
 

Abstract—This  paper outlines  a fast  and effective  method 
for  mapping  natural  landmarks  to  improve  localisation 
during RoboCup soccer matches.  The method uses modified 
1D SURF features  extracted  from  the  row of  pixels  on the 
robot's  horizon.  These  features  are  then  matched  across 
images  using   a  dynamic  programming  algorithm  that 
ensures that features can only be matched if they appear in 
the  same  order  in  each  image.  We  demonstrate  that  this 
approach is  robust  to lighting  changes,  occlusion and small  
changes in viewing angle, and computationally cheap enough 
to run on the Nao humanoid robot in real time.  As such we 
are  confident  that  with  further  work  this  approach  can be 
used  as  the  basis  of  an  enhanced  localisation  system  for 
playing robot soccer.   

Index Terms—Feature extraction, Humanoid robots, Robot 
vision systems, Simultaneous localisation and mapping 

I.INTRODUCTION

HIS paper  outlines  a  fast  and  effective  method  for 
extracting  and matching  natural  landmarks,  designed 

to  improve  robot  localisation  in  the  RoboCup  Standard 
Platform  League  (SPL).  The  RoboCup  SPL  is  an 
international  robot  soccer  league based on the Aldebaran 
Nao,  a  humanoid  robot  equipped  with a  500MHz Geode 
LX800  processor  and  a  640  x  480  pixel  30  fps  digital  
camera. 

T

Currently the rUNSWift team uses field lines and goal-
posts for localisation, and images of anything beyond the 
field  are  ignored.  This  approach  has  been  successful 
because the goal-posts at each end of the field have been 
painted  in  contrasting  colours,  enabling  each  half  of  the 
field  to  be  distinguished  from  the  other.  However,  from 
2012 the goal-posts are expected to be uniformly coloured, 
meaning  that  field-ends  will  be  aliased  unless  existing 
localisation  techniques  are  extended.  The  motivation  for 
this  project  is  therefore  to  use  some  natural  landmarks 
beyond the field to improve localisation. If goal colours are 
removed this will be an essential development. 

Although  there  are  several  effective  approaches  to 
extracting landmarks or features  from images [1],  [2] the 
requirement  for  real-time  soccer  playing  on  the  Nao 
imposes  significant  limitations  on  the  computational 
expense that  can be spared. With the competing demands 
of  other  robot  vision,  localisation  and  movement 
behaviours, as well as the 30 fps frame rate, we anticipate  
that  any  method  of  natural  landmark  localisation  should 
ideally be constrained to 5 - 10 milliseconds of execution 
time at most.

Given this processing constraint, our method for natural  
landmark  detection  and  description  uses  a  1 dimensional 
(1D) modified SURF algorithm [1] applied to a single row 
of  grey-scale  pixels.  To  enable  accurate  and  efficient 
matching  of  features  across  images,  we  consider  3 
matching algorithms,  including nearest  neighbour,  nearest 
neighbour with ordering constraint,  and nearest neighbour 



with  ordering  and  scaling  constraints.  The  last  of  these 
techniques  was  found  to  be  the  most  accurate.  This 
technique  is  implemented  using  a  dynamic  programming 
algorithm with O(n2) time complexity, which is equivalent 
to  a  naïve  implementation  of  nearest  neighbour.  Overall, 
our approach is most similar to [5], who use a 1D variant of 
SIFT and a dynamic programming matching algorithm to 
localise  a  robot  using  an  omni-directional  camera.  
However, our approach differs in some important respects 
since we use SURF rather than SIFT for feature detection 
and extraction, and because the Nao camera has a viewing 
angle of only 40 degrees rather than 360 degrees. 

II.RELATED RESEARCH

There  is  a  considerable  body  of  previous  research  on 
identifying  feature  representations  that  are  stable  under 
scale  and  viewpoint  changes.  Scale-Invariant  Feature 
Transform  (SIFT)  [2]  transforms  image  data  into  scale-
invariant  coordinates  relative  to  local  features.  Key 
features in SIFT are defined as maxima and minima of the 
result  of  the  difference  of  Gaussians  function  applied  in 
scale-space to a series of smoothed and resampled images.  
Low contrast  candidate  features and edge response points 
along an edge are discarded. 

Another popular feature detection algorithm is Speeded 
Up Robust Features (SURF) [1] which is related to SIFT. 
Instead  of  using  a  Difference  of  Gaussian  filter,  SURF 
makes an efficient  use of box filters  which approximates 
second  order  Gaussian  derivatives  and  can  be  evaluated 
very  fast  using  integral  images.  Using  a  standard  testing 
procedure  to  match   features  across  images,  [1]  found 
SURF  to  be  faster  and  more  accurate  than  SIFT.  On 
average  it  finished  the  task  in  354  ms  and  was  correct 
82.6%  of  the  time  compared  to  SIFT  which  finished  in 
1036 ms and was correct 78.1% of the time.

Previous research undertaken by the rUNSWift team [4] 
into the natural  landmarks localization problem ruled out 
feature  detection  methods  as  computationally  too 
expensive,  and  investigated  matching  of  horizon  pixels 
using Region Binning and Cross-Correlation. In each case 
the 360-degree horizon ring of pixels was sampled from the 
centre of the Robocup field and stitched together to obtain 
a  stored  ring  of  pixels.  Horizon  pixels  extracted  from 
subsequent images taken at random headings and locations 
around  the  field  were  compared  with  the  stored  ring  of 
pixels, to try to determine a likelihood distribution over the 
heading of the robot. 

Splitting the horizon ring of pixels into 28 bins, Region 
Binning  and  Cross-Correlation  produced  a  likelihood 
maximum in the correct bin with probability 22% and 46% 
respectively.  It  was concluded that  while  both techniques 
showed some promise, they were far from practical use in 
the  RoboCup competition  due  to  the  length  of  execution 
time, and lack of robustness in the face of changes in scale 
and viewpoint.

The closest work to ours is [5],[11],[12],  which applies 
SIFT  to  a  1D  circular  panoramic  image  and  uses  both 
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colour information and curvature as the feature descriptor 
for robot navigation. Features are matched using a dynamic 
programming algorithm which in this case is circular.  1D 
SIFT  is  also  used  by  [6]  as  a  shape-based,  time-scale 
invariant feature descriptor for 1D sensor signals. However, 
we decided to use SURF rather  than SIFT as our starting 
point since [7] document that SIFT is faster than SURF for 
a  range  of  real-world  images  and  offers  comparable 
matching performance.

III.PROJECT GOALS AND SCOPE

A.Primary Goal

The  primary  goal  of  this  project  is  to  establish  and 
implement  a  fast,  robust  algorithm  for  detecting  and 
extracting features  from images of typical  RoboCup field 
surroundings  (such  as  indoor  office  environments).  The 
algorithm  can  make  use  of  the  known  location  of  the 
horizon in the image, and any other known facts about the 
Robocup environment, but it must be fast enough to run in 
real  time  on  a  Nao.  Furthermore,  the  extracted  features  
need  to  be  repeatable  in  the  face  of  small  viewpoint  
changes, horizon errors, image blurring, changes in image 
brightness and partial occlusion by other robots.

B.Secondary Goal

The  secondary  goal  of  this  project  is  to  implement  a 
scalable  method  of  matching  extracted  features  across 
images.  Whilst  preprocessing  can  be  used,  the  matching 
step must be fast enough to run in real time on a Nao, and 
ultimately  scalable  enough  to  be  used  in  a  real  time 
RoboCup soccer match.  We note that  during a 20 minute 
RoboCup  match  the  Nao  will  observe  approximately 
36,000 images using a 30 fps camera. 

Fig. 1.  Image taken from the Nao camera showing superimposed horizon 
line as determined by robot kinematics.

C.Scope

We are  confident  that  the  ability  to  extract  and match 
repeatable  image  features  (otherwise  known  as  natural 
landmarks) in real time on the Nao will underpin a robust 
localisation system. Possible approaches to this localisation 
system  include  FastSLAM  [8]  or  the  Appearance-only 
SLAM  system  used  by  [3].  However,  given  the  time 
constraints of this project we consider the implementation  
of the actual localisation system to be beyond the scope of 
this project.  

IV.PROBLEM DECOMPOSITION

Our  approach  to  the  project  was  to  decompose  the 
project  into  4  stages.  These  stages  consisted  of:  (1) 
implementing the 1DSURF feature extraction algorithm in 
C++,  initially  on  a  laptop;  (2)  implementing  3  different  
algorithms  for  matching  features  across  images;  (3) 
formally evaluating and tuning the system on a test bed of 
images; and (4) porting the optimised algorithm to the Nao 
robot and evaluating performance in real time. 

Stage 1.Implementation of feature detection

In  this  stage  we  implemented  and  tested  natural  
landmark  detection  and  description  using  a  1D modified 
SURF  algorithm  [1]  applied  to  a  single  row  of  image 
pixels. This row of pixels was extracted by taking a vertical  
average of 40 pixels at the robot's horizon (as determined 
by robot kinematics). The horizon pixels were chosen since 
objects on the horizon do not move vertically irrespective 
of  the  robots  position  on  the  field.  We  anticipated  this 
approach would be several orders of magnitude faster than 
both SURF and Upright-SURF (U-SURF) as described in 
[1],  which  was  reported  to  execute  on  a  Linux  3GHz 
Pentium  IV  in  354  milliseconds  and  255  milliseconds 
respectively using standard test images. 

To rapidly prototype 1D SURF, we began by modifying 
the source code of the OpenSURF library [9]. This library 
was chosen since it is written in C++, the same language as 
the rest of the rUNSWift robot vision modules, and because 
it is open-source, self-contained and well documented.

Stage 2. Implementation of feature matching

For SURF features to be useful for localisation, we must 
be able to match the same features when they are observed  
in  different  images.  Stage  2  therefore  consisted  of 
implementing several feature matching algorithms, include 
nearest  neighbour,  nearest  neighbour  with  an  ordering 
constraint,  and nearest  neighbour with both ordering  and 
scaling constraints. 

The  ordering  constraint  attempts  to  improve  matching 
accuracy  by using the knowledge that  all  features  are  on 
the horizon line.  Since the robot  will  never move behind 
any background features in RoboCup, this implies that the 
features  visible  from  any  two  different  locations  should 
always  have  the  same  ordering.  Similarly,  the  scaling 
constraint  is  the  1D  equivalent  of  verifying  that  the 
matched features satisfy a valid homography.

As noted in [12], the dissimilarity of two features of the 
same  type  (both  maxima  or  both  minima)  can   be 
computed as the Euclidean distance between their feature 
vectors. Similarly to [12], we define the matching score S i,j 

of two features i and j to be the inverse of this distance, and 
the  matching  score  of  two  images  to  be  the  sum  of 
matching scores over all matched features.  

In order to efficiently match features using the ordering 
constraint,  we  implemented  a  dynamic  programming 
algorithm to find a set  of feature  matches that  obeys the 
ordering  constraint,  while  simultaneously maximizing  the 
matching score of the two images. This algorithm is related 
to  the  method used by [12]  to  match  circular  panoramic 
images,  but  differs  since  our  image  is  not  circular.  In 
pseudo-code, given two 1-indexed feature vectors of length 
m  and  n,  the  algorithm  to  return  image  matching  score 
under the ordering constraint is as follows:
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for i = 0, 1, 2,…, m:
E(i,0) = 0

for j = 0, 1, 2,..., n:
E(0,j) = 0

for i = 0, 1, 2,…, m:
for j = 0, 1, 2,..., n:

E(i,j) = max{ E(i-1,j), E(i,j-1), E(i-1,j-1)+Si,j }
return E(m,n)

This  algorithm  is  essentially  a  variation  of  the  well 
known  edit-distance  algorithm.  Horizontal  and  vertical 
steps in the E table correspond to leaving a feature in one 
vector  or  the  other  unmatched,  whilst  a  diagonal  step 
represents  matching  the  next  available  features  in  each 
feature vector.

The method for matching under the ordering and scaling 
constraint is simply to match under the ordering constraint,  
as described above, and then use RANSAC [13] to exclude 
outliers  from  the  line  fitted  to  the  points.  Although  this 
approach fails to allow for the curving of the matching line 
under robot translation, in practice we believe that with a 
camera viewing angle of only 40 degrees the curvature will 
be small.

Stage 3. Evaluation and tuning on a classification task

We originally intended to use the image sequences and 
testing software provided by [10] as used by [1] to evaluate 
the robustness of 1D SURF and tune  various parameters. 
However, given the idiosyncrasies of the Nao robot and the 
potential  for  unknown  error  in  the  horizon  location,  we 
ultimately decided to evaluate the algorithm using images 
from the Nao robot. 

To  create  a  bank  of  test  images,  we  captured  88  test 
images (and associated horizon location information) with 
the robot facing in all directions from a single location on 
the  field.  During this  process  the  background around the 
field consisted  of a  typical  office  or computer  laboratory 
environment. 

In  order  to  evaluate  the  accuracy  of  the  feature 
extraction  and  matching  algorithm,  we  generated  a  test 
bank of 480 matching image pairs (defined as two images 
with  at  least  50%  overlap)  and  2,065  unmatched  image 
pairs  (defined  as  two  images  with  no  overlap)  from  the 
original  88  test  images.  We  then  posed  the  localisation 
problem  as  a  classification  task,  to  see  if  the  matching  
score  between  two  images  was  a  reliable  indicator  of 
whether  two  images  actually  contained  the  same 
landmarks. 

Stage 4. Evaluation on the robot

The final  stage of the project  consisted of learning the 
rUNSWift  architecture  and  porting  the   code  to  the  Nao 
robot. We then conducting some more informal tests of the 
matching algorithm while actually running on the robot in 
real time. These tests included changes in scale, viewpoint,  
lighting conditions and removal of objects from the image.

V.RESULTS FROM CLASSIFICATION OF TEST IMAGES

Figures 2, 3 and 4 illustrate some typical output from our 
evaluation system, using the same two images from the test  
bank but with 3 different matching techniques. The scatter 
plot in the top right of the illustration depicts the features  
matched  across  the  two  images.  The  grey-scale  row  of 
pixels extracted from the horizon (itself marked in red) is 

shown above  each  image.  The  left-hand image  has  been 
flipped  and rotated  for  the  benefit  of  alignment  with the 
scatter plot. 

Fig. 2.  Example of image matching using 1DSURF and nearest neighbour 
feature matching.  Red  lines  show the  extremities  of  the  horizon  region. 
This region is vertically averaged to extract the single row of grey pixels 
shown above  each image.  All 1DSURF features are extracted from this 
single row of grey pixels. Matches are shown as blue dots.

Fig. 3.  Example of image matching using 1DSURF and feature matching 
with an Ordering  constraint.  This constraint ensures  that features on  the 
horizon must be matched in the same order in each image. This improves 
image matching at the cost of some additional processing time. 

In terms of the performance of the 3 different matching 
techniques,  Figure  2  clearly  illustrates  that  nearest 
neighbour  matching  produces  a  number  of  incoherent 
matches, and also fails to match a large number of features  
that  fail  to  satisfy  the  nearest  neighbour  distance  ratio  < 
0.65 test.  Adding the ordering constraint  in Figure 3 both 
increases the number of correct matches and also discards 
some incorrect matches. Finally, the addition of the scaling 
constraint in Figure 4 manages to discard some additional  
incorrect matches.

A further advantage of using the scaling constraint is that 
finding the equation of the line through matching feature 
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points  yields  important  visual  odometry,  or  homography 
information.   Suppose the line  fitted  to  matching  feature  
points  is  given  by  x2 =  m*x1 +  b,  where  x2 is  the  pixel 
location in image 2, and x1  is the pixel location in image 1. 
Assuming the horizon is close to horizontal in each image,  
the change in viewing angle θ from image 1 to image 2 (in 
pixels) is given by:
 

θ = (m-1)*IMAGE_WIDTH/2 + b  

where IMAGE_WIDTH is the number of horizontal pixels 
in  the  image.  For  example,  in  Figure  4,  the  robot  is 
estimated to have rotated 11.6 degrees to the right between 
the  bottom  image  and  the  left  hand  image.  In  this  case  
m=1.0 (no change in image scale), but in general the value  
of m gives important clues about the amount of movement  
toward or away from landmarks. 

Fig.  4.   Image  matching  using  1DSURF  and  feature  matching  using 
Ordering and Scaling constraints. Adding a further constraint to ensure that 
there is a consistent scale factor between features in each image improves 
image matching performance even further. In addition, using this matching 
technique the change in viewing angle can also be extracted. In this case 
the robot has rotated 11.6 degrees to the right between the bottom image 
and the top image. 

Figure 5 depicts the overall performance of 1DSURF on 
the complete classification task described above in terms of 
a  ROC  curve.  It  can  be  seen  that  the  addition  of  the 
ordering  and  scaling  constraints  result  in  a  substantial  
improvement to classification accuracy. 1DSURF is clearly 
less robust than the original SURF (2DSURF) proposed by 
[1].  However,  as  illustrated  in  Table  1,  our  1DSURF 
implementation  extracts  features  nearly  500x  faster  than 
the  OpenSURF  [9]  implementation  when  running  on  a 
typical  laptop.  With  mean  extraction  time  already  below 
0.5ms,  we  believe  that  with  further  profiling  and  tuning 
real-time  feature  extraction  on  the  Nao  during  RoboCup 
matches should be feasible. 

While  in  most  cases  the  1DSURF  algorithm  was 
implemented  as  the  1  dimensional  analog  of  2DSURF, 
after  a  substantial  amount  of  experimentation  some 
changes were made to suit the task at hand. For example,  
rather than selecting only the extrema in image scale-space 
as  feature  point  locations,  we  ultimately  required  that  
points  need  only  be  extrema  in  the  single  space 

dimensional  to  be  selected.  This  relaxation  ensures  that 
sufficient feature points will be detected. 
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Fig. 5.  ROC curve for classifying images as matched or unmatched using  
the matching score. 2DSURF has a better matching performance than any 
of  our  1DSURF variations,  but  the  running  time  is  hundreds  of  times 
slower. OdSc = feature matching with Ordering and Scaling constraint, Od 
= feature matching with Ordering constraint only, NN = nearest neighbour 
matching with no constraint.

TABLE I. Running time of feature extraction and matching algorithms.

Feature 
extraction 
technique

Feature matching 
technique

Mean 
no. 

features 

Mean 
extraction 
time (ms)

Mean 
matching 
time (ms)

AUC

2D SURF Nearest 
neighbour (NN)

429 199.06 18.92 98.82%

1D SURF Nearest 
neighbour (NN)

107.6 0.43 0.21 80.61%

1D SURF NN with ordering 107.6 0.43 0.45 83.56%

1D SURF NN with ordering 
& scaling

107.6 0.43 0.49 87.80%

AUC = Area Under ROC Curve. Times were evaluated on a 2.4GHz Core 2  
Duo Processor laptop using a testing set consisted of 480 matching image 
pairs and 2065 unmatched image pairs (generated from 88 test images).

The original  SURF interpolates the location of features 
in both space and scale to sub-pixel  accuracy by fitting a 
3D  quadratic  curve  to  the  local  image  function.  In  our 
application, we found that the additional accuracy provided 
by this step was not worth the computational burden, and it  
was discarded. Similarly, the orientation assignment step of 
the  original  algorithm  is  not  necessary,  since  the 
orientation  of  all  1DSURF  points  is  specified  by  the 
horizon.  Finally,  although the 1DSURF feature  descriptor 
is  calculated  analogously  to  the  2D  version,  due  to  the 
reduction  in  sample  space  it  is  an  8-dimensional  vector 
rather than a 64-dimensional vector. 

Following  extensive  experimentation,  the  following 
parameter  values were chosen: 4 scale-space octaves of 3 
intervals each, an initial sample scale of 2 pixels, a feature  
response threshold of 0.00005 and a horizon width of 40 
pixels. Table II below provides an overview of the impact  
of changing the response threshold.
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TABLE  II.  Impact  of  variations  in  the  feature  detection  threshold  on 
running  time  and  accuracy,  using  1D SURF with  Ordering  and  Scaling 
constraints.

Feature detection 
threshold 

Mean no. 
features 

Mean 
extraction 
time (ms)

Mean 
matching 
time (ms)

AUC

0.5x 127.5 0.45 0.67 88.70%

1x 107.6 0.43 0.49 87.80%

2x 92.1 0.41 0.37 86.18%

4x 78.5 0.39 0.27 83.83%

8x 65.2 0.38 0.21 81.10%

AUC = Area Under ROC Curve. Times were evaluated on a 2.4GHz Core 2  
Duo Processor laptop using a testing set consisted of 480 matching image 
pairs and 2065  unmatched image pairs (generated from 88 test images). 
Thresholds are relative to the chosen threshold of 0.00005. 

VI.RESULTS ON THE NAO ROBOT

As  a  general  proof  of  concept,  for  the  following 
sequence of results we have stored 10 background images 
taken from one side of the RoboCup field as a crude map.  
We then moved the robot to different locations around the 
field. We hoped to observe that the robot could recognise 
the same landmark when it was seen again, even with some 
translation,  changes  in  lighting,  and  changes  to  the 
background  itself.  Comments  on  the  results  of  each  of 
these  tests  can  be  found  in  the  figure  captions.  The 
matching  algorithm  used  for  these  tests  was  nearest  
neighbours with the ordering and scaling constraint.

At all times the feature extraction algorithm was running 
in  real-time  on  the  robot.  Currently  this  algorithm  takes 
around 150ms to 200ms to execute on the robot (compared 
to less than 0.5ms on a typical  laptop).  While this is still  
too slow for  the  RoboCup competition,  we are  confident 
that  with careful  profiling and optimisation on the actual 
robot  (which  we  haven't  yet  undertaken),  further  speed 
increases can be found.

As an aside, we note that in several cases the algorithm 
matches  the  test  image  to  multiple  map  images.  This 
should not be seen as a failure,  since each correct  match 
also provides homography information.  As such, multiple 
correct  matches  should  provide  increased  localistion 
accuracy. 

1176 
MATCH

338
MATCH

228
MATCH

88 77

32 62 78 61 51

Fig. 6.  Successful matching of a near- identical image. The table depicts 
matching scores for the top image against the 10 images tiled in the lower 

frame. The threshold for images to be considered a match is 200. 

254 
MATCH

155 116 118 75

39 31 47 48 31

Fig. 7.  Successful matching demonstrating robustness to changes in some 
background objects. In this case, even with the removal of the goal posts, 

the image is still correctly matched to the location where the goalposts were 
before.  The table depicts matching scores for the top image against the 10 
images tiled in the lower frame. The threshold for images to be considered 

a match is 200. 

5



240 
MATCH

175 132 100 89

41 30 44 51 26

Fig. 8.  Successful matching with both changes to background objects (goal 
posts removed) and changing lighting conditions (field lights turned off). 
The table depicts matching scores for the top image against the 10 images 
tiled in the lower frame. The threshold for images to be considered a match 

is 200. 

81 83 73 81 97

85 275
MATCH

739
MATCH

61 91

Fig. 9.  Successful matching of a different base image. The table depicts 
matching scores for the top image against the 10 images tiled in the 

lowerframe. The threshold for images to be considered a match is 200. 

110 150 353
MATCH

710
MATCH

473
MATCH

53 76 69 87 63

Fig. 10.  Successful matching of another different base image. The table 
depicts matching scores for the top image against the 10 images tiled in the 

lower frame. The threshold for images to be considered a match is 200. 

39 33 53 66 61

95 102 51 111 68

Fig. 11.  Image is correctly rejected as not matching to any of the saved 
map images (it is in fact an image taken from the other side of the field) 

The table depicts matching scores for the top image against the 10 images 
tiled in the lower frame. The threshold for images to be considered a match 

is 200. 
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245 
MATCH

199 210
MATCH

69 59

49 52 73 58 56

Fig. 12.  Successful matching of the first image from a different angle 
(sideways translation of the robot to it's right). The table depicts matching 

scores for the top image against the 10 images tiled in the lower frame. The 
threshold for images to be considered a match is 200. 

293 
MATCH

313
MATCH

238
MATCH

101 115

99 79 58 83 40

Fig. 13.  Successful matching of the first image with the robot placed closer 
to the goal posts. The table depicts matching scores for the top image 

against the 10 images tiled in the lower frame. The threshold for images to 
be considered a match is 200. 

324 
MATCH

389
MATCH

311
MATCH

122 101

29 64 62 35 45

Fig. 14.  Successful matching of the first image with the robot placed 
further away from the goal posts. The table depicts matching scores for the 
top image against the 10 images tiled in the lower frame. The threshold for 

images to be considered a match is 200. 

284 
MATCH

150 110 69 99

37 72 86 67 53

Fig. 15.  Successful matching of the first image from a different angle 
(sideways translation of the robot to its left). The table depicts matching 

scores for the top image against the 10 images tiled in the lower frame. The 
threshold for images to be considered a match is 200. 
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VII.CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The 1DSURF method and matching algorithm we have 
proposed  has  been  shown  to  be  accurate  at  detecting 
repeated natural  landmarks in typical  office or laboratory 
environments,  when using  the  location  of  the  horizon  as 
determined  by  the  robot.  The  algorithm  is  robust  to 
changes in illumination, removal of some landmarks, small  
changes  in  viewing  angle  (sideways  translation)  and 
significant  scale  changes  (translation  forwards  and 
backwards). In addition, the algorithm is fast enough to run 
in  real-time on the  Nao robot,  although further  speedups 
are required for it to be match ready.

Although we consider  the  current  implementation  as a 
proof of concept,  there remains a considerable  amount of 
future development to be undertaken. In terms of speeding 
up the algorithm, we would suggest detailed profiling and 
optimisation  of  the  algorithm  as  running  on  the  robot, 
which we haven't  undertaken.  For example,  currently  the 
algorithm  sequentially  accesses  vertical  pixels  from 
horizon  band.  Depending  on  the  layout  of  the  image  in 
memory, we suspect that sequentially accessing horizontal 
pixels  might  be  faster,  but  we have  not  tested  this  idea. 
Furthermore, sub-sampling the original image has not been 
tested.

Secondly,  we  would  suggest  running  the  matching 
algorithm  on  sequential  frames  and  using  the  extracted 
visual  odometry  information  in  the  existing  robot 
localisation system. We anticipate that this visual odometry 
information will prove to be highly accurate with regard to 
changes in robot rotation,  which is not well  estimated by 
the existing odometry from the robot walk engine.

Finally,  before the system can be used for localisation, 
the speed of the matching algorithm needs to be increased.  
The  existing  algorithm  using  the  ordering  and  scaling 
constraint  is not scalable to large numbers of images. We 
see  two possible  approaches  to  this  issue.  One approach 
would be combining detected features into a single feature  
map,  rather  than  matching  over  many  previously  stored 
images.  This  would  involve  a  SLAM  method,  such  as 
FastSLAM [8].

A second approach  to the  matching  issue would be to 
implement  a  two-stage  matching  process,  such  that  an 
approximate method is used to first narrow-down the list of 
likely image matches. The full matching algorithm with the 
ordering and scaling constraint could then be applied to the 
short list of likely candidates. An approach like this would 
be similar  to  [3].  In  this  paper,  the  authors  implement  a 
highly scalable system by mapping the continuous space of 
feature  vectors  into  a  discrete  feature  vocabulary.  This 
vocabulary  can  be  learned  off-line  by clustering  features 
extracted from a set of training data, using the modified k-
means  clustering  algorithm  developed  by  [3].  The 
approximate  matching  step  then  consists  of  using  an 
inverted  index  of  dictionary  features  to  efficiently  index 
the previous images that contain those features. This short 
list of images can then be verified using the full matching 
algorithm. 

VIII.CONTRIBUTIONS OF INDIVIDUAL GROUP MEMBERS AND 
SUBDIVISION OF TASKS

Both authors  were  fully  involved  in the  entire  project. 
There was no sub-division of tasks.
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