KR-Techniques for General Game Playing

Michael Thielscher

Roadmap

- 1. General Game Playing a Grand AI Challenge
- 2. KR-Aspects
 - Formalizing game rules: Compact representations of state machines
 - Challenge I:

Mapping game descriptions to efficient representations

- Extracting useful knowledge from game descriptions
- Challenge II: Proving properties of games
- 3. Further Aspects: Search + Learning

The Turk (18th Century)

Alan Turing & Claude Shannon (~1950)

Deep-Blue Beats World Champion (1997)

Definition

In the early days, game playing machines were considered a key to Artificial Intelligence (AI).

But chess computers are highly specialized systems. Deep-Blue's intelligence was limited. It couldn't even play a decent game of Tic-Tac-Toe or Rock-Paper-Scissors.

A General Game Player is a system that

- understands formal descriptions of arbitrary strategy games
- learns to play these games well without human intervention

General Game Playing - A Grand AI Challenge

Rather than being concerned with a specialized solution to a narrow problem, General Game Playing encompasses a variety of AI areas.

General Game Playing and Al

Agents	Games
Competitive environments	Deterministic, complete information
Uncertain environments	Nondeterministic, partially observable
Unknown environment model	Rules partially unknown
Real-world environments	Robotic player

Knowledge Representation for Games

The Game Description Language

Games as State Machines

Initial Position and End of Game

Simultaneous Moves

Every finite game can be modeled as a state transition system

But direct encoding impossible in practice

19,683 states

~ 10⁴³ legal positions

Modular State Representation: Fluents

cell(X,Y,M)
X,Y
$$\in$$
 {1,2,3}
M \in {x,o,b}

control(P)

P ∈ {xplayer,oplayer}

Actions

$$X, Y \in \{1, 2, 3\}$$

Tic-Tac-Toe Game Model

Symbolic expressions: {xplayer, oplayer, cell(1,1,b), noop, ...}

- oles {xplayer, oplayer}
- initial $s_1 = \{ cell(1,1,b), ..., cell(3,3,b), control(oplayer) \}$
- legal actions {(xplayer, mark(1,1), s_1), ..., (oplayer, noop, s_1), ...}
- update $\langle (\langle xplayer \mapsto mark(1,1), oplayer \mapsto noop \rangle, s_1) \\ \mapsto \{cell(1,1,x), ..., (cell(3,3,b), control(oplayer)\} \rangle$,
- terminals { $t_1 = \{ cell(1,1,x), cell(1,2,x), cell(1,3,x), ... \}$, ...}
- **goal** {(xplayer, t_1 , 100), (oplayer, t_1 , 0), ...}

Symbolic Game Model

Let Σ be a countable set of ground expressions.

A game is a structure

(*R*, *I*, *u*, *s*₁, *t*, *g*)

 $-R \in 2^{\Sigma}$ roles $-I \subseteq R \times \Sigma \times 2^{\Sigma}$ legal actions $-u: (R \mapsto \Sigma) \times 2^{\Sigma} \mapsto 2^{\Sigma}$ update $-s_1 \in 2^{\Sigma}$ initial position $-t \subseteq 2^{\Sigma}$ terminal positions $-g \subseteq R \times 2^{\Sigma} \times \mathbb{N}$ goal relation

where 2^{Σ} := finite subsets of Σ

Game Description Language GDL

A game description is a stratified, allowed logic program whose signature includes the following game-independent vocabulary:

role(player)

init(fluent)
true(fluent)
does(player,move)
next(fluent)
legal(player,move)
goal(player,value)
terminal

Describing a Game: Roles

A GDL description P encodes the roles $R = \{\sigma \in \Sigma : P = role(\sigma)\}$

role(xplayer) <=
role(oplayer) <=</pre>

Describing a Game: Initial Position

A GDL description *P* encodes

$$s_1 = \{ \sigma \in \Sigma : P \models init(\sigma) \}$$

init(cell(1,1,b)) <=</pre> init(cell(1,2,b)) <=</pre> init(cell(1,3,b)) <=</pre> init(cell(2,1,b)) <=</pre> init(cell(2,2,b)) <=</pre> init(cell(2,3,b)) <=</pre> init(cell(3,1,b)) <=</pre> init(cell(3,2,b)) <=</pre> init(cell(3,3,b)) <=</pre> init(control(xplayer)) <=</pre>

Preconditions

For $S \subseteq \Sigma$ let $S^{\text{true}} := \{ \text{true}(\sigma) : \sigma \in S \}$ then P encodes $I = \{ (r, \sigma, S) : P \cup S^{\text{true}} \models \text{legal}(r, \sigma) \}$

Update

For $A : R \mapsto \Sigma$ let $A^{\text{does}} := \{ \text{does}(r, A(r)) : r \in R \}$ then P encodes $u(A, S) = \{ \sigma : P \cup A^{\text{does}} \cup S^{\text{true}} \models \text{next}(\sigma) \}$

next(cell(M,N,x)) <= does(xplayer,mark(M,N))</pre>

next(cell(M,N,o)) <= does(oplayer,mark(M,N))</pre>

next(cell(M,N,W)) <= true(cell(M,N,W)) ^ ¬W=b</pre>

next(control(xplayer)) <= true(control(oplayer))</pre>

next(control(oplayer)) <= true(control(xplayer))</pre>

Termination

Pencodes $t = \{S \subseteq \Sigma : P \cup S^{true} \mid terminal\}$

- terminal <= line(x) V line(o)</pre>
- terminal <= ¬open
- line(W) <= row(M,W)</pre>
- line(W) <= column(N,W)</pre>
- line(W) <= diagonal(W)</pre>

open <= true(cell(M,N,b))</pre>

Auxiliary Clauses

- row(M,W) <= true(cell(M,1,W)) ^
 true(cell(M,2,W)) ^
 true(cell(M,3,W))</pre>
- diagonal(W) <= crue(cell(1,1,W)) ∧
 - true(cell(2,2,W)) ∧
 true(cell(3,3,W))
- diagonal(W) <= true(cell(1,3,W)) ^
 true(cell(2,2,W)) ^
 true(cell(3,1,W))</pre>

Goals

Pencodes $g = \{(r, S, n): P \cup S^{\text{true}} \models \text{goal}(r, n)\}$

```
goal(xplayer,100) <= line(x)
goal(xplayer,50) <= ¬line(x) ^ ¬line(o) ^ ¬open
goal(xplayer,0) <= line(o)
goal(oplayer,100) <= line(o)
goal(oplayer,50) <= ¬line(x) ^ ¬line(o) ^ ¬open
goal(oplayer,0) <= line(x)</pre>
```

Reasoning

Game descriptions are a good example of knowledge representation with formal logic.

Automated reasoning about actions necessary to

- determine legal moves
- update positions
- recognize end of game

Challenge I: Efficient Descriptions

GDL and the Frame Problem

next(cell(M,N,x)) <= does(xplayer,mark(M,N))
next(cell(M,N,o)) <= does(oplayer,mark(M,N))</pre>

next(control(xplayer)) <= true(control(oplayer))
next(control(oplayer)) <= true(control(xplayer))</pre>

GDL and the Frame Problem

Effect Axioms

next(cell(M,N,x)) <= does(xplayer,mark(M,N))</pre>

next(cell(M,N,o)) <= does(oplayer,mark(M,N))</pre>

Frame Axioms

Action-Independent Effects

next(control(xplayer)) <= true(control(oplayer))</pre>

next(control(oplayer)) <= true(control(xplayer))</pre>

A More Efficient Encoding (PDDL)

```
(:action noop
 :effect (and (when (control xplayer) (control oplayer))
              (when (control oplayer) (control xplayer))))
(:action mark
 :parameters (?p ?m ?n)
 :effect (and (not cell(?m ?n b))
              (when (= ?p xplayer) (cell(?m ?n x)))
              (when (= ?p oplayer) (cell (?m ?n o)))
              (when (control xplayer) (control oplayer))
              (when (control oplayer) (control xplayer))))
```

How to Get There?

Using Situation Calculus, the completion of the GDL clauses entails cell(M,N,W,do(mark(xplayer,J,K),S)) <=> W=x \land M=J \land N=K V cell(M,N,W,S) \land ¬W=b V cell(M,N,W,S) \land W=b \land (¬M=J \lor ¬N=K)

This is equivalent to the (instantiated) Successor State Axiom

cell(M,N,W,do(mark(xplayer,J,K),S)) <=>
W=x ∧ M=J ∧ N=K
∨
cell(M,N,W,S) ∧ ¬(M=J ∧ N=K ∧ W=b)

A More Difficult Example

succ(0,1)<=
succ(1,2)<=
succ(2,3)<=
init(step(0)) <=
next(step(N)) <= true(step(M)) \land succ(M,N)</pre>

The equivalence

step(N,do(P,A,S)) <=> step(M,S) ^ succ(M,N)

does not entail the positive and negative(!) effects

(when (and (step ?m) (succ ?m ?n)) (step ?n))
(when (step ?n) (not (step ?n)))

Challenge I

Translate GDL effect clauses into an efficient action representation!

- Which formalism?
 Successor state axioms, state update axioms (Fluent Calculus), PDDL, causal laws, ...
- May require to prove state constraints
- Concurrency (for *n*-player games w/ $n \ge 2$)

Challenge II: Proving State Constraints

The Value of Knowledge

Not only are state constraints helpful for better encodings, structural knowledge of a game is crucial for good play.

Examples

- A game is turn-based.
- Each board cell (X,Y) has a unique contents M.
- Markers x and \circ in Tic-Tac-Toe are permanent.
- A game is weakly (strongly) winnable.

Game properties like these can be formalized using ATL; see [W. v. d. Hoek, J. Ruan, M. Wooldridge; 2008]

Induction Proofs

Claim

Fluent control has a unique argument in every reachable position.

P: init(control(xplayer)) <=
 next(control(xplayer)) <= true(control(oplayer))
 next(control(oplayer)) <= true(control(xplayer))</pre>

The claim holds if

- uniqueness holds initially, and
- uniqueness holds next, provided it is true (and every player makes a legal move).

Answer Set Programming

We can use ASP to prove both an induction base and step.

admits no answer set; same for

Another Example

Claim

Every board cell has a unique contents.

Let P be the GDL clauses for Tic-Tac-Toe.

admits no answer set.

Another Example (Cont'd)

For the induction step, uniqueness of control must be known!

admits no answer set.

Challenge II

Induction proofs using ASP work fine for reasonably small games.

For complex games, the grounded program becomes too large.

Find a more abstract proof method for GGP!

Planning and Search

Game Tree Search (General Concept)

A General Architecture

Towards Good Play

Besides efficient inference and search algorithms, the ability to automatically generate a good evaluation function distinguishes good from bad General Game Playing programs.

Existing approaches:

- Mobility and Novelty Heuristics
- Structure Detection
- Fuzzy Goal Evaluation
- Monte-Carlo Tree Search

Mobility

- More moves means better state
- Advantage:

In many games, being cornered or forced into making a move is quite bad

- In Chess, having fewer moves means having fewer pieces, pieces of lower value, or less control of the board
- In Chess, when you are in check, you can do relatively few things compared to not being in check
- In Othello, having few moves means you have little control of the board
- Disadvantage: Mobility is bad for some games

Worldcup 2006: Cluneplayer vs. Fluxplayer

AC7	BCS				FCS	0		Playclock:	
AC5	BC6 BC5 BC4	CC6 CC5	DC6	EC5	FC5 FC5 FC4	GC5 GC4	HC6 HC5 HC4	Roles: Red Black CLUNEPLAYER FLUXPLAYER	
AC3	BC2		DC3 DC2	EC3	FC2	603	HC2	Last Moves (step 2): Red Black	
AC1 Piece	Count	BLAG	CK: 12	RED:	12	GCL		noop move(bp,c,c6,d,c5)	

Designing Evaluation Functions

- Typically designed by programmers/humans
- A great deal of thought and empirical testing goes into choosing one or more good functions
- E.g.
 - piece count, piece values in chess
 - holding corners in Othello
- But this requires knowledge of the game's structure, semantics, play order, etc.

Value of intermediate state = Degree to which it satisfies the goal

Full Goal Specification

goal(xplayer,100) <= line(x)</pre>

line(P) <= row(P) \lor col(P) \lor diag(P)

row(P)	<= true(cell(1,Y,P)) \land true(cell(2,Y,P))	\wedge
	<pre>true(cell(3,Y,P))</pre>	

- diag(P) <= true(cell(1,1,P)) ^ true(cell(2,2,P)) ^ true(cell(3,3,P))

diag(P) <= true(cell(3,1,P)) \land true(cell(2,2,P)) \land true(cell(1,3,P))

After Unfolding

```
goal(x,100) \leq true(cell(1,Y,x)) \land true(cell(2,Y,x)) \land
                 true(cell(3,Y,x))
                 V
                 true(cell(X,1,x)) \land true(cell(X,2,x)) \land
                 true(cell(X,3,x))
                 V
                 true(cell(1,1,x)) \land true(cell(2,2,x)) \land
                 true(cell(3,3,x))
                 V
                 true(cell(3,1,x)) \land true(cell(2,2,x)) \land
                 true(cell(1,3,x))
```

- iterals are true after does(r,mark(1,1))
- 2 literals are true after does(x,mark(1,2))
- 4 literals are true after does(x,mark(2,2))

Evaluating Goal Formula (Cont'd)

Our t-norms: Instances of the Yager family (with parameter q)

T(a,b) = 1 - S(1-a,1-b)S(a,b) = (a^q + b^q) ^ (1/q)

Evaluation function for formulas

 $eval(f \land g) = T'(eval(f), eval(g))$ $eval(f \lor g) = S'(eval(f), eval(g))$ $eval(\neg f) = 1 - eval(f)$

Advanced Fuzzy Goal Evaluation: Example

Truth degree of goal literal = (Distance to current value)⁻¹

Identifying Metrics

Order relations Binary, antisymmetric, functional, injective

succ(1,2). succ(2,3). succ(3,4).
file(a,b). file(b,c). file(c,d).

Order relations define a metric on functional features

/(cell(green,j,13),cell(green,e,5)) = 13

Degree to which f(x,a) is true given that f(x,b):

 $(1-p) - (1-p) * \Delta(b,a) / |dom(f(x))|$

With p=0.9, eval(cell(green, e, 5)) is
0.002 if true(cell(green, f, 10))
0.085 if true(cell(green, j, 5))

A General Architecture

Assessment

Fuzzy goal evaluation works particularly well for games with

- independent sub-goals
 15-Puzzle
- converge to the goal Chinese Checkers
- quantitative goal
 Othello
- partial goals

Peg Jumping, Chinese Checkers with >2 players

The GGP Challenge

Much like RoboCup, General Game Playing

- combines a variety of AI areas
- fosters developmental research
- has great public appeal
- has the potential to significantly advance AI

In contrast to RoboCup, GGP has the advantage to

- focus on the high-level knowledge aspect of intelligence
- poses a number of interesting challenges for KRR
- make a great hands-on course for AI+KR students

A Vision for GGP

Uncertainty

Nondeterministic games with incomplete information

Natural Language Understanding

Rules of a game given in natural language

Computer Vision

Vision system sees board, pieces, cards, rule book, ...

Robotics

Robot playing the actual, physical game

Resources

- Stanford GGP initiative games.stanford.edu
 - GDL specification
 - Basic player
- GGP in Germany general-game-playing.de
 - Game master
- Palamedes

- palamedes-ide.sourceforge.net
- GGP/GDL development tool

Recommended Papers

- J. Clune Heuristic evaluation functions for general game playing, AAAI 2007
- H. Finnsson, Y. Björnsson
 Simulation-based approach to general game playing, AAAI 2008
- M. Genesereth, N. Love, B. Pell General game playing, AI magazine 26(2), 2006
- W. v. d. Hoek, J. Ruan, M. Wooldridge Verification of games in the game description language, 2008 (submitted)
- S. Schiffel, M. Thielscher Fluxplayer: a successful general game player, AAAI 2007
- S. Schiffel, M. Thielscher Specifying multiagent environments in the Game Description Language, 2008 (submitted)