AAAl'08 Tutorial

General Game Playing

Michael Thielscher, Dresden

Some of the material presented in this tutorial originates in work by Michael Genesereth and the Stanford Logic Group. We greatly appreciate their contribution.

Chess Players

The Turk ($18^{\text {th }}$ Century)

Alan Turing \& Claude Shannon (~1950)

Deep-Blue Beats World Champion (1997)

A General Game Player is a system that

- understands formal descriptions of arbitrary strategy games
- learns to play these games well without human intervention

In the early days, game playing machines were considered a key to Artificial Intelligence (AI).

But chess computers are highly specialized systems. Deep-Blue's intelligence was limited. It couldn't even play a decent game of Tic-Tac-Toe or Rock-Paper-Scissors.

With General Game Playing many of the original expectations with game playing machines get revived.

Traditional research on game playing focuses on

- constructing specific evaluation functions
- building libraries for specific games

The intelligence lies with the programmer, not with the program!

A General Game Player needs to exhibit much broader intelligence:

- abstract thinking
- strategic planning
- learning

General Game Playing and AI

Rather than being concerned with a specialized solution to a narrow problem, General Game Playing encompasses a variety of Al areas:

- Game Playing
- Knowledge Representation
- Planning and Search
- Learning

General Game Playing is considered a grand AI Challenge

Application (1)

Commercially available chess computers can't be used for a game of Bughouse Chess.

An adaptable game computer would allow the user to modify the rules for arbitrary variants of a game.

Games	Agents
Deterministic, complete information	Competitive environments
Nondeterministic, partially observable	Uncertain environments
Rules partially unknown	Unknown environment model
Robotic player	Real-world environments

Application (2): Economics

A General Game Playing system could be used for negotiations, marketing strategies, pricing, etc.

It can be easily adapted to changes in the business processes and rules, new competitors, etc.

The rules of an e-marketplace can be formalized as a game, so that agents can automatically learn how to participate.

Single-Player, Deterministic

Example Games

Single-Player, Deterministic

Two-Player, Zero-Sum, Deterministic

Two-Player, Zero-Sum, Deterministic

n-Player, Deterministic

Two-Player, Zero-Sum, Nondeterministic

n-Player, Incomplete Information, Nondeterministic

General Game Playing Initiative

games.stanford.edu

- Game description language
- Variety of games/actual matches
- Basic player available for download
- Annual world cup @AAAI (since 2005) Price money: US\$ 10,000
(deterministic games w/ complete information only)

Roadmap

- The Game Description Language GDL: Knowledge Representation
- How to make legal moves: Automated Reasoning
- How to solve simple games: Planning \& Search
- How to play well:

Learning

Every finite game can be modeled as a state transition system

But direct encoding impossible in practice

19,683 states

$\sim 10^{43}$ legal positions

Modular State Representation: Fluents

Fluent Representation for Chess (2)

Actions

Game Rules (I)

- Players
roles ([white,black])
- Initial position
init(cell(a, 1, whiteRook)) ^...
- Legal Moves

Game Rules (II)

- Position updates

> next $(\operatorname{cell}(\mathrm{X}, \mathrm{Y}, \mathrm{C}))<=$
> does $(\mathrm{P}, \operatorname{move}(\mathrm{U}, \mathrm{V}, \mathrm{X}, \mathrm{Y}))$
> $\wedge \operatorname{true}(\operatorname{cell}(\mathrm{U}, \mathrm{V}, \mathrm{C}))$

- End of game

terminal <=

checkmate V stalemate

- Result

```
goal(white,100) <=
    true(control (black))
    ^checkmate
goal(white, 50) <= stalemate
```

Game-Independent Vocabulary

```
Relations
    roles(list-of(player))
    init(fluent)
    true(fluent)
    does(player,move)
    next(fluent)
    legal(player,move)
    goal(player,value)
    terminal
```


Clausal Logic

Variables: X, Y, Z
Constants: a, b, c
Functions: f, g, h
Predicates: p, q, r, =
Logical Operators: $\neg, \wedge, \vee,<=$
Terms: X, $Y, Z, a, b, c, f(a), g(a, X), h(a, b, f(Y))$
Atoms: $\mathrm{p}(\mathrm{a}, \mathrm{b})$
Literals: $p(a, b), \neg q(X, f(a))$
Clauses: Head <= Body
Head: relational sentence
Body: logical sentence built from \wedge, \vee, literal

Axiomatizing Tic-Tac-Toe: Fluents

Axiomatizing Tic-Tac-Toe: Actions

3
 2

 $\operatorname{mark}(X, Y)$
 $X, Y \in\{1,2,3\}$
 noop
 123

Players and Initial Position

```
roles([xplayer,oplayer])
init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(xplayer))
```


Tic-Tac-Toe: Vocabulary

- Constants
xplayer, oplayer Players
$x, 0$, b Marks
- Functions
cell(number, number, mark) Fluent
control(player) Fluent
mark(number, number) Action
- Predicates
row (number, mark)
column (number, mark)
diagonal(mark)
line(mark)
open

Preconditions

```
legal(P,mark(X,Y)) <=
    true(cell(X,Y,b)) ^
    true(control(P))
legal(xplayer,noop) <=
    true(cell(X,Y,b)) ^
    true(control(oplayer))
legal(oplayer,noop) <=
    true(cell(X,Y,b)) ^
    true(control(xplayer))
```


Update

```
next(cell(M,N,x))<= does(xplayer,mark(M,N))
next(cell(M,N,o))<= does(oplayer,mark(M,N))
next(\operatorname{cell}(M,N,W))<= true(cell(M,N,W)) ^ \negW=b
next(cell(M,N,b)) <= true(cell(M,N,b)) ^
    does(P,mark(J,K)) ^( }\neg\textrm{M}=\textrm{J}\vee\neg\textrm{V}=\textrm{K}
next(control(xplayer)) <= true(control(oplayer))
next(control(oplayer)) <= true(control(xplayer))
```


Supporting Concepts

$$
\begin{aligned}
\operatorname{row}(M, W)<= & \operatorname{true}(\operatorname{cell}(M, 1, W)) \wedge \\
& \operatorname{true}(\operatorname{cell}(M, 2, W)) \wedge \\
& \text { true }(\operatorname{cell}(M, 3, W))
\end{aligned}
$$

```
                            N,W)) }
```

 true (cell (2,N,W)) ^
 true (\(\operatorname{cell}(3, N, W))\)
 diagonal(W) <= true(cell(1,1,W)) ^
true (cell $(2,2, W)) \wedge$
true (cell (3, 3,W))
diagonal(W) <= true(cell(1,3,W)) ^
true $(\operatorname{cell}(2,2, W)) \wedge$
true (cell(3,1,W))

Termination

```
terminal <= line(x) V line(o)
terminal <= \negopen
line(W) <= row(M,W)
line(W) <= column(N,W)
line(W) <= diagonal(W)
open <= true(cell(M,N,b))
```


Goals

```
goal(xplayer,100) <= line(x)
goal(xplayer,50) <= \negline(x) ^ \negline(o) ^ \negopen
goal(xplayer,0) <= line(o)
goal(oplayer,100) <= line(o)
goal(oplayer,50) <= \negline(x) ^ \negline(o) ^ \negopen
goal(oplayer,0) <= line(x)
```


Finite Games

Finite Environment

- Game "world" with finitely many states
- One initial state and one or more terminal states
- Fixed finite number of players
- Each with finitely many "percepts" and "actions"
- Each with one or more goal states

Causal Model

- Environment changes only in response to moves
- Synchronous actions

Initial State and Terminal States

Games as State Machines

Simultaneous Actions

Game Model

An n-player game is a structure with components:
S - set of states
$A_{1}, \ldots, A_{n}-n$ sets of actions, one for each player
$I_{1}, \ldots, I_{n}-$ where $I_{i} \subseteq A_{i} \times S$, the legality relations
u: $S \times A_{1} \times \ldots \times A_{n} \rightarrow S-$ update function
$s_{1} \in S$ - initial game state
$t \subseteq \mathrm{~S}$ - the terminal states
$g_{1}, \ldots g_{n}$ - where $g_{i} \subseteq \mathrm{~S} \times \mathbb{N}$, the goal relations

Try it Yourself: Play this Game!

```
gole(you)
init(step(1))
nitlcil(1,onecoin)
init(cell(%,onecoin)) <= succ(X,Y)
succ(1,2) ^ \operatorname{succ}(2,3)^\ldots.^ succ(7,8)
next(step(Y))<= true(step(X)) ^ succ(X,Y)
next(cell(X,zerocoins)) <= does(you,jump(x,Y))
next(cell(1,twocoins))<= does(you(jump(X,Y))
next(cell(x,c)) <- does(you,jump(Y,z))
    true(cell(x,C)) ^
erminal <= ~continuable
continuable <= legal(you,M)
oal(you,100) <= true(step(5))
goal(you,0) <= true(cell(x,onecoin))
```


GDL for Trading Games: Example (English Auction)

```
role(bidder_1) ^ ... ^ role(bidder_n
```

init(highestBid(0))
init(round (0))
legal($\mathrm{P}, \mathrm{bid}(\mathrm{X}))<=$
true(highestBid
true(highestBid(Y))
^ greaterthan(X,Y)
egal(P, noop)
terminal <= true(round (10))
next(winner(P)) <= does(P, bid(X)) \wedge bestbid(X) next (highestBid(X)) $=\operatorname{does}(\mathrm{P}, \operatorname{bid}(\mathrm{X})) \wedge$ bestbid(X) next $($ winner $(\mathrm{P}))<=\operatorname{true}($ winner $(\mathrm{P})) \wedge$ not bid next (highestBid(X)) <= true(highestBid(X$) \wedge$ not bi
next(round(N)) $<=\operatorname{true}($ (round $(M))$, successor (M,N) ext (round $(\mathrm{N}))<=\operatorname{true}($ round $(M))$, successor (M, N)
bid <= does(P,bid(x))
bestbid(X$)<=\operatorname{does}(\mathrm{P}, \operatorname{bid}(\mathrm{X})) \wedge$ not overbid(X$)$ overbid(X) <= does(P,bid(Y)) ^ greaterthan(Y, X$)$

Automated Reasoning

Game descriptions are a good example of knowledge representation with formal logic.

Automated reasoning about actions necessary to

- determine legal moves
- update positions
- recognize end of game

Reasoning about Actions using Situations

Effect Axioms:

```
(\forallS)(\forallM,N) cell(M,N,x,do(xplayer,mark(M,N),S))
```

The Frame Problem (McCarthy \& Hayes, 1969) arises because mere effect axioms do not suffice to infer non-effects!

How does cell($2,2, \mathrm{o}, \mathrm{s}$) imply cell($2,2, \mathrm{o}, \mathrm{do}(\mathrm{xplayer}, \mathrm{mark}(3,3), \mathrm{s})$)?

Background: Reasoning about Actions

McCarthy's Situation Calculus (1963)

The Frame Problem

```
A frame axiom for Tic-Tac-Toe:
    (\forallS)(\forall...) cell(M,N,W,do(P,mark(J,K),S)) <=
        cell(M,N,W,S) ^(M\not=J \vee N\not=K)
Compare this to the GDL axiom
next(cell(M,N,W))<= true(cell(M,N,W)) ^ \negW=b
next(cell(M,N,b))<= true(cell(M,N,b)) ^
    does(P,mark(J,K)) ^(\negM=J V \negN=K)
```

In a domain with m actions and n fluents, in the order of n - m frame

Successor State Axioms

"If Al can be said to have a classic problem, then the Frame Problem is it. Like all good open problems it is subtle, challenging, and it has led to significant new technical and conceptual developments in the field." (Reiter, 1991)

A successor state axiom (Reiter, 1991) for every fluent Φ avoids extra frame axioms:

$(\forall \mathrm{P}, \mathrm{A}, \mathrm{S}) \Phi(\mathrm{do}(\mathrm{P}, \mathrm{A}, \mathrm{S}))<=>\Gamma^{+} \vee\left[\Phi(\mathrm{S}) \wedge \neg \Gamma^{*}\right]$

Γ^{+}: reasons for Φ to become true
Γ^{-}: reasons for Φ to become false

Successor State Axioms for Tic-Tac-Toe

$(\forall P, A, S)(\forall \ldots)$ cell $(M, N, W, d o(P, A, S))<=>$
$W=x \wedge P=x p l a y e r \wedge A=\operatorname{mark}(M, N)$
$W=0 \wedge P=$ oplayer $\wedge A=\operatorname{mark}(M, N)$ $\operatorname{cell}(\mathrm{M}, \mathrm{N}, \mathrm{W}, \mathrm{S}) \wedge \neg \mathrm{A}=\operatorname{mark}(\mathrm{M}, \mathrm{N}) \quad \Gamma^{-}$
$(\forall \mathrm{P}, \mathrm{A}, \mathrm{S})(\forall \mathrm{R})$ control $(\mathrm{R}, \mathrm{do}(\mathrm{P}, \mathrm{A}, \mathrm{S})<=>$
R=xplayer \wedge control(oplayer,S) \vee
R=oplayer \wedge control(xplayer,S) $\quad \Gamma^{+}$

Fluent Calculus

A state update axiom (T., 1999) for every action α avoids separate update axioms for every fluent:

```
(\forallS) \triangle
    \vee .. V
    \triangle _ { k } ( \mathrm { S } ) \wedge ~ s t a t e ( d o ( P , \alpha , S ) ) = \operatorname { s t a t e } ( \mathrm { S } ) - \vartheta _ { k } ^ { - } + \vartheta _ { k } ^ { + }
```

ϑ^{+}: fluents that become true
9 : fluents that become false
(where subtraction $z-\vartheta^{-}$and addition $z+\vartheta^{+}$axiomatically defined)

State Update Axioms for Tic-Tac-Toe

```
\((\forall \mathrm{S})(\forall \ldots)\) control(oplayer,S) \(\wedge\) state(do(xplayer,mark(M,N),S)) \(=\) state(S) - control(oplayer) + control(xplayer) \(+\operatorname{cell}(\mathrm{M}, \mathrm{N}, \mathrm{o}) \quad \vartheta\)
\(\vee\) control(xplayer,S) ^ state(do(oplayer,mark(M,N),S)) = state(S) - control(xplayer) + control(oplayer) \(+\operatorname{cell}(\mathrm{M}, \mathrm{N}, \mathrm{x})\)
```

$(\forall \mathrm{S})(\forall \mathrm{P})$ state $(\mathrm{do}(\mathrm{P}, \mathrm{noop}))=$ state (S)

Action Programming Languages

Morgan \& Claypool Publishers
Action Programming Languages

Michael Thielscher

Synthesis Lectures on Artificial Intelligence and Machine Learning 2008

A General Architecture

Planning and Search

Game Tree Search (General Concept)

$$
\begin{aligned}
& \begin{array}{l|l}
x & 0 \mid x \\
\hline 0 & \\
\hline \downarrow
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 100
\end{aligned}
$$

Breadth-First Search

abcdefghij
Advantage: Finds shortest solution Disadvantage: Consumes large amount of space

Depth-First Search

abefcghdij
Advantage: Small intermediate storage Disadvantage: Susceptible to garden paths Disadvantage: Susceptible to infinite loops

Time and Space Comparison

Worst case for search depth d, solution at depth k

Time	Binary	Branching b
Depth-First	$2^{d}-2^{d-k}$	$\frac{b^{d}-b^{d-k}}{b-1}$
Breadth-First	$2^{k}-1$	$\frac{b^{k}-1}{b-1}$
Space	Binary	Branching b
Depth-First	d	$(b-1)^{*}(d-1)+1$
Breadth-First	2^{k-1}	b^{k-1}

Iterative Deepening

Run depth-limited search repeatedly

- starting with a small initial depth d
- incrementing on each iteration $d:=d+1$
- until success or run out of alternatives

Time Comparison

Worst case for branching factor 2

Depth	Iterative Deepening	Depth-First
1	1	1
2	4	3
3	11	7
4	26	15
5	57	31
n	$2^{n+1}-n-2$	$2^{n}-1$

Theorem: The cost of iterative deepening search is $b /(b-1)$ times the cost of depth-first search (where b is the branching factor).

Game Rules

```
legal(P,mark(X,Y)) <= true(cell(X,Y,b)) ^
    true(control(P))
next(cell(M,N,x)) <= does(xplayer,mark(M,N))
next(cell(M,N,W)) <= true(cell(M,N,W)) ^ \negW=b
terminal <= line(x) V line(o)
goal(xplayer,100) <= line(x)
```


Basic Subroutines for Search

```
function legals (role, node)
    findall(x, legal(role,x), node.position \cup gamerules)
function simulate (node,moves)
    findall(true (P), next (P) , node.position }\cup\mathrm{ moves }\cup\mathrm{ gamerules)
function terminal (node)
    prove(terminal, node.position \cup gamerules)
function goal (role, node)
    findone(x, goal(role, x), node.position \cup gamerules)
```


Node Expansion (Single Player Games)

```
function expand(node)
begin
    al := [ ];
    for a in legals(role,node) do
        data := simulate(node,\{does(role, a)\});
        new := create_node(data);
        \(a l:=\{(a, n e w)\} \cup\) al
    end-for;
    return al
end
```


Best Move (Single Player Games)

function bestmove(alist)
begin
best : = head(node.actionlist)
best $:=$ head(node.action
for a in node.actionlist do
score := maxscore(a.new.alist),
if score $=100$ then return a;
if score > max then
max := score; best $:=a$
end-if
end-for;
return best
end
function maxscore(alist) \% returns best score among the alist actions

State-Space Search with Multiple Players

Multiple Player Game Graph

Bipartite Game Graph

Multiple Player Node Expansion

```
function expand (node)
begin
    al:= [ ];jl:= [ ];
    for a in legals(role,node) do
        for j in joints(role,a,node) do
            data := simulate(node,jointactions(j)),
            new := create_node(data);
            jl := {(j,new)} \cup jl
        end-for;
        al :={(a,jl)}\cup al
    end-for;
    return al
```

end
function joints (role,action) \% returns combinatorial list of all legal joint actions \% where role does action
function jointactions(j) \% returns set of does atoms for joint action j

Move Lists

Simple move list

```
[(a,s2),(b,s3)]
```

Multiple player move list
$[([a, a], s 2),([a, b], s 1)$, $([b, a], s 3),([b, b], s 4)]$

Bipartite move list

$$
\begin{aligned}
& {[(a,[([a, a], s 2),([a, b], s 1)]),} \\
& (b,[([b, a], s 3),([b, b], s 4)])]
\end{aligned}
$$

```
Best Move
function bestmove (node)
begin
        max :=0;
        (best,jl):= head(node.alist);
        for (a,jl) in node.alist do
            score := minscore(jl);
            if score = 100 then return a;
            if score > max then
                max := score; best := a
            end-i
        end-for;
        return best
end
```

Note: This makes the paranoid assumption that the other players make the most harmful (for us) joint move.

Minimax for Two-Person Zero-Sum Games

The $\alpha-\beta$-Principle: α-Cutoffs

State Collapse

The game tree for Tic-Tac-Toe has approximately 700,000 nodes. There are approximately 5,000 distinct states. Searching the tree requires 140 times more work than searching the graph.

Recognizing a repeat state takes time that varies with the size of the graph thus far seen. Solution: Transposition tables

Symmetry

Symmetries can be logically derived from the rules of a game.

A symmetry relation over the elements of a domain is an equiva-lence relation such that

- two symmetric states are either both terminal or non-terminal
- if they are terminal, they have the same goal value
- if they are non-terminal, the legal moves in each of them are symmetric and yield symmetric states

Reflectional Symmetry

Connect-3

Factoring Example

Hodgepodge $=$ Chess + Othello

Branching factor: a

Branching factor: b

Branching factor as given to players: $a \cdot b$ Fringe of tree at depth n as given: $(a \cdot b)^{n}$ Fringe of tree at depth n factored: $a^{n}+b^{n}$

Double Tic-Tac-Toe

Branching factor: $81,64,49,36,25,16,9,4,1$
Branching factor (factored): $9,8,7,6,5,4,3,2,1$ (times 2)

Game Factoring and its Use

A set \mathscr{F} of fluents and moves is a behavioral factor if and only if there are no connections between the fluents and moves in \mathscr{F} and those outside of \mathscr{F}.

1. Compute factors

- Behavioral factoring
- Goal factoring

2. Play factors
3. Reassemble solution

- Append plans
- Interleave plans
- Parallelize plans with simultaneous actions

Mathematical Game Theory: Strategies

Game model:

S - set of states
$\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}-n$ sets of actions, one for each player
$\mathrm{I}_{1}, \ldots, \mathrm{I}_{n}-$ where $\mathrm{I}_{i} \subseteq \mathrm{~A}_{i} \times \mathrm{S}$, the legality relations
g_{1}, \ldots, g_{n} - where $g_{i} \subseteq S \times \mathbb{N}$, the goal relations
A strategy x_{i} for player i maps every state to a legal move for i

$$
\left.x_{i}: \mathrm{S} \rightarrow \mathrm{~A}_{i} \quad \text { (such that }\left(x_{i}(\mathrm{~S}), \mathrm{S}\right) \in I_{i}\right)
$$

(Remark: The set of strategies is always finite in a finite game. However, there are more strategies in Chess than atoms in the universe ...)

Games in Normal Form

```
An \(n\)-player game in normal form is an \(n+1\)-tuple
    \(\Gamma=\left(X_{1}, \ldots, X_{n}, u\right)\)
```

where X_{i} is the set of strategies for player i and

$$
u=\left(u_{1}, \ldots, u_{n}\right):{\underset{i=1}{n}}_{n} X_{i} \rightarrow \mathbb{N}^{i}
$$

are the utilities of the players for each n-tuple of strategies.
(Remark: Each n-tuple of strategies determines directly the outcome of a match, even if this consists of sequences of moves.)

Equilibria

Let $\Gamma=\left(X_{1}, \ldots, X_{n}, u\right)$ be an n-player game.

```
( }\mp@subsup{x}{1}{*},\ldots,\mp@subsup{x}{n}{*})\mathrm{ equilibrium
```

if for all $i=1, \ldots, n$ and all $x_{i} \in \mathrm{X}_{i}$

$$
u_{i}\left(x_{1}^{*}, \ldots, x_{i-1}{ }^{*}, x_{i}, x_{i+1}{ }^{*}, \ldots, x_{n}^{*}\right) \leq u_{i}\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)
$$

An equilibrium is a tuple of optimal strategies: No player has a reason to deviate from his or her strategy, given the opponent's strategies.

Dominance

A strategy $x \in X_{i}$ dominates a strategy $y \in X_{i}$ if

$$
u_{i}\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{n}\right) \geq u_{i}\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right)
$$

for all $\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) \in X_{1} \times \ldots \times X_{i-1} \times X_{i+1} \times \ldots \times X_{n}$.
A strategy $x \in X_{i}$ strongly dominates a strategy $y \in X_{i}$ if x dominates y and y does not dominate x.

Assume that opponents are rational:
They don't choose a strongly dominated strategy.

Dominance: Example

Consider a game where both players have strategies $\{a, b, c, d, e\}$. Let the goal values be given by

Dominance: Example (ctd)

Player

Dominance: Example (ctd)

Dominance: Example (ctd)

Player 1

Game Tree Search with Dominance

The $\alpha-\beta$-Principle does not Apply

Iterated Row Dominance for Mixed Strategies

Let a zero-sum game be given by

	a	b	c
a	10	0	8
b	6	4	4
c	3	8	7

Then $p_{1}=\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ dominates $p_{1}{ }^{\prime}=(0,1,0)$.
Hence, for all $\left(p_{a}^{\prime}, p_{b}^{\prime}, p_{c}^{\prime}\right) \in \mathrm{P}_{1}$ with $p_{b}^{\prime}>0$ there exists a dominating strategy $\left(p_{a}, 0, p_{c}\right) \in P_{1}$.

Mixed Strategies

Let $\left(X_{1}, \ldots, X_{n}, u\right)$ be an n-player game, then its mixed extension is

$$
\Gamma=\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{n},\left(e_{1}, \ldots, e_{n}\right)\right)
$$

where for each $i=1, \ldots, n$
$P_{i}=\left\{p_{i} ; p_{i}\right.$ probability measure over $\left.X_{i}\right\}$
and for each $\left(p_{1}, \ldots, p_{n}\right) \in P_{1} \times \ldots \times P_{n}$

$$
e_{i}\left(p_{1}, \ldots, p_{n}\right)=\sum_{x_{1} \in X_{1}} \ldots \sum_{x_{n} \in X_{n}} u_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot p_{1}\left(x_{1}\right) \cdot \ldots \cdot p_{n}\left(x_{n}\right)
$$

Nash's Theorem: Every mixed extension of an n-player game has

at least one equilibrium.

Iterated Row Dominance for Mixed Strategies (ctd)

$$
\begin{array}{c|ccc}
& a & b & c \\
\hline a & 10 & 0 & 8 \\
b & 6 & 4 & 1 \\
c & 3 & 8 & 7
\end{array}
$$

Now $p_{2}=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ dominates $p_{2}^{\prime}=(0,0,1)$.

Iterated Row Dominance for Mixed Strategies (ctd)

	a	b	c
a	10	0	8
c	3	8	7

Learning

The unique equilibrium is $\left(\left(\frac{1}{3}, 0, \frac{2}{3}\right),\left(\frac{1}{2}, \frac{1}{2}, 0\right)\right)$.

Roadmap

- Heuristics
- Detecting Structures
- Generating Evaluation Functions
- The Viking Method

Incomplete Search

Requires to automatically generate evaluation functions

Towards Good Play

Besides efficient inference and search algorithms, the ability to automatically generate a good evaluation function distinguishes good from bad General Game Playing programs.

Existing approaches:

- Mobility and Novelty Heuristics
- Structure Detection
- Fuzzy Goal Evaluation
- The Viking Method: Monte-Carlo Tree Search

Mobility

- More moves means better state
- Advantage:

In many games, being cornered or forced into making a move is quite bad

- In Chess, having fewer moves means having fewer pieces, pieces of lower value, or less control of the board
- In Chess, when you are in check, you can do relatively few things compared to not being in check
- In Othello, having few moves means you have little control of the board
- Disadvantage: Mobility is bad for some games

Worldcup 2006: Cluneplayer vs. Fluxplayer

Novelty

- Changing the game state is better
- Advantage:
- Changing things as much as possible can help avoid getting stuck
- When it is unclear what to do, maybe the best thing is to throw in some directed randomness
- Disadvantage:
- Changing the game state can happen if you throw away your own pieces ...
- Unclear if novelty per se actually goes anywhere useful for anybody

Inverse Mobility

- Having fewer things to do is better
- This works in some games, like Nothello and Suicide Chess, where you might in fact want to lose pieces
- How to decide between mobility and inverse mobility heuristics?

Designing Evaluation Functions

- Typically designed by programmers/humans
- A great deal of thought and empirical testing goes into choosing one or more good functions
- E.g.
- piece count, piece values in chess
- holding corners in Othello
- But this requires knowledge of the game's structure, semantics play order, etc

Identifying Domains

- Domains of fluents identified by dependency graph

```
succ}(0,1) ^ \operatorname{succ}(1,2) ^ \operatorname{succ}(2,3
init(step(0))
next(step(X)) <= true(step(Y)) ^ succ(Y,X)
```


Boards and Pieces

An (m-dimensional) board is an n-ary fluent ($n \geq m+1$) with

- m arguments whose domains are successor relations
- 1 output argument

Example:

cell(a,1,whiterook) ^ cell(b, 1, whiteknight)

A marker is an element of the domain of a board's output argument. A piece is a marker which is in at most one board cell at a time.
Example: Pebbles in Othello, White King in Chess

Identifying Structures: Relations

A successor relation is a binary relation that is antisymmetric, functional, and injective.

Example:

```
succ}(1,2) ^ \operatorname{succ}(2,3) ^ \operatorname{succ}(3,4) ^
next (a,b) ^ next (b,c) ^ next (c,d) ^
```

An order relation is a binary relation that is antisymmetric and transitive.

Example:

```
lessthan(A,B) <= succ(A,B)
lessthan(A,C) <= \operatorname{succ}(A,B) ^ lessthan(B,C)
```


Value of intermediate state $=$ Degree to which it satisfies the goal

Full Goal Specification

```
goal(xplayer, 100) <= line(x)
line(P) <= row(P) V col(P) V diag(P)
row(P) <= true(cell(1,Y,P)) ^ true(Cell(2,Y,P)) ^
                true(cell(3,Y,P))
col(P) <= true(cell (X,1,P)) ^ true(cell(X,2,P)) ^
            true (cell (X, 3, P))
diag(P) <= true(cell(1,1,P)) ^ true(cell(2,2,P)) ^
        true (cell (3,3,P))
    <= true(cell(3,1,P)) ^ true(cell(2,2,P)) ^
        true(cell(1,3,P))
```


After Unfolding

```
goal(x,100) <= true(cell(1,Y,x)) ^ true(cell(2,Y,x))
true(\operatorname{cell}(3,Y,x))
V
    true(cell (x,1,x)) ^ true(cell (x,2,x)) ^
    true(cell (x, 3,x))
    V
    true (cell (1, 1, x)) ^ true (cell (2,2,x)) ^
    true(cell (3, 3,x))
    V
    true(\operatorname{cell}(3,1,x)) ^ true (cell (2,2,x)) ^
    true(cell(1,3,x))
```

3 literals are true after does (x,mark (1, 1))
2 literals are true after does (x,mark (1,2))
4 literals are true after does ($\mathrm{x}, \operatorname{mark}(2,2$))

Degree to which $f(x, a)$ is true given that $f(x, b)$ holds:

```
(1-p) - (1-p) * \Delta(b,a) / |\operatorname{dom}(f(x))
```


With $p=0.9$, eval(cell (green,e,5)) is
0.082 if true (cell (green, f, 10))
0.085 if true (cell (green, $j, 5$))

Advanced Fuzzy Goal Evaluation: Example

Truth degree of goal literal $=(\text { Distance to current value })^{-1}$

Identifying Metrics

- Order relations Binary, antisymmetric, functional, injective

```
\operatorname{succ}(1,2). succ}(2,3).\quad\operatorname{succ}(3,4
file(a,b). file(b,c). file(c,d).
```

- Order relations define a metric on functional features
$\Delta(\operatorname{cell}($ green $, j, 13), \operatorname{cell}($ green $, e, 5))=13$

A General Architecture

Assessment

Fuzzy goal evaluation works particularly well for games with

- independent sub-goals 15-Puzzle
- converge to the goal Chinese Checkers
- quantitative goal Othello
- partial goals

Peg Jumping, Chinese Checkers with >2 players

Monte Carlo Tree Search

Value of move = Average score returned by simulation

An Alternative Approach: The Viking Method

- aka Monte Carlo Tree Search
- used by Cadiaplayer (Reykjavik University)

Game Tree Seach

MC Tree Search

Confidence Bounds

- Play one random game for each move
- For next simulation choose move

Assessment

Monte Carlo Tree Search works particularly well for games which

- converge to the goal Checkers
- reward greedy behavior
- have a large branching factor
- do not admit a good heuristics

The World Cup

Game description
Time to think: $1,800 \mathrm{sec}$ Time per move: 45 sec Your role

1st World Championship 2005 in Pittsburgh

```
1. UCLA (Clune)
2. Florida
3. Fluxplayer
    UT Austin
```

3rd World Championship 2007 in Vancouver:
Final Leaderboard

Player	Points
1. Reykjavik	2724
2. Fluxplayer	2356
3. Paris	2253
4. UCLA	2122
5. UT Austin	1798
\vdots	

Summary

A Vision for GGP

Uncertainty

- Nondeterministic games with incomplete information

Natural Language Understanding

- Rules of a game given in natural language

Computer Vision

- Vision system sees board, pieces, cards, rule book, ...

Robotics

- Robot playing the actual, physical game

The GGP Challenge

Much like RoboCup, General Game Playing

- combines a variety of Al areas
- fosters developmental research
- has great public appeal
- has the potential to significantly advance AI

In contrast to RoboCup, GGP has the advantage to

- focus on high-level intelligence
- have low entry cost
- make a great hands-on course for Al students

Resources

- Stanford GGP initiative games.stanford.edu
- GDL specification
- Basic player
- GGP in Germany general-game-playing.de
- Game master
- Palamedes palamedes-ide.sourceforge.net
- GGP/GDL development tool

Recommended Papers

- J. Clune

Heuristic evaluation functions for general game playing
AAAI 2007

- H. Finnsson, Y. Björnsson

Simulation-based approach to general game playing
AAAI 2008

- M. Genesereth, N. Love, B. Pell

General game playing
Al magazine 26(2), 2006

- G. Kuhlmann, K. Dresner, P. Stone

Automatic heuristic construction in a complete general game player AAAI 2006

- S. Schiffel, M. Thielscher

Fluxplayer: a successful general game player
AAAI 2007

