
KR-Techniques for
General Game Playing

Michael Thielscher



Roadmap

1. General Game Playing – a Grand AI Challenge

2. KR-Aspects
Formalizing game rules:
Compact representations of state machines
Challenge I:
Mapping game descriptions to efficient representations
Extracting useful knowledge from game descriptions
Challenge II:
Proving properties of games

3. Further Aspects: Search + Learning



The Turk (18th Century)



Alan Turing & Claude Shannon (~1950)



Deep-Blue Beats World Champion (1997)



In the early days, game playing machines were considered a 
key to Artificial Intelligence (AI).

But chess computers are highly specialized systems.
Deep-Blue's intelligence was limited. It couldn't even play a 
decent game of Tic-Tac-Toe or Rock-Paper-Scissors.

A General Game Player is a system that
understands formal descriptions of arbitrary strategy games

learns to play these games well without human intervention

Definition



Rather than being concerned with a specialized solution to a narrow
problem, General Game Playing encompasses a variety of AI areas.

General Game Playing - A Grand AI Challenge

Learning

Game Playing

Planning and Search

Knowledge Representation and Reasoning



General Game Playing and AI

Agents Games

 Competitive environments  Deterministic, complete information

 Uncertain environments  Nondeterministic, partially observable

 Unknown environment model  Rules partially unknown

 Real-world environments  Robotic player



Knowledge Representation for Games

–

The Game Description Language



Games as State Machines

a

b

c

d

e

f

g

h

i

j

k



Initial Position and End of Game

a

b

c

d

e

f

g

h

i

j

k



Simultaneous Moves

a

b

c

d

e

f

g

h

i

j

ka/b
a/b

a/aa/a

b/aa/b

a/b

a/ba/a

a/a

a/a

a/aa/a

a/b

b/b
b/a

b/b

b/b

b/bb/a



Every finite game can be modeled as a state transition system

But direct encoding impossible in practice

 ~ 1043 legal positions19,683 states



cell(X,Y,M)

X,Y  {1,2,3}
M  {x,o,b}

control(P)

P  {xplayer,oplayer}

Modular State Representation: Fluents

3

2

1

1 2 3



Actions

3

2

1

1 2 3

mark(X,Y)

X,Y  {1,2,3}

noop



Tic-Tac-Toe Game Model

roles {xplayer, oplayer}

initial s1 = {cell(1,1,b), ..., cell(3,3,b), control(oplayer)}

legal actions {(xplayer, mark(1,1), s1), ..., (oplayer, noop, s1), ...}

update 〈(〈xplayer  mark(1,1), oplayer  noop , 〉 s1)
     {cell(1,1,x), ..., (cell(3,3,b), control(oplayer)} ,〉
 ... 

terminals {t1 = {cell(1,1,x), cell(1,2,x), cell(1,3,x), ...}, ...}

goal {(xplayer, t1, 100), (oplayer, t1, 0), ...}

Symbolic expressions: {xplayer, oplayer, cell(1,1,b), noop, ...}



Symbolic Game Model

Let Σ be a countable set of ground expressions.

A game is a structure

- R  2Σ roles
- l  ⊆ R   Σ  2 Σ legal actions
- u: (R  Σ)  2Σ  2Σ update

- s1  2Σ initial position

- t ⊆ 2Σ terminal positions
- g  ⊆ R  2 Σ   ℕ goal relation

where 2Σ := finite subsets of Σ

(R, l, u, s1, t, g)



Game Description Language GDL

A game description is a stratified, allowed logic program whose 
signature includes the following game-independent vocabulary:

 role(player)

  init(fluent)
 true(fluent)
 does(player,move)
 next(fluent)
 legal(player,move)
 goal(player,value)
 terminal



Describing a Game: Roles

A GDL description P encodes the roles  R = {     Σ : P ╞ role()}

role(xplayer) <=

role(oplayer) <=



Describing a Game: Initial Position

A GDL description P encodes   s1 = {     Σ : P ╞ init()}

init(cell(1,1,b)) <=

init(cell(1,2,b)) <=

init(cell(1,3,b)) <=

init(cell(2,1,b)) <=

init(cell(2,2,b)) <=

init(cell(2,3,b)) <=

init(cell(3,1,b)) <=

init(cell(3,2,b)) <=

init(cell(3,3,b)) <=

init(control(xplayer)) <=



Preconditions

For S ⊆ Σ let Strue := {true() :     S}

then P encodes  l = {(r, ,  S) : P  ∪ Strue ╞ legal(r, )}

legal(P,mark(X,Y))  <= true(cell(X,Y,b)) ∧
 true(control(P))

legal(xplayer,noop) <= true(cell(X,Y,b)) ∧
true(control(oplayer))

legal(oplayer,noop) <= true(cell(X,Y,b)) ∧
 true(control(xplayer))



Update

For A : R  Σ let Adoes := {does(r, A(r)) : r  R}

then P encodes  u(A, S) = {   : P  ∪ Adoes  ∪ Strue ╞ next()}

next(cell(M,N,x))<= does(xplayer,mark(M,N))

next(cell(M,N,o))<= does(oplayer,mark(M,N))

next(cell(M,N,W))<= true(cell(M,N,W)) ∧ ¬W=b

next(cell(M,N,b))<= true(cell(M,N,b)) ∧
    does(P,mark(J,K)) ∧ (¬M=J ∨ ¬N=K)

next(control(xplayer)) <= true(control(oplayer))

next(control(oplayer)) <= true(control(xplayer))



Termination

P encodes  t = {S  ⊆ Σ : P  ∪ Strue ╞ terminal}

terminal <= line(x) ∨ line(o)
terminal <= ¬open

line(W) <= row(M,W)

line(W) <= column(N,W)

line(W) <= diagonal(W)

open <= true(cell(M,N,b))



Auxiliary Clauses

   row(M,W) <= true(cell(M,1,W)) ∧
  true(cell(M,2,W)) ∧
  true(cell(M,3,W))

column(N,W) <= true(cell(1,N,W)) ∧
  true(cell(2,N,W)) ∧
 true(cell(3,N,W))

diagonal(W) <= true(cell(1,1,W)) ∧
  true(cell(2,2,W)) ∧
  true(cell(3,3,W))

diagonal(W) <= true(cell(1,3,W)) ∧
  true(cell(2,2,W)) ∧
  true(cell(3,1,W))



Goals

P encodes  g = {(r, S, n): P  ∪ Strue ╞ goal(r, n)}

goal(xplayer,100) <= line(x)

goal(xplayer,50)  <= ¬line(x)  ∧ ¬line(o)  ∧ ¬open

goal(xplayer,0)   <= line(o)

goal(oplayer,100) <= line(o)

goal(oplayer,50)  <= ¬line(x)  ∧ ¬line(o)  ∧ ¬open

goal(oplayer,0)   <= line(x)



Game descriptions are a good example of knowledge representation
with formal logic.

Automated reasoning about actions necessary to

determine legal moves

update positions

recognize end of game

Reasoning



Challenge I: Efficient Descriptions



GDL and the Frame Problem

next(cell(M,N,x))<= does(xplayer,mark(M,N))

next(cell(M,N,o))<= does(oplayer,mark(M,N))

next(cell(M,N,W))<= true(cell(M,N,W)) ∧ ¬W=b

next(cell(M,N,b))<= true(cell(M,N,b)) ∧
    does(P,mark(J,K)) ∧ (¬M=J ∨ ¬N=K)

next(control(xplayer)) <= true(control(oplayer))

next(control(oplayer)) <= true(control(xplayer))



GDL and the Frame Problem

Effect Axioms
next(cell(M,N,x))<= does(xplayer,mark(M,N))

next(cell(M,N,o))<= does(oplayer,mark(M,N))

Frame Axioms
next(cell(M,N,W))<= true(cell(M,N,W)) ∧ ¬W=b

next(cell(M,N,b))<= true(cell(M,N,b)) ∧
    does(P,mark(J,K)) ∧ (¬M=J ∨ ¬N=K)

Action-Independent Effects
next(control(xplayer)) <= true(control(oplayer))

next(control(oplayer)) <= true(control(xplayer))



A More Efficient Encoding (PDDL)

(:action noop

 :effect (and (when (control xplayer) (control oplayer))

              (when (control oplayer) (control xplayer))) )

(:action mark

 :parameters (?p ?m ?n)

 :effect (and (not cell(?m ?n b))

          (when (= ?p xplayer) (cell(?m ?n x)))

              (when (= ?p oplayer) (cell (?m ?n o)))

          (when (control xplayer) (control oplayer))

          (when (control oplayer) (control xplayer))) )



How to Get There?

Using Situation Calculus, the completion of the GDL clauses entails
 cell(M,N,W,do(mark(xplayer,J,K),S)) <=>

   W=x  M=J  N=K∧ ∧
  ∨ cell(M,N,W,S)  ∧ ¬W=b

  ∨ cell(M,N,W,S)  ∧ W=b  (∧ ¬M=J  ∨ ¬N=K)

This is equivalent to the (instantiated) Successor State Axiom
 cell(M,N,W,do(mark(xplayer,J,K),S)) <=>

 W=x  M=J ∧  N=K∧
 ∨
 cell(M,N,W,S)  ∧ ¬(M=J  N=K  W=b)∧ ∧



A More Difficult Example

succ(0,1)<= 

succ(1,2)<= 

succ(2,3)<= 

init(step(0)) <=

next(step(N)) <= true(step(M))  succ(M,N)∧

The equivalence
 step(N,do(P,A,S)) <=> step(M,S)  succ(M,N)∧

does not entail the positive and negative(!) effects
 (when (and (step ?m) (succ ?m ?n)) (step ?n))

 (when (step ?n) (not (step ?n)))

 



Challenge I

Translate GDL effect clauses into an efficient action representation!

Which formalism?
Successor state axioms, state update axioms (Fluent Calculus), 
PDDL, causal laws, ...

May require to prove state constraints

Concurrency (for n-player games w/ n ≥ 2)



Challenge II: Proving State Constraints



The Value of Knowledge

Not only are state constraints helpful for better encodings, 
structural knowledge of a game is crucial for good play.

Examples
A game is turn-based.
Each board cell (X,Y) has a unique contents M.

Markers x and o in Tic-Tac-Toe are permanent.

A game is weakly (strongly) winnable.

Game properties like these can be formalized using ATL; 
see [W. v. d. Hoek, J. Ruan, M. Wooldridge; 2008]



Induction Proofs

Claim 
Fluent control has a unique argument in every reachable position.

P: init(control(xplayer)) <=

 next(control(xplayer)) <= true(control(oplayer))

 next(control(oplayer)) <= true(control(xplayer))

The claim holds if
uniqueness holds initially, and
uniqueness holds next, provided it is true (and every player 
makes a legal move).



Answer Set Programming

We can use ASP to prove both an induction base and step.

P ∪ h0 <= 1{init(control(X)): controldomain1(X)}1

 <= h0

admits no answer set; 
same for

P ∪ 1{true(control(X)): controldomain1(X)}1 <=

 h <= 1{next(control(X)): controldomain1(X)}1

 <= h



Another Example

Claim 
Every board cell has a unique contents.

Let P be the GDL clauses for Tic-Tac-Toe.

P ∪ h0(X,Y) <= 1{init(control(X,Y,Z)): 

                                  celldomain3(Z)}1

 h0 <= h0(X,Y)
 <= h0

admits no answer set.



Another Example (Cont'd)

For the induction step, uniqueness of control must be known!

P ∪ 1{true(control(X)): controldomain1(X)}1 <=

 1{does(R,A): doesdomain2(A)}1 <=

 <= does(R,A) ∧ legal(R,A)
 1{true(cell(X,Y,Z)): celldomain3(Z)}1 <=

 h(X,Y) <= 1{next(cell(X,Y,Z)): celldomain3(Z)}1

 h <= h(X,Y)
 <= h

admits no answer set.



Find a more abstract proof method for GGP!

Challenge II

Induction proofs using ASP work fine for reasonably small games.

For complex games, the grounded program becomes too large.



Planning and Search



Game Tree Search (General Concept)



Game
Description

Compiled
Theory

Reasoner

Move
List

Termination
& Goal

State
Update

Search

A General Architecture



Learning



Towards Good Play

Besides efficient inference and search algorithms, the ability to
automatically generate a good evaluation function distinguishes
good from bad General Game Playing programs.

Existing approaches:

Mobility and Novelty Heuristics

Structure Detection

Fuzzy Goal Evaluation

Monte-Carlo Tree Search



Mobility

More moves means better state

Advantage:
In many games, being cornered or forced into making a move is 
quite bad
- In Chess, having fewer moves means having fewer pieces,
 pieces of lower value, or less control of the board
- In Chess, when you are in check, you can do relatively few

things compared to not being in check
- In Othello, having few moves means you have little control of

the board

Disadvantage: Mobility is bad for some games



Worldcup 2006: Cluneplayer vs. Fluxplayer



Designing Evaluation Functions

Typically designed by programmers/humans

A great deal of thought and empirical testing goes into choosing 
one or more good functions

E.g.
- piece count, piece values in chess
- holding corners in Othello

But this requires knowledge of the game's structure, semantics, 
play order, etc.



 goal(xplayer,100) <= line(x)
 line(P) <= row(P)
           ∨ col(P)
           ∨ diag(P)

Fuzzy Goal Evaluation: Example

Value of intermediate state = Degree to which it satisfies the goal

1        2        3

1

2

3



goal(xplayer,100) <= line(x)

line(P) <= row(P) ∨ col(P) ∨ diag(P)

row(P) <= true(cell(1,Y,P)) ∧ true(cell(2,Y,P))  ∧
true(cell(3,Y,P))

col(P) <= true(cell(X,1,P)) ∧ true(cell(X,2,P)) ∧ 
true(cell(X,3,P))

diag(P) <= true(cell(1,1,P)) ∧ true(cell(2,2,P)) ∧ 
true(cell(3,3,P))

diag(P) <= true(cell(3,1,P)) ∧ true(cell(2,2,P))  ∧
true(cell(1,3,P))

Full Goal Specification



After Unfolding

goal(x,100) <= true(cell(1,Y,x)) ∧ true(cell(2,Y,x)) ∧ 
  true(cell(3,Y,x))

∨
 true(cell(X,1,x)) ∧ true(cell(X,2,x))   ∧
 true(cell(X,3,x))
∨
 true(cell(1,1,x)) ∧ true(cell(2,2,x)) ∧ 
 true(cell(3,3,x))
∨
 true(cell(3,1,x)) ∧ true(cell(2,2,x)) ∧ 
 true(cell(1,3,x))

3 literals are true after  does(x,mark(1,1)) 
2 literals are true after  does(x,mark(1,2))
4 literals are true after  does(x,mark(2,2))



Our t-norms: Instances of the Yager family (with parameter q)

Evaluating Goal Formula (Cont'd)

           T(a,b) = 1 – S(1-a,1-b)                                          
           S(a,b) = (a^q + b^q) ^ (1/q)

Evaluation function for formulas

            eval(f ∧ g) = T'(eval(f),eval(g))                            
            eval(f ∨ g) = S'(eval(f),eval(g))                            
            eval(¬f) = 1 - eval(f)



Advanced Fuzzy Goal Evaluation: Example

init(cell(green,j,13))∧ ...

goal(green,100) 
   <= true(cell(green,e,5)

       ∧ ...

 (j,13)

 (e,5)

Truth degree of goal literal = (Distance to current value)-1



Identifying Metrics

Order relations  Binary, antisymmetric, functional, injective

    
succ(1,2).  succ(2,3).  succ(3,4).
file(a,b).  file(b,c).  file(c,d).

Order relations define a  metric  on  functional  features

 (cell(green,j,13),cell(green,e,5)) = 13



Degree to which f(x,a) is true given that f(x,b):

(1-p) - (1-p) * (b,a) / |dom(f(x))|

With p =  0.9, eval(cell(green,e,5)) is
0.082  if  true(cell(green,f,10)) 
0.085  if  true(cell(green,j,5))

 (f,10)

 (j,5) (e,5)



A General Architecture

Game
Description

Compiled
Theory

Reasoner

Move
List

Termination
& Goal

State
Update

Evaluation
Function

Search



Fuzzy goal evaluation works particularly well for games with

independent  sub-goals
          15-Puzzle

converge  to the goal
          Chinese Checkers

quantitative  goal
          Othello

partial goals
          Peg Jumping, Chinese Checkers with >2 players

Assessment



Summary



The GGP Challenge

Much like RoboCup, General Game Playing

combines a variety of AI areas

fosters developmental research

has great public appeal

has the potential to significantly advance AI

In contrast to RoboCup, GGP has the advantage to

focus on the high-level knowledge aspect of intelligence

poses a number of interesting challenges for KRR

make a great hands-on course for AI+KR students



A Vision for GGP

Natural Language Understanding

Rules of a game given in natural language

Robotics

Robot playing the actual, physical game

Computer Vision

Vision system sees board, pieces, cards, rule book, ...

Uncertainty

Nondeterministic games with incomplete information



Resources

Stanford GGP initiative games.stanford.edu
- GDL specification
- Basic player

GGP in Germany general-game-playing.de
- Game master

Palamedes palamedes-ide.sourceforge.net
- GGP/GDL development tool



Recommended Papers

J. Clune
Heuristic evaluation functions for general game playing, AAAI 2007

H. Finnsson, Y. Björnsson
Simulation-based approach to general game playing, AAAI 2008

M. Genesereth, N. Love, B. Pell
General game playing, AI magazine 26(2), 2006

W. v. d. Hoek, J. Ruan, M. Wooldridge
Verification of games in the game description language, 2008 (submitted)

S. Schiffel, M. Thielscher
Fluxplayer: a successful general game player, AAAI 2007

S. Schiffel, M. Thielscher
Specifying multiagent environments in the Game Description Language,
2008 (submitted)


