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Abstract. This paper describes the use of foveated imaging and virtual
saccades to identify visual objects using both colour and edge features.
Vision processing is a resource hungry operation at the best of times.
When the demands require real-time robust performance with a limited
embedded processor, the challenge is significant. Our domain of applica-
tion is the RoboCup Standard Platform League soccer competition using
the Aldebaran Nao robot. We describe algorithms that use a combina-
tion of down-sampled colour images and high-resolution edge-detection
to identify objects in varying lighting conditions. Optimised to run in real
time on autonomous robots, these techniques can potentially be applied
in other resource limited domains.

1 Introduction

Real-time identification of objects in a video feed is a significant research area
in robotics, and forms the major component of many perception systems. For
the rich environments we encounter in everyday life this is still an open research
problem. RoboCup Soccer [5] is an international research and education initia-
tive that constrains the environment to a soccer field with a limited number
of objects, namely a ball, field, goal-posts, landmarks, and other robots. Vision
algorithms are able to exploit these constraints, but face significant challenges.

Autonomous robots are limited in their processing power. Vision needs to
share this limited resource with other functions such as world-modelling and
behaviour generation. Success in soccer also depends on the speed at which
robots can react. A major challenge is for the vision system to deliver real-time
object recognition at maximum frame-rates and still leave resources for the other
functions.

Colour cameras provide a high native pixel resolution in a three dimensional
colour space. It is taxing on resources to process the image in its full resolution.
When objects are relatively far away, and appear small in the visual field, we
would like to take advantage of the higher resolution.

The human eye has a region with maximum acuity in the centre of the
macular know as the fovea. Motivated by this physiology the above dilemma
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Fig. 1. Foveated imaging. Original Image (left). Virtual fovea centred on a ball (right)

can be addressed by varying the resolution and processing across the image
according to one or more points of fixation. This technique is called foveated
imagining. The fovea provides a high resolution image, but a very narrow field-
of-view. Peripheral vision is provided by the image outside the foveal regions at
lower resolution. These ideas have been used in computer vision inspiring both
software and hardware solutions [2]. Figure 1 shows an image at full camera
resolution on the left and a foveated image on the right, with the fovea saccaded
and fixed on the ball.

The RoboCup soccer environments are characterised by objects with distinct
colours. It is not surprising that algorithms to date have largely used colour to
identify objects. Organisers have gradually increased the vision challenge by pro-
gressively removing crutches such as walls, beacons and coloured goal-posts. In
particular, the practice of providing special high luminescent and uniform light-
ing has been discontinued and robots need to cope with whatever lighting is
provided by the venue. Lighting often changes during games as audience num-
bers fluctuate creating varying overshadowing conditions during the game. One
solution is for vision to rely less on colour and more on shape cues.

The contribution of this paper is a vision system that addresses the above
needs with the following characterstics:

1. A peripheral vision system to locate salient features. A novelty is the detec-
tion of field-edges for localisation using the saliency image alone.

2. Employing foveated imaging techniques to limit resource usage.
3. Relying more on edges and reducing the dependence on colour.
4. Meeting real-time requirements running a close to maximum frame-rate.

The application of these methods have broad applicability. We describe them
in the context of the Standard Platform League that uses the small humanoid
Nao robot from Aldebaran Robotics. The rules of the league disallow external
processing or any modification to the machine. The robots’ embedded computer
is limited to an AMD Geode LX900 processor running at a modest 500MHz.
The playing area of the soccer field is currently 4 by 6 meters with colour coded
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open goals. A team-size of three robots was used in 2010 and this will increase
to four in 2011. The ball is a standard orange coloured hockey ball. Each robot
has two CCD 640×480 pixel cameras in its head (although only one can be used
at a time).

In the rest of this paper we will describe the down-sampled “saliency” frames
that are used to identify possible locations of various objects on the field. The
saliency image is used to find field-edge lines to aid in the localisation of the
robot. We next show how the saliency image leads to virtual saccades to multiple
points of fixation representing interest regions corresponding to the ball and
goals. Multi-modal colour and edge data at high resolution is used at these
foveal points in the image, achieving both high accuracy and high efficiency.

This approach was implemented by the UNSW team rUNSWift for the Stan-
dard Platform League in RoboCup World Competition in Singapore in 2010, for
both the technical challenges and the soccer tournament. The University of New
South Wales (UNSW) placed first in the technical challenges and second in the
soccer competition against 23 other international teams.

2 Saliency Scan

In order to achieve our goal of identifying areas of interest in the image as fast as
possible, the first step of the vision pipeline is to subsample the image in a regular
gird pattern. We reduce the image size by a factor of n for each of the two image
dimensions. We have chosen n = 4 for the 2010 competition to make optimally
use of machine cycles, but experiments show that n = 8 is still acceptable if we
wish to free up more resources. The advantage is that the number of pixels to
be processes is reduced by a factor of n2. By mapping every 4th pixel in the raw
640× 480 image we derive a 160× 120 pixel resolution “saliency image” giving
a 16 fold reduction in image size. For n = 8 the saliency vision processing load
is reduced by 98.4%. Figure 1 (right) shows a down-sampled part-image of the
green field, field-line, and ball for n = 8. The ball and a small area around the
ball shows a virtual fovea region at the original raw resolution.

Fig. 2. Colour classified saliency image at 160×120 resolution ie.e n = 4 (left). Regions
identified during the region detection process (right).
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Only a colour classified version of the saliency image is stored. The colours
are colour-calibrated off-line using a weighted kernel classification algorithm de-
veloped for previous Robocup competitions [6]. This is a nearest neighbour al-
gorithm where each training sample increases a weighting for a particular YUV
value toward the classified colour. The classifier is able to generalise to unseen
data as neighbouring values in colour-space, within a fixed Euclidean radius,
have their weights increased at an exponentially decreasing rate. The kernel file
is used to generate a constant-time lookup table on the robot at runtime. The
colours calibrated are orange (the ball), green (the field), white (the field-lines
and parts of the robots), yellow (the yellow goals), red (the pink band worn by
robots on the red team) and blue (the blue goals and the blue band worn by
robots on the blue team).

As the saliency image is generated for every visual frame at 30 fps, any further
optimisation is desirable. We analysed the compiler-generated assembly code to
find other optimisation opportunities. The main optimisation contributions are
as follows:

– The histogram data is stored as 16-bit integers, since the saliency image is
parameterised by n and can be as large as 640 × 480 when n = 1. It was
changed to use 8-bit integers if the image was smaller than 256× 256.

– Rather than keeping variables to designate the indices in the saliency image
and then iterating through valid values for the indices, a pointer was kept to
the active pixels in the saliency image and that pointer was iterated through
the entire image.

– Rather than reading each channels of each YUV pixel as three individual
8-bit bytes, the entire 32-bit word containing two VYUY pixels is read, and
unused information is removed, thereby requiring one memory access instead
of three.

– Our colour classification table is a 2MB 128× 128× 128 YUV-to-classified-
color lookup matrix. This is now converted to a 16MB 256 × 256 × 256
VYU-to-classified-color lookup matrix. The reason for doing this is so that
the conversion from a 32-bit word containing two VYUY pixels to a classified
colour can be done in two assembly instructions.

– Rather than storing histogram data for all colours, we only store histogram
data for the colours where the histogram is used, i.e. blue and yellow. This
requires us to perform a comparison and a conditional branch of every clas-
sified pixel, but saves us from performing memory accesses to update the x
and y histograms.

While the saliency scan is being built, the body exclusion information is
used to remove the robot’s own body from the saliency image. The saliency scan
is provided an array of coordinates that define the lowest coordinate in each
column of the image that is known not to contain the robot’s body. Therefore,
the saliency scan is filled down a column as normal until this coordinate is
reached. All pixels in the saliency scan below this coordinate in the column are
marked as the “background” colour. This means that any processing performed
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on the saliency scan later in the vision processing pipeline can stop scanning
down a column whenever a background coloured pixel is seen.

In the following sections we will describe how the colour calibrated saliency
scan can be used to rapidly identify objects of interest in the image. In addition,
while the saliency scan is being generated, histograms in the x and y-axes for each
of the major field-space colours are generated. The maxima of these histograms
can be found efficiently, allowing the rest of the vision system to analyse only
the most interesting parts of the image at the native resolution.

3 Field Edge-Detection Using the Saliency Scan

To further reduce the amount of the image that has to be processed for object
identification, and to assist with localisation, the edges of the green field are
detected using the Saliency Scan image. In 2009 B-Human used a convex hull
algorithm to exclude areas above the field-edge [8], which achieves the first goal of
reducing the area of the image to be processed. In 2010 rUNSWift used a similar
method of vertical scanning to detect points on the edge of the field, but rather
than find an arbitrary convex hull, multiple iterations of the RANSAC algorithm
[3] are used to find straight lines. When two field-edge lines are detected, the
possible positions of the robot are reduced to 4 hypotheses.

Fig. 3. Candidate points for a field-edge line (top-left). Line found by performing
RANSAC on the candidate points (top-right). Lines found by performing RANSAC
twice on the candidate points (bottom-left). False-positive field-edge (bottom-right) .
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Initially the first green pixel in each column of the saliency scan is recorded,
by scanning vertically from the horizon down (the horizon is found by using
kinematics to take into account the robot’s current joint angles) - Figure 3 (top-
left). Secondly, the RANSAC algorithm chooses the parameters for a line in
t1x + t2y + t3 = 0 form, to maximise the number of points that fit a line -
Figure 3 (top-right). Finally, the consensus set of the first line is removed from
the candidate points, and RANSAC is repeated, possibly finding a second line -
Figure 3 (bottom-left). Figure 3 (bottom-right) shows a false-positive for one of
the field-edges caused by the triangluar goal-post support. Its effect is rapidly
filtered out with goal-post localisation information.

In addition to reducing the amount of the image to be scanned for objects
to the parts of the image below the field-edge, these field-edge observations were
able to be used to provide useful updates to the robot’s estimated position on
the field [1].

4 Finding Interest Points Using the Saliency Scan

We scan the colour classified pixels underneath the field-edge to identify poten-
tial areas, or regions, that could represent important features, such as the ball,
other robots, or field-lines. The contents of each of these regions are analysed
to determine what objects they may represent. By only examining small areas
of interest at the full resolution, this method of virtual saccades enabled us to
greatly increase the run-time speed of the vision processing system.

Points of interest are found by scanning each column of the saliency scan
image below the field-edge to identify runs of non-field green coloured pixels. For
runs starting with orange (ball coloured) pixels, the run will finish when either
a green, white, robot red or robot blue pixel is found, when a few unclassified
pixels are found, or when the bottom of the image is reached. Alternatively, for
runs starting with other colours, they will finish when either an orange pixel is
found, when more than one green pixel in a row is found, or when the bottom
of the image is reached.

Run information is used to build regions. A run is connected to an existing
region only if the following conditions are met:

– If the last run added to the region is adjacent to the current run
– If the region contains orange pixels, the run will only be connected if it also

contains orange pixels.
– If the run contains robot coloured pixels and the region does not, they are

only joined if the region is less than a certain width.
– If the run contains no robot coloured pixels and the region does, they are

only joined if the difference between the x coordinate of the current run and
the x coordinate of the right most robot coloured pixel in the region is less
than a certain threshold.

– If the length of the run is between half the average run length of the region
so far and double the average run length of the region so far.
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If no region is able to meet all these conditions, a new region is created for the
run. An array of pointers to regions containing runs from the previous column is
stored to avoid large numbers of regions slowing down processing. The process
is summarised in Algorithm 1. An example of the output of the region detection
is shown in Figure 2 (right).

Algorithm 1 Region Building Algorithm
for all column in saliencyScan do

for all row in column do
if have reached the end of a run then

for reg in lastColumnRegions do
if reg.startY > run.endY then

continue
end if
if reg.endY ≥ run.startY then

if conditions for joining run to reg are met then
if run hasn’t been joined to a region yet then

Join run to reg
Add reg to end of thisColumnRegions

else
Merge reg with previous region run joined

end if
end if

else
remove reg from lastColumnRegions

end if
end for
if run has not been joined to a region then

Create new region for run
Add new region to thisColumnRegions

end if
end if

end for
Set lastColumnRegions = thisColumnRegions
Set thisColumnRegions.size = 0

end for

Throughout this process, information about each run is collected for the
region it joins. Information is collected such as the number of pixels of each
colour in the region, the coordinates of the bounding box of the region, the
average length of the runs in the regions, the start and end coordinates of each
run in the region, and the bounding box of the robot colours in the region to be
stored. This information is then used to identify what object (if any) the region
is most likely to contain.

The initial object classification is performed by examining the colours, shape
and location of each region to determine if the region is more likely to contain
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a ball, field line, robot, or just be noise, such as noise from an error in the field-
edge. As orange coloured regions are grown separately from other regions, any
regions containing orange pixels are considered to be potential balls.

5 Multi-modal Object Analysis in Foveated Regions

An alternative to the use of colour is to use edges to find the outline of objects.
Unfortunately, common edge-detection methods to identify all the edges in the
image, such as Canney, are computationally too expensive to run in real-time
on the Nao, before considering the additional challenge of complex shape iden-
tification. A foveated image hybrid solution of these two methods was used to
combine the accuracy and robustness of edge-detection with the computational
speed of colour calibration to identify both balls and the goal-posts. The hybrid
solution involved firstly using colours in the lower resolution peripheral vision to
quickly identify salient locations, and then edge-detection to perform accurate
and reliable identification at the higher resolution foveated points.

5.1 Ball Detection

For ball detection, edge-detection is used only around the foveated location in
the image where a region has been identified as a probable ball. The objective
is to find a list of pixels on the edge of the ball. A circle is then fitted to these
points to allow the location of the ball to be accurately determined. Rows and
columns of the full resolution image are scanned outwards from the region until
the v channel of adjacent pixels differs by more than a certain threshold. Only
the v channel was used in the ball edge-detection as this chromatic dimension
of the ball tends to change quite markedly near the edge of the ball. Edges are
often be detected inside the ball when a combination of the y, u and v channels
are used.

In order to further increase the efficiency of this method, the space between
rows and columns scanned for edges was adjusted according to the size of the
region to ensure that balls close to the robot didn’t take too long to process, but
balls far away from the robot could still be properly identified.

Once pixels around the edge of a ball have been identified, a circle can be
quickly fitted to these points by randomly selecting 3 edge pixels, and finding the
intersection of the perpendicular bisectors of the lines joining the three points.
The intersection gives the centre of the ball, and the distance between the in-
tersection and any of the 3 pixels gives the radius of the ball. If this process is
repeated several times and the median of the centre and radius measurements
is taken, any small errors in the edge-detection are greatly reduced.

Figure 4 shows an example of the edge-detection being used to accurately
identify a ball. The image on the left shows the colour calibrated image. It can
be seen that a substantial part of the ball is unclassified (note that unclassified
colours appear as light blue in the screenshot). The image on the right shows
that the edge-detection has enabled the edge of the ball to be precisely located.
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Fig. 4. A screenshot of the ball detection. The left image shows the colour calibrated
image, while the right shows the edge points identified and the circle fitted to the edge
points.

This is particuarly important for ball detection as kicks need to be lined up very
precisely for them to work well.

5.2 Goal-Post Detection

As the majority of the goal-posts appear above the field-edge, goals are not
identified during region building. Instead, the histograms generated while the
saliency scan is being built are used to identify the likely approximate positions
of the goals, and edge-detection is then used to find the exact position of the
goal-posts, or to remove false positives from the histogram stage.

This is achieved by firstly finding the maximum value in the y-axis histogram
for one of the goal colours. Only one y coordinate is used because if there are
2 goal-posts in the image, they will occupy approximately the same y coordi-
nate range, and the maximum in the histogram will most likely occur at a y
coordinate occupied by both posts. The x-axis histogram is then scanned to find
local maximums above a certain threshold for the goal colour. To avoid several
local maximums being detected in the same goal-post, the histogram value of the
goal-post colour has to decrease to be at least 3 times less than the maximum
value before another local maximum can be recorded. The same procedure is
used for both goal colours.

Several horizontal and vertical scan-lines are used around each pair of x
and y coordinates identified using the histograms. Each scan starts around the
pair of x and y coordinates, and continues outwards until an edge is detected.
For goal-detection, an edge is found when the two pixels differ in the sum of
the differences in the y, u and v values by more than a certain threshold. All
channels are used as the colour of the background around the goal-posts cannot
be controlled, so any significant change in any channel needs to be registered as
an edge. These scan-lines result in a rectangle representing the goal-post, which
can then be used by the localisation algorithms.
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Fig. 5. Poor colour classified image of goal-posts (left). Accurately identified goal-post
using edge information (right).

Figure 5 (left) shows a very deteriorated colour classified image of the blue
goal. Despite the poor quality, the foveated higher resolution edge-detection
approach is able to clearly identify both goal-post, as shown on the right in the
Figure.

6 Performance in RoboCup

The set of algorithms presented in this paper form the cornerstone of the UNSW’s
visual object identification for the 2010 RoboCup competition. In this competi-
tion, rUNSWift was placed second in soccer, and first in the technical challenges
against 23 other international teams. In particular, the foveated vision algorithm
was able to successfully handle the difficult conditions of a final game without
noticeable degradation in performance where people crowded around the field
creating significant challenges for vision by affecting the lighting. In testing be-
fore the competition, we found that vision was able to run at approximately 30
frames per second during game conditions.

As the region builder uses the field edge-detection to only scan the image
below the field-edge, and field-edges are used for localisation, field edge-detection
is a vital part of our vision system. We found that when the field-edge(s) could
be seen clearly, or with a few small obstructions, the field edge-detection worked
consistently and accurately. However, when there was a lot of obstruction, such
as several robots, or a referee, the field-lines were often mis-placed. At times this
caused a noticeable deterioration in the localisation while lining up to make a
kick for goals.

The advantage of using the foveated image and virtual saccad approach of
initial colour detection, and then accurate edge-detection proved to be very ben-
eficial to the performance of both the gaol detection and the ball detection. In
following this method, only a very small number of pixels in the saliency scan
needed to be the correct colour for the edge-detection to give an accurate match.
This allowed us to consistently and accurately detect the balls and goals, even
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from the opposite side of the field despite the large amount of colour variation
due to the curved surfaces of the goals and the ball, and various shadows on the
goals.

7 Related Work

A number of alternate methods have been devised to solve the complex task of
object identification in the resource limited environment of RoboCup.

In order to limit the amount of interference from the background, it is often
a useful first step to identify the edge of the field in the image. Any item above
this edge can therefore be eliminated. The method used in [8] to find the edge
of the field is to scan down each column in the image to find a green segment of
a minimum length, and fit a convex hull to the start of the green segments. We
imagine this approach would make the position of the field-edge more accurate
when there are a lot of objects around the edge, however this would make it
much more difficult to use field-edges as part of localisation.

Due to the limited processing power available on the Nao, it is not possible
to scan every pixel in the image fast enough to run in real time. An interesting
approach is taken in [4], where the density of horizontal and vertical scan-lines
is changed depending on how close the scan-lines are in the image to horizon.
This uses the theory that objects close to the camera will be large enough to
be seen using extremely low resolution scan-lines, but objects further away, near
the horizon, will appear much smaller, and therefore need a much higher density
of scan-lines in order to be detected. The drawback to this approach is that
shape identification and repeated accesses are harder and slower. An alternate
approach can be seen in [9], where regions are grown from the green field; with
the white field-lines, robots and balls separating the green regions. The authors
propose that, as the robot moves, the regions can be incrementally grown and
shrunk, resulting in far fewer pixels needing to be processed and updated each
frame. This idea of using previous frames to help lower the computation time of
the current frame, while not explored in our 2010 vision system, is a worthwhile
avenue for future research.

One of the most difficult parts of the object identification for robocup is the
distinction between field-lines and robots, as many parts of the robots are white
or close to white. This means that some kind of processing, other than colour, has
to be used to separate field-lines and robots. The method used in [8] to achieve
this is to first create a series of small white coloured regions that could represent
either parts of a line or parts of a robot. These regions are then analysed in
terms of their shape, and ones that more likely represent robots are marked.
Finally, areas of the images where there is a cluster of these marked regions are
considered to most likely contain robots, and every region in this area is thus
removed. However this method does not actually identify the robots.

The authors of [7] propose a different of edges and colour to achieve fast
object recognition. In this method, a grid of horizontal and vertical scan-lines
is used to search for pixels where there is a significant drop in the Y-channel
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compared to the previous pixels searched. As the field is generally darker than
the field-lines and the robots, this can indicate an edge between an object and
the field. The pixels around this can then be colour classified to see if they are
white or orange.

8 Conclusion

A vision processing system must be highly efficient, robust, and accurate to
enable it to perform reliably in the dynamic world of a soccer game. We have
presented a foveated imagining approach using colour CCD cameras that can
perform the vision task in real-time. We have also presented several proces-
sor optimisations to help improve code for low-powered embedded systems. By
utilising the hybrid modalities of colour classification and edge-detection, we
are able to reliably identify robots, goals, field-lines and balls in the RoboCup
environment. Our approach of using virtual saccades to points of fixation of
high-resolution foveal areas in the image allowed us to reduce the processing of
redundant data, and achieve processing speeds of approximately 30 frames per
second in changing lighting conditions.
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7. T. Röfer and M. Jüngel. Fast and robust edge-based localization in the sony four-

legged robot league. RoboCup 2003: Robot Soccer World Cup VII, pages 262–273,
2004.
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