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Abstract—We learn a controller for the Nao robot using rein-
forcement learning to optimally respond to external disturbances
induced by stepping on toes or being pushed. The reinforcement
learning method employed learns an optimal policy for ankle tilt
control to assert pressure along the support foot to keep the Nao
balanced. The controller is learnt in simulation using an inverted
pendulum model and the policy is transferred to the robot.

I. INTRODUCTION

In local and international RoboCup SPL (and Humanoid)
competitions, it is not uncommon to see robots fall over while
tussling for the ball. The two major reasons that robots fall
over are that they are either pushed by other players or they
step on the foot of another player. While falling robots provide
significant entertainment value for spectators, behaviours that
are resistant to falling would have a distinct advantage.

We tackle this challenge using reinforcement learning (RL)
to apply ankle torques to the support foot to control the centre
of pressure in an effort to keep a robot balanced. The policy is
highly reactive because it can be applied while in mid-stride
- we do not have to wait for the next swing foot placement.

II. SIMULATION

We model the flat-footed humanoid as an inverted pendulum
(IP) with the pivot located at the centre of pressure along the
bottom of the support foot as shown in Figure 1. We can
control the pivot position by actuating the ankle joint.
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Fig. 1. The inverted pendulum model of a flat-footed bipedal robot used for
simulation and reinforcement learning.

The state of the system is defined by three variables (x, ẋ, t)
where x is the horizontal displacement from the centre of the
support foot to the centre of mass, ẋ is the horizontal velocity
of the centre of mass, and t is the time-step from the start

of each walk-cycle. The control actions choose the centre
of pressure for the support foot relative to the foot centre.
We have adapted Q-Learning to work with the near-Markov
system induced by the function approximator.

Figure 2 shows the simulation monitor with the robot in
plan and elevation view, and the x and ẋ response against
time, both on a coordinate system and as an unfolding time
series.

Fig. 2. Simulated robot in plan and elevation view (left). Time-trace on
a coordinate system with horizontal axis x and vertical axis ẋ (top-right).
Time series for x (red) and ẋ blue with the current time on the right showing
response to impulse forces (bottom).

The deceleration induced by actuating ankles joints can
persist over several walk-cycles. The inclusion of the time
variable t from the start of the walk-cycle as a part of the
state of the system allows the learner to plan ahead and
take appropriate actions now in anticipation of support foot
changes.

III. PHYSICAL ROBOT IMPLEMENTATION

The policy learnt on the simulator is transferred to the Nao.
On the physical robot, the state of the system needs to be
estimated. We choose a steady-state Kalman filter to reduce the
amount of on-line computation. We perform recursive process
updates using the IP model and correction updates from sensor
readings.

For the RoboCup 2011 SPL Open Challenge we plan to
demonstrate the Nao staying upright when being pushed or
when it steps on a toe-like obstacle.
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