
THE UNIVERSITY OF NEW SOUTH WALES

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Tracking a robot using overhead cameras

for RoboCup SPL league

Jarupat Jisarojito

February 17, 2011

Supervisor: Bernhard Hengst

Abstract

This report describes the implementation of robot tracking system for RoboCup

Standard Platform League (SPL). The robot needs to know where it is on the field

so that it can play properly. However, the robot’s camera only captures part of the

field. Therefore, the robot localisation might not be accurate. The localisation can

be improved using the robot ground truth information to adjust the localisation’s

parameters. The ground truth data is obtained by mount the cameras over the field

and use those cameras to track the real position of the robot. The system uses 2

cameras mounted over the robot field. Each camera captures different half of the

field. The process in each camera includes background subtraction, robot

detection, position and heading calculation and image to real world coordinate

transformation. The result of the system is the robot real position and heading.

Contents

1 Introduction ... 4

2 Literature Review .. 6

2.1 SSL-Vision: The Shared Vision System for the Robocup Small Size League 6

2.2 A Global Vision System for a Robot Soccer Team .. 6

2.3 Robust Adaptive Vision System for a Robot Soccer Team .. 7

3 Method……. .. 8

3.1 Background Subtraction .. 8

3.1.1 YUV Image .. 8

3.1.2 RGB Image .. 9

3.1.3 Mask Image .. 9

3.1.4 Image Filter .. 10

3.2 Robot detection ... 10

3.2.1 Robot Settings .. 10

3.2.2 Connected Component Labeling .. 10

3.2.3 Analyze the blob .. 10

3.3 Position and heading calculation... 11

3.4 Image to World coordinate transformation ... 12

3.4.1 Points calibration.. 12

3.4.2 Point Interpolation.. 12

4 Results…… ... 14

6 Conclusion .. 17

7 References ………………………………………………………………………………………..18

8 Appendix…….. ... 19

8.1 Program Option ... 19

8.2 Code Design Explanation ... 19

8.2.1 OverheadReader Class ... 19

8.2.2 OverheadCameraTab Class .. 19

8.2.3 OverheadCamera Class .. 20

8.3 Measure Results .. 21

8.3.1 Blue goal camera results .. 21

8.3.2 Yellow goal camera results .. 21

1 Introduction

Robocup Standard Platform League (SPL) is a robot soccer where every teams compete using

the same robot. The current robot is a humanoid robot called Nao. In order for the robot to

play soccer, the robot needs to know where it is located on the field and where the ball is.

Depending on the location, the robot will behave differently. The robot camera is in a way

similar to human eye. The camera can only see some part of the field. Unlike human, the

robot does not know where it actually is. The robot, however, can estimate where it is on the

field using information from the camera, its vision system, and how it moves, its motion

system. This information will pass through a localization filter. The filter uses this

information to estimate where the robot thinks it is. However, the robot’s localization is not

accurate because the estimated position depends on what the robot sees through its vision

system. Due to this inaccuracy, the robot might not behave the way we expected it to. Thus

the performance is reduced.

The parameter in the localization filter parameter, such as constants or variances, can be

adjusted to increase the localization accuracy. In order to do this, we need to compare the

actual robot position or ground truth data with the robot localization data.

The aim of this project is to obtain the ground truth data of the robot. This ground truth data

will have the robot real position and the robot heading.

The outline of this report is the following

Literature Review: This chapter will explore what research and implementation had been

done.

Method: This section will explain the set up of the cameras that will be used to track the

robot and the approaches taken to implement the tracking system.

Results: This section will describe the robot position and heading detected by the overhead

cameras. It shows how accurate the position and heading compare to the robot actual position

and heading.

Discussion: This section discusses about the cause of errors and how the project can be

improved.

Conclusion: This section summarizes the whole report and gives some idea about the future

work.

2 Literature Review

2.1 SSL-Vision: The Shared Vision System for the Robocup Small Size

League

SSL-Vision is a default vision system for a robocup small size league. In robocup small size

league, every team is allowed to mount cameras above or next to the field [5]. The process

for each camera consists of image capture, color thresholding, runlength encoding, region

extraction and sorting, conversion from pixel coordinate to real world coordinate, pattern

detection and filtering and delivery of detection results via networks [9].

SSL-Vision uses YUV lookup table to convert YUV raw image to color threshold image.

After thresholding, the program performs runlength encoding on threshold image. Using

runlength encoding information, the program can extract regions and compute the bounding

box and centroid of all regions. Lastly, the program sorts the regions by color and size.

The program maps pixel coordinate to real world coordinate using a camera calibration. SSL-

vision uses Zhang’s camera calibration technique, however a manual measurement of the

camera’s distance from the field is needed.

Finally, the program extracts the robot’s identity, location and orientation as well as the ball’s

location. This part is based on CMDragon vision system[4].

2.2 A Global Vision System for a Robot Soccer Team

This paper describes a vision system for RoboRoos, robocup small size league team. This

vision system also uses color thresholding, but unlike SSL-vision, RoboRoos vision uses

RGB lookup table. The program does not identify the color outside the field to stop

unnecessary process. Color threshold image is passed to thinning algorithm to remove any

noise. The paper also introduces color normalization. Color normalization is used to handle

non-uniform lighting across the field. Each region of interest is normalized by comparing the

colour values in the region to the average colour values of the entire field [1]. The RoboRoos

robots are identified using a long white strip and team marker. They introduce a stripness

measurement. This stripness is calculated from the second moments. It is used to find the

long white strip and calculate the robot orientation. To convert everything to real world

coordinate, the RoboRoos use Tsai’s camera calibration technique. After that, the robot’s

location and orientation from 2 cameras is merged. If the program finds two robots located

within the predefined threshold distance, the program treats them as the same robot and final

location is the average of the two locations.

2.3 Robust Adaptive Vision System for a Robot Soccer Team

This paper describes a previous version of RoboRoos vision system. This system has only

one camera. The system used adaptive colour histogramming to remove the background, in

this case the green field colour. It did not use frame different approach because the method is

easily affect by changing of lighting or camera movement. After background removal

process, the system applied thinning and dilation operation to the image to get rid of noise

and fill in holes inside the blobs. The blob was tested against minimum threshold blob to

make sure that the blob was big enough to be a robot. The system used blueness to detect the

center of the robot. After that the program calculated the robot orientation using the centroid

of the blob and the major axis detected from the robot marker. By using a marking scheme,

the robot orientation and identification can be detected.

3 Method

Two cameras are mounted over the field. Each camera

the cameras are not placed exactly straight over the field, but to the side of the field.

make sure that the camera can capture whole half field.

Figure 1: Illustration of how the camera should be placed. In

real situation both camera are placed over the goal line.

3.1 Background Subtraction

To detect the object of interest, in this case, a robot, I needed be able to extract a robot from

its background environment. I used frame difference to solve this problem. The background

frame, where there would be no robot, is saved. Then, in every camer

subtracted by the saved background. Given that there is a robot in a new camera frame, then

the different between a new image frame and the saved image would be a robot.

3.1.1 YUV Image

The image receives from the camera is a YUV:422

applicable to any color space. Therefore, I chose to apply it to a YUV color space by using

only y value in YUV color space as a threshold. The y value represents the luma or brightness

of an image. However, the resul

condition, the brightness of the field and a blue color in robot’s head are very similar. This

causes the threshold image to have some missing robot body.

over the field. Each camera captures half of the field. Due to limited space,

the cameras are not placed exactly straight over the field, but to the side of the field.

make sure that the camera can capture whole half field.

1: Illustration of how the camera should be placed. In

real situation both camera are placed over the goal line.

Background Subtraction

To detect the object of interest, in this case, a robot, I needed be able to extract a robot from

its background environment. I used frame difference to solve this problem. The background

frame, where there would be no robot, is saved. Then, in every camera frame, the frame is

subtracted by the saved background. Given that there is a robot in a new camera frame, then

the different between a new image frame and the saved image would be a robot.

from the camera is a YUV:422 image. The frame difference method is

applicable to any color space. Therefore, I chose to apply it to a YUV color space by using

only y value in YUV color space as a threshold. The y value represents the luma or brightness

of an image. However, the result was not as good as I expected, because in some lighting

condition, the brightness of the field and a blue color in robot’s head are very similar. This

causes the threshold image to have some missing robot body.

Due to limited space,

the cameras are not placed exactly straight over the field, but to the side of the field. This was done to

To detect the object of interest, in this case, a robot, I needed be able to extract a robot from

its background environment. I used frame difference to solve this problem. The background

a frame, the frame is

subtracted by the saved background. Given that there is a robot in a new camera frame, then

the different between a new image frame and the saved image would be a robot.

image. The frame difference method is

applicable to any color space. Therefore, I chose to apply it to a YUV color space by using

only y value in YUV color space as a threshold. The y value represents the luma or brightness

t was not as good as I expected, because in some lighting

condition, the brightness of the field and a blue color in robot’s head are very similar. This

3.1.2 RGB Image

The next approach to solve this problem is to convert the YUV image to RGB color space

and then find the difference. The difference between camera frame and background image

would still be in RGB color space. To be able to find a threshold image, the difference image

is converted from RGB to gray scale image. From this gray scale image, I can specify a

threshold value which would result in a threshold image.

Figure 2: Background image (

(middle). The result of subtraction

3.1.3 Mask Image

The cameras mounted over the field

This wide angle lens also captures areas that are outside the field. This means that the camera

would capture something that is not the object of

this problem, a masking is applied. The area in an image which the robot would not be is

masked out. There is no background subtraction in masked areas. The masked area would be

color as black in a threshold im

Figure 3: Black color is the masked out area. Left is blue goal

camera. Right is yellow goal camera

e this problem is to convert the YUV image to RGB color space

and then find the difference. The difference between camera frame and background image

would still be in RGB color space. To be able to find a threshold image, the difference image

to gray scale image. From this gray scale image, I can specify a

threshold value which would result in a threshold image.

: Background image (left). Current camera image

The result of subtraction in threshold image (right).

mounted over the field have a wide angle lens to capture the whole

This wide angle lens also captures areas that are outside the field. This means that the camera

would capture something that is not the object of interest, such as people legs. To get rid of

this problem, a masking is applied. The area in an image which the robot would not be is

masked out. There is no background subtraction in masked areas. The masked area would be

color as black in a threshold image.

Figure 3: Black color is the masked out area. Left is blue goal

camera. Right is yellow goal camera

e this problem is to convert the YUV image to RGB color space

and then find the difference. The difference between camera frame and background image

would still be in RGB color space. To be able to find a threshold image, the difference image

to gray scale image. From this gray scale image, I can specify a

a wide angle lens to capture the whole half field.

This wide angle lens also captures areas that are outside the field. This means that the camera

interest, such as people legs. To get rid of

this problem, a masking is applied. The area in an image which the robot would not be is

masked out. There is no background subtraction in masked areas. The masked area would be

Figure 3: Black color is the masked out area. Left is blue goal

3.1.4 Image Filter

The threshold image is not appropriate to use without filtering first. The filter which is

applied to the threshold image is dilation. The dilation will fill any holes which might appear

inside a blob. It will also expand the blob to make sure that the whole robot body is detected.

The blob in this case represents objects detected in a frame difference method.

3.2 Robot detection

3.2.1 Robot Settings

The program will detect the robot position and heading correctly when the robot has the

following settings. The head of the robot must be blue. The blue color is used to detect the

robot position. The robot right shoulder is colored with red and the robot left shoulder is

colored with yellow. The shoulders are used to detect the robot heading.

Figure 4: Real robot set up

3.2.2 Connected Component Labeling

From background subtraction, the threshold image is passed to a blob detection algorithm to

detect all possible blobs that would be a robot. This is the first step for blob detection. The

algorithm for labeling the connected region uses 8-connectness. The implementation follows

the algorithm in [3]. This step results in a number of all blobs detected.

3.2.3 Analyze the blob

The threshold image is further scanned to get the size of each blob region, bounding box for

the region. The region which is too small to be a robot is discarded. As mentioned in 3.2.1,

the robot position and heading are calculated using the robot's blue, red and yellow region.

Thus the regions are scanned for those three colors. In order to scan for these colors, the

threshold image is converted to a hue image. All pixels, which are not background, are

converted to its hue color representation.

After that, each blob region is scanned again for the biggest blue, red and yellow region

inside the blob. These color regions must also be larger than the threshold region value to be

considered as the robot's color parts. For this step, I can further remove the blob which does

not contain the blue region, because this blob cannot be a robot. The entire remaining blobs

are considered to be possible robots.

3.3 Position and heading calculation

The next step is to use those color regions to calculate the robot position and heading. The

blue region, which would represent the robot head, is used to calculate the robot position. The

centroid of the blue region will be the robot position. This centroid is, however, in the image

coordinate. To get the robot position, the centroid in the image coordinate is transformed to

the world coordinate using method in 3.4.

The centroid of red and yellow region is also mapped to world coordinate before doing

heading calculation. To calculate the robot heading, I relied on the fact that the red region is

the robot's right shoulder and the yellow region is the robot's left shoulder. This means that if

I draw a line joining the centroid of blue region with the centroid of red region and find the

angle of this line with respect to the global coordinate. I would have an angle that is 90

degrees out of phase with the robot's heading. As a result, adding 90 degrees to this angle

gives the robot's actual heading. The same approach is applied to the blue and yellow region.

However, the yellow region is on the robot's left, thus the resulting angle is subtracted by 90

degrees.

Using this method, in a condition which the robot standing sideway and the camera only

capture one side of the robot, the heading can still be calculated. If both red and yellow colors

are detected, the resulting heading is averaged from the heading calculated using red region

and the heading calculated using yellow region.

Figure 5: Image with classified colour. The

red line represents a line between blue and red

centroid. The yellow line represents a line

between blue and yellow centroid.

3.4 Image to World coordinate transformation

3.4.1 Points calibration

The method I used to transform image coordinate to world coordinate is points mapping and

points interpolation. Basically, the field is divided into a grid. Every grid points are mapped

with corresponding image coordinate. This requires points to be mapped manually.

The half field is divided into 11x7 grids. The grid is 400 mm long in y direction and 500 mm

long in x direction. The robot is placed on the grid point. The grid points are a world

coordinate. It will be mapped with the centroid of the robot blue color region in image

coordinate. However, some edge points might not be mapped because the robot’s head is

outside the camera image.

As a result of this mapping, there are some image points which are not mapped with world

coordinate. To convert non mapped image points to world coordinate, the world coordinate is

estimated using interpolation from the surrounding points.

3.4.2 Point Interpolation

I used barycentric coordinate [2] to interpolate the point. The first step is to find the three

closest mapped points in image coordinate to the query image points. Using barycentric

coordinate formula, the weight between the query point and the surrounding three points can

be found.

213

331313

2

323332

1

31233132

1

)det(

))(())((

)det(

))(())((

))(())(()det(

λλλ

λ

λ

−−=

−−+−−
=

−−+−−
=

−−+−−=

T

yyxxxxyy

T

yyxxxxyy

yyxxxxyyT

Figure 6: Barycentric coordinate formula

where (x, y) is image coordinate of the query point.

(x1, y1), (x2, y2) and (x3, y3) are image coordinate of the three closest points.

λ are the weight of the three closest points.

Because those three points are mapped with world coordinate and the weight of those points

are known, I can interpolate the world coordinate using the following formula.

332211

332211

yyyy

xxxx

λλλ

λλλ

++=

++=

Figure 7: Barycentric coordinate formula

where (x,y) is world coordinate of the query point

 (x1, y1), (x2, y2) and (x3, y3) are world coordinate of the three closest points.

λ are the weight of the three closest points, which are found from previous step.

4 Results

To test the accuracy of the position and heading, the robot was placed at 15 random positions

around the field.

The unit of position coordinate is in millimeter. The error of the position is calculated using

Euclidean distance between the real position and detected position. The blue goal camera has

a little more error. This might be because the blue goal camera is a little bit further from the

field compare to the yellow goal camera. Thus when the robot is near the center of the field,

the color parts is very small to be detected correctly.

Camera Average Position Error

Blue Goal 104.9573

Yellow Goal 90.82454

Table 1: Average position error

Figure 8: Box plot of heading error.1 is a camera on blue goal

side of the field. 2 is a camera on yellow goal side of the field

As for the heading, because I have no accurate way of measuring the robot heading except

from estimating from my eyes, the angle I used to test for heading accuracy is 0, 45, 90, 135,

180, -135, -90 and -45 degrees. The robot is also placed randomly on the field with random

headings chosen from those 8 possible headings. Average heading error from each camera is

calculated.

0 50 100 150 200 250 300 350 400 450 500

1

2

Millimeter

Position Error

Camera Average Heading Error

Blue Goal 17.6592

Yellow Goal 13.22699

Table 2: Average Heading Error

Figure 8 shows a box plot of the heading error. The ends of the whiskers represent minimum

and maximum heading error. The dot of the graph shows an average error.

Figure 9: Box plot of heading error.1 is a camera on blue goal

side of the field. 2 is a camera on yellow goal side of the field

Figure 10: Overhead Camera Interface in offnao

0 10 20 30 40 50 60

1

2

Degree

Heading Error

5 Discussion

The program can properly identify the robot position and heading. However, in some area of

the field where the lighting is very strong, the program sometimes cannot detect the robot

position. This is due to the light reflection. Strong lighting and light reflection cause the robot

color parts to look white from the camera image. In a case like this, the program cannot

detect the robot position because it cannot detect the blue color region. The future work

would be to make the program track a robot without color parts.

One reason that reduces the accuracy of the heading is the image to world transformation.

The centroids of red and yellow region are transformed using the same mapped points as the

blue region. However, the red and yellow regions, which are the robot’s shoulder, have

different height from the robot’s head. This means that the interpolated world coordinate of

red and yellow region centroids are not accurate as the blue region.

One possible method to solve this problem is to implement camera calibration and geometric

model for the robot and a camera. Camera calibration uses to calibrate 2 dimensional points,

but the robot is 3 dimensional object. Thus the model is needed to consider the effect of the

robot’s height to the point transformation.

6 Conclusion

This project implements a system to track a robot. The system would detect a robot real

position and heading. The system uses robot blue head to detect the robot and uses red and

yellow shoulders to calculate the robot heading. The result of the tracking system can be used

to improve the robot localization. By comparing the robot localization and ground truth

information, the localization parameters can be adjusted so that the localization result

matches the ground truth data.

7 References

1. Ball, David, Gordon Wyeth, and Stephen Nuske. "A Global Vision System for a Robot

Soccer Team." Proceedings of the 2004 Australasian Conference on Robotics and

Automation (2004).

2. "Barycentric Coordinate System." Wikipedia, the Free Encyclopedia. Web. 14 Feb.

2011. <http://en.wikipedia.org/wiki/Barycentric_coordinate_system_(mathematics)>.

3. "Connected Component Labeling." Wikipedia, the Free Encyclopedia. Web. 14 Feb.

2011. <http://en.wikipedia.org/wiki/Connected_Component_Labeling>.

4. J, Bruce, and Veloso M. "Fas and Accurate Vision-based Pattern Detection and

Identification." Proceedings of the 2003 IEEE International Conference on Robotics and

Automation (2003).

5. "RoboCup Small Size League." Small Size Robot League - Start. Web. 14 Feb. 2011.

<http://small-size.informatik.uni-bremen.de/>.

6. Wyeth, Gorden, and Ben Brown. "Robust Adaptive Vision for Robot

Soccer." Proceedings of the IEEE International Conference on Robotics and

Automation (2000).

7. Y, Tsai R. "A Versatile Camera Calibration Technique for High-accuracy 3D Machine

Vision Metrology Using Off-the-shelf TV Cameras and Lenses." IEEE Journal of

Robotics and Automation (1987).

8. Zhang, Zhengyou. "A Flexible New Technique for Camera Calibration." IEEE

Transactions on Pattern Analysis and Machine Intelligence (2000).

9. Zickler, Stefan, Oliver Birbach, Mahisorn Wongphati, and Manuela Veloso. "SSLvision:

The Shared Vision System for the RoboCup Small Size League." RoboCup 2009: Robot

Soccer World Cup XIII Lecture Notes in Computer Science 5949 (2010): 425-36.

8 Appendix

8.1 Program Option

Set background image

This is required because if there is a change in the background image, the user can set new

background image easily. Also, if there is a change in lighting, the background image needs

to be set too. This is due to the fact that the program is easily affected by change in lighting.

Select the camera and type of image display

I cannot get two cameras working at the same time because both cameras are using the same

USB bus. As a result, the user needs to manually select which camera to use. The image type

selection is used for debugging. The raw selection displays raw image from the camera. The

hue selection shows foreground objects detected and their hue color display.

8.2 Code Design Explanation

This section will briefly describe the function of some important class. So that the reader will

have general idea how each class is related to one another and to edit or modify the code.

Note that the program processes each frame separately. The information of the robot detected

by one camera is also independent from the other camera.

8.2.1 OverheadReader Class

This is class inherit from Reader class. It emits newOverheadData. When newOverheadData

is emitted, OverheadCameraTab class will call redraw function and drawOverlay function to

display new information in offnao.

I cannot use NetworkRead or RecordReader because the first one requires offnao to connect

to the robot; the second one requires a dump file.

8.2.2 OverheadCameraTab Class

This is the main display tab. When it receives newOverheadData, redraw function,

drawOverlay function and drawOverlayNao are called. Inside redraw function, run function

of OverheadCamera class is called. DrawOverlay draws robot overlay on the field from

overhead camera information. DrawOverlayNao draws robot overlay when there is a local

copy of robot localization.

When it receives newNaoData, it saves the robot localization position locally. The redraw

function is not called. This is because, if the redraw function is called, the field is cleared and

will display only localization data. When newOverheadData calls redraw, the field is cleared

again and diplays only overhead data. This result is a blinking of the robot overlay drawn on

the field.

8.2.3 OverheadCamera Class

The main function of this class is run function. Inside the run function, the process of

background subtraction, image filter, blob detection, image to world coordinate

transformation and position and heading calculation are called.

Figure 11: Processing stack for OverheadCamera run function

8.3 Measure Results

8.3.1 Blue goal camera results

Trial Real x Real y Real heading Measured x Measured y Measured heading

1 -2400 -110 90 -2383.72 -1108.78 104.214

2 -2400 1100 -135 -2374.86 1090.94 -138.755

3 -2050 1540 45 -2000 1775.76 15.2983

4 -1110 1520 0 -1071.07 1506.13 -13.397

5 -2400 0 -90 -2376.06 60.1695 -69.4185

6 0 600 -180 34.7692 609.723 -130.625

7 0 0 -45 -14.4881 8.75724 -50.8905

8 -1200 0 135 -1107.36 0 164.62

9 -1890 690 0 -1864.31 689.816 12.1921

10 -1720 -850 180 -1683.62 -860.932 164.383

11 -2635 -1765 90 -2697.68 -1330.04 101.602

12 -1380 -1750 45 -1275.53 -1663.53 -

13 -1210 -615 0 -1173.07 -633.904 -3.15223

14 -650 0 135 -419.355 0 -171.399

15 -500 -950 -135 -381.059 -990.051 -122.39

8.3.2 Yellow goal camera results

Trial Real x Real y Real heading Measured x Measured y Measured heading

1 1200 0 -45 1226.66 8.91795 -29.5451

2 2400 -1100 -90 2415.29 -1049.44 -89.889

3 2400 1100 -135 2408.67 1105.43 -132.246

4 0 0 -180 104.126 25.5319 138.56

5 0 600 135 105.346 610.063 104.282

6 0 -600 90 93.75 -562.5 92.7216

7 600 0 45 924.242 0 -56.2321

8 2400 0 0 2412.43 2.28713 3.11271

9 2600 1630 -45 2687.4 1593.66 -52.6776

10 1180 1570 -90 1237 1545.57 -65.1596

11 490 1360 -135 583.001 1324.13 -132.118

12 400 -1640 -180 505.319 -1553.19 -

13 1240 -1650 135 1264.23 -1621.02 125.967

14 2650 -1660 90 2688.81 -1607.64 121.959

15 1830 -640 45 1905.94 -569.585 41.2505

