the localisation system reacts to sudden changes

in ball position and velocity is highlighted by the often miniscule timeframe that the

goalie has to decide to dive to successfully defend a strong kick from an opponent.

• The system must be aware of which direction the robot is facing without the aid of

the obvious goal colour landmarks, and risks scoring a potentially devastating own
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goal if the heading of the robot becomes incorrect. This is a new development for

this year, where the RoboCup SPL rules were amended by altering the colours of

the goal posts to be uniform and thereby creating an entirely symmetrical playing

field. Previously, the distinct colours made distinguishing between home and away

goals fairly trivial. This amendment comes as part of the gradual improvement

to the league and has introduced a challenging new level of complexity to robot

localisation.

• Finally, the system would be ideal if it remained as easy to understand, implement,

use, develop and improve upon as possible. As the rUNSWift team changes each

year with a new group of students and researchers, this will help the transition

between years as well as ensuring the continued utilisation and advancement of the

system.

1.3 Outline

The following Background chapter of this thesis will explain in further detail some of the

challenges and requirements of a localisation system (Section 2.1), before evaluating in

further detail some of the various aforementioned approaches to localisation, along with

their benefits and limitations. The chapter will conclude with Section 2.7, which explains

the rationale behind the approach that this thesis has undertaken.

Chapter 3 begins the detailed description and analysis of the methods of this

thesis, examining the system used to track the ball’s position and velocity.

Chapter 4 continues with the methods that the system uses to track the robot’s

own position and heading. Both Chapters 3 and 4 will provide performance results and

an analysis of the effectiveness of the techniques used.

Chapter 5 includes suggestions for future improvements and developments to the

localisation system.

Chapter 6 will provide a concluding summary for this thesis.
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Chapter 2

Background

2.1 Localisation, Noise and Bayesian Filters

The challenge for a localisation system within the RoboCup SPL is to maintain an

internal representation of the environment around it, known as its belief or estimate of

the world state. This includes tracking a number of dynamically moving objects: its own

pose (incorporating its position and the direction it is facing), the game ball’s position

and velocity, and ideally the pose of other robots (both friendly and opposing). These

objects are represented as a collection of real number variables. This system must be

accurate, robust against any false observations, and as efficient as possible, needing to

run in real-time using the Nao’s limited on-board processing power.

As the world around it is not directly observable in its entirety, the system must

use sensor data (partial observations of the world) to estimate the world state over time.

The sensor data mostly comprises noisy visual observations of certain field features that

have been identified in the robot’s camera frames. This includes detected goal posts,

field lines (corners, edges, the centre circle), balls and other robots. In addition to the

sensor data, knowledge of the control actions sent to the motors provides rough odometry

information regarding the motion of the robot.

The abundance of noise in the environment and observations poses the greatest
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obstacle to an ideal localisation system. Noise in this situation can be categorised into

two basic types: process noise and observation noise [7, 11]. Process noise (also known

as control noise) refers to the uncertainty associated with actions that the robots take.

Consider a robot at some point A, instructed to walk forward for five seconds. In an ideal

situation, we would predict that the robot is now at some point B a certain distance away

– however a number of factors such as possible slippage, bumping into obstacles, or a

slight imperfection or curvature in the walk, means that we instead say that it is probable

the robot is located somewhere in the area around point B. Put simply, the existence of

process noise obscures our predictions regarding robot actions such as movement.

Observation noise refers to the uncertainty associated with the information re-

ceived from the sensory input. In its simplest form, we can see observation noise in

the slight differences between repeated measurements of the same variable – ideally our

methods would be perfect and multiple observations would be equal, but realistically the

best estimate might be the average or median of them all. In the domain of RoboCup

localisation, observation noise is a major factor because the computer vision systems that

are developed to extract useful observations from camera data are not perfect (as inaccu-

racies are to be expected) [2]. Observation noise must be considered when observations

are used in order to update beliefs about the world state.

These process and observation noises are typically statistical in nature (or can be

roughly modelled as such) and ultimately create a level of uncertainty in a robot’s belief

of the world state. As such the state estimate becomes a probability distribution to which

we can apply stochastic methods. Two types of Recursive Bayesian Filters have emerged

as the popular choices for stochastic state estimation within the domain of RoboCup

localisation systems. Both types involve two basic recurring steps: prediction updates

and correction updates (see Figure 2.1a) [11].

Prediction updates for Recursive Bayesian Filters are also known as process up-

dates, and use the processes/controls/instructions given to the robot. These are incorpo-

rated with the previous belief state to infer an estimate of the current world state. Using

the example scenario mentioned previously, a prediction update would cause a robot

whose control data claims it has moved forward a certain amount to move the belief of
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its current position forward. In most cases, the process noise associated with the control

input is taken into account by increasing the uncertainty of the belief, as it has yet to be

validated by any observation data.

Correction updates then apply the sensor input observations of the world to pro-

vide an improved estimate – possibly either reinforcing or weakening the current belief

depending on its comparison to the current estimate. For example, if the prediction

update shifted the robot’s position belief forwards by ten centimetres, but the visual

observations of certain landmark data suggests the robot has only moved forward five

centimetres, then the correction update would shift the belief backwards to more closely

fit the observations. The observation noise associated with the observations affects the

amount in which the belief is shifted because of the observation, as well as the resulting

uncertainty of the new belief. The prediction and correction updates are repeated at each

time step, using the continuous stream of process control data and observations. Over

time the robot’s belief about the current world state is established and refined.

(a) Update Cycle (b) Probability Representations

Figure 2.1: Recursive Bayesian Filters

The two popular Bayesian Filters in use – particle and Kalman Filters – mainly

differ in their representations of the state probability distribution. Particle filters, also

known as Monte Carlo Localization (pioneered by Fox et. al [5]) use a large number of

particles, each representing a different state hypothesis, with the largest concentration of

particles indicating the most likely world state. With each cycle of the filter, a process

update is applied to each particle, estimating and adjusting the particles to the new state.

The observation update then compares the particles to the observations it has received,

rewarding those that match more closely with a higher weight. The particles are then
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resampled using Monte Carlo methods, with the higher weighted particles more likely to

appear in the resultant set. The particle filter approach has been quite popular in the

past [3,4], but the large number of particles necessary for an accurate estimation requires

a great deal of processing, which further increases as the state becomes more complicated

with more robots to track.

2.2 Kalman Filter Algorithm

The Kalman Filter, first proposed in 1960 [6], is less computationally expensive than

its particle counterpart, and has been the approach favoured by the UNSW team. This

approach represents the world state as a normal Gaussian distribution, with a mean vector

(the state estimate, x̂) of the state variables, as well as an error covariance matrix (the

estimated uncertainty of the state estimate, P ). The assumption is made that the state

can be approximated as such a distribution, as well as that the types of noise described

earlier are also Gaussian. Welch and Bishop [7] provide an introductory explanation to

the Kalman Filter, which will be summarised here.

The underlying model of the filter is represented by the following two equations

and their associated definitions. Equation 2.1 depicts the evolution of the current true

state of the system (xk) from the previous state (xk−1), while Equation 2.2 represents

observations (zk) of the current true state.

xk = Fxk−1 +Bu+ w (2.1)

zk = Hxk + v (2.2)

• F : The state transition model: a matrix relating the previous vector state to the

current state.

• u: The control vector: representing the control inputs of the robot to the filter.

• B: The control-input model; a matrix relating the control vector to the world
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state: that is, transforming the control input to the same form as the world state’s

representation.

• w: The process noise, as described in Section 2.1.

• H: The observation model: a matrix mapping the true state into the observation

space, used to compute the predicted measurement of the predicted state.

• v: The observation noise, as described in Section 2.1.

2.2.1 Prediction Update

x̂k = Fx̂k−1 +Bu (2.3)

Pk = FPk−1F
T +Q (2.4)

• x̂k; The state estimate: the mean vector of the Gaussian distribution representing

the world at state k, that is, the best estimate of the variables tracked by the

localisation system at some time k.

• Pk; The error covariance matrix: a measure of the estimated uncertainty of the

state estimate at time k.

• Q; The covariance matrix of the process noise w, a measure of the uncertainty of

the control input.

The above equations (2.3 & 2.4) and their relevant notation describe the prediction

(process) update of the Kalman Filter, based on the prediction model (Equation 2.1).

Equation 2.3 predicts the new state estimate vector x̂k by combining the previous estimate

x̂k−1 and its transition matrix F , as well as the control input u and its transition matrix

B. Equation 2.4 similarly updates the error covariance matrix to reflect the new predicted

state estimate: the transformation F is applied to the previous error Pk−1 to coincide

with the transformation of the state estimate. The covariance Q of the control noise is

also added.
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The result of the update is the new “predicted” state estimate, with a mean vector

that has progressed since the last state and taken into account any control actions the

robot has carried out. For Kalman Filters, the uncertainty of the state estimate increases

due to this prediction, with the size of the increase correlated with the uncertainty of the

control input.

2.2.2 Correction Update

The correction update of the Kalman Filter, based on the observation model described

earlier with Equation 2.2, uses the following equations to refine the state estimate.

ỹ = z −Hx̂k (2.5)

The innovation ỹ is a measure of the difference between the predicted state esti-

mate and the actual observed state of the world. The predicted state estimate x̂k (from

the prediction update equation 2.3) is mapped into the observation state space using the

observation model H, which is then subtracted from the current observation z.

K = PkH
T (HPkH

T +R)−1 (2.6)

This equation (2.6) provides the optimal Kalman Gain, denoted by K, which

regulates the effect that the observation will have on the state of the filter. The result

is optimal in the sense that this value for K will minimise the final estimated error

covariance of the state; in other words, it provides the most accurate state estimate

assuming the assumptions of the Kalman Filter are held. While the precise derivation

of this formula lies beyond the scope of this thesis (see Welch and Bishop [7] for more

information), the major premise is the combination of the error covariance (P ) of the

predicted state as well as the error covariance (R) of the observation noise (v). The

observation model H is again used a transformation into the observation state space.
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x̂+
k = x̂k +Kỹ (2.7)

P+
k = (I −KH)Pk (2.8)

Equation 2.7 refines the state estimate using the innovation ỹ (equation 2.5) com-

bined with the Kalman Gain K (equation 2.6). The Kalman Gain incorporates the

uncertainties of the current state estimate and the observation – a correction update

with an initially highly uncertain predicted state and an accurate observation would

heavily weight the innovation and bring the resulting state estimate close to the observa-

tion. However, if the correction update was based off an uncertain observation and the

predicted state’s uncertainty was relatively low, then the innovation would not have a

substantial effect on the filter’s state. Equation 2.8 shows how the Kalman Gain is also

used to adjust the resulting state’s error covariance appropriately.

In short, at the conclusion of a prediction update followed by a correction update,

the current filter’s state has been extrapolated from the previous state and its control

data, and then adjusted using current observations.

2.2.3 Assumptions and Limitations

While computationally less expensive than the particle filter, the Kalman Filter’s updates

rely on a number of assumptions that should be further explored. Consider an observation

which results in only one hypothesis, such as detecting a door in front of a robot. The

black line in Figure 2.1b (page 8) reflects the true probability density function of the

robot’s location, while the red line depicts a normal Gaussian approximation used by the

Kalman Filter, with the candidate particles of the particle filter shown for comparison.

Both filters represent this situation adequately; however, the Kalman Filter does so more

efficiently by taking advantage of a situation that has adhered to its strict assumptions.

However, merely expanding on the above example leads to a situation disastrous

for the simple Kalman Filter’s assumptions. If the robot is standing in a hallway with

two doors, an observation of a door leads to two hypotheses. Figure 2.2 shows how a

12



Figure 2.2: Normal Gaussian Probability Representation

single normal Gaussian fails to approximate this new probability density function, while

the particle filter approach to representation remains accurate.

The standard Kalman Filter also assumes that the state transition and obser-

vation models (F , B, and H in the model and update equations) are linear functions,

which is often not the case. Furthermore, the Kalman Filter assumes that no false pos-

itive observations occur, and reacts quite poorly in their presence. To overcome the

aforementioned limitations while maintaining an efficient localisation system, rUNSWift

teams over the years have experimented with numerous variations and extensions of the

standard Kalman Filter.

2.3 Extended Kalman Filter

The Extended Kalman Filter (EKF) relaxes the assumptions of linearity of the standard

Kalman Filter. In contrast with the underlying model of the Kalman Filter (Equations

2.1 and 2.2), the EKF allows for non-linear state transition, control-input and observation

models, and hence can be applied to a much larger variety of systems. Using a similar

notation to the standard Kalman Filter, the equations that define the underlying model

of the EKF are as such;

xk = f(xk−1, u) + w (2.9)

zk = h(xk) + v (2.10)
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The differentiable functions f and h replace the linear matrix operators A and H

of the Kalman Filter, with f being used to predict the current state from the previous,

and h used to transform the state into observation space (and calculate the predicted

measurement of the predicted state). Crucially, these non-linear functions are not appli-

cable to the covariance matrix of the state estimate P , implying that variations on the

original prediction and correction update equations are required.

Hence, the EKF uses Jacobian matrices of the non-linear functions to adjust

the state estimate’s covariance matrix. These Jacobian matrices represent tangential

linear approximations to the non-linear functions. They are computed by taking the

multi-dimensional partial derivatives of the non-linear functions with respect to the state

variables.

The prediction and correction updates detailed in Section 2.2 (Equations 2.3 to

2.8) retain the same form, however the matrices F and H are replaced with their appro-

priate Jacobian approximations:

F =
δf

δx
H =

δh

δx
(2.11)

Welch and Bishop provide a more extensive description and derivation of the

Extended Kalman Filter equations in their Introduction to the Kalman Filter [7].

2.4 2006 – Multi-Modal Extended Kalman Filter

Quinlan and Middleton [12] provide a detailed description of Multi-modal Kalman Filters

and their application to the RoboCup SPL. These filters are an extension of the basic

Kalman Filter, used to handle multiple hypotheses as described in the example above.

Rather than using one Gaussian to attempt to approximate the situation, multiple Gaus-

sians are used and a weighted sum of them is calculated to represent the full state. Each

Gaussian represents a single mode, and the Gaussians are weighted according to the

probability that the corresponding mode represents the whole system. Consider again

14



the example above, of a robot observing a door resulting in two hypotheses. Figure 2.3

depicts two Gaussians representing the two hypotheses, with the sum of the Gaussians

representing the probability distribution of the whole state.

Figure 2.3: Multi-modal Gaussian Probability Representation

In 2006, Oleg Sushkov [8] combined the Multi-modal approach with the Extended

Kalman Filter (introduced in Section 2.3) to successfully track the pose of a robot,

its 3 teammates, as well as the location and velocity of the ball in one filter. This

16-dimensional state space allowed for each robot to easily incorporate its teammates’

observations into its own filter, which greatly increased the accuracy of their ball track-

ing. Furthermore, as the ball itself is encapsulated by the filter, it acted as a moving

beacon to other robots, which helped increase the accuracy of their robot pose tracking.

Unfortunately however, grouping together the robots requires a multiplicative number

of modes to adequately represent hypotheses, and hence this complex approach scales

poorly with the introduction of more robots (either with larger teams or attempts to also

track opponent robots).

2.5 2011 – Unscented Kalman Filter

Julier and Uhlmann [13] proposed the Unscented Kalman Filter: a theoretically better

approximation technique than the Extended Kalman Filter discussed previously. The

principle idea is to use the unscented transform (a deterministic sampling technique)

to select a small number of points around the mean of the observation estimate. These

points, known as sigma points (distributed one standard deviation around the mean), are
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then propagated through the non-linear prediction and update functions (that the UKF

is modelling). The result is a more accurate estimation of the true mean and covariance.

Another advantage of this approach is that the Jacobian Matrices of the EKF are not

required, meaning that the potentially complex problem of calculating them is avoided.

2011 saw an attempt from David Claridge [9] to develop a generic Unscented

Kalman Filter that could be applied to a variety of observations, and be used to track

either robot poses or the ball. This approach ran into persistent technical difficulties,

and was showing unpromising results when applied to this domain. The filter seemed

adequate for use as a ball filter however, and a separate ball filtering system was developed

by Belinda Teh [10], using two UKFs – one assuming the ball is still, the other that the

ball is in motion. As for robot localisation however, the UKF was abandoned.

2.6 2011 – Multi-Modal Linear Kalman Filter

With the international RoboCup fast approaching and the UKF development aban-

doned, Claridge [9] pursued a much simpler method. A Multi-modal Linear (standard)

Kalman Filter was developed, with a number of slight adjustments to make it suitable for

RoboCup robot localisation. To overcome the non-linearity of certain observations (such

as observing only one field edge, or a single goal post), a number of ’hand-crafted’ geo-

metric linear transformations were developed – avoiding the more complex linearisation

methods. An ad-hoc heuristic was also developed for determining which of the multiple

modes should be updated with each observation.

This filter performed well in the 2011 RoboCup, but the limited development time

left plenty of room for improvement. One of the largest drawbacks for the multi-modal

system was the robots would occasionally became “lost”, requiring “localisation scans”

that involved pausing and moving the head to collect more visual data to provide the

filter’s modes with enough information to be certain of the robot’s position. This would

often result in the loss of many precious seconds, especially important when the speed in

which the robot can locate, move toward and then kick a ball into the opponent’s goal
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is such a critical factor.

2.7 A Different Approach

A variety of considerations were taken into account before deciding on a final approach

to pursue for this thesis. Efficiency is often a key factor in the decision making process,

and 2011 saw an increase in team size from three to four robots with suggestions of

further increments to five robots in the near future. The quality of higher level strat-

egy and planning in the competition has also steadily improved, making it increasingly

more worthwhile to track the opposing team. Hence efficiency and scalability to further

complexity is an increasingly important consideration as the competition becomes more

complex and the number of objects that need to be tracked increases.

The computational expense of particle filters has been mentioned previously, and

with the increasing emphasis on efficiency it was decided to continue exploring Kalman

filters. Furthermore, despite their unpopularity in the past, there has been a growing

trend amongst other teams in the competition towards incorporating the more efficient

Kalman filter, lending merit to Kalman based decisions [12, 14].

2.7.1 Ball Tracking

The RoboCup Federation approved the UNSW project to develop a game management

system, which calls for four stationary robots positioned around the field to collaborate

their observations and collectively referee a match [1]. This undertaking increased the

emphasis on the accuracy of ball observations and also the distribution and integration

of this information between team members. This is because a more accurate estimate of

the true position is possible by combining the ball observations of all the robots. This

combined “team ball” information is also useful in identifying and correcting robots which

have a mistaken belief of their position, as the ball is a unique landmark and a robot

who disagrees with the rest of the team on its position is likely to be misguided.

17



With those motivators in mind the ball tracking system was re-implemented. The

approach is similar to the 2011 approach developed for rUNSWift by Teh [10], but with

a number of key differences:

• The error covariance matrices of the ball observations more closely resemble the true

uncertainty, replacing the previous arbitrary estimates with a function of the polar

coordinates of the observation. Providing more accurate uncertainty estimates of

observations greatly improves the accuracy of a Kalman Filter’s resultant state

error covariance matrix – which is of particular importance when the robots are

collaborating and sharing their state estimates. The B-Human team’s approach

also makes use of covariance matrices based on the ball observations [15].

• As the UKF used in 2011 was complex and plagued with technical issues, and also

didn’t seem to be a significant improvement over an EKF, the new system utilises

the simpler Extended Kalman Filter variant.

• The dual-modal approach of 2011 is maintained – one filter assuming the ball is

stationary, the other that it is moving. However choosing between the two filters is

based on a comparison of the innovations of the two filters rather than ad-hoc error

covariance checks, to maintain a quick and reliable reaction to sudden changes in

the ball’s velocity (such as when it is kicked or stopped). This is similar to the

B-Human approach, which utilises a complex system of 12 filters – half assuming

the ball is stationary, and the other half that it is moving [15].

Further, Teh’s 2011 [10] approach of the calculation of the team ball was refined.

This contrasts to Sushkov’s 2006 approach [8] of a complex state space that includes every

robot’s position and the position of the ball, which we established requires a multiplicative

number of modes and scales poorly (see Section 2.4). Instead, each robot filters their

individual observations of the ball, and then simply distributes this filtered estimate of

the ball’s position to the rest of the team. Each robot then uses these along with its own

estimate to calculate the team’s combined estimate.

The final combination of the collected estimates has been refined in this thesis’
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approach. Rather than naively incorporating every estimate into the combined team

estimate, only the best subset of the estimates is combined. This allows for one or more of

the robots to be lost without completely throwing off the team’s estimate. Furthermore,

it allows us to identify if a robot is lost if it disagrees with a majority of the team.

2.7.2 Pose Tracking

So far, much of the discussion of Kalman Filters has centred on linearisation techniques

(Unscented versus Extended Kalman Filters), as well as multi-modal mechanisms for

dealing with observations that provide multiple hypotheses. This is reasonable, as the

rUNSWift localisation systems to date have used a variety of observed field features from

each camera image to generate a series of observations at each state – some of which are

non-linear or provide multiple hypotheses.

This year, the advancement of the standard platform to the Nao v4 has facilitated

a slightly different approach to localisation. Most importantly, the Nao v4 allowed the

use of both of the Nao’s cameras simultaneously, as well as a faster processor. The faster

processor also meant more processing power could be used to extract features from a

higher resolution of the top camera (where the majority of field features are observed).

The result of the upgrade essentially meant that the number and quality of observed field

features dramatically increased.

The approach developed last year by Claridge [9] (see Section 2.6) used each ob-

served feature independently, aside for a small number of exceptions such as a pair of

goal posts. The new approach uses an Iterative Closest Point (ICP) feature matching

algorithm developed with Peter Anderson [16] to combine all the available feature infor-

mation, with the current estimate of the robot’s position as a starting point, to produce

a single powerful observation of the robot’s position. The details of this module are

contained within a separate report. This innovative single observation greatly simplifies

the requirements of the filter:

• The observation provided by the ICP method is directly comparable to the state of
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the filter; a position of the robot and a covariance error matrix. Hence it is possible

to filter this information directly, without the need for non-linear extensions of

the Kalman Filter’s correction update, or any manual linearisation methods. The

simplification of the observation model has also allowed time for a more accurate

process model to be pursued, using the EKF’s prediction update.

• The ICP method uses the robot’s currently estimated position as a starting point

and only provides one combined observation/hypothesis for each set of visual fea-

tures. As this single hypothesis is easily represented by a single Gaussian, there

is little need for complex multi-modal extensions of the Kalman Filter, or ad-hoc

heuristics to determine which modes should receive which updates, or when to

create, merge, limit, remove or switch modes.

The single ICP observation almost allows the system to track the robot’s position

using a single EKF. However a single filter will still be susceptible to highly inaccurate or

false positive visual feature data – which in some cases might cause the ICP matcher to

provide a false hypothesis as an observation to the filter. The system must also overcome

the “kidnapped robot” problem; being able to localise without prior information or a

false prior belief of its position. In this domain this situation can occur in a variety

of ways, such as when a robot recovers from a penalty (it must decide which sideline

it has been placed on), or when it has been moved (whether accidentally or to prevent

interfering with other robots).

The approach used in this thesis is another dual-modal system, utilising two rel-

atively simple EKFs. One filter is the main mode, tracking the current best estimate of

the robot’s position. The other filter is the alternate mode, which is only occasionally

active and represents a single alternative position for the robot. The alternative mode

captures outlying observation hypotheses from the ICP that are deemed too far away

from the current main mode to be reasonable – implying that the observation is flawed, a

significant jump has occurred or an error has developed in the main mode. The alternate

mode is only swapped into the main mode when it has proven to be an obviously superior

estimate.
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Using the single ICP observation and simple dual-modal filter reflects a much

greater emphasis on providing a stable estimate of the robot’s position: once localised,

the robot relies on its main mode and the now-improved stream of field features to stay

localised. This avoids having to interrupt higher level play strategy with requests to

gather more useful data to decide between competing modes.

The alternate mode is intended for use as a backup error correction mechanism,

allowing for larger and more sudden “jumps” when the system is sure of the alternate

hypothesis. Of particular interest are jumps that swap the position of the robot to the

opposite side of the symmetrical environment. The team ball information, as well as

natural landmarks that are detected in camera frames, are also incorporated in the ICP

matching algorithm to indicate which side of the field a hypothesis belongs to. This helps

to ensure that “flips” to an erroneously opposite robot heading can be recovered from,

hopefully before any disastrous own goals.
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Chapter 3

Ball Tracking

This chapter will examine and analyse the system used to track the game ball’s position

and velocity. The approach used to distribute this information between each robot and

determine a collective “team ball” belief is also addressed.

3.1 Method

As outlined in Section 2.7.1, the ball tracking system was re-implemented with a greater

emphasis on a more accurate model of observation uncertainty – with the intent to

improve the accuracy and reliability of each robot’s ball state estimate. The accuracy

of each robot’s individual ball estimate, as the well as the accuracy of the uncertainty

of that estimate, becomes increasingly important as the robots distribute and combine

their beliefs. This collaborative estimate of the ball’s position using the combination of

each individual robot’s beliefs is the next step in accurately tracking the game ball, which

in turn can be applied to improving the localisation of the robot’s themselves. Section

4.1.4 provides more information regarding the use of the team ball to help localise in

a symmetrical environment – particularly relevant this year with the advent of uniform

goal colours.
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3.1.1 Extended Kalman Filter Approach

Chapter 2 provides an introduction to Kalman Filters as an efficient method of filtering

the noisy observations that are characteristic of our robotic sensors. Also mentioned are

the Extended (EKF) and Unscented (UKF) variants of the Kalman Filter, which provide

the additional functionality of filtering non-linear systems and observations by using

approximations – with the EKF employing derived tangential functions, and the UKF

utilising distributed sigma points. The EKF was chosen for the re-implementation of the

ball tracking system, allowing for sufficient linearisation capabilities whilst avoiding the

added complexities and technical difficulties of the UKF experimented with in 2011 [9].

Dual-Modal

The dual-modal approach used in 2011 [10] was re-implemented using two new EKFs.

The approach involves two similar filters, each with a different assumption of the ball’s

movement. The first filter simply assumes the ball is stationary and tracks only its

position. The ball is stationary for a significant proportion of each game; however when

it does move the stationary filter is slow to react to the sudden change in position. The

second filter assumes the ball can be in motion, tracking its position as well as the velocity

of its movement. This allows it to react more quickly to sudden changes in the ball’s

position and provide valuable information on where the ball is headed, although when

the ball is stationary the moving filter reacts poorly to noisy observations and becomes

unstable. Hence both the stationary and the moving filter are used in the system to

overcome the limitations of each used separately.

State Representation

Both filters track the ball’s state in the Cartesian form of rUNSWift’s standard robot-

relative coordinate system. Shown in Figure 3.1, this system treats the robot’s base as

the origin, with the positive x and y axes extended forward and to the left of the robot

respectively. Other possibilities included the polar robot-relative system, or absolute
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Cartesian coordinates (with origin at the centre of the field).

The decision to use robot-relative coordinates stemmed from the importance of

the ball’s position to individual robot behaviours, as well as the robot-relative nature of

the ball observations. This allows the ball tracking system to operate independently of

the robot’s localisation. The final resultant robot-relative estimate of the ball’s position

is then easily combined with the robot’s position to provide an absolute ball position (see

Section 3.1.6).

Cartesian coordinates were chosen over polar coordinates as it was found that

this more easily facilitated the tracking and display of the ball’s state, as well as the

covariance of the state estimate. In particular, converting the ball’s observations and the

associated noise to Cartesian form allowed for simpler and more uniform filters that did

not require internal conversions.

Figure 3.1: rUNSWift Robot-Relative Coordinate Systems [10]

Process Odometry and Noise

As the state of each filter is represented as robot-relative coordinates, they are affected

by the robot’s own movement – a robot walking towards a stationary ball would clearly

observe the ball closer and closer. If the robot’s movement is not taken into account, this

can easily be misconstrued as noise or even the ball having a velocity of its own.
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Consequently, each filter uses odometry information provided by the robot’s walk

engine [17] and new visual odometry system [16] as control inputs to appropriately shift

the coordinate system and predict the ball’s new relative position as the robot moves.

The odometry information is in the form of a vector (u) of three variables representing an

estimate of the robot’s counter-clockwise rotation in radians (∆θ), as well as an estimate

of its movement forward (∆F ) and to the left (∆L) in millimetres. By convention the

robot’s rotation is applied first. Sections 3.1.3 and 3.1.4 explain the individual filters in

more detail, including an explanation of how odometry is used as part of the process

update’s state transition.

u =


∆θ

∆F

∆L

 (3.1)

The typical assumption is made that the process noise associated with the odom-

etry updates of the ball filters is additive. This implies that an estimate of the covariance

of the process noise is directly added to the state covariance with each prediction update.

This covariance was determined (via experiment) for each filter to arrive at estimates

that provided stable yet sufficiently reactive state estimates.

An attempt was made to incorporate the noise of the odometry update based on

each variable’s impact on the state; however this proved to be complex and problematic,

and was abandoned as a linear approximation of such a relationship was unlikely to

provide any substantial improvement on the filters’ performance.

3.1.2 Observations and Elliptical Covariance

Ball observations are provided to the system from the vision module as polar robot-

relative coordinates. This system is also shown in Figure 3.1, with a straight line distance

(r) as well as its heading (θ); the angle from the robot to the ball (with positive angles

to the left and negative angles to the right).

These ball observations are understandably susceptible to noise, and one of the
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Figure 3.2: Ball Distance Observation Variance [18]

aims of this thesis is to more accurately model the covariance of the noise of these

observations. Over the years it has been empirically noted that estimates of the robot’s

angle to the ball are relatively far more accurate than the estimate of the distance to the

ball. This is to be expected as the calculation of the distances to objects is more heavily

influenced by errors in the robot’s kinematic chain and ground plane projection [2]. Errors

in the kinematic chain are also clearly more detrimental to estimates of objects that are

further away.

These properties of the observation noise are successfully reflected by calculating

the variances of the r and θ observations of the ball. Hengst [18] describes an approach

using the assumption that the standard deviation (σ) of the angle of the ray projecting

from the camera (φ, shown in Figure 3.2) to the ball is a constant (σφ). Equations 3.2

to 3.4 examine the trigonometric relationship between φ, r, and l (the rough height of

the robot’s camera above the ball), isolating the change in r with respect to φ. Hengst’s

resulting equation (3.4) implies σr is a function of r2, l, and σφ. Squaring σr easily

provides us with the variance of the distance observation (used later in equation 3.8),

which predictably grows rapidly as r increases.
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tan(φ) = l/r (3.2)

δr

δφ
= − l

sin2(φ)
(3.3)

δr = −lδφ− δφr
2

l
(3.4)

Similar to φ, the standard deviation of the θ observation is estimated and assumed

to be a constant (σθ). However instead of passing the r and θ observations and their

variances to the filters and having them use complex observation Jacobian matrices to

translate these variances into appropriate Cartesian values, the observations and their

variances are first converted into the Cartesian plane and then passed into the filters.

The transformation from the polar observation coordinates to their Cartesian form is

fairly simple: x
y

 =

r cos(θ)

r sin(θ)

 (3.5)

Figure 3.3: Ball Heading Observation Variance
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The critical step is to create the new covariance matrix to accompany the Carte-

sian observations. Figure 3.3 shows a top-down view of a robot observing a ball, with the

r and θ observation variances shown as the major and minor axes of a Cartesian covari-

ance ellipse. The easiest method to create this ellipse is by creating a simple covariance

matrix using the major and minor axes, and then rotating it to the desired orientation

using the ball’s observed θ. The variance of r has been derived above, and this can be

used as the magnitude of the major axis directly. To derive the length of the minor axis

however, the constant σθ is applied to the following equation:

Length of minor axis = (D tan(σθ))
2, where D =

√
r2 + l2 (3.6)

The rotation of the covariance ellipse by θ is achieved by applying a rotation matrix (R)

using the following equation for the transformation of covariance matrices described by

Soler & Chin [19]:

Σx̄ = RΣxR
T , where R =

cos θ − sin θ

sin θ cot θ

 (3.7)

The final resulting covariance matrix of an observation in Cartesian form is thus as

follows:  σ2
x σxy

σyx σ2
y

 = R

(lσφ + (σφr
2)/l)2 0

0 (
√
r2 + l2 tan(σθ))

2

RT (3.8)

By correctly modelling the covariance of the noise of the ball observations, the

filters can more accurately track the state of the ball. The effect of the accurate covari-

ance is to treat each observation according to the properties that were outlined earlier;

weighting observations of the angle to the ball (θ) heavily over the distance to the ball

(r), as well as increasing the uncertainty of observations further away.

The resulting covariance estimates of the filter states also reflect this model of

uncertainty – Section 3.2.1 showcases a variety of resulting state estimates and their

covariance ellipses, and how these estimates can be combined from multiple robots to

provide more accurate measurements of the ball’s true position.
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3.1.3 Stationary Filter

As the name suggests, the stationary filter assumes the ball is stationary and tracks

only the position of the ball. Hence the state estimate vector (x̂) and its corresponding

uncertainty (P ) are as follows:

x̂ =

x
y

 P =

 σ2
x σxy

σyx σ2
y

 (3.9)

Prediction

With the odometry vector u (see equation 3.1) as input, the non-linear prediction update

(state transition) equations of the stationary filter are shown below. They offset the

robot’s movement by rotating the ball’s coordinates by the opposite of the robot’s turn,

and then shifting the position of the ball by the robot’s forward and left movement.xnew

ynew

 =

cos(−∆θ) − sin(−∆θ)

sin(−∆θ) cos(−∆θ)

x
y

−
∆F

∆L

 (3.10)

=

x cos(−∆θ)− y sin(−∆θ)−∆F

x sin(−∆θ) + y cos(−∆θ)−∆L

 (3.11)

The state transition Jacobian (Equation 3.12) is obtained by partially differentiat-

ing the state transition Equation 3.11, and is used to appropriately adjust the covariance

of the state estimate in accordance with the effect of the odometry on the state. When

applied to the covariance estimate it rotates the covariance ellipse by the same angle the

state estimate is adjusted. To facilitate computation, the odometry rotation matrix used

in Equation 3.10 is reused as the Jacobian matrix.

F =

 δx
δx

δx
δy

δy
δx

δy
δy

 =

 cos(∆θ) sin(∆θ)

− sin(∆θ) cos(∆θ)

 ≡
cos(−∆θ) − sin(−∆θ)

sin(−∆θ) cos(−∆θ)

 (3.12)
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Correction

As explained in Section 3.1.2, the ball observations are transformed and provided to the

filter in robot-relative Cartesian coordinates with their associated covariance matrices.

The intended effect of this is a very simple linear correction update, as the state vector

and observations are of the same form. The standard linear Kalman Filter observation

correction equations can be used, with an identity observation model.

3.1.4 Moving Filter

The moving filter allows for ball movement and has the capability of tracking the ball’s

position as well as its velocity. The filter is thus slightly more complex than its stationary

counterpart. Its state vector and covariance matrix are defined as:

x̂ =


x

y

x′

y′

 P =


σ2
x σxy σxx′ σxy′

σyx σ2
y σyx′ σyy′

σx′x σx′y σ2
x′ σx′y′

σy′x′ σy′y σy′x′ σ2
y′

 (3.13)

Prediction

Similar to the prediction update of the stationary filter, the moving filter’s state update

equations must account for the movement of the robot provided by the odometry vector

u. However the moving filter first accounts for the movement of the ball by predicting

the ball’s new position with its tracked velocity and the time elapsed since the previous

update (T ). The position and velocity of the ball are then rotated and translated using

the odometry values. The velocity of the ball is also scaled down by a constant λ to

account for the effect of friction on the ball.
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
xnew

ynew

x′new

y′new

 =


(x+ Tx′) cos(−∆θ)− (y + Ty′) sin(−∆θ)−∆F

(x+ Tx′) sin(−∆θ) + (y + Ty′) cos(−∆θ)−∆L

λ(x′ cos(−∆θ)− y′ sin(−∆θ))

λ(x′ sin(−∆θ) + y′ cos(−∆θ))

 (3.14)

Again, the state transition Jacobian matrix below is derived by partial differenti-

ation of the prediction Equation 3.14 with respect to the state variables, and is used to

adjust the covariance of the state estimate.

F =


δx
δx

δx
δy

δx
δx′

δx
δy′

δy
δx

δy
δy

δy
δx′

δy
δy′

δx′

δx
δx′

δy
δx′

δx′
δx′

δy′

δy′

δx
δy′

δy
δy′

δx′
δy′

δy′

 =


cos(∆θ) sin(∆θ) T cos(∆θ) T sin(∆θ)

− sin(∆θ) cos(∆θ) −T sin(∆θ) T cos(∆θ)

0 0 λ cos(∆θ) λ sin(∆θ)

0 0 −λ sin(∆θ) λ cos(∆θ)

 (3.15)

Note the recurrence of the rotation matrix as both the position and velocity are

robot-relative and hence were adjusted by the robot’s turn. The presence of T in the

upper right corner of the matrix represents the relationship between the ball’s position

and velocity, while the λ in the bottom right shows friction affecting only the velocity.

Correction

As with the stationary filter, the correction update for the moving filter is greatly sim-

plified due to the transformation of the observation vector into Cartesian coordinates –

comparable with the state vector. A linear Kalman Filter correction update suffices for

the moving filter, with a simple observation model to extract only the x and y coordinates

from the state mean vector:

H =

1 0 0 0

0 1 0 0

 (3.16)
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3.1.5 Filter Utilisation

Selection

With two filters tracking the position of the ball, a decision must be made regarding

which filter’s state estimate to select as the current best estimate. It would be logical

to use the stationary filter while the ball is stationary and the moving filter while the

ball is in motion, however in practice this is hard to distinguish; as the moving filter is

configured to react quickly to ball motion and can be quite unstable at times.

Teh [10] experimented with an approach that combined the velocity of the moving

filter with its covariance, and decided the ball was in motion if it was beyond a tuned

threshold. However, the approach of this thesis examines and compares the innovation

of each filter; the precise measurement of the difference between where the filter predicts

the ball will be, and where the ball is actually observed to be. With a small level of hys-

teresis, slightly biased towards the more stable stationary filter, the filter with a smaller

innovation is chosen as the dominant filter. The moving filter also cannot be dominant

unless its estimated ball velocity is above a certain threshold. This simpler measurement

proved to be quite reliable in indicating which filter was correct, and requires less tuning

and monitoring than the previous approach which was relatively ad-hoc.

As the movement of the robot greatly affects the level of noise of the ball ob-

servations, the hysteresis for filter selection is adjusted when the robot is in motion as

opposed to standing or squatting. If the robot is in motion, then the moving ball filter

must have a smaller innovation over more consecutive frames before it is decided as the

dominant filter. This results in a moving robot being less susceptible to false positive

moving ball observations, whilst preserving the reactivity of a robot observing from a

stationary position (such as the Goalie or a sideline referee).

Interaction

To further improve the accuracy of the ball tracking, the information from the dominant

filter is used to update the state of the other filter. It was observed that if the ball was
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moving but then came to an unexpectedly quick stop (a common occurrence when the

field is heavily populated) then both filters would be inaccurate for a noticeable amount

of time. The moving filter would overestimate the ball’s position and have to adjust its

velocity as well as shift its position. Meanwhile the stationary filter would take time to

adjust to the new position of the ball.

To overcome this issue, the following filter interaction was implemented:

• If the ball is in motion (i.e. the moving filter is dominant), then at each tick the

stationary filter’s estimate of the ball’s position is replaced with that of the moving

filter. As the ball is in motion it is almost certain that the stationary filter is lagging

behind, and hence this update reduces the time taken for the stationary filter to

‘catch up’ without much risk of sacrificing accuracy.

• If the ball is stationary (i.e. the stationary filter is dominant), then at only one

point shortly after the ball was in motion, the moving filter is reset with zero

velocity and the stationary estimate of the ball’s position. This has the effect of

clearing any lingering velocity estimate that the moving filter might have after the

ball stops suddenly, which is a potential cause of inaccuracy.

Reset

Due to the dynamic nature of the game, if a robot loses sight of the ball (i.e. no obser-

vations are received by the filters) for much more than a couple of seconds, then it is

unlikely that the old estimate of the ball’s position will provide a good indicator of the

ball’s current position. To slightly improve the reactivity and convergence of the filters,

but more importantly to remove misleading stale estimates of the ball’s position, the

filters are “reset” by having them jump to the next observation that is received. This

is equivalent to vastly increasing the covariance of the state estimate, but avoids any

potential initial misleading velocity estimates. For this reason the moving filter is also

reset earlier than the stationary filter.
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Absolute Estimate

For certain capabilities it is necessary for the robot-relative estimate of the ball’s position

to be combined with the estimate of the robot’s state, to provide an absolute estimate

of the ball’s position relative to the centre of the field. Most importantly, this absolute

estimate facilitates communication and collaboration between the robots, as their ball

estimates become directly comparable.

The transformation from the robot-relative position of the ball to absolute coor-

dinates is achieved by a simple rotation by the heading of the robot (θR), followed by a

translation of the robot’s position (xR and yR):

xAbs

yAbs

 =

cos(θR) − sin(θR)

sin(θR) cos(θR)

xRR
yRR

 +

xR
yR

 (3.17)

For the covariance of the new absolute estimate, the covariance of the ball’s robot-

relative position is combined with the covariance of the robot’s position. Again, the first

step is to rotate the robot relative covariance by θR so the two covariance estimates are

using the same frame of reference, before simply adding the two. This approach ignores

the effect of the robot’s heading variance; however it suffices for our current needs, and

a linear approximation of the effect of heading uncertainty was not pursued.

“Out by [Blue/Red]!”

During games, referees are quick to pick up balls and return them to the playing area if

they are kicked out of bounds. If a robot loses sight of the ball, it is beneficial for the

robots to identify if the ball was out of the playing area, and if so to quickly “forget” the

old estimate and begin searching for the ball again, rather than chasing a ball that is no

longer on the field.

The identification of balls that are out of play is achieved by examining the ball

estimate’s absolute position and covariance, and deducing whether the entire covariance

ellipse is outside the playing field – which would imply with some certainty that the ball
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was out of bounds or at least heading out of bounds before vision of it is lost. If this

is deemed true, the timer until a “reset” of the filters is accelerated by a considerable

margin.

An early attempt at out detection was experimented with, that checked that the

absolute position of the ball estimate was beyond a threshold past the boundaries of the

field, and that it was quite close to the robot (implying a good estimate of the ball’s

position). However, in practice balls are most often kicked out and the moving filter

predicts the ball’s position as increasingly far away from the robot. By first checking

that the absolute position estimate is past the boundaries of the field, and then also

using the covariance of the estimated ball position, the check becomes more versatile and

remains valid for use by robots further away from the ball estimate.

To test whether the covariance ellipse is outside the bounds of the field, the

intersection of the field line in question and the line between the robot and the ball

estimate is first found. This is the point on the field most likely to be within the confines

of the ellipse, except for rare boundary cases where the lines are roughly parallel – where

the test is abandoned as it is unlikely we will be sure the ball is out. This point is

then tested using the Mahalanobis distance [20] of the point to the ball position estimate

and its covariance, to determine if it is sufficiently probable that the ball is out. The

Mahalanobis distance is explained elsewhere in Section 4.1.3, as it is used more extensively

and to greater effect.

3.1.6 Distributed Team Ball

The individual absolute ball position estimates of each robot on the team can be dis-

tributed to other members of the team, and combined to great advantage by exploiting

their differing vantage points. The collective “team ball” estimate improves the efficiency

of find ball behaviours by providing a starting point for robots who are just entering the

game or who have lost the ball [21]. Section 4.1.4 examines how the team ball is also

useful in identifying and correcting robots that have become incorrectly localised in the

symmetric playing environment.
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Claridge [9] describes the approach used for the transmission of information be-

tween the team members, including identifying and disregarding old or misleading data

from ‘incapacitated’ robots (whether they have dropped off the network, been picked up,

or fallen over). Teh [10] describes the previous method of each robot calculating the

weighted average of the estimates it receives, which has been refined in order to provide

more accurate and useful information.

As the team ball is no longer used exclusively for finding the ball once a robot has

lost sight of it, the combination now also includes the robots own current estimate of the

ball’s position, and not just those received from others. The increased importance of the

team ball has placed new emphasis on using only the timeliest of observations. This is

due to the fact that the ball can move quite large distances in a short amount of time;

if it is moved by a referee or kicked particularly hard from one side of the field to the

other, then one robot might report an estimate based on its old (yet unexpired) position,

while another robot might report a conflicting estimate based on what it can see now.

In the worst case this might falsely suggest that one of the robots has “flipped” (become

mislocalised and begun attacking in the opposite direction, due to the symmetrical envi-

ronment). Hence the new system ignores position estimates that are not based on very

recent estimates, or were received by the network too long ago.

Estimate Selection

The previous approach to combining the estimates into the team ball was characterised

by using the weighted average of all the estimates. However when two estimates are

far apart and in obvious disagreement, the average provides a result that disagrees with

both and is almost certainly inaccurate. When such a case occurs it is more appropriate

to select the more certain of the two estimates. Furthermore, with multiple estimates

and possible combinations available, the team ball can be created by combining only the

agreeing estimates by disregarding the outliers.

Algorithm 1 summarises the new method used to select a subset of the available

valid estimates for combination into the team ball. The estimate used to create each
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subset (the first to be added to it, current), is the main or centre estimate of that

subset, and the other estimates in that set all “agree” with the main estimate. Estimates

are defined as being agreeable if they are within a small absolute distance threshold of

each other. An estimate is also deemed as agreeing if the main estimate is determined

to be within its covariance ellipse (the Mahalanobis distance [20] is again utilised, but

is explained in further detail within Section 4.1.3). The estimates must also be checked

that they are not too far apart, to prevent far away observations with particularly large

covariance ellipses from being included.

Algorithm 1 Selection of subset of ball estimates for combination into team ball

generate list of valid ball estimates (valid)
for all estimates (current) in valid :

create candidate set for team ball (set)
add current to set
for all other estimates (other) :

if other and current agree then
add other to set

end if
end for
if set better than bestSet then

bestSet← set
end if

end for
teamSet← bestSet

A set of estimates is determined as being “better” than another if the set is larger

than the other; that is, more robots would be agreeing on the position of the ball and

contributing to the team ball. For sets of the same size, such as when two robots observe

the ball but whose estimates are not close enough to be combined, then the set with a

more certain main estimate is selected.

Combination and Status

Once the subset of estimates has been chosen, they are combined together using the up-

date equations of a linear Kalman Filter to take into account each estimate’s uncertainty.

The main estimate of the subset is used to initialise the filter, and the other estimates

are applied as observations; essentially calculating the weighted average of the estimates,
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analogous to the combination approach used previously [10]. This method can easily be

modified to maintain an estimate of the team ball over time by not initialising the filter

with each new subset. While this might provide a smoother estimate, it was avoided as

a simple combination of the most recent – already filtered – estimates was desired, that

would react quickly to changes in the ball’s position.

After comparing its estimate with the received estimates from its teammates,

deciding upon the most sensible subset, and calculating the combined team ball, the

final consideration is the status of the robot’s estimate in relation to the team ball. This

status is one of three possibilities:

• Neutral: It had no valid estimate of the ball’s absolute position, either because it

was incapacitated itself (and so was unsure of its own position), or had not recently

observed the ball.

• Agree: Its valid estimate of the ball’s position was used as part of the calculation

of the team ball.

• Disagree: Its valid estimate of the ball’s position was not included in the subset

used for the calculation of the team ball.

This status, along with the number of contributors to the team ball (the size of the subset

used) can provide a strong indicator of the status of the localisation of the robot. A robot

that disagrees with the majority of its team suggests that something may have gone

wrong. Section 4.1.4 describes how this information is incorporated into the localisation

of the robot itself.
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3.2 Results

3.2.1 Elliptical Covariance and Team Ball

To demonstrate the observation noise model and the resulting covariance ellipses of the

ball position estimates (Section 3.1.2), as well the combination of these estimates into

the team ball (Section 3.1.6), the following experiment was undertaken;

• Nine ball locations were selected to represent possible ball locations on the field,

and to provide a variety of ball observation angles and distances for the robots.

They are labelled 1 through 9 and are shown in Figure 3.4 in orange.

• Four stationary robot positions were selected to provide sufficiently different obser-

vations of each ball position, and good coverage over the field. They are similar to

the positions used for robot referees in the game management system [1], and are

shown in blue in Figure 3.4, denoted positions A, B, C and D.

• Three configurations of the robot positions were selected, to observe the effect of

an increasingly large number and variety of ball observations on the team ball; A,

AB, ABCD.

• For each configuration, the ball was placed in turn in each of its positions, and

for each position a single frame of output was captured once all the robots were

observing the ball – including a visual representation of each robot’s ball estimate

and covariance, as well as the team ball’s estimate and covariance. A subset of the

collected frames is shown in Figure 3.6.

• The exact coordinates of each team ball estimate were also recorded with each

frame, and compared with the known position of the ball at that position for a

precise measurement of the error of the team ball estimate.

• The experiment was repeated three times for each configuration. The minimum,

maximum and average of the error measurements for each position and configura-

tion are shown in Figure 3.5 (See Appendix A for precise numerical data).
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Figure 3.4: Map of SPL field showing experiment’s robot and ball positions

Figure 3.5: Average team ball error at variety of positions and robot configurations
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(a) Configuration A, Position 1 (b) Configuration A, Position 7

(c) Configuration AB, Position 4 (d) Configuration AB, Position 6

(e) Configuration AB, Position 8 (f) Configuration ABCD, Position 3

(g) Configuration ABCD, Position 5 (h) Configuration ABCD, Position 9

Figure 3.6: Experiment’s different robot configurations (blue), individual ball estimates
and covariance ellipses (red), and combined team ball estimates with covariance (black)
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3.2.2 Kicked Ball Velocity

To illustrate the behaviour of the ball tracking system and the capability of its dual-

modal filter system to track both stationary and moving balls, its reaction to changes in

ball position and velocity under certain common and important scenarios were tested as

examples.

For each test, the position and velocity of the ball estimate at each tick were

recorded, and then plotted to provide comprehensive diagrams showing the progression

of the estimate. The position of the ball estimate at each tick is represented by a small

blue dot, while a red line extending from a blue circle represents the velocity vector of

that particular ball estimate. Thus the direction of the red line away from its associated

blue dot shows the ball’s estimated trajectory, while the magnitude of the red line shows

its speed.

These diagrams can then be compared with the actual ball movement to provide

an indication on the accuracy and correctness of the estimate. This process closely mimics

the method of implementation and relative observation used to develop the system, as

precise measurements of a moving ball’s position and velocity to be used as a comparison

are difficult to obtain reliably and efficiently.

One of the most important uses of the tracked position and velocity of the ball

are within the Goalie’s behaviours: dictating if and when to dive, and in what direction.

Hence the first test was to place a ball some distance away (on the centre circle) from a

robot stationary at the goal line, and then kick it in various directions towards the robot:

• Figure 3.7a shows examples of the output from the kicks that went past the robot

to the left and right, scoring goals.

• Figure 3.7b shows kicks that missed the goal by a small amount on the left and

right, going out.

• Figure 3.7c shows a kick that was aimed towards the robot, resulting in a successful

block and the ball rebounding slightly.
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• As the abundance of data may be hard to interpret, Figure 3.7d shows single sample

data of the estimated position and velocity, once the velocity had converged, for

each of the above kicks.

To more clearly illustrate the effect of speed on the ball estimate’s velocity, balls

were kicked to the left and right of a stationary robot at different speeds. Figure 3.8a

shows the balls that moved quite fast, while Figure 3.8b shows the balls that were kicked

much more softly, moving slowly and eventually coming to a stop before the robot.

Also of significance is the ability of the ball tracking system to be robust against

the noise associated with a moving robot – avoiding overestimation of the noise as a ball

velocity. Figure 3.9 shows two examples of a very common and important scenario in

RoboCup. The ball estimate is depicted as a robot approaches a stationary ball (including

shifting the estimate of its own position), adjusts the position of its feet to line-up the

ball, then kicks the ball and tracks its progression into the goal.

(a) Goals (b) Near Misses

(c) Block (d) Samples

Figure 3.7: Example ball position (blue) and velocity (red) estimates of stationary
robot tracking five goal attempts
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(a) Fast Kicks (b) Slow Kicks

Figure 3.8: Example ball position (blue) and velocity (red) estimates of stationary
robot tracking balls moving with different speeds

Figure 3.9: Example ball position (blue) and velocity (red) estimates of attacking robot
approaching ball and successfully scoring a goal
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3.3 Discussion

The introduction of the model of elliptical observation covariance (Section 3.1.2), com-

bined with the more detailed process and observation models of the two new Extended

Kalman filters (Sections 3.1.3 and 3.1.4), has improved the accuracy of the resulting

covariance matrix (estimate of uncertainty) of the localisation system’s filtered ball esti-

mate. This is evidenced by the visualisations of ball estimates from the individual robots

of the experiment outlined in Section 3.2.1.

Figure 3.6 showcases a number of different ball estimates, resulting from balls

placed relative to robots at a variety of distances and angles. Comparing Figures 3.6a

and 3.6b, it is clear that the uncertainty of the ball estimate (size of the covariance

ellipse) is larger for the ball that is further away. The covariance ellipses are also at

different angles, oriented in such a way that the longer axis points towards the robot.

These properties of the covariance representations more accurately reflect the true nature

of the uncertainty of the robots’ ball observations than the previous system [9,10]. They

accurately portray the findings that visual detection of angles to the ball is more reliable

than estimations of the distances to the detected balls (also apparent in Figure 3.6).

The Kalman Filter method is heavily influenced by the accuracy of the estimated

covariance of the process and observation noises [6, 7, 11]. It follows that improving

the estimate of the noise associated with the robot’s observation inputs used would

improve the effectiveness of the filters that are used. Consistent with the logic of the

Kalman Filter, it was found that the new ball tracking system provided a more stable

and consistently accurate estimate of the ball’s position.

In particular, slight discrepancies in the observed distance to the ball were of little

consequence to the estimate, as these were weighted less. Furthermore, false positive

ball observations that are occasionally seen in the background and calculated as being

relatively far away, have less of a detrimental impact on the ball estimate – especially in

the presence of consistent closer ball observations. Most notable however, is the improved

responsiveness of the filter to changes in the (more reliable) observed heading to the ball,

as the new models allow for them to be weighted more heavily than the noisy distance
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observation. These improvements were observed throughout the development and tuning

of the new localisation system, by assessing the behaviour of the ball estimate using

OffNao; a rUNSWift visualisation tool that enables a comparison of the state estimate

and the observed classified camera images over time.

The output of the OffNao tool over time was replicated to a certain extent in the

Figures of Section 3.2.2. Figure 3.7, shows the dual-modal filter accurately estimating

the stationary ball’s position, before appropriately switching to the moving filter once

the ball’s velocity has become apparent; with the slight gap in the strings of blue dots

marking these occurrences. Also shown is the correct and accurate estimate of the ball’s

velocity for each of the five trials, further evidenced by Figure 3.8. As well as the stability

of the estimate of the stationary ball as the robot walks towards it (Figure 3.9). These

results reflect well on the dual-modal system and the approach used for the selection and

switching between the filters, described in Section 3.1.5.

Unfortunately the images themselves do not adequately convey the passage of time

and exact progress of the filter with respect to the actual position of the ball, without

OffNao’s accompanying camera stream. However the reaction speed of the Goalie [17]

and minimal time required for the velocity to converge on an accurate estimate, provides

testament to the reactivity of the ball tracking system. In Figure 3.7c the position of

the ball estimate is seen following the progress of the ball into the feet, and then back

out again with the rebounding of the actual ball – without the velocity filter following

through and overestimating the ball’s position. This provides evidence for the interaction

between the two filters (also described in Section 3.1.5) improving the reactivity of the

filter’s modes.

Returning to the effect of the elliptical covariance of the resulting ball estimates, it

also facilitated a more accurate calculation of the ”team ball” estimate; a combination of a

robot’s estimate and the distributed estimates it receives from its teammates, described in

Section 3.1.6. The elliptical covariance estimates are associated with a greater weighting

towards the observations of angles to the ball, which allows for essentially a more accurate

triangulation of the team ball. This triangulation is apparent in Figure 3.6d, where the

combination of two robots’ ball estimates has resulted in a team ball more accurate
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than either individual estimate. The resultant team ball is also more accurate than a

combination of the two estimates using the previous system’s circular covariance matrices.

However Figure 3.6e illustrates the dangers of combining robot estimates of the

ball, and the usefulness of the estimate selection approach introduced by this thesis

in Section 3.1.6. In this case, combining the estimates would provide a more accurate

estimate than robot A’s single estimate, but less accurate than B’s. Instead, the selection

algorithm has decided not to combine the observations as they are significantly different,

and selected the more certain observation as the team ball. Figure 3.6h shows a further

example of particularly inaccurate ball observations being excluded from the calculation,

and how the resulting team ball (a combination of the two selected observations) remains

far more accurate than a combination of all four observations.

Figure 3.5 summarises the experiment detailed in Section 3.2.1 and showcased in

Figure 3.6, providing evidence supporting the accuracy of the combined team ball using

only a subset of the team’s estimates. For the single robot case the team ball is simply

equal to the robot’s own estimate, and as established earlier, the error in the estimate

grows rapidly with increasing distance from the robot. The graph shows that as the

number of robots observing the field increases to two and then four, the coverage of the

field and hence diversity of available ball estimates grows – drastically reducing the error

of the combined team ball down to considerably accurate levels. The estimate selection

allowed for beneficial combinations of the observations, but minimised the effect of poor

observations on the already accurate positions.

The benefit of selectively combining ball estimates does not just apply to min-

imising the impact of poor observations. To combine the ball estimates of each robot,

the robot must first be aware of its own position and heading. While in the experiment

the robots were stationary and their poses hard-coded, but in reality during matches this

is not the case. The selection of estimates to be used for combination into the team ball

thus also helps to minimise the detrimental effect of mislocalised robots.

Furthermore, the selective use of the ball estimates for the team ball lead to

an effective method of determining a robot’s heading in the symmetrical environment
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introduced this year. The advancements of the pose tracking system has led to a relatively

stable and accurate estimate of the robot’s pose (see Chapter 4). When the heading of the

robot occasionally does become wrong, it is common for the position estimate to remain

accurate, but merely “flipped” to the opposite side. Hence, a fairly reliable method of

determining if the robot is flipped emerged. If such a mislocalised robot disagrees with

its teammates on the location of the ball, the team ball estimate remains accurate as

a result of the selective approach. If this team ball corresponds to the opposite of the

robot’s own ball estimate, it suggests that the robot is flipped.

The robustness of this suggestion is improved by the measures used to ensure only

the most timely of ball estimates are used for calculation of the team ball (Section 3.1.6).

As such, this mechanism would only be triggered falsely in the very rare circumstance

of two robots seeing the ball in one position, while a third also observes a second ball in

roughly the same position but on the opposite side of the field. Unfortunately however,

to avoid a single flipped robot flipping the rest of the team, this method is only triggered

when a robot disagrees with two or more teammates. This implies that the mechanism

can only be used when at least three robots are on the field, localised (with one flipped),

and with a direct line of sight to the ball.
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Chapter 4

Pose Tracking

This chapter will examine and analyse the system used to track the robot’s own position

and heading, including the methods used to resolve the robot’s heading in the now

symmetric playing field.

4.1 Method

The new approach used this year was briefly introduced in Section 2.7.2, including a

comparison with some of the methods used in the past. The localisation system has

been almost entirely re-implemented, with a focus on utilising the improved detection of

visual features to its fullest potential to provide a more accurate and stable estimate of

the robot’s position.

Section 4.1.1 describes the module used to combine all the observed features into

a single estimate of the robot’s position and heading. This simplification of the obser-

vations to be filtered has facilitated the use of a much simpler system of two Extended

Kalman Filters, detailed in Sections 4.1.2 and 4.1.3. The methods applied to address the

challenges of the symmetrical environment are explained in Section 4.1.4.
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4.1.1 Single Observation Using Iterative Closest Point

Over the years the rUNSWift vision system has developed to provide data on observed

field edges, goal posts, the centre circle, individual field lines as well as valuable field line

constructs such as corners, parallel lines, and T-intersections [22]. Previous approaches

[2, 8, 9] to robot localisation have been characterised by the use of these field features as

separate observations, occasionally combining two features into a more precise estimate

– such as using a pair of goal posts or a goal post and a nearby T-intersection.

With the increase in the types, quantity, availability, and accuracy of these indi-

vidual features, it has become increasingly beneficial to escalate the concept of combining

features. By using our knowledge of the field layout we are able to deduce an estimate of

the robots position and heading that incorporates the entirety of the field feature data

available from the current camera frames.

A modified Iterative Closest Point matching algorithm was developed with team-

mate Peter Anderson to achieve this precise goal, detailed in a separate report [16]. The

algorithm incorporates all the observed features, as well as the current estimate of the

robot’s pose to provide a single estimate of the most likely position and heading of the

robot. Figure 4.1 shows the algorithm successfully combining observations of a variety of

field features into a single accurate estimate of the robot’s position. While complex in its

own right, this matching algorithm and the single estimate it provides has considerable

positive impact on the requirements of the filter system required for pose localisation.

Firstly, the creation of the single estimate isolates a pose filter from the variety of

possible field feature observations, replacing the need for any of the complex geometric

“manual linearisation methods” used previously by Claridge [9]. This abstraction also

replaces the need for any non-linear extensions to the Kalman Filter’s correction update

– as the combined estimate is directly comparable to the tracked state of the filter (the

robot’s position and heading).

Furthermore, the combined estimate drastically reduces the need for a multi-modal

approach, as the single estimate is inherently unimodal. This is in stark comparison with
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using observations individually; some of which, such as the single observation of a corner,

may provide multiple pose hypotheses.

The matching algorithm is also capable of ignoring false positive or inaccurate

feature data, especially when other features are strongly correlated. In the case of strongly

incoherent or inconclusive data (such as when a camera frame is subject to a large amount

of noise), the algorithm can identify such noise and choose not to provide any potentially

confusing estimate to the filter. Estimates that are provided to the filter by the matcher

are also associated with the number of points that were used to generate the estimate.

Information regarding the types of features incorporated is also available, which provide

valuable information on the certainty/reliability of the estimate. The use of this certainty

information, and the estimate itself, is described in more detail in the following sections.

Figure 4.1: Successful robot pose estimation (blue) using observations of two field line
fragments (red), a goal post (yellow), and a field edge (not visible).
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4.1.2 Extended Kalman Filter Approach

A system of two Extended Kalman Filters (introduced in Section 2.3) are used to filter

the estimates provided by the feature matching algorithm and track the robot’s pose

over time. The two filters are identical in their implementation, only differing in their

purpose, maintenance and use within the system – further detailed in Section 4.1.3. This

section examines the details the of the filter mechanics used in the system.

The state vector of the filter used represents the robot’s absolute Cartesian co-

ordinates and heading (θ), using the rUNSWift absolute field coordinates established in

2010 [2]. As usual the covariance matrix represents the degree of uncertainty associated

with the state estimate.

x̂ =


x

y

θ

 P =


σ2
x σxy σxθ

σyx σ2
y σyθ

σθx σθy σ2
θ

 (4.1)

Prediction

Similar to the ball filters described in Chapter 3, odometry data is used as input to

the prediction update of the robot pose filter (see Equation 3.1). The forward, left

and turn variables are directly applied to the estimate of the robot’s pose using the

state transition equations shown below. Again, the convention dictates that the robot’s

rotation be applied before the forward and left components.
f(x, u)

f(y, u)

f(θ, u)

 =


xnew

ynew

θnew

 =


x+ ∆F cos(θ + ∆θ)−∆L sin(θ + ∆θ)

y + ∆F sin(θ + ∆θ) + ∆L cos(θ + ∆θ)

θ + ∆θ

 (4.2)

The below state transition Jacobian matrix was derived in accordance with the

EKF approach, used to approximate the relationship and covariance between the state

estimate variables, as well as the effect of the odometry on the covariance matrix.
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F =


δx
δx

δx
δy

δx
δθ

δy
δx

δy
δy

δy
δθ

δθ
δx

δθ
δy

δθ
δθ

 =


1 0 −|∆F | sin(θ + ∆θ)− |∆L| cos(θ + ∆θ)

0 1 |∆F | cos(θ + ∆θ)− |∆L| sin(θ + ∆θ)

0 0 1

 (4.3)

The effect of this state transition Jacobian are subtle improvements to the ad-

justment of the covariance matrix over time, most apparent when visual observations

are scarce. These adjustments include increasingly scaling the variance of the robot’s

position as the variance of the robot’s heading increases – if the robot is unsure of which

direction it is moving, it becomes less and less certain of its position on the field.

The absolute values surrounding the forward and turn odometry variables in the

state transition Jacobian above (Equation 4.3) were added after experimentation found

that without them, the Jacobian incorrectly reduced the uncertainty of the robot’s po-

sition as it moved backwards. Intuitively, the absolute values are used to isolate the

magnitude of the robot’s movement and rectify this issue.

Experiments were also undertaken to examine the effect of formalising the rela-

tionship between the covariance of the odometry vector, and that of the state estimate, to

provide a more accurate model of the filter’s process noise. A process noise Jacobian was

derived by taking the partial derivatives of the noisy state transition equations (slight

generalisations of those found in Equation 4.2, which included the noise of the odometry

variables) with respect to each of the noise variables.

However in practice when this Jacobian is evaluated and applied to the covariance

matrix of the odometry noise, only an incredibly marginal effect is observed and effectively

the same covariance matrix is added as process noise to the state estimate’s covariance.

This is due to the nature of the estimated odometry noise; the estimated variances of the

forward and left variables are symmetric and are not scaled or adjusted with magnitude,

while the estimated variance of the turn variable is quite small when calculated per-cycle.

As such, evaluation of the noise Jacobian was deemed unnecessary and the code has been

left unused – to be re-evaluated for use if improvements to the odometry noise model are
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made.

For now, the common assumption of additive process noise has been made; and

the system uses a simple approach of estimating the odometry/process noise and directly

adding it to the state estimate covariance. This simple additive approach was partly

refined by varying the amount of process noise that is added; a small amount when the

robot is stationary (still accounting for the possibility of external forces sliding the robot

forward), and a larger addition if the robot is in motion. The result is a simple and

effective process noise model that adequately and reasonably increases the uncertainty

of the state estimate over time, further enhanced by the addition of the state transition

Jacobian.

Correction

The combined “observations” provided by the feature matching algorithm deliberately

mimic the representation of the state estimate – the position and heading of the robot in

absolute terms (Equation 4.1). This allows for a simple linear Kalman Filter correction

update, using the identity matrix as the observation model. This state representation is

deliberately mimicked by the estimates provided by the feature matching algorithm to

streamline the filtering of the observations.

A simple model of observation noise accompanies the estimates provided by the

feature matcher. The variance of each variable in the estimate is estimated as either small

or large, depending on the number and type of visual features that are used within the

matcher to provide the estimate. An estimate derived from only a single point feature

(such as a singular goal post, or the centre circle) is used with a large heading, x and

y variance. Estimates derived from two or more points, such as observations of line

features or multiple goal posts are assumed to have a small heading variance. The x and

y variance are reactive to the types of line features; matches to vertical or horizontal lines

reducing the x or y variance respectively. Furthermore, matches to multiple field lines,

or field lines and single points, reduce the estimate of both the x and y variance, as these

combinations allow for the robot’s position to be estimated more precisely.
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4.1.3 Dual-Modal: Providing an Alternative

The Extended Kalman Filter implementation detailed above in Section 4.1.2 successfully

tracks the robot’s pose by filtering the estimates provided by the observed field feature

matcher. However a single instance of the filter does not sufficiently overcome all of the

difficulties posed by the RoboCup SPL. The single unimodal filter is still susceptible to

error caused by false positive information, which may occasional slip through the feature

matching algorithm. Nor is the single filter satisfactorily capable of solving the kidnapped

robot problem; localising itself with no prior knowledge, or a possibly misleading prior

estimate – a common occurrence due to referee interference during SPL matches.

To simply yet effectively overcome these challenges, a dual-modal approach using

two separate instances of the filter has been implemented. The approach focuses on

the provision of a relatively stable estimate of the robot’s pose by selectively applying

observations to the filters with careful logical management. The first and most important

filter is aptly referred to as the “main” mode, and tracks the current best estimate of the

robot’s state. The main mode assumes its current estimate is approximately correct, and

hence disregards observation estimates that are too far away from its current estimate to

be reasonable (such as those caused by false or highly inaccurate data).

The second filter, dubbed the “alternate” mode, captures the observation esti-

mates that are discarded from the main mode. In doing so, it tracks a possible robot

pose alternative to the estimate provided by the main mode. This alternate pose allows

for the “kidnaps” of the robot that involve large sudden shifts in the robot’s position,

as well as for recovery of the robot’s true pose if errors have compounded in the main

mode. A ‘jump” occurs only if a consistent stream of reliable and coherent information

strongly suggests the alternate mode is correct. The jump occurs by replacing the main

mode with the alternate’s estimate.

The following sub-sections describe more concrete details of the dual-modal sys-

tem, including: the measures used to determine if an observation is “too far” from a

state estimate to be applied, the algorithms used for the management of the two filters,

as well as the initialisation and reset process used for the system.
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Mahalanobis Distance

One key aspect of the implemented dual-modal approach is the screening of observations

that are too far from the current estimate to be feasible. The identification of observation

estimates that are close enough to be considered valid uses two methods. The first simply

checks if the absolute difference between the two estimates’ positions and heading lie

beneath small defined thresholds. This method ensures that estimates within some small

area around the current estimate are valid by default.

The second method uses a metric known as the Mahalanobis distance, introduced

by its namesake Prasanta Mahalanobis [20]. Equation 4.4 below is used to calculate the

Mahalanobis distance between a vector x and a comparable vector µ with a covariance

matrix S:

DM(x) =
√

(x− µ)TS−1(x− µ) (4.4)

The resulting Mahalanobis distance between the two vectors is based on µ’s co-

variance matrix. A Mahalanobis distance less than 1 implies the estimate x is within the

boundaries of µ’s covariance matrix, while greater than 1 implies the opposite. Essen-

tially a µ vector with a higher uncertainty will be “closer” to points around it than a µ

with a smaller uncertainty when using this metric.

For an observed state estimate provided by the feature matcher to be considered

valid, the Mahalanobis distance between the current state estimate and the observed es-

timate must be below a defined threshold. Note that this incorporates the covariance of

the observed estimate, not that of the current state estimate. Both methods were investi-

gated, and minimum and maximum values of the two were also considered. However, the

covariance of the filter’s current estimate varied greatly depending on the availability of

observation data. This meant that the area that was considered valid would range from

unreasonably small to far too large. As such, the observed state estimate was used as µ

for the calculations, with its controlled covariance remaining practical for the purposes

of identifying far away observations.

The Mahalanobis distance described here is also utilised within the ball tracking
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system; for determining if our tracked ball estimate suggests it is outside the play area

(Section 3.1.5), and for examining distances between the team’s absolute ball observations

(Section 3.1.6).

Filter Management

Algorithm 2 provides a summary of the process used to improve stability of the current

state estimate, by selectively applying each observed estimate of the robot’s pose to either

the main or alternate filter/mode. The algorithm also briefly outlines the conditions

required for the resetting and replacement of the alternate mode; being cleared when the

main mode is verified by a very reliable observation (generated with a large number of

observed features), replacing the main mode when it has proven itself, and being replaced

by a new observation if it shows little promise.

Algorithm 2 Observation application, filter replacement and reset

{observation estimate received from feature matcher}
if observation close to main then

apply observation to main
if observation very reliable then

reset alternate
end if

else {observation too far from main}
if observation heading is certain then

{special consideration – see Algorithm 3, Section 4.1.4}
else if alternate empty then

set alternate to observation
else if observation close to alternate then

apply observation to alternate
strengthen alternate
if alternate very strong then

replace main with alternate (“jump”)
end if

else {observation also too far from alternate}
weaken alternate
if alternate very weak then

replace alternate with observation
end if

end if
end if
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One additional restriction on the alternate filter, not shown in Algorithm 2, is

its timeout. If the alternative mode is not reinforced with an observation for some

amount of time, then it is reset. This timeout minimises the effect of rare but consistent

false estimates, as it prevents the alternate mode from building up slowly over time and

eventually replacing the main mode.

Also of importance to the dual-modal system is the idea of the robot being “un-

sure” of its position. A robot becomes unsure of its position when it detects it has been

picked up by a referee, or when it has fallen over. The effect of being unsure prevents

observation estimates that were derived from a single post or line segment from being

used to update the state estimate. This is because these observations are ambiguous,

especially when the heading provided to the feature matcher may have been wrong. For

example, if a robot is pushed during a getup routine, resulting in it facing a horizontal

line rather than a vertical one, then if the field feature matcher is only provided one

line; it would reasonably yet mistakenly match this observed line to the vertical line it

was previously facing! Hence, the unsure status of the robot remains in effect, blocking

ambiguous observation updates until a very reliable estimate confirms its location.

Filter Initialisation

Upon initialisation of the filters, when a robot begins playing (whether at the start of

the game, or recovering from a penalty), it has no accurate prior estimate of its current

position with which to begin its pose tracking using the aforementioned filter management

and selective observation application. At this initial point the robot is considered “lost”,

and first establishes its current position before resuming play.

While lost, the two filters of the system serve a different purpose to the usual

main/alternate relationship. Each filter is initialised with one possible starting position of

the robot with a relatively large variance. For usual normal entry to play, these positions

are on each sideline of the home half, facing inwards, seen in Figure 4.2. However when a

robot is “manually placed” the initialisation positions are near the left and right corners

of the goal box, facing forwards.
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Initialised with their separate starting positions, each filter is run independently.

As the robot scans its head, each filter requests an observation estimate from the field

feature matcher using the observed features and their own current estimate – the result

being two observation estimates using the same visual features but from the two different

initial beliefs. The match rules also dictate that a robot entering play must enter from

its own half, helping to restrict observation estimates to the friendly half.

The two supplied observation estimates are instrumental in quickly localising the

robot and allowing it to enter the game. Quite reliably, when the robot observes a large

amount of visual features, the observation estimates are very similar – and it is assumed

that when both initial different positions seem to “agree”, that a position is the current

estimate. It is accepted as such and the filters transition out of the lost state.

A more complex decision making process was also implemented, however the

agreement method just described is very effective and reliable, often localising the robot

before the more complex method makes its decision. Despite this, it has been left as a

part of the system as a backup mechanism. The decision making process assesses the

two filter’s progress over time, weighting towards one or the other if: one filter’s vari-

ance is significantly smaller than the other; one filter’s update is too far from it but fits

with the other filter’s estimate; or the distance between each filter and its observation is

significantly smaller for one of the filters.

Figure 4.2: Initialised filter positions, expecting but not requiring sideline entry
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4.1.4 Coping With A Symmetrical Environment

As outlined in Section 1.2, one of the primary aims of the innovations of this year’s local-

isation system was to overcome the difficulties arising from the introduction of uniform

goal colours creating a symmetrical playing field. The general approach implemented

towards achieving this goal involved incorporating methods of determining the robot’s

absolute heading with certainty into the formation of the robot pose estimate observa-

tions.

The observed field feature matcher, briefly described in Section 4.1.1 (with fur-

ther detail provided by Anderson [16]), uses the field geometry and a modified Iterative

Closest Point algorithm to narrow the possibilities of the robot’s current pose. Once the

hypotheses have been generated based on the observed features, the matcher uses the

robot’s current position estimate to identify which hypothesis is most likely – supplying

it as the combined feature estimate of the robot pose to the filter system.

Often when field feature data is in abundance or conclusive, the matcher will result

in two hypotheses; the correct position, and its symmetric equivalent on the opposing

side with a mistaken heading. However, before examining the current estimate to deduce

which is correct, two approaches are used to resolve the ambiguity in the robot’s heading;

• Team Ball: The combined team estimate of the ball’s position, detailed in Section

3.1.6, is used as an indicator to the heading of the robot when at least two other

teammates agree on a position of the ball that clashes with the robot’s own obser-

vation of the ball (a team ball status of Disagree). Two possible absolute positions

of the ball are calculated using the robot’s filtered robot-relative estimate and the

two symmetric estimates of the robot’s current pose. If one absolute position of

the ball fits well with the team ball estimate, and is significantly closer to the team

ball than the other absolute ball estimate, then this is used as evidence that the

associated robot pose has the correct heading.

• Natural Landmarks: Introduced by Anderson [16], observed visual features

(“natural landmarks”) of the environment surrounding the playing area are com-

60



pared with stored feature data associated of the two ends of the field – observed

at the commencement of each half. If the observed features strongly correlate with

one end, this implies that the robot’s camera is pointed towards that end and from

this the robot’s heading can be extrapolated and the appropriate pose hypothesis

chosen.

When one of the above methods is used to validate the robot’s heading, then the

estimate provided by the feature matcher is given special consideration in order for the

robot to avoid discarding this vital information, as well as to react to it as quickly as

possible to minimise the amount of time the robot spends “flipped”.

The implementation of the special consideration given to these observations is

outlined in the following Algorithm 3, with Algorithm 2 of Section 4.1.3 illustrating its

place within the broader application of observations. Simplified, the algorithm describes

how if such an observation estimate agrees with the position (but not necessarily the

heading) of the mode of one of the system’s filters, then this mode’s heading is corrected

and its estimate becomes the new current estimate.

Algorithm 3 Special consideration for observations with a verified heading

{observation estimate received from feature matcher, with verified heading}
{observation not applied directly to main mode}
if observation heading different to current heading, or unsure of current heading then

calculate flipped main mode {opposite of current main}
calculate flipped alternate mode {opposite of current alternate}
trustAlternate← observation very reliable, or alternate already strong
if observation close to flipped main then

replace main with flipped main
else if observation close to alternate, and trustAlternate then

replace main with alternate
else if observation close to flipped alternate, and trustAlternate then

replace main with flipped alternate
else if observation very reliable then

replace main with observation
end if

end if
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4.1.5 Applied Localisation: Dynamic Ready Skill

One of the most obvious and telling examples of the localisation system’s pose tracking

is the team’s behaviour during the “Ready” state of the game. In this state, each team

of robots has 45 seconds to strategically position themselves in their half of the field,

in anticipation of the commencement of the next stage of play. The rules define legal

positions for the attacking and defending teams, and failure to reach legal positions

results in the significant penalty of “manual placement”. Hence, the “Ready Skill” of a

team is an important exercise in the speed, reliability and accuracy of the localisation

system.

To highlight the improvements to the pose tracking system, a dynamic approach

to the Ready Skill was implemented. In such an approach, the kick-off positions are

strategically assigned to each robot using the entire team’s estimated positions – a stark

contrast to statically assigning each robot’s kick-off positions for the duration of the

match. However this does not include the Goalie position, as the rules dictate that

player number one is always assigned to that role.

Two main aims of the dynamic approach emerged, to provide the most significant

improvement over the static assignment. The first is to always prioritise the “striker”

position; the position closest to the ball and obviously the most important. With static

assignment, if the robot assigned to that position is incapacitated, it will go unfilled even

if other robots are available. The second aim of the strategic assignment is to attempt to

minimise the amount of walking required from the robots – minimising the time required

and also maximising the stability and chance of success.

The challenges faced by the dynamic approach included: possibly quite large shifts

in the estimates of each robot’s position; the entrance and exit of teammates at any time

from crashes or penalties; and the presence of obstacles or other errors that cause some

robots to move slower than the others.

With these factors in mind, an algorithm for the assignment of positions was de-

veloped, to be run on each robot individually at every time step (constantly re-evaluating
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the assignments), using the most recent information available regarding the position of

each team member. Algorithm 4 provides a summary of the approach used, and Figure

4.3 provides an example of its application.

Algorithm 4 Ready skill dynamic position assignment

assign closest player to striker (position 2)
supporter1← closest available player to position 3
supporter2← closest available player to position 4
if supporter1 = supporter2 then

{same player closest to both positions}
if supporter1 closer to position 3 then

assign supporter1 to position 3
assign closest available player to position 4

else
assign supporter1 to position 4
assign closest available player to position 3

end if
else

assign supporter1 to position 3
assign supporter2 to position 4

end if

Figure 4.3: Ready Skill Dynamic Position Assignment Example
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4.2 Results

4.2.1 Ambiguous Entry, Kidnapping and Line-Up Accuracy

To demonstrate the robot’s pose tracking system, a variety of experiments were under-

taken. The purpose of these experiments is to provide examples of a robot;

• Localising without a prior estimate – such as when it enters the field at the start

of play or returns from the penalty state. Usually entry is assumed to be from

the sideline, but the robot is also capable of initially determining its position from

within the field.

• Recovering its localisation from false prior information – such as after being “kid-

napped” and placed elsewhere. This kidnapping is akin to being displaced by falling

or pushing or being moved around by referees.

• Accurately tracking its own pose as it moves towards a destination – whether it is

lining up for a Ready skill, or following a ball and preparing to kick it.

The experiments fall into two categories. Table 4.2 displays the results of the

experiments involving the robot entering from the sidelines, and then proceeding towards

a number of predefined positions on the field. The destination positions chosen are a

representative sample of the positions used during the Ready skill line-ups.

Table 4.3 summarises the experiments where the robot is started in the centre

of the field (in two different directions), and then is almost immediately kidnapped and

taken to a position some distance off (also with a variety of headings). In each of the

kidnap experiments the robot is then required to proceed to the Striker destination. A

precise description of the entry and kidnapping drop-off positions used in the experiments

are provided in Table 4.1.

For each experiment, the robot stops once it believes it has reached a point close

to its destination. The results shown in the tables are defined as the differences between

the actual measurement of the robot’s final position, and its own estimate of its position
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once it had stopped. Precise data on the actual final heading of the robot was not

recorded, however it was observed to be within very reasonable margins of error for each

experiment. The position results for the sideline entry experiment are also shown as

a graph in Figure 4.4, to aid in comparing the final position error with the different

destination points selected for the robot’s line-ups.

The actual final position and estimated final pose of the robot used for the cal-

culation of the results are also shown in the visualisations of the data in Figures 4.5 and

4.6. Also visible in these visualisations are the actual entry positions of the robot and

the initial estimate of its position in each experiment. The precise differences between

the actual and estimated starting pose are provided as addendums in Appendix B, as

these are only the very first estimates of the robot’s pose – once it has decided on a main

mode, but not necessarily before it has converged. It suffices to note here that on average

the starting estimates are within 15cm and 5◦ of the actual starting position.

Furthermore, the figures represent the robot’s estimated position over time as a

large number of small dots (forming the purple line), in order to observe the pose estimate

as it reacts to the robot’s progression. Figure 4.6 also shows where the estimated pose

has switched (or “jumped”) to the alternative mode, as described in Section 4.1.3, in

reaction to the kidnapping of the robot. Figure 4.6b shows a clear single example of such

a switch, while Figure 4.6c shows an example of the main mode instead converging to

the new position of the robot.

The different entry positions of the robot, and the kidnapping’s changes of the

robot’s position and heading, were deemed sufficient to demonstrate the pose tracking

system’s ability to react to a variety of scenarios and changes in observation estimates –

provided from the field feature matching algorithm (see Section 4.1.1). Scenarios where

the robot’s heading is “flipped”, such as kidnapping it to the opposite position on the field,

were not assessed in these experiments, as the measures against such flips rely on the team

ball and detected natural landmarks. These are more suited to assessment individually or

in proper game conditions. See Section 3.2.1 for team ball results, Anderson’s report on

natural landmarks [16], and Sections 4.2.2 to 4.2.4 for data on the system’s performance

during RoboCup 2012.
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Table 4.1: Experiment Position Descriptions

Name X (mm) Y (mm) Heading (◦) Description

Right Sideline -1200 -2000 90 Upper right sideline entry
Left Sideline -1800 2000 -90 Lower left sideline entry
Penalty Forwards -1200 0 0 Penalty spot facing forwards
Penalty Backwards -1200 0 180 Penalty spot facing backwards
Drop Forwards -1200 -1100 0 Side position facing forwards
Drop Left -1200 -1100 90 Side position facing left
Drop Backwards -1200 -1100 180 Side position facing backwards
Drop Right -1200 -1100 -90 Side position facing right

Table 4.2: Sideline Entry and Line-Up Experiments

Experiment Entry Position Destination Final Position Error (mm)

1 Right Sideline Midfield Centre 161.29
2 Right Sideline Striker 64.68
3 Right Sideline Midfield Right 100.19
4 Right Sideline Supporter 88.62
5 Right Sideline Goalie 243.97
6 Left Sideline Midfield Centre 187.90
7 Left Sideline Striker 45.56
8 Left Sideline Midfield Right 140.82
9 Left Sideline Supporter 94.40
10 Left Sideline Goalie 208.71

Average 133.61

Table 4.3: Field Entry and Kidnapping Experiments

Experiment Entry Position Kidnap Drop Position Final Position Error (mm)

11 Penalty Forwards Drop Forwards 22.74
12 Penalty Forwards Drop Left 54.72
13 Penalty Forwards Drop Backwards 85.61
14 Penalty Forwards Drop Right 169.91
15 Penalty Backwards Drop Forwards 106.59
16 Penalty Backwards Drop Left 71.59
17 Penalty Backwards Drop Backwards 67.93
18 Penalty Backwards Drop Right 26.69

Average 75.72
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Figure 4.4: Sideline Entry and Line-Up Experiment Results

(a) Left Sideline Entry Experiments (b) Right Sideline Entry Experiments

Figure 4.5: Sideline Entry and Line-Up Experiment Visualisations
Actual entry point (blue) vs. initial estimated belief (white).

Actual final position (black) vs. estimated final pose (purple).
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(a) Combination of all Field Entry and Kidnapping Experiments.
Each experiment demonstrated successful recovery after kidnapping.

(b) Mode Switching (Experiment 15) (c) Mode Convergence (Experiment 14)

Figure 4.6: Field Entry and Kidnapping Experiment Visualisations
Actual entry point (blue) vs. initial estimated belief (white).

Actual final position (black) vs. estimated final pose (purple).
Actual kidnapped drop point (red) vs. mode switch estimate (orange).
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4.2.2 RoboCup 2012 General Performance

rUNSWift participated in eight official matches of RoboCup 2012, providing the ultimate

stage for the team’s work, as well as ample opportunity to observe and assess the effec-

tiveness of the described changes to the localisation system. Video footage of seven of

the matches were further analysed in detail. Unfortunately the footage of one match did

not provide sufficient coverage of the match to be included in these results.

The streamlined dual-modal pose tracking system had no issue running within

the imposed time constraints, and was able to process all the incoming observation esti-

mates. Of particular significance this year was the absence of the need for the robot to

intermittently pause with the objective of providing more definitive visual observations.

This resulted in vast improvements in regards to the time taken to move towards the

ball and shoot, as valuable seconds are no longer spent looking up to scan for the goal

in order to decide on the angle with which to aim. The absence of the need for such an

“active localisation” was one of the critical factors in the success of the team; placing

3rd overall and ranking as the top scoring team in the competition. A variety of factors

are attributed to this significant advancement, a further discussion of which follows in

Section 4.3.

In addition to maintaining the estimate of the robot’s pose over time, the pose

tracking system also establishes an initial estimate remarkably quickly and reliably. This

was important at the beginning of each half’s initial Ready skills, but also throughout

matches as robots return to play from being penalised or otherwise removed. Quickly

establishing a position allowed robots to enter play or begin their Ready skill as soon as

possible, already with a reliable pose estimate. When re-entering the game this clearly

aids the team by maximising game time for each robot, but for the Ready skill this was

particularly important.

A minimal time required for determining an initial pose estimate allowed for

the robots to be placed in any configuration, without worrying about the possibility of

mistakenly placing robots in the wrong pre-defined positions – a fairly common occurrence

under the stress of competition. Combined with the dynamic approach to robot allocation
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developed 4.1.5, this helped maximise the robustness of the Ready Skill (further examined

in Section 4.2.4. The quick initial estimate also facilitated the robots moving to their

Ready positions quickly, thus allowing enough time for a full scan of the surrounding

environment’s natural landmarks.

Robot entries were observed 45 times in the video footage of the matches. Of

these, 37 (∼ 82%) had determined their initial estimate and begun moving into play

almost instantaneously – within roughly one second of becoming active. Within roughly

two seconds, 44 (∼ 98%) of the observed robots had begun their entrance, whilst the one

remaining entry took roughly three seconds. The vast majority of the time was spent

waiting for the head to pan and provide feature rich camera frames of the goal area or

centre circle. One further robot entry was observed in the footage; however this robot

had not been turned to face the field by the referee in time. Despite this error, the robot

completed its initial scan, initiated a wider scan by rotating its body, decided on an

estimate of its pose from a glimpse of the home goal area, and begun moving into play

within six seconds.

The team also performed particularly well in regards to the introduction of the

uniform goal posts and symmetrical environment. Out of the entirety of the seven games

analysed, only a total of thirteen discernible flips were observed, and the team successfully

avoided scoring any own goals. The localisation and in particular its use of detected

natural landmarks [16] to detect and correct flipped robots, was also showcased in the

Technical Challenge of the competition. This demonstration was awarded 2nd place.

4.2.3 RoboCup 2012 Striker Accuracy

To provide an indication of the accuracy of the robot’s pose estimate throughout the

matches, the kicks observed in the match footage were assessed. These included any

normal kick carried out by a robot, or quick forward “jabs” made. These kicks are

only ever made by robots believing they are aiming for the opponent’s goal. As such,

determining whether the aim of the kick was “on target” provides a clear indication of

whether the robot was localised at that time with an accurate estimate of its pose.
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The aim of the kick is defined as essentially the direction the kicking foot attempts

to kick the ball. This is equivalent to the direction the ball would travel assuming it is

struck correctly and strongly, and is not intercepted by any obstacles. For example, if a

robot is perfectly lined up to kick the ball into the goal, but is interrupted by an adversary

pushing it over, this can still be interpreted as the robot having been localised. Using

the aim of the kick for data analysis more data and removes the uncertainty associated

with the actual kick and resulting velocity of the ball.

Table 4.4 shows a breakdown of all the observed kicks, sorted into one of the

following categories;

• Correct: The kick was aimed directly into the opponent’s goal. This is evidence

that the robot’s pose estimate was accurate.

• Close: The kick was aimed very close to the goal, either aimed towards hitting

the goal post or going out over the baseline. This implies the robot’s pose estimate

was incorrect by a small margin.

• Miss: The kick was not aimed towards the goal, but instead towards the sideline.

This implies the robot’s pose estimate was incorrect by some considerable margin.

• Flipped: The kick was aimed directly towards the home goal! This implies that

the robot’s pose estimate was “flipped”.

Table 4.4: Kick accuracy results from official matches

Match (versus) Correct Close Miss Flipped

RoboCanes 17 1 0 0
Dutch Nao Team 19 0 1 0
B-Human 15 0 1 0
TJArk 15 2 1 3
Austrian Kangaroos 18 0 1 1
Austin Villa 26 1 1 0
HTWK 24 4 1 1

Total 134 8 6 5

71



4.2.4 RoboCup 2012 Ready Skill Performance

For further indication of the accuracy of the pose tracking system, the results of each

Ready Skill observed in the official matches was recorded and is summarised in Table

4.5. As explained in Section 4.1.5, the Ready skill requires each robot to line-up at its

assigned position within 45 seconds, hence relying heavily on an accurate estimation of

the robot’s pose. Figure 4.7 shows an example of an observed complete Ready Skill.

The outcome of each robot observed attempting the Ready Skill was sorted into

one of the following categories;

• Correct: The robot successfully completed the Ready Skill, finding it’s correct

position and remaining there. This implies the robot’s pose estimate was accurate.

• Error: The robot was on track to successfully completing the Ready Skill, observed

either in its correct position or very clearly progressing towards it. However an error

occurred that prevented it from fully completing the Ready Skill, which was not

related to the localisation of the robot. Appendix C provides a more detailed

breakdown and description of these errors.

• Incorrect: The robot was not in the correct position by the end of the Ready Skill.

• Flipped: The robot ended up in the correct position, but on the opposing half of

the field!

Table 4.5: Ready skill performance results from official matches

Localised Mislocalised
Game Correct Error Incorrect Flipped

RoboCanes 19 0 1 2
Dutch Nao Team 39 0 0 1
B-Human 19 4 0 0
TJArk 17 3 2 1
Austrian Kangaroos 19 5 0 2
Austin Villa 51 2 0 1
HTWK 49 2 0 2

Total 213 16 3 9
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Figure 4.7: Team rUNSWift successfully completing a defensive Ready Skill

4.3 Discussion

This year, the rUNSWift team has enhanced a variety of the robots’ perceptions, whose

effect on the localisation systems should not be underestimated. An improved walk

engine provided more accurate walk odometry data [17], while visual odometry data was

also introduced to help detect and account for the robot slipping on the carpet, being

caught on obstacles, as well as identifying changes in the heading of the robot as it was

being lifted through the air [16]. This enhanced odometry data then directly influenced

the accuracy of predictions of the robot’s pose estimate.

The upgraded features of the Nao v4 robots were also utilised. The faster processor

and availability of both cameras at once, coupled with versatile feature detection methods

[22], provided a far greater stream of observed field feature data. This feature data

was then combined with the new matching algorithm developed to provide accurate

observation estimates of the robot’s pose (see Section 4.1.1, or [16] for further detail and

assessment).
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The experiment results and analysis of RoboCup matches in Section 4.2 provides

strong evidence of improvements to many key aspects of the robot’s localisation system.

These improvements are attributed to a combination of the advancement of the prediction

and observation inputs described above, as well as the pose tracking system that utilises

them – the focus of this thesis, detailed earlier in Section 4.1.

The pose tracking system used Extended Kalman Filters with a more accurate

process model that encapsulates the relationship between the odometry prediction in-

puts and the estimate of the robot’s pose and its uncertainty. This has facilitated the

incorporation of the enhanced odometry data, thus a more accurate predicted estimate

of the robot’s pose is available over time. This estimate can also be provided to the

observed feature matching algorithm, enabling it to then provide more accurate obser-

vation estimates – as the more accurate initial estimate and importantly its associated

uncertainty allows it to select more appropriate estimated positions. The proven result

of this is the capability of the robot to maintain its pose estimate without the need for

“active localisation” during play, with only a very minor (often almost instantaneous)

initial entry scan, as explained in Section 4.2.2.

The stability of the new pose tracking system and its inputs is also visible in

the results of the experiments of Section 4.2.1 and Figure 4.5 in particular. In each

experiment, the robot proceeded directly to its destination, and the estimates of the

robots’ pose closely resemble this, without any significant observable deviations. The

stability of the estimates throughout the experiments also shows the effectiveness of

the approach used to remain robust against noisy and false observations, by selectively

applying and discarding observed estimates (see Section 4.1.3).

The experiments are also testament to the accuracy of the system, with the results

of the error of its final position estimate being quite small compared to the size of the

field (see Tables 4.2 and 4.3). Figure 4.4 also shows the expected correlation between

the accuracy of the robot’s estimate, and the quality and availability of field features.

The Goalie destination resulted in the least accurate line-up in the experiments; as the

position within the goals facing outwards has the least amount of available feature data

– usually only the goal box line in front of it.
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Additionally, Figure 4.5 shows how the Goalie’s observed single line feature has

only provided an accurate estimate of the Goalie’s position away from the line. The

majority of its final error is clearly visible as being associated with the ambiguity of the

robot’s lateral translation along the line. Observations of the field sidelines to the left

and right of the Goalie normally reduced this ambiguity and refine the robot’s position

estimate during matches; however the camera calibrations used in the experiments were

not tuned to the standard used for competitions and such observations at the limits of

the vision system’s capabilities were not available. This highlights the importance of

field features and how with even a rough initial estimate of the robot’s pose, combining

observations of merely two distinct field lines can result in very precise localisation.

The kidnapping experiments shown in Table 4.3 and Figure 4.6 provide further

evidence of the accuracy of the pose tracking system, even with sudden shifts in the

robots position. In each test the robot was successful in quickly and accurately re-

establishing the estimate of its pose and proceeding to its destination with very little

discernable impact on the measurement of its final error. These experiments help validate

the systems dual-modal approach (Section 4.1.3). Figure 4.6b shows an example of the

system reacting by switching to the alternate mode when a clear substantial shift in the

robot’s pose has been detected.

However these mode switches are relatively rare; they are not seen in any of the

sideline experiments (Figure 4.5), and only four are visible in the visualisation of all

eight kidnapping experiments (Figure 4.3). Figure 4.6c shows an example of the main

mode instead converging to the robot’s new pose. In this case the filter system would

have increased the uncertainty of the robot’s state estimate as the robot was carried

– sufficiently increasing the range of observations not discarded to the alternate mode

(again, see Section 4.1.3 for more detail on the precise methods used). It is also quite

possible that visual odometry [16] indicated a change of heading as the robot was moved,

which also would have resulted in a shift and expansion in the range of valid observations.

The range of valid observations, now encompassing the observations from the robot’s new

position, allows the main mode to quickly converge to the new position rather than relying

on a mode switch.
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The selective application of valid observations hence results in the main state

estimate remaining robust to outlying noisy or false positive observations. However, the

main mode is still capable of slightly larger shifts if its uncertainty grows sufficiently – such

as recovering from a slight discrepancy in the pose after a small tussle or period of fewer

observations. This allowed the alternate mode to focus on only larger adjustments to the

state estimate, but only when they have proven to be quite certain (Section 4.1.3). Such

an approach addresses one of the most problematic issues of the 2011 system, identified

by Claridge [9] as the mode switching algorithms not taking the ongoing validity of

its modes into account, and only making instantaneous decisions when particular field

features were observed.

The effectiveness of the new method of using mode switching to manage the

problem of kidnapped or mislocalised robots is highlighted again by the stability of the

robot’s pose estimate, visible in the experiment visualisations; Figures 4.5 and 4.6. There

is a distinct lack of unnecessary and erroneous “jumping” of the robot’s pose estimate

in the experiments, and the significant reduction in the occurrence of these was also

noted in the development and effectiveness of the team’s various higher level behaviours.

Of particular importance are the improvements in the Striker’s line-up speed [23], and

simplification (removal) of the Goalie’s complex localising behaviour [10,17].

The results from the analysis of the RoboCup 2012 Ready Skills (Section 4.2.4) and

Striker kicks (Section 4.2.3), are also indicators of the stability of the filter system. The

lack of active localisation meant that the robots were often observed moving with speed

and efficiency, directly for their assigned line-up positions, right from the commencement

of Ready skills. The Striker also spent much less time oscillating around the ball, as it

was able to decide on a heading to the goal much faster.

However the results of the Striker and Ready Skill analysis also reflect the general

reliability and accuracy of the new pose tracking system. A definitive 134 kicks were

aimed correctly towards the opponent’s goal, while 213 separate instances of correctly

lined-up robots were observed. These figures comprise 87% and 88% of their respective

total observations, and both these large correct majorities provide significant evidence

that overall the robots were reliably able to maintain an accurate estimate of their pose.
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The official match observations also indicated a fairly low occurrence of robots

that were “flipped”, as in they had estimated their heading to be roughly opposite to

their true heading and were mistakenly lined-up on the wrong half or shooting towards

their own goal. The analysis of striker accuracy and Ready Skill performance reported

flipped robots as only comprising between three and four percent of total observations,

and these flipped occurrences were often short lived and appeared to have little effect on

the outcome of games or of the impressive performance of the rUNSWift team overall.

The low occurrence of flipped robots reflects well on the ability of the pose tracking

system to maintain a reliable and accurate estimate, as the initial cause of a flipped robot

is a false estimate of a robot’s ambiguous heading. Indeed many of the flips occurred

after the robot fell over multiple times close to the centre of the field, where accurate

re-establishment of the robot’s heading is the most susceptible to the problem.

The minimal impact of the flipped robots suggests that the team ball (Section

3.1.6) and natural landmarks [16] measures used to detect and correct such occurrences

were reasonably effective. These measures may also have intervened and corrected flipped

robots before the mistake had become apparent.
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Chapter 5

Future Work

5.1 Spherical Coordinate Ball Filter

This year, the introduction of a more accurate model of ball observation covariance had

a pronounced effect on the accuracy and reliability of the resulting state estimate. This

approach used assumptions of the errors of the observed camera angles and mathematical

models to transform these into estimates of observation covariance ellipses in a convenient

Cartesian coordinate system.

Tasse [24] has explored this concept further, comparing the accuracy of filters with

different measurement coordinate system choices. He finds that by simply filtering the

ball observations as expressed in the original spherical coordinates of the camera (the

closest coordinate system to the actual perception process the robots use), significant

improvements can be made to the accuracy of the filtered estimate. This approach is

worth investigating and experimenting with further.

5.2 Observation Variance Measurements

While improvements to the observation and process models have been made, it still

remains for precise measurements of various processes and observations along with their

78



associated errors and biases to be made. These measurements can be then used to

calculate more accurate process and observation updates (and their covariance estimates)

across the entire localisation system.

In particular, an analysis of ball observations would be beneficial, as their distances

appear to be consistently under-estimated, which may possibly be accounted for. Precise

measurement of the robot’s walk, not just in a straight line, but as it turns and moves

laterally, would also help to improve the prediction updates of both the ball tracking and

pose tracking filter systems.

5.3 Distributed World Model Filter

While the accuracy of the distributed team ball was improved, and was able to influence

the correction of flipped robots, this was a relatively rare and situational use case. A

more complete approach to utilising the combined estimate of the team ball could involve

a larger more complex filter, tracking all of the team’s pose estimates and the position

of the team ball, reminiscent of Sushkov’s 2006 approach [8] (also briefly described in

Section 2.4). This would facilitate the ball observations making finer adjustments to

robot pose estimates over time, as well as helping to avoid the flipped robot problem in

addition to reversing it.

Logical further development of the world mode would be to include the increas-

ingly accurate visual observations of other robots, which would have a more direct effect

on adjusting other teammates’ pose estimates. Friendly and opposing robot observa-

tions could be incorporated and combined between teammates, with the eventual goal of

tracking the ball as well as every robot on the field. Such a world model would provide

opportunities for far more advanced strategic behaviour.

The feature matching algorithm and selective application methods currently ap-

plied to the team ball and robot state estimates may also still be applicable to such a

world model, to reduce the complexity and required number of modes. The associated

processes dictating the procedure for dealing with outlying observations would need to
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be more complex to ensure correct data is not thrown away. Care must also be taken

to not allow errors to compound in such a world model, as it is possible to imagine that

false information could easily begin to propagate and recycle through the system once it

has been established.

5.4 Robust Dynamic Ready Skill

While the dynamic position allocation introduced this year had some success, an un-

forseen problem arose on occasion, when an excess of network traffic at the competition

hindered all communication between the robots. As each robot was biased towards ensur-

ing the Striker position was filled, clashes easily occurred when the team’s communication

was down.

Simple methods of detecting network failures and offsetting the allocated positions

appropriately were proposed, however where only partially explored. If the dynamic posi-

tion allocation is to remain incorporated into the team’s behaviour, appropriate measures

against network failure should be included.
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Chapter 6

Conclusion

The use of the Kalman Filter algorithm and its variants has become popular for use

within localisation systems of the RoboCup Standard Platform League. This approach

provides an efficient method of filtering noisy process and observation inputs. However

it relies on a variety of assumptions and constraints on the system to be estimated. This

thesis has described a number of the techniques used by the new rUNSWift localisation

system to overcome these limitations in the pursuit of efficient methods of providing

accurate and robust estimates of the game ball’s state and the individual robots’ poses.

More accurate approximations of the state transition models were used with Ex-

tended Kalman Filters to precisely adjust the state estimate covariance with respect to

robot motion. An improved model of the elliptical covariance of received ball observa-

tions was incorporated along with a comprehensive switching and interaction system of

two filters to result in a more reactive and accurate estimate of the ball’s position, veloc-

ity, and the their associated uncertainty. The enhanced estimate of this uncertainty then

allowed for increased precision when combining the ball state estimates of each individual

robot into a calculation of the collective team estimate of the ball’s position.

The upgraded Nao v4 Humanoid facilitated the greater availability of observed

visual features. These were matched together with field geometry and the current robot

pose estimate to provide a single powerful observed estimate of the robot’s pose, contrast-

ing with various single field features providing multi-modal hypotheses as observations.
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This observation model allowed for the avoidance of complex multi-modal approxima-

tions, in favour of a much simpler system of two Extended Kalman Filters.

The simplicity of the unimodal observation model allowed for a focus on improving

the stability of the state estimate, rather than the processes required for the maintenance

of a large number of generated modes. A selection process relying heavily on the Ma-

halanobis distance between the state and observed estimates is used to shelter the main

mode from particularly noisy observations – such as those caused by false positive vi-

sual classification. This process, combined with the matched feature observations and

improvements to the robot’s odometry data resulted in a significantly more stable and

accurate estimate of the robot’s pose. A similar selection process was used to choose the

best subset of available ball estimates that agreed with each other, to combine into a

team ball estimate not hindered by inaccurate observation data or pose estimates.

However, observations not selected by these processes were not simply discarded.

The pose tracking system’s alternate mode collected and assessed the validity of the

outlying data over time, making adjustments to the main mode only when clearly ap-

propriate. This enabled the system to recover from compounded error or large shocks to

the robot’s pose. Observations screened from contribution to the team ball were also still

used, serving as identifiers of possibly mislocalised robots. The team ball analysis, main

and alternate modes of the robot’s pose, and detected natural landmark data together

form the basis of the mechanism used to recover mislocalised robots from being flipped

in the now symmetrical environment.

As a result of the above methods and techniques used, the localisation system

has experienced a dramatic improvement. The robots have successfully demonstrated an

ability to maintain an estimate of their position and heading with a high degree of relia-

bility and accuracy. They establish their position quickly, both without prior knowledge

and following sudden disturbances. The system no longer requires the use of active local-

isation behaviours, and remains robust against noisy or false positive data. Furthermore,

the system’s stable estimate displays an aversion to flipping in the symmetric environ-

ment, yet it is also capable of detecting and recovering from such mistakes. Overall, the

new localisation system helped rUNSWift achieve 3rd place at RoboCup 2012!
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[4] A. Burchardt, T. Laue, and T. Röfer, “Optimizing particle filter parameters for

self-localization,” in RoboCup 2010: Robot Soccer World Cup XIV (J. R. del So-

lar, E. Chown, and P. G. Ploeger, eds.), vol. 6556 of Lecture Notes in Artificial

Intelligence, pp. 145–156, Springer Berlin / Heidelberg, 2011.

[5] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo Localization: Efficient

Position Estimation for Mobile Robots,” in Proceedings of the sixteenth national

conference on Artificial intelligence, American Association for Artificial Intelligence,

1999.

[6] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,”

Journal of Basic Engineering Transactions, vol. 82, 1960.

[7] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” SIGGRAPH,

2001.

83



[8] O. Sushkov, “Robot Localisation Using a Distributed Multi-Modal Kalman Filter,

and Friends,” Honours Thesis, The University of New South Wales, 2006.

[9] D. Claridge, “Multi-Hypothesis Localisation for the Nao Humanoid Robot in

RoboCup SPL,” Honours Thesis, The University of New South Wales, 2011.

[10] B. Teh, “Ball Modelling and its Applications in Robot Goalie Behaviours,” Special

Project Report, The University of New South Wales, 2011.

[11] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, Mas-

sachusetts: MIT Press, September 2005.

[12] M. Quinlan and R. Middleton, “Multiple Model Kalman Filters: A Localization

Technique for RoboCup Soccer,” in RoboCup 2009: Robot Soccer World Cup XIII,

Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010.

[13] S. Julier and J. K. Uhlmann, “A New Extension of the Kalman Filter to Nonlinear

Systems,” in The Proceedings of AeroSense: The 11th International Symposium on

Aerospace/Defense Sensing, Simulation and Controls, 1997.

[14] T. Laue, T. J. de Haas, A. Burchardt, C. Graf, T. Röfer, A. Härtl, and
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[15] T. Röfer, T. Laue, J. Müller, A. Fabisch, F. Feldpausch, K. Gillmann, C. Graf, T. J.
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Appendix A

Team Ball Results

See Section 3.2.1 for a detailed explanation of the experimental source of these results,

including robot configuration layouts and ball positions.

Table A.1: Team Ball estimate error (mm), robot configuration A

Trial 1 Trial 2 Trial 3 Average

Position 1 107.67 86.53 95.17 96.46
Position 2 231.91 398.79 393.16 341.29
Position 3 210.40 250.13 221.44 227.32
Position 4 331.76 282.90 290.01 301.55
Position 5 381.04 401.57 366.52 383.04
Position 6 567.16 567.88 656.46 597.17
Position 7 627.15 702.16 628.55 652.62
Position 8 981.69 969.09 981.06 977.28
Position 9 1031.57 1130.89 1067.31 1076.59

Average 496.70 532.21 522.19 517.04
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Table A.2: Team Ball estimate error (mm), robot configuration AB

Trial 1 Trial 2 Trial 3 Average

Position 1 105.75 91.50 75.33 90.86
Position 2 414.52 412.06 249.94 358.84
Position 3 214.25 107.84 22.10 114.73
Position 4 314.58 77.93 100.10 164.20
Position 5 201.79 73.63 32.59 102.67
Position 6 413.69 220.84 167.15 267.23
Position 7 212.69 110.18 85.03 135.97
Position 8 99.39 44.84 132.00 92.08
Position 9 404.77 15.78 121.48 180.67

Average 264.60 128.29 109.53 167.47

Table A.3: Team Ball estimate error (mm), robot configuration ABCD

Trial 1 Trial 2 Trial 3 Average

Position 1 77.86 57.79 98.49 78.05
Position 2 42.46 70.41 76.82 63.23
Position 3 18.15 79.13 45.05 47.44
Position 4 96.85 122.42 122.25 113.84
Position 5 30.50 24.15 49.20 34.62
Position 6 74.46 49.55 88.19 70.73
Position 7 60.67 84.77 47.68 64.38
Position 8 89.75 40.16 71.43 67.12
Position 9 94.14 35.81 50.58 60.18

Average 64.98 62.69 72.19 66.62
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Appendix B

Ambiguous Entry Results

Table B.1: Amiguous Entry Experiments, Initial Pose Estimate Error
See Section 4.2.1 for a detailed explanation of these experiments.

Experiment Position Error (mm) Heading Error (◦)

1 166.64 8.07
2 38.46 1.43
3 170.46 1.88
4 179.80 8.31
5 37.62 7.11
6 131.01 4.33
7 8.25 0.75
8 222.03 1.32
9 65.62 1.74
10 132.69 6.39
11 94.81 2.14
12 204.85 6.27
13 296.06 16.23
14 16.80 4.30
15 223.13 7.29
16 356.79 3.11
17 196.78 1.23
18 97.68 1.61

Average 146.64 4.64
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Appendix C

Ready Skill Performance

Correct: As defined in Section 4.2.4, the robot successfully completed the Ready Skill.

Close: The kickoff robot was penalised for being slightly too far forward. On one occasion

an opponent had pushed the robot forward just before the time ran out. On the other

occasion a robot was not properly calibrated for its old body.

Clash: Network difficulties caused two robots to be assigned to the same position.

Timed Out: Too many obstacles or falls caused the time to run out before the robot

made it into position.

Penalised: The robot was penalised for pushing as it approached its position.

Table C.1: “Localised” robots during official match Ready states

Game Correct Close Clash Timed Out Penalised Total

RoboCanes 19 0 0 0 0 19
Dutch Nao Team 39 0 0 0 0 39
B-Human 19 0 4 0 0 23
TJArk 17 0 2 0 1 20
Austrian Kangaroos 19 0 3 1 1 24
Austin Villa 51 2 0 0 0 51
HTWK 49 0 0 1 1 51

Total 213 2 9 2 3 229
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