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Abstract: Imaging technology plays an enormously important role in real-time robotics. Using sophisticated vision

algorithms, these autonomous humanoid soccer robots are able to precisely identify their surroundings using extremely

limited computing resources. In this project, a number of new student-led innovations helped catapult an Australian

university to the top level of international RoboCup soccer.

Comparison to Leaders in the Field / Student Contribution: The RoboCup Standard Platform League

attracts universities and research groups from all around the world, with 25 teams qualifying for the 2012 World Cup.

The UNSW team (rUNSWift) placed third overall, and scored more goals during the competition than any other team.

The rUNSWift RoboCup entry and the innovations described in this report are entirely student work.
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1 Introduction

The RoboCup Standard Platform League (SPL) is an international robot soccer competition

in which all teams compete with identical humanoid robots (the Aldebaran Nao). Each game

runs for two 10 minute halves where two teams, comprising four Naos each, compete on a

6 x 4 metre soccer field. The robots perceive their environment primarily through their two

forward-facing 30 fps cameras, under challenging real world conditions. There are no electronic

or visual beacons used to aid the robots’ situational awareness, apart from generic soccer field

line markings. In 2012, for the first time, the field was symmetric about the half-way line with

both sets of goal posts coloured yellow, as shown in Figure 1. All image processing is performed

on-board the robots’ low-power Intel Atom 1.6GHz processor, which was upgraded this year

from a 500MHz Geode. The same processor simultaneously performs the robots’ autonomous

localisation, motion planning and behaviour functions, meaning that computational resources

are extremely limited and fast image processing is critical for success.

Fig. 1. Left: The RoboCup SPL field (dimensions in mm). Right: An Aldebaran Nao used in the competition.

Given the robots’ severe resource constraints, it is not surprising that perception of the

field environment remains one of the biggest hurdles facing many RoboCup teams. This project

was motivated by the desire to achieve a level of visual awareness sufficient for each robot

to be precisely localised at all times during the game, without needing to undertake specific

localisation behaviours (like stopping to look around). After all, it is only after this objective
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is attained that higher level strategic soccer behaviours, such as team formations, passing, and

marking, will become most effective.

In pursuit of this aim, this paper outlines a number of new techniques that were devel-

oped in 2012 by the authors to improve the robots’ perception of their environment. These

enhancements include:

1. Exploitation of increased camera resolution and field of view,

2. Development of an extremely fast 1D SURF image feature,

3. A visual odometry module, and

4. A natural landmark localisation system,

All of these techniques were demonstrated in the 2012 RoboCup SPL competition, where

the UNSW team (rUNSWift) placed third. Videos of rUNSWift’s 2012 RoboCup matches can

be found on the UNSW Computing Youtube channel1.

2 Exploitation of Camera Resolution and Field Of View

Along with the upgraded processor, the Nao v4 introduced in 2012 offered improved camera

resolution and allowed both cameras to be accessed simultaneously, effectively increasing the

robots’ vertical field of view from 34 degrees to 86 degrees. These hardware improvements offered

a huge amount of potential to improve all aspects of the rUNSWift vision system. Access to

both cameras at the same time allowed simultaneous tracking of the ball and field features.

This in turn removed the need for any pause in game play to actively localise, since the robot

is constantly receiving confirmation of its position. Figure 2 Left shows the extra features on

offer when lining up the ball with two cameras instead of one.

In addition to this, the increased processing power allowed the resolution of object detection

scans in the top camera image to be doubled. As a result of this, the robot is able to detect

field lines up to 3m away, instead of only 1.5m away in 2011. It is also able to reliably track the

ball 6m (length of the field) away instead of 4.5m in 2011. Figure 2 Right shows the goal keeper

now being able to detect the centre circle from its own goal box, allowing it to stay localised

without looking away from the ball. It also shows that the goal keeper can track the ball from

the other side of the field, which helps the team maintain a strong belief about where the ball

is at any point in time. A video showing detected field elements from the Nao’s view during

kidnap recovery tests is available 2.

1 http://www.youtube.com/user/UNSWComputing
2 https://dl.dropbox.com/u/36660950/ICPhiquality.mp4
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Fig. 2. Left: What the robot sees whilst shooting a goal. Right: What the goal keeper sees in a colour-classified image.

3 1D SURF Image Features

With the introduction of symmetric goal colours in 2012, a robot that becomes lost, for example

after a complicated fall in the middle of the field, is not able to immediately resolve one end

of the field from the other. This can result in robots changing teams midway through the

match, with disasterous consequences! To overcome this problem, a ‘kidnapped’ robot needs

to recognise landmarks in the unstructured environment around the field. This can be done by

extracting scale-invariant local features from images, and finding feature correspondences, and

ultimately a perspective transformation, between two images containing the same object.

SURF (Speeded Up Robust Features) [5], [4] and SIFT (Scale-Invariant Feature Transform)

[9] are two existing methods for extracting invariant local features from images. However, these

methods are relatively computationally expensive and difficult or impossible to implement in

real time on a resource constrained robot. To overcome these resource limitations, an optimised

feature detector consisting of a modified one dimensional variant of the SURF algorithm was

developed (1D SURF). This method was then applied to a single row of grey-scale pixels

captured at the robot’s horizon, as shown in Figure 3. The horizon image was chosen for

analysis because, for a robot moving on a planar surface, the identified features cannot rotate

or move vertically. The use of a 1D horizon image and other optimisations dramatically reduces

the computational expense of the algorithm, while exploiting the planar nature of the robot’s

movement and still providing acceptable repeatability of the features. To our knowledge only

one group of researchers have published work that uses 1D image features for robot navigation

[6], [7], [8], however they used SIFT features and benefitted from the availability of an omni-

directional camera in their application.

Consistent with the original SURF algorithm, 1D SURF features are relatively robust to

lighting changes, scale changes, small scene changes and small changes in viewing angle. As

shown in Table 1, the recognition performance 1D SURF features extracted from the image
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Fig. 3. Left: Image captured by the Nao robot showing superimposed 30 pixel horizon band in red, and the extracted
grey-scale horizon pixels at the top of the image. Right: Matching 1D SURF features between two similar images, with
outliers discarded using RANSAC.

horizon (evaluated based on the area under the ROC curve) is not as strong as SURF features

extracted and matched across the entire image. However, 1D SURF executed more than one

thousand times faster than SURF in this experiment. The mean execution time on the Nao

v4 robot is 2 ms, which means the technique can be used in real-time on this hardware. Fur-

thermore, as highlighted in Figure 4, the repeatability of 1D SURF features is still sufficient to

largely resolve the SPL field-end ambiguity using just two stored images, at least in a relatively

distinct environment with few scene changes. As such, 1D SURF features strike an excellent

balance between repeatability and extreme speed.

Table 1. Running time and recognition performance of feature extraction algorithms on a 2.4GHz Core 2 Duo laptop.

Feature
extraction
technique

Feature matching technique Mean
no.
features

Mean ex-
traction
time (ms)

Mean
matching
time (ms)

Area under
ROC curve

SURF Nearest neighbour (NN) 429 222.3 19.1 98.8%
1D SURF Nearest neighbour (NN) 59.2 0.158 0.069 88.0%
1D SURF NN with RANSAC 59.2 0.158 0.076 89.6%
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Fig. 4. Heatmap showing the recognition response in different areas of the field to 1D SURF features extracted from a
single stored image.

Simultaneously with our own developments, other researchers have made significant progress

developing fast binary image descriptors such as FREAK [1]. In future work, these fast binary

descriptors might also be adapted to a 1D representation, potentially providing even greater

efficiency improvements for mobile robots operating in planar environments.

4 Natural Landmark Localisation

The purpose of the natural landmark localisation system is to disambiguate one end of the

soccer field from the other, to ensure that rUNSWift robots will never end up playing for the

opposition team. Although 1D SURF features exhibit excellent recognition performance using

simple nearest neighbours matching to a single image, as shown in Section 3, in practise the

off-field environment consists mostly of spectators who tend to move around. As such, it is

necessary to store many images of each goal and more scalable feature matching techniques are

required.

With this in mind, a ‘bag of words’ natural landmark localisation system was developed

that enables each robot to record a database of up to 40 images of each goal area while walking

on to the field at the start of each half. A bag of visual words is a sparse frequency vector.

It counts the number of occurances in that image of each word from a vocabulary of visual

words pre-learned from typical features [10]. The retrieval system, outlined in Figure 5, is fast
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enough to enable every camera frame to be checked against the database whenever a goal post

is visible, with a mean retrieval time on the Nao v4 of 10.2 ms.

Fig. 5. Overview of the natural landmark localisation pipeline. At the end of the process, the robot can identifiy if it is
facing it’s home goal or the opposition (away) goal area, based on the landmarks in the background.

Key elements of the system include:

1. Subset-furthest first K-means cluster initalisation during visual vocabularly learning, which

we found to produce better quality visual words,

2. The use of a stop list, to repress visual words that are too common and don’t contribute to

retrieval performance,

3. Query expansion, which significantly improves the performance of bag of words scene re-

trieval, at little cost [2],

4. Term frequency - inverse document frequency (tf-idf) weighting, which increases the weight-

ing on visual words that appear frequently in the image, while decreasing the weighting on

words that appear frequently throughout the whole database and are therefore not distinc-

tive [3],

5. Geometric validation of short-listed image matches using RANSAC, and

6. A voting mechanism and a sliding window to filter observations over time.
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Fig. 6. Left: Illustration of the positions used in the kidnap experiment. In each case the robot was required to return
to the kick-off position labelled as position 1. Right: Kidnap performance of the natural landmark localisation system in
repeated trials.

In order to evaluate the effectiveness of the complete natural landmark localisation system,

a demonstration was devised which was also used as the rUNSWift SPL Open Challenge entry,

which was awarded second place. During this demonstration, the robot is allowed 45 seconds

to walk on to the field to the kick-off position, mapping landmarks as it walks. SPL matches

also begin in this fashion. After the 45 seconds expires, the robot can be kidnapped to any field

location and it is expected to return to the kick-off position on the correct side of the field.

The robot is deemed to have arrived when it first stops walking. As illustrated in Figure 6, the

robot was able to disambiguate each end of the soccer field flawlessly during 10 kidnap trials

conducted in the rUNSWift lab. A video illustrating one of these kidnap trials is available3.

5 Visual Odometry

Odometry refers to the ability of a robot to estimate its motion. It is used in the process update

of the localisation filter to account for the robot’s transition to a new position. In previous years

rUNSWift odometry has been quite crude; effectively taking information from the walk-engine

and assuming that the robot will move as directed. However, practical experience indicates that

bipedal robots slip to varying degrees while walking, and often do not walk in straight lines!

On the soccer field this is exacerbated as robots are often bumped by other robots and the goal

posts, or impeded by the touching of arms or feet.

During these manoeuvres it is apparent that the greatest odometry inaccuracy is observed

in the robot’s heading, which can change very quickly, rather than in the forward or sideways

3 https://dl.dropbox.com/u/36660950/VIDEO0002.mp4
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component of the robot’s movement. As the Nao is not fitted with a z-axis gyroscope, a visual

method is required to correct inaccuracies in walk-engine heading odometry, and as always

in this application domain, algorithms are subject to enormous resource constraints. With this

motivation, a visual odometry module was developed using the same 1D SURF features already

used by the natural landmark localisation system. By matching these features across subsequent

frames, this module can accurately measure changes in the robot’s heading over time.

Fig. 7. Odometry tracks for one trial of an uncalibrated Nao robot walking in a 2 m x 2 m square path in both clockwise
(left) and counter-clockwise (right) directions.

As illustrated in Figure 7, use of the visual odometry system results in a significant improve-

ment in localisation accuracy. Repeated experiments indicate that the visual odometry system

can reduce the odometric uncertainty of an uncalibrated Nao by 73%, while remaining robust

to the presence of independently moving objects (such as other robots, or the referee). Further-

more, by analysing heading discrepancies between walk-engine odometry and visual odometry,

obstacle collisions on the left and right sides of the body can be immediately detected and the

appropriate avoidance behaviour taken. For example, it was observed that allowing the robot’s

arms to become limp during a collision avoided a significant number of falls at competition, as

the robot was more easily able to brush past other robots.

Extreme efficiency is achieved by exploiting the planar motion assumption in both the

feature extraction process (using 1D SURF) and in the pose estimation problem, which seeks

to find the heading change between frames by analysing the displacement histogram of feature

matches, resulting in a mean execution time on the Nao v4 of 4.5 ms. The visual odometry

system makes no assumptions about the nature of the environment other than planar motion,

and so it is potentially applicable to a wide range of mobile robot navigation problems. A video
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illustrating the robustness of the visual odometry system in the presence of an independently

moving objects is available4.

6 Conclusion

We have presented a number of related innovations in imaging for real-time robotics, with

results that indicate these systems operate extremely efficiently and effectively. However, the

true performance test for a large scale integrated system is running it under challenging real

world conditions, seeing if it achieves its objectives, and observing how it compares to other

competitors. In this case that means on the soccer field under the pressure of competition

matches.

In 2012 rUNSWift finished in 3rd place overall and 2nd in the Open Challenge, a big im-

provement over the 2011 results where the team was eliminated in the quarter finals. rUNSWift

was also the top goal scoring team in the SPL, scoring a total of 62 goals over 8 games. This

was again a huge improvement on the 2011 results in which rUNSWift scored 23 goals over

6 games. The team also did not score any own goals, which was a big achievement for the

imaging system considering this was the first year in which the goal posts at each end of the

field were the same colour. Anecdotal evidence from watching many games suggests that for

the vast majority of game time, rUNSWift robots were well-localised. Furthermore, this was

achieved without any of the localisation behaviour ‘crutches’ that were previously used, such

as head-scanning before kicking the ball.

Figure 8 shows the results of the semi finals onwards, with the top 4 teams coming from

the University of Texas at Austin (Austin Villa), the University of Bremen (BHuman), the

University of Leipzig (Nao-Team HTWK) and the University of New South Wales (rUNSWift).

4 https://dl.dropbox.com/u/36660950/VOhiquality.mp4
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Fig. 8. Left: RoboCup Standard Platform League 2012 results. Right: rUNSWift ready for action in RoboCup 2012.
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2. R. Arandjelović and A. Zisserman. Three things everyone should know to improve object retrieval. In IEEE

Conference on Computer Vision and Pattern Recognition, 2012.

3. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press, 1999.

4. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (SURF). Computer Vision and Image

Understanding, 110(3):346–359, 2008.

5. H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. Computer Vision–ECCV 2006, pages

404–417, 2006.

6. A. Briggs, C. Detweiler, P. Mullen, and D. Scharstein. Scale-space features in 1d omnidirectional images. In Omnivis

2004, the Fifth Workshop on Omnidirectional Vision, Prague, Czech Republic, pages 115–126, 2004.

7. A. Briggs, Y. Li, D. Scharstein, and M. Wilder. Robot navigation using 1d panoramic images. In Robotics and

Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages 2679–2685. IEEE, 2006.

8. A.J. Briggs, C. Detweiler, Y. Li, P.C. Mullen, and D. Scharstein. Matching scale-space features in 1d panoramas.

Computer vision and image understanding, 103(3):184–195, 2006.

9. D.G. Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision,

60(2):91–110, 2004.

10. Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object matching in videos. pages

1470–1477, Nice, France, 2003.


	Introduction
	Exploitation of Camera Resolution and Field Of View
	1D SURF Image Features
	Natural Landmark Localisation
	Visual Odometry
	Conclusion

