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Abstract—This paper investigates the learning of a controller
for a flat-footed bipedal robot using reinforcement learning
to optimally respond to (1) external disturbances induced by
stepping on objects or being pushed, and (2) rapid reversal of
demanded walk direction. The reinforcement learning method
employed learns an optimal policy by actuating the ankle joints
to assert pressure along the support foot, and optionally the leg
joints to determine the next swing foot placement. The controller
is learnt in simulation using an inverted pendulum model and
the policy transferred to two small physical humanoid robots.

I. INTRODUCTION

Bipedal locomotion is often subjected to large impact forces
induced by a robot inadvertently stepping on objects or by
being pushed. In robotic soccer, for example, it is not uncom-
mon for robots to step on each others feet or to be jostled
by opposition players. At current RoboCup [1] competitions
robots regularly fall over for these reasons in both humanoid
and standard platform league matches1. Another requirement
in soccer environments is that bipedal robots should be able
to react optimally to rapidly changing directional goals. In
soccer it is often necessary to stop suddenly after walking at
maximum speed or to reverse direction as quickly as possible.

Reinforcement learning is a machine learning technique that
can learn optimal control actions given a goal specified in
terms of future rewards. In this paper we use reinforcement
learning to decide actions that apply ankle torques to the
support foot to move the centre of pressure (CoP). The policy
can be changed while in mid-stride. We can also learn the
placement of the swing foot. The result is an optimal policy
that arbitrates both ankle and foot placement actions to pursue
a changing goal in the face of continual disturbances.

We are interested in learning a dynamically stable gait
for a planar biped. Reinforcement learning relies on many
trials which makes learning directly on real robots expensive.
Instead the controller is learnt using a simulated inverted
pendulum model that has been parameterised to closely corre-
spond to the physical robot. The policy is then transferred to
the real robot without modification. Our approach leaves open

1See video accompanying this paper

the ability to continue learning on the physical robot using the
accumulated experience from the simulator as a starting point.

Our contribution is learning a controller for a flat-footed
biped that can optimally react to environmental disturbances
and rapid changes in goal by simultaneously actuating the
ankle of the support foot while positioning the swing foot.

In the rest of this paper we first describe our simulated
system. We then provide a brief background on reinforcement
learning and outline our approach to learning on the simulated
biped. The behaviour for both sudden changes in policy and
impulse forces in simulation are described. We also show
how the policy is implemented on two physical robots by
addressing practical aspects of system state estimation and
policy implementation. Finally we discuss results, related and
future work.

II. SIMULATION

We model the flat-footed humanoid as an inverted pendulum
with the pivot located at the centre of pressure along the
bottom of the support foot as shown in Figure 1. We can
control the pivot position by actuating the ankle joint. For
simulation purposes we discretise the pivot to be in one of
three positions – at the toe, centre, or heel of the foot.

The state s of the system is defined by four variables
(x, ẋ, w, t) where x is the horizontal displacement from the
centre of the support foot to the centre of mass, ẋ is the
horizontal velocity of the centre of mass, w is the horizontal
displacement from the centre of mass to the centre of the swing
foot, and t is the time-step from the start of each walk-cycle.

The control actions a are defined by a couple (c, d), where
c chooses the centre of pressure for the support foot relative
to the foot centre and d chooses a step change in the swing
foot displacement w. We model the swing foot displacement
in this way to ensure it is moved into position progressively.

The state transition function is determined by the inverted
pendulum dynamics, the natural progression of time, the
walking gait that determines when the swing and support feet
alternate, and the change in w based on action d. The system
difference equations with time indexed by k and time-step ∆t
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Fig. 1. The inverted pendulum model of a flat-footed bipedal robot used for
simulation and reinforcement learning.

are:

xk+1 = xk + ẋk ∆t+ ẍk
∆t2

2
(1)

ẋk+1 = ẋk + ẍk∆t (2)
ẍk+1 = g sin(θk+1) cos(θk+1) (3)
wk+1 = wk + d (4)
tk+1 = tk + ∆t (5)

where g is the acceleration due to gravity and θk is the lean
of the inverted pendulum in the clock-wise direction. θ is
dependent on the pivot point pk determined by c and the height
of the centre of mass. The height h of the centre-of-mass of
the pendulum is modelled on gait characteristics of the robot.
We use a linear inverted pendulum – one for which the height
of the CoM is constant , hence θk = tan−1((xk − pk)/h).

The period of a complete walk cycle is T . We assume that
the time that the system is in a double support is small and
can be ignored for the purposes of system identification. The
support and swing feet alternate as the time passes through
t = T/2 and t = T = 0. At these times the above transition
equations are augmented by:

xk+1 = −wk+1 (6)
wk+1 = −xk+1 (7)

The state-space wraps around on itself after each walk-
cycle. That is, if tk+1 ≥ T then tk+1 = tk+1 − T .

Figure 2 shows several frames from an animation of the
inverted pendulum. The robot is depicted in both plan and
elevation views, showing the feet, the centre of mass, and the
currently actuated pivot.

III. REINFORCEMENT LEARNING REPRESENTATION

The formalism underpinning reinforcement learning (RL)
is a Markov Decision Problem (MDP) 〈S,A, T,R〉, where
S is a set of system states, A is a set of actions, T :
S × A × S → [0, 1] is a stochastic transition function and

Fig. 2. A schematic depiction of the animated simulator showing several
frames in plan-view (top) and side-view (bottom).

Variable Values Range Increment
x 21 -50 to 50mm 5mm
ẋ 25 -300 to 300mm/sec 25mm/sec
w 21 -50 to 50mm 5mm
t 24 0 to 479 millisec 20millisec
c 3 -40 to 40mm 40mm
d 3 -5 to 5mm 5mm

TABLE I
THE NUMBER OF DISCRETE VALUES FOR STATE AND ACTION VARIABLES

THAT ARE USED TO DEFINE THE SIZE OF THE Q TABLE AND THEIR
MEANING IN TERMS OF A SPECIFIC INSTANCE OF THE ROBOT

R : S × A × R → [0, 1] is a stochastic real-valued reward
function. At each time-step k, the system transitions from
the current state s ∈ S to a next state s′ ∈ S, given an
action a ∈ A, and receives a reward r ∈ R. The system
trajectory is characterised by a sequence of states, actions
and rewards sk, ak, rk, sk+1, ak+1, rk+1, sk+2, . . .. The objec-
tive is to maximise the future discounted sum of rewards∑∞

t=0E[γtr] where t = 0 is the current time-step, E is the
expectation operator, r ∈ R, and γ is a discount rate. We use
Q-Learning [2], an off-policy temporal difference approach to
learning the Q action-value function Q : S × A→ R.2 After
learning an optimal Q function the optimal control action a∗

in state s is maxaQ(s, a).
We now specify an instance of the above simulator and

represent it as an MDP for reinforcement learning. The specific
values of variables we use are: T = 480 milliseconds, centre
of mass height h = 260mm or 300mm depending on the
robot. We use straightforward discertisation of the above
continuous variables as our linear function approximator [2].
The simulator uses a time-step of one millisecond, while the
learner runs at 100Hz, the frequency that the physical robots
are able to drive the motors and make inertial measurements.
Table III provides the number of values used for the Q action-
value table and the range of each variable.

Rewards are chosen to achieve certain goal states and avoid
others. We use an arbitrary reward of -1000 if any of the state
variables x, ẋ, and w move outside their range. If the goal
is to balance the robot in an upright position we specify a
reward of 1000 for each state where x and ẋ, and w are close
to zero. We also add negative rewards for taking actions that

2Q-learning will in future work allow us to continue to learn on the physical
robots after transferring the action-value function from simulation.



require motor movements, -1 for asserting toe or heel pressure
and -10 for moving the swing foot, to encourage parsimonious
movement.

If the goal is to walk forwards or backwards at a specified
velocity we set the reward to 1000 for states x close to zero, ẋ
at the desired velocity, and t near T/4 and 3T/4. This provides
the reinforcement learner with two way-points in the walk-
cycle, similar to [3] selecting actions at Poincaré sections [4],
where the pendulum is upright and the centre of mass has the
specified velocity component. The discount factor γ is set to
0.9 and the Q-learning rate is set to 0.05.

The simulator is used to provide training examples for the
learner. While the simulator is a deterministic system, the
function approximation makes the system only approximately
Markov. The transitions function for the discrete system is
approximated by a stochastic transition function. Care must
be exercised in the learning regime. The pseudo stochastic
transitions are actually a function of the policy and depend
on a longer history of states and actions. We have a circular
phenomenon where the policy is determined by the value
function and the value function is dependent on the policy.

The trick we use is to start the simulator repeatedly at a
random point in the state-space and execute a trajectory of
100 transitions (about two walk cycles) using an ε-greedy
exploration function that executes the latest best policy 80%
of the time. The effect is to bootstrap the stochastic transition
function to operate with the latest best policy. Our other
strategy to ameliorate the Markov approximation is to use an
eligibility trace that has the added advantage in that it speeds
up learning by accelerating the back-propagation of the reward
signal.

Fig. 3. The average reward per step during reinforcement learning. With a
relatively small foot size (40mm) controlling both ankle and foot placement
(top curve) shows a better performance than with ankle control alone.

Reinforcement learning is allowed to continue in simulation
until the average reward per time-step settles to a maximum
value. Typical learning profiles are shown in Figure 3. The
final policy π(x, ẋ, t, w) = (c, d) is frozen.

IV. SIMULATION RESULTS

We conducted several experiments with the simulator to test
the robustness of the learnt policy to impact forces and random
changes in walking direction.

In the first set of experiments we only actuated the ankle to
control the pivot. The value of w was set to x which simulated
a swing foot movement that mirrored the support foot and
placed the swing foot 2x from the support foot. In Figure 4
we plot x and ẋ against time in two ways. The top diagrams
show the time-trace on a coordinate system with horizontal
axis x and vertical axis ẋ. The bottom diagram shows the
unfolding time series for x (red) and ẋ blue with the current
time on the right.

x	   x	  

x	   x	  

x	  

x	  

Fig. 4. Time-trace on a coordinate system with horizontal axis x and vertical
axis ẋ (top). Time series for x (red) and ẋ blue with the current time on
the right. (bottom). Response to impulse forces (left). Rapid change in walk
direction (right)

Figure 4 (left) shows the time-series response for both x
and ẋ to sudden changes in ẋ designed to simulated impact
forces. As can be seen from the graph the deceleration induced
by actuating ankles joints can persist over several walk cycles.
The inclusion of the time variable t from the start of the walk-
cycle as a part of the state of the system allows the learner to
plan ahead and take appropriate actions now in anticipation of
support foot changes.

The right of Figure 4 shows the response to sudden changes
in walking direction. Two separate RL controllers are trained
for forward and backward walks. By switching controllers the
robot can be directed to change walk directions. The response
to a new goal is acted on immediately, even while the swing
foot is in mid-stride. As can be seen from the Figure, actuating
ankles alone quickly achieves the desired outcome in change
of direction of the walk.

Ankle	  control	  alone	  	   Ankle	  and	  Foot-‐placement	  control	  	  

Fig. 5. Time-series impulse response comparison with and without swing-
foot placement control for a foot size of 40mm. The time series show both
x (red) and ẋ blue. Ankle control alone (left). Both ankle and swing-foot
placement control (right).

With the swing foot position w determined by incremental
movement actions d, the swing foot is placed, in conjunction
with the ankle control, to optimally arrest the motion of the



robot following sudden impact forces. Figure 5 shows the
typical response to impulse forces for a 40mm width foot
with and without foot-placement control. For small feet, ankle
control alone takes longer (and several steps) to rebalance the
robot.

Nao	  Cycloid	  

Fig. 6. Average reward per step after 100000 trials for various foot lengths.
The advantage in the additional foot placement control is not significant in
simulation for the feet size of the Nao and Cycloid.

Figure 6 shows the difference in average reward per step
when foot placement control is allowed in addition to ankle
control for various foot lengths. As one would expect with
increase in foot size the difference is eroded. The surprising
drop in average reward with increase in foot size we attribute
to the crude three-value discretisation for the pivot position.
With larger foot sizes the simulated ankle control torque at the
heel and toe is large and has difficulty keeping the robot in
the part of the state-space that achieves the high reward. The
foot sizes of the two robots we use are 120mm and 106mm.
For this reason our physical experiments focus on controlling
the ankle tilt.

Even if the swing foot is placed in relation to the support
foot and CoM, the learner still takes into consideration the
swing-foot policy when deciding the ankle control policy.
Figure 7 shows the policy for x and ẋ in relief half-way
through a swing phase (at t = 360ms).

x	  

x	  

-‐1	  

-‐1	  to	  0	  

	  	  0	  to	  1	  

	  1	  

Fig. 7. Reinforcement learnt ankle control policy determining the foot CoP
for x vs ẋ in the middle of the swing phase. The CoP pivot point can range
from -1 (heel) to 1 (toe).

V. PHYSICAL ROBOT IMPLEMENTATION

The policy learnt on the simulator was transferred to the
Cycloid and Nao robots (Figure 8). The physical robots
execute a walking gait by driving the hip, knee and ankle
motors using closed form kinematics to keep the CoM at a
constant height. As the robot is moved forward the support
foot is assumed to be close to flat on the ground and the
swing foot is kept parallel to the ground.

Fig. 8. Cycloid robot from Robotis, Korea modified by Tribotix, Australia
with an on-board GEODE processor (left), and the Nao robot from Aldebaran
Robotics, France (right).

On the physical robot, the state of the system needs to be
estimated from sensor readings. Both robots are equipped with
foot-sensors (4 per foot), an IMU unit providing accelerometer
and gyroscope measurements, and encoders allowing motor
positions to be read.

State estimation is achieved with a recursive Bayesian filter.
We choose a steady-state Kalman filter to reduce the amount of
on-line computation and perform recursive updates to estimate
the state variables x, ẋ, ẍ, w, t. The filter performs
• a prediction update using the linear inverted pendulum

model equations from the simulator with the pivot point
estimated from centre-of-pressure (CoP) calculations us-
ing the foot-sensor readings.

• a correction update based on kinematic, IMU, and foot-
sensor observations. The constant gain matrix used for
updating variables x, ẋ, ẍ, w, t is [0.5 0.5 0.5 0 0].

A. Centre of Pressure for Prediction Update

The CoP of the support foot is measured in millimetres
(mm) with the origin under the ankle joint. The CoP p is
calculated by taking the weighted average of all the foot-sensor
readings of the support foot.

p(foot) =
∑
di ∗ fi∑
fi

(8)

where foot ∈ {L(left), R(ight)}, di is the horizontal dis-
tance from the ankle joint to each foot-sensor i, and fi is
foot-sensor i reading.

The CoP is used as the pivot point of the inverted pendulum
for the process update and only has meaning during a single-
support phase of the walk cycle, since at other times both feet



are touching the ground and the dynamics of the robot are
affected by both feet.

We define the fraction of time during the walk-cycle that
each foot is in the swing phase as movFrac = 0.4. This
means the total double support time D = T (1−2∗movFrac).
Over the whole walk cycle T , the two swing phases are from
t = D/4 to t = T/2−D/4 and T/2 +D/4 to T −D/4.

The CoP calculations for the left (pR) and right (pL) support
feet are:

pR =

 p(R) D/4 ≤ t < T/2−D/4

0 otherwise

pL =

 p(L) T/2 +D/4 ≤ t < T −D/4

0 otherwise

(9)

The support foot is determined by the sign of the coronal (or
frontal) CoP component. The coronal gait rocking motion on
the physical robot is induced by a form of bang-bang control
by switching support foot based on the zero-crossing point
of the coronal CoP measured across the support polygon of
both feet with the origin between the feet. The period T has
been tuned to the natural rocking frequency of the humanoid.
Coronal disturbances are corrected by adjusting the update of
the gait time t to coincide with the zero-crossing of the coronal
CoP to times t = 0 and t = T/2.

To verify that that state-estimation is producing sensible
results we compare the estimate of x to a measure we observe
with high reliability and take to be the ground-truth. We place
two markers on the physical robot, one at the centre of mass
and one at the middle of the support foot. These markers are
tracked visually at 30 frames per second and the visual x value
compared to that estimated on the robot. Figure 9 shows both
the visual and estimated value of x over time for the Cycloid
with the robot being prodded occasionally.

Comparing	  the	  es-mated	  value	  of	  x	  with	  visual	  ground-‐truth	  values.	  

mm	  

Time-‐steps	  (30	  per	  second)	  

Fig. 9. Cycloid estimated x value plotted over time against the x value
observed visually by tracking markers.

B. Control

Once policies for staying upright on the spot while marking
time, walking forward and backward are learnt, the policy π :
S(x, ẋ, w, t)→ A(c, d) is transferred to the physical robot as

a table and the latest estimated state is used to lookup the
optimal actions to change the CoP on the support foot while
moving the swing foot.

The ankle control CoP policy is in the form of a discrete
output c ∈ {−1, 0, 1} with the intended meaning to move the
CoP of the support foot:

-1 to the back of the foot
0 to the centre of the foot
1 to the front of the foot

On the physical robot, depending on the current inclination
of the foot to the floor, rotating the ankle may not have the
desired effect. For example if the robot is leaning forward with
the heel slightly off the ground, rotating the ankle to put more
pressure on the toe is a redundant action, and rotating the ankle
pitch slightly to put pressure on the heel may not have any
effect. Our approach is to use the sensed current CoP point
to adjust the control action in such a way that it has a better
chance of being effective. We discretise the CoP p (pR or pL)
calculated above in Equation 9, by three values [−1, 0, 1] to
represent the ranges: close to the back of the foot; between
back and front of the foot; and close to the front of the foot,
respectively.

With a small ankle-pitch movement ∆f , we implement the
control policy a as follows:

If D/4 ≤ t < T/2−D/4 or T/2 +D/4 ≤ t < T −D/4:
if c = −1

if (p = −1) no-change
if (p = 0) a = ∆f
if (p = 1) a = 2∆f

if c = 0
if (p = −1) a = −∆f
if (p = 0) no-change
if (p = 1) a = ∆f

if c = 1
if (p = −1) a = −2∆f
if (p = 0) a = −∆f
if (p = 1) no-change

If the control action is already in force there is no change.
At the other extreme, if the current CoP is at the other end
of the foot we accelerate the ankle control action by moving
it through twice the usual rotation. The position of the swing
foot w was hard-coded as function of x, typically w = x/1.2,
to account for some energy loss during the gait cycle.

VI. EXPERIMENTAL RESULTS

We reproduce simulator experiments that mimic impulse
forces, and walking backward and forward behaviour using
the reinforcement learnt policies.

Impulse forces were created by placing a step on the ground
in the path of the robot. When the robot stepped on this
obstacle with its toe, the robot was pushed backward. The
robot would loose balance and fall over depending on the
height of the step. Figure 10 shows experimental results for
varying step-heights with and without control. With controller



active the robot can reliably survive an extra 72% increase in
step height. Similar trends and results are seen in simulation.

Fig. 10. Probability of falling with and without controller after stepping on
various height obstacles.

Experiments also show that a robot with the controller active
can survive walking into an object such as a chair or low bar,
but fall over otherwise3.

A shortcoming of our work is the movement of the swing
leg. We have found this to be jerky, especially for large
disturbances where the leg movement cannot respond quickly
enough to demanded positions.

VII. RELATED WORK

The literature on bipedal walking is extensive with several
approaches using reinforcement learning, for example: tempo-
rally extended actions have been applied to swing foot place-
ment underpinned by semi-MDP theory [3]. The parameters
of a central pattern generator are learnt using a policy gradient
method [5], and a CMAC function approximation is used in
learning the parameters of a swing-leg policy [6]. Bipedal
walking with point feet precludes ankle control and restricts
control actions to the double support phase or the points in
time when placing the swing foot.

Graf and Röfer [7] control a flat footed biped using an
iterative analytically method based on an inverted pendulum
model to plan the placement of the swing leg. The ankle joint
is not directly actuated as a control variable, but by keeping
the foot horizontal to the ground, there is an implicit control
to counteract unplanned movements.

Tracking and control of the CoM and Zero Moment Point
(ZMP) using modern control theory is employed for the
HRP series of robots [8] [9]. The approach uses preview
control, a feedforward mechanism that plans ahead using the
anticipated target ZMP. These robots control both the body
posture including ankle control and foot placement to stabilise
the robot. Our RL technique also provides feedforward control
as optimal actions are learnt to maximise future reward.

VIII. FUTURE WORK

We plan to extend the control to include coronal motion,
again though both ankle and foot placement control. Not only
is this expected to lead to omni-directional reactive behaviour,

3The video accompanying this paper shows various scenarios of this
behaviour for both the Nao and Cycloid robots.

but it should improve the performance because both sagittal
and coronal motions can be jointly optimised. The state space
is expected to grow and we have a barrage of reinforcement
learning techniques at our disposal to mitigate the expected
scaling issue, such as more cost-effective function approxi-
mation using instance based methods [10] and hierarchical
techniques [11].

The inverted pendulum is only an approximation to the
physical robot. We propose to improve the policy by improving
the simulator’s representation of the real robot and by contin-
uing learning on the real robot using the simulated policy as
a starting point to speed up convergence.

Beside ankle and foot placement control we intend to
include a hip reaction in the sagittal plane to assist balancing.

IX. CONCLUSIONS

The paper describes an approach to learn an ankle and
foot placement policy to arrest impulse disturbances and to
react to rapidly changing bipedal walking goals. The system
is specified by including time in the state-space and using RL
to optimise the arbitration between the two control actions.
In practice with large footed bipeds we find ankle control is
sufficient to achieve the objectives. Results transferring learnt
simulated inverted pendulum policies to physical robots show
promise and suggest several avenues for future work scaling
these techniques to 3D bipedal locomotion.
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[8] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, and K. H. K. Yokoi,
“Biped walking pattern generation by using preview control of zero-
moment point,” in in Proceedings of the IEEE International Conference
on Robotics and Automation, 2003, pp. 1620–1626.

[9] S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko,
F. Kanehiro, and K. Yokoi, “Biped walking stabilization based on linear
inverted pendulum tracking,” IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2010), pp. 4489–4496, 2010.

[10] J. C. Santamaria, R. S. Sutton, and A. Ram, “Experiments with
reinforcement learning in problems with continuous state and
action spaces,” Adaptive Behavior, 6(2), 1998. [Online]. Available:
citeseer.nj.nec.com/173817.html

[11] B. Hengst, “Model approximation for HEXQ hierarchical reinforcement
learning,” in ECML, 2004, pp. 144–155.


