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Abstract. This paper introduces an optimised method for extracting
natural landmarks to improve localisation during RoboCup soccer matches.
The method uses modified 1D SURF features extracted from pixels on
the robot’s horizon. Consistent with the original SURF algorithm, the ex-
tracted features are robust to lighting changes, scale changes, and small
changes in viewing angle or to the scene itself. Furthermore, we show
that on a typical laptop 1D SURF runs more than one thousand times
faster than SURF, achieving sub-millisecond performance. This makes
the method suitable for visual navigation of resource constrained mo-
bile robots. We demonstrate that by using just two stored images, it is
possible to largely resolve the RoboCup SPL field end ambiguity.

1 Introduction

In the RoboCup soccer Standard Platform League (SPL), the field set-up has
changed over the years to progressively remove navigation beacons and other
colour coded visual cues. In keeping with this trend, in the 2012 SPL competition
the goal-posts at either end of the field are to be made the same colour for
the first time. This implies that a robot forced to localise from an unknown
starting position will not be able to resolve one end of the field from the other.
In RoboCup matches this requirement can arise after a complicated fall, for
example when robots become entangled, slip, and are rotated unwittingly.

B-Human’s 2011 Open Challenge demonstration addressed the field-end am-
biguity challenge by using a team-wide ball model, enabling a kidnapped robot
to recover by fusing their own ball observations with those of their team-mates
[10]. The authors acknowledged, however, that this approach could fail in sit-
uations where a robot is alone, unaware that it has been kidnapped, or if the
team-wide ball model is incorrect. An own goal is the potentially disastrous re-
sult of one of these localisation failures. To avoid these problems and to allow
a single robot to localise, a method for extracting unique natural landmarks
from images of the unspecified environment beyond the field is required. In this
context, a natural landmark is defined as a set of scale-invariant local features
that can be used to find point correspondences, and ultimately a perspective
transformation, between two images containing the same object.

SURF (Speeded Up Robust Features) [2], [1] and SIFT (Scale-Invariant Fea-
ture Transform) [9] are two existing methods for extracting invariant local fea-
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tures from images. However, these methods are relatively computationally ex-
pensive and difficult or impossible to implement in real time on a resource con-
strained robot. To overcome these resource limitations, this paper introduces an
optimised feature detector consisting of a modified one dimensional SURF algo-
rithm (1D SURF), applied to a single row of grey-scale pixels captured at the
robot’s horizon. The horizon image is chosen for analysis because, for a robot
moving on a planar surface, the identified features cannot rotate or move verti-
cally, and must always remain in the same order. The use of a 1D horizon image
and other optimisations dramatically reduces the computational expense of the
algorithm, while exploiting the planar nature of the robot’s movement and still
providing acceptable repeatability of the features.

By using 1D SURF we show that a resource limited mobile robot is able to
memorise and recognise natural landmarks seen at the horizon in typical indoor
environments in real time. Consistent with the original SURF algorithm, the
extracted landmarks are robust to lighting changes, scale changes, small scene
changes and small changes in viewing angle. We have used the Aldebaran Nao
humanoid robot to evaluate the 1D SURF algorithm, but the method could be
applied to other vision-based robot localisation problems where the robot moves
on a planar surface and can estimate the position of the horizon in images. The
remainder of this paper is organised as follows: section 2 outlines related work,
section 3 describes the 1D SURF algorithm and section 4 presents experimental
results.

2 Background

Both SIFT [9] and SURF [2], [1] are feature representations that are designed to
be stable under scale and viewpoint changes. Each method identifies potential
features by searching for extrema at all possible scales of a grey-scale image. In
SIFT, this step is implemented efficiently by using the difference of Gaussians
function applied in scale-space to a series of smoothed and re-sampled images.
Once features have been identified, they are accurately localised in both scale
and location by interpolating from a 3D quadratic function fitted to local sample
points. Next, feature points that are poorly located along an edge are eliminated
and an orientation is assigned to each feature, so all future operations can be
performed in a rotation invariant manner. SIFT calculates a 128-dimension de-
scriptor vector for each identified feature based on the 8-bin histogram of the
image gradient in 4x4 subregions around the feature point location. This, com-
bined with the use of a Gaussian weighting function and normalisation of the
descriptor vector, produces features that are invariant to scaling and rotation,
as well as small viewpoint and illumination changes.

SURF is related to SIFT, but instead of using a Difference of Gaussian filter,
SURF uses simple box filters which can be evaluated very efficiently using inte-
gral images. Box filters are used to approximate Gaussian second order partial
derivatives and find the determinant of the Hessian matrix, which is referred to
as the blob response at a particular location and scale. Features are yielded at
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local maxima of this response, found by thresholding the response and apply-
ing non-maximal suppression in a 3x3x3 neighbourhood over the image and in
scales. Like SIFT, SURF also involves feature localisation by interpolating from
a fitted 3D quadratic function, and orientation assignment. The SURF feature
descriptor uses integral images in conjunction with Haar wavelets to calculate a
64-dimension descriptor vector. This is calculated by summing both the signed
and absolute values of both the horizontal and vertical Haar wavelet response
over 25 sample points to generate a 4-dimension vector in each of 4x4 subregions
around the feature point location.

A comparison of SIFT and SURF using a standard testing procedure based
on a range of real-world images found SURF to be faster and more accurate than
SIFT [8]. For this reason we have chosen SURF as the basis of our 1D feature
representation. Several other papers have adapted SIFT methods to operate on
1D data. The closest work to ours [3], [4], [5], use a 1D variation of SIFT to lo-
calise a mobile robot fitted with an omni-directional camera. This was achieved
by identifying SIFT-like features in a 1D circular panoramic image, calculat-
ing feature descriptors based on colour and curvature information, and using
a circular dynamic programming algorithm to match features between images.
Compared to this work, we target a robot camera with a horizontal viewing
angle of only 47.8 degrees, rather than 360 degrees, which dramatically reduces
the amount of information available in a 1D horizon image. Furthermore, for
reasons of computational efficiency we do not use colour information and use
SURF rather than SIFT as the basis for our method.

3 1D SURF

In many respects the 1D SURF algorithm represents the equivalent of SURF,
but using only one image dimension rather than two. SURF searches for blob
response extrema in a 3D scale-space consisting of horizontal location, vertical
location and scale. In 1D SURF, the search is conducted in a 2D scale-space con-
sisting of horizontal location and scale only. However, there are also some other
significant modifications and simplifications which were made to the original
algorithm, as outlined below.

As indicated in Figure 1 Left, the input to the 1D SURF algorithm is a
single row of grey-scale image pixels. The intensity values of these pixels are
calculated by sub-sampling every 4 pixels along the robot’s horizon, and taking
the sum over a band of 30 vertical pixels at each sample point. The vertical sum
minimises the sensitivity of extracted features to errors in the location of the
horizon, and the sum is faster to compute than the mean. The resulting increase
in pixel intensity values can be compensated in the response threshold. The
position of the horizon in the image is determined by reading the robot’s limb
position sensors and calculating the forward kinematic chain from the foot to
the camera, in accordance with the Denavit-Hartenberg parameters previously
determined by the rUNSWift team [7].



4 Peter Anderson, Yongki Yusmanthia, Bernhard Hengst, and Arcot Sowmya

Scale

SURF 1D SURF

Fig. 1. Left: Image captured by the Nao robot showing superimposed 30 pixel horizon
band in red, and the extracted grey-scale horizon pixels at the top of the image. Right:
Identification of local maxima in scale-space. Pixel ’X’ is selected as a maxima if it is
greater than the marked pixels around it.

To identify local maxima of the blob response in scale-space, SURF thresholds
the responses, then each pixel in 3D scale-space is compared to its 26 neighbours
in a 3x3x3 neighbourhood to determine if it is a local maximum. In the case of 1D
SURF, rather than searching for local maxima in a 3x3 scale-space neighbour-
hood, we apply a weaker test and only require that responses be extrema in the
single space dimensional, as illustrated in Figure 1 Right. This relaxation ensures
that sufficient feature points will be detected. It is an important aspect of the
approach that a large number of relatively poor-quality features are generated,
rather than relying on a small number of very distinctive features. A typical 1D
horizon image containing 640 pixels might generate 50 - 70 features, depending
on the parameter values chosen. In our case we use a scale-space consisting of 4
octaves of 3 intervals each.

Since in 1D SURF all features are defined with reference to the horizon, the
SURF orientation assignment step is no longer necessary and can be disregarded.
SURF interpolates the location of features in both space and scale to sub-pixel
accuracy by fitting a 3D quadratic curve to the local image function. In our
application, we found that the additional accuracy provided by this step was not
worth the computational burden, and it was also discarded. Finally, although
the 1D SURF feature descriptor is calculated analogously to the SURF feature
descriptor, due to the reduction in sample space and by using 3 subregions
instead of 4, we produce a 6-dimension feature descriptor rather than a 64-
dimension feature descriptor, allowing for much faster matching of descriptors
across images.

3.1 Application to Natural Landmark Recognition

A simple method is presented to memorise, and subsequently recognise, natural
landmarks using 1D SURF features. Given a test image and a stored image,
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landmark recognition is performed by matching features in the test image to
their nearest neighbours in the stored image, based on the Euclidean distance
between feature descriptors. As before [9], feature matches are considered to be
valid if the nearest-neighbour distance ratio is less than 0.7. Similarly [5], we
then assign a recognition score to the test image calculated as the sum over all
valid matched features of the inverse distance between feature descriptors. A
high recognition score indicates that the test image contains the same natural
landmark as the stored image with high likelihood.

The above method, which we will refer to as nearest neighbour (NN) match-
ing, does not preclude feature matches that are out of order, or otherwise incon-
sistent in terms of scale or horizontal displacement. Therefore a second matching
method is presented, which first matches nearest neighbour features, and then
uses RANSAC [6] to discard feature matches that do not agree on a consistent
landmark pose, before recalculating the recognition score. A consistent pose is
defined as a set of matched features that conform to a straight line matching
function as follows, where xtest,i and xstored,i represent the horizontal pixel lo-
cation of the ith matched feature in the test and stored images respectively, and
βs and βd are scaling and displacement parameters:

xtest,i = βsxstored,i + βd (1)

Given the robot’s limited horizontal field of view, we find a straight line match-
ing function is a reasonable approximation of the true feature matching func-
tion, which is curved in the presence of translation. Compared to NN matching,
recognition scores calculated with this method will be lower, but have potentially
greater discriminatory power. We will refer to this method as nearest neighbour
matching with RANSAC (NN with RANSAC). The further advantage of this
method is that it provides useful information about the robot’s motion between
the two images. The use of RANSAC to discard inconsistent matches generated
by NN matching is shown in Figure 2.

4 Experimental Results

Two experiments were used to evaluate the performance of 1D SURF for robot
localisation. In each experiment, the images used were captured using the Alde-
baran Nao RoboCup edition v3.2, a humanoid robot equipped with a 500MHz
AMD Geode LX800 processor. The Nao has two 640x480 pixel 30 fps digital cam-
eras, each with a horizontal field of view of 47.8 degrees, which can be accessed
one at a time.

4.1 Classification Experiment

The first experiment was designed as a classification task, to assess whether the
recognition score between two images could be used by the robot to determine
whether both images contained the same landmark. Data for the experiment
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Fig. 2. Left: Matching features in two similar images based on nearest neighbour (NN)
matching. Right: Matching features in the same two images after using RANSAC to
discard matches that don’t agree on a consistent pose (NN with RANSAC). As in Figure
1, each image displays the horizon band in red and the extracted grey-scale horizon
pixels at the top of the image. Matching features are plotted in the top-right panel
against their horizon location in each image. The text panel illustrates the number of
features detected in each image, the number of matches, the recognition score and the
time taken to extract the features on a 2.4GHz laptop.

was captured by rotating the robot at a single location on the field, and cap-
turing 88 images at approximately 4 degree increments. During this process the
background around the field consisted of a typical office environment. From this
image library we generated a test bank of 480 matched images and 2,065 un-
matched images. Two images were considered to match if the angle between
them was less than 20 degrees, implying at least 58% of each image horizon
overlapped with the other image. Example images from the test bank and the
resulting recognition scores are shown in Figure 3.

Although this experiment contains no changes in scale, illumination or view-
ing angle, it provides a useful baseline against which to tune parameters and
assess the likely rate of false positive landmark recognitions. Feature extraction
and matching was performed off-board the robot using a 2.4GHz Core 2 Duo
Processor laptop. This enabled the classification accuracy and speed of 1D SURF
to be easily compared against SURF, for which we used the OpenSURF1 library
implementation.

The sensitivity and specificity of SURF (using NN matching) and 1D SURF
(using NN matching, and NN with RANSAC matching) with variation in the
recognition score discrimination threshold is shown in Figure 4. 1D SURF (using
the horizon pixels only) is clearly less robust than SURF (processing the entire

1 http://www.chrisevansdev.com/computer-vision-opensurf.html
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Fig. 3. Left: Two images that almost completely overlap. Although the features on the
horizon are not very distinctive, a high recognition score is generated using 1D SURF
and NN with RANSAC feature matching. Right: Two images with no overlap, resulting
in a low recognition score using the same method. As before, matching features are
plotted in the top-right panel against their horizon location in each image, and the
text panel contains key statistics.

image). However, as illustrated in Table 1, 1D SURF uses only a fraction of the
features, and runs more than one thousand times faster than SURF in this exper-
iment. With the mean extraction time below 0.2ms, real-time feature extraction
on the Nao during RoboCup soccer matches is a clear prospect. Also, using
RANSAC to enforce a consist landmark pose results in a small improvement in
classification accuracy.

Table 1. Running time of feature extraction and matching algorithms evaluated on a
2.4GHz Core 2 Duo laptop.

Feature
extraction
technique

Feature matching technique Mean
no.
features

Mean
extraction
time (ms)

Mean
matching
time (ms)

Area under
ROC curve

SURF Nearest neighbour (NN) 429 222.3 19.1 98.8%
1D SURF Nearest neighbour (NN) 59.2 0.158 0.069 88.0%
1D SURF NN with RANSAC 59.2 0.158 0.076 89.6%

4.2 Field Experiment

Having validated the performance of 1D SURF on highly similar images, the
second experiment was designed to assess the performance of 1D SURF under
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Fig. 4. ROC curve for classifying test images as matched or unmatched using the
recognition score. Using NN with RANSAC matching on this data set, a threshold
recognition score of 100 captured 70% of true positives with a 5% false positive rate.

changes in scale, viewing angle, illumination and with small scene changes. It
was performed on-board the Nao robot to provide a clearer assessment of the
processing speed of the method with constrained hardware. In this experiment,
we used NN with RANSAC matching and evaluated 1D SURF the way it might
be used in a SPL match; to distinguish one end of the field from the other. To
do this, we positioned the Nao in the centre of the field, captured one image
of each goal area, and stored the extracted feature vectors. Next, we moved
the Nao through a 1m grid of positions covering a 4m x 4m area of the field
(25 positions in total), and recorded the recognition scores at each point when
manually positioned to face approximately towards each goal. By moving the
Nao around the field, large changes in scale and viewing angle were generated.
At each point we hoped to observe a large recognition score for the stored goal
the robot was actually facing, and a low recognition score for the other goal,
indicating that this technique could be used to reliably distinguish field ends
during a match. During this entire experiment both goals were coloured yellow,
and background objects were approximately 2m behind the goals themselves.

The recognition scores recorded during this exercise are overlaid on a field
map in Figure 5. Using a recognition threshold of 100 (as determined during
the classification experiment), each field end is correctly recognised from the
single stored image in more than half of the 4m x 4m test area. A very strong
recognition response (greater than 200) is observed in a radius of approximately
1m around the location of the original stored image. Finally, there were zero false
positives recorded when facing the opposite end of the field. The recognition
response to the opposite end of the field is almost always less than 50. Overall,
these results indicate that even with just two stored images, a kidnapped robot
could resolve one end of the field from the other from most mid-field positions. To
provide a clearer indication of the field environment used during the experiment,
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Figure 7 depicts the stored goal images and examples of views from different
areas of the field.

Fig. 5. Recognition scores of a single goal image from different areas of the field.
Clockwise from top left: Recognition of right-hand goal when facing left, recognition
of right-hand goal when facing right, recognition of left-hand goal when facing right,
recognition of left-hand goal when facing left.

In many robot navigation applications, including RoboCup SPL, robots are
subject to varied lighting conditions and the natural landmarks in a given scene
will change over time. To test the robustness of 1D SURF in the face of these
challenges, we repeated the experiment with the overhead field lighting turned
off and both goals removed (to simulate some measurable change to the original
scene). The stored features extracted from the original goal images were not
changed. As shown in Figure 6, the recognition response to the correct field
end is less peaked than before, but the recognition area is still large and again
there are no false positives. It is interesting to note that the recognition area
for the left-hand goal actually increases once the goal itself is removed. The
goal itself can actually be something of a nuisance in the recognition process,
since with large perspective changes it occludes features in the background that
might otherwise be identified. Using a representative sample of field locations,
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the mean execution time to extract 1D SURF features on the Nao robot was
12ms. Although this is considerably slower than the 0.158ms extraction time
achieved on the laptop, it is still fast enough to enable features to be extracted
in real time at the full 30 fps frame rate of the Nao camera.

Fig. 6. Recognition scores of a single goal image from different areas of the field, with
the overhead field lighting turned off, and the goals themselves removed. Clockwise
from top left: Recognition of right-hand goal when facing left, recognition of right-hand
goal when facing right, recognition of left-hand goal when facing right, recognition of
left-hand goal when facing left.

5 Evaluation and Conclusion

This paper has presented an optimised method for extracting local features from
1D images of a mobile robot’s horizon. The extracted 1D SURF features are ro-
bust to lighting changes, scale changes, and small changes in viewing angle or
to the scene itself, making them suitable for robot navigation in indoor environ-
ments. Using 1D SURF features and a NN with RANSAC matching technique,
we demonstrate that (in a relatively distinctive environment with few scene
changes) it is possible to resolve the RoboCup SPL field end ambiguity in real
time using just two stored images.
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In actual RoboCup matches, it is likely that the background environment
will be more challenging than our laboratory tests due to the coming and going
of spectators during the match. As such, we anticipate that in practise it will
be necessary to store more than two images, and to update them during the
match as the natural landmarks around the field change. In future work we
will investigate methods to simultaneously localise and map changing natural
landmarks around the field, rather than relying on a fixed set of stored images.
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Fig. 7. Top row: Stored images of the left-hand and right-hand goal areas respectively.
Row 2: Examples of correctly matched field views. Markers indicate the scale and po-
sition of the match. Row 3: Examples of correctly matched views with goals removed
and overhead lights turned off. Bottom row: Some field views that could not be con-
fidently matched to the stored images, possibly due to overexposure and occlusion of
key features respectively.


