
J.Ruan

M.Thielscher

Logical-Epistemic Foundations
of General Game Descriptions

Abstract. A general game player automatically learns to play arbitrary new games

solely by being told their rules. For this purpose games are specified in the general Game

Description Language (GDL), a variant of Datalog with function symbols that uses a

few game-specific keywords. A recent extension of basic GDL allows the description of

nondeterministic games with any number of players who may have incomplete, asymmetric

information. In this paper, we analyse the epistemic structure and expressiveness of this

language in terms of modal epistemic logic and prove two main results: (1) The operational

semantics of GDL entails that the situation at any stage of a game can be characterised

by a multi-agent epistemic (i.e., S5-) model; (2) GDL is sufficiently expressive to model

any situation that can be described by a (finite) multi-agent epistemic model.

Keywords: Logical formalizations of game properties, General game playing, Epistemic

logic.

1. Introduction

General game playing aims at building systems that automatically learn to
play arbitrary new games solely by being told their rules [16, 15]. The Game
Description Language (GDL) is a special purpose declarative language for
defining games [13]. GDL is used in the AAAI General Game Playing Com-
petition, where participants are provided with a previously unknown game
specified in this language, and are required to dynamically and autonomously
determine how best to play this game [6]. A recent extension to GDL allows
the description of games that include random elements and incomplete infor-
mation [21]. This opens the door to nondeterministic games in which players
have incomplete and asymmetric information, as in Poker, Kriegspiel [17],
or games which involve private communication among cooperating players
like in Bughouse Chess1 or negotiations like in Diplomacy.

The game description language is a variant of Datalog with function sym-
bols that uses a few pre-defined keywords. By applying a standard semantics
for logic programs, a game description G can be interpreted as a state transi-
tion system. The execution model underlying GDL then determines a game

1Bughouse is a chess variant played on two chessboards by four players in teams of two;
for details see [17].

Special Issue: Logic and Games
Edited by Thomas Ågotnes

Studia Logica (2014) 102: 317–334 c⃝Springer 2014

318 J. Ruan, M. Thielscher

model for G, which defines all possible ways in which the game may develop
and what information the players acquire as the game proceeds [13, 21].
However, an open question has been to what extent this game model, in-
cluding its implicit epistemic structure due to incomplete and asymmetric
information, satisfies the standard properties of epistemic logic, and how
expressive GDL is in terms of which epistemic situations can be modelled as
games in this language. The latter is particularly interesting because at first
glance GDL seems to be constrained by the fact that all players have perfect
knowledge of the game rules and in particular the initial position [21].

In this paper we analyse the epistemic structure and expressiveness of
GDL in terms of standard epistemic logic. Seminal work in this area are
[25, 8], and since then philosophers have developed the notions of knowledge
and belief using Kripke’s possible world semantics [10]. In the late 1980s
these approaches were picked up and further developed by computer scien-
tists, cf. [7, 3]. This development was originally motivated by the need to
reason about communication protocols. One is typically interested in what
knowledge different parties to a protocol have before, during and after a
run (an execution sequence) of the protocol. Apart from computer science,
there is much interest in the temporal dynamics of knowledge and belief in
areas as diverse as artificial intelligence [14], multi-agent systems [18, 23],
and game theory [2].

We present, and formally prove, two main results:

1. The game model for any (syntactically valid) GDL game entails that at
any valid round of the game the situation that arises can be characterised
by a multi-agent S5-model.

2. Given an arbitrary (finite) epistemic model it is possible to construct a
GDL game description which produces the situation described by this
model.

This is complemented by an analysis of entailment of epistemic formulas in
GDL.

The remainder of the paper proceeds as follows. Section 2 recapitulates
both game descriptions and epistemic logic. Section 3 analyses the entail-
ment of epistemic formulas in GDL and shows how the situations that arise
during a game can always be characterised by a standard epistemic model
that entails the exact same formulas. Section 4 provides the construction of
a GDL game for any given epistemic model. We conclude with a discussion
of related and further work.

Logical-Epistemic Foundations of General Game Descriptions 319

role(?r) ?r is a player
init(?f) ?f holds in the initial position

true(?f) ?f holds in the current position
legal(?r,?m) ?r can do move ?m
does(?r,?m) player ?r does move ?m
next(?f) ?f holds in the next position

terminal the current position is terminal
goal(?r,?v) goal value for role?r is ?v

sees(?r,?p) ?r perceives ?p in the next position
random the random player

Table 1. GDL-II keywords. Standard GDL comprises the top eight while the last two
are added in view of incomplete state knowledge and elements of chance. The keywords
are accompanied by the auxiliary, pre-defined predicate distinct(X,Y), meaning the
syntactic inequality of the two arguments [13].

2. Preliminaries

2.1. Describing Games with GDL-II

General Game Playing requires a formal language for describing the rules of
arbitrary games. A complete game description consists of the names of the
players, a specification of the initial position, the legal moves and how they
affect the position, and the terminating and winning criteria. The emphasis
of the game description language GDL is on high-level, declarative game
rules that are easy to understand and maintain. At the same time, GDL has
a precise semantics and is fully machine-processable. Moreover, background
knowledge is not required—a set of rules is all a player needs to know in
order to be able to play a hitherto unknown game.

A variant of Datalog with function symbols, the game description lan-
guage uses a few known keywords (cf. Table 1). GDL is suitable for describing
finite, synchronous, and deterministic n-player games with complete infor-
mation about the game state [13].2 The extended game description language
GDL-II (for: GDL with incomplete information)3 allows the specification of

2Synchronous means that all players move simultaneously. In this setting, turn-taking
games are modelled by allowing players only one legal move, without effect, if it is not
their turn.

3A word on an unfortunate clash of terminology: in AI, an agent who does not know
the full state of the environment is said to have incomplete information; in Game Theory,
when a player does not know the full state when called upon to move, the game is said to
be of imperfect information. We decided to stick with the standard AI terminology.

320 J. Ruan, M. Thielscher

games with randomness and incomplete information [21]. In the following,
we assume the reader to be familiar with basic notions and notations of logic
programming, as can be found in e.g. [11]. The interested reader may take
a peek at Figure 1 at this point to see an example of a GDL-II specification.

Definition 1. A valid GDL-II specification is a finite set of clauses G where

• role only appears as fact or in clause bodies;

• init only appears as head of clauses and does not depend on any of
true, legal, does, next, terminal, or goal;

• true only appears in clause bodies;

• does only appears in clause bodies, and none of legal, terminal, or
goal depends on does;

• next and sees only appear as head of clauses;

• distinct only appears in clause bodies;4

• there are no cycles involving a negative edge in the dependency graph5

for G; that is, G must be stratified [1, 4].

• each variable in a clause occurs in at least one positive atom in the body;
that is, in the jargon of logic programming, G must be allowed [12].

• If p and q occur in a cycle in the dependency graph and G contains a
clause p(s1, . . . , sm)<= q1(⃗t1), . . . , q(v1, . . . , vk), . . . , qn(⃗tn), then for every
vi ∈ {v1, . . . , vk},
– vi is ground, or

– vi ∈ {s1, . . . , sm}, or
– vi is an element of some t⃗j (1 ≤ j ≤ n) such that qj does not appear

in a cycle with p.

This last condition imposes a restriction on the combination of func-
tion symbols and recursion to ensure decidability of all relevant deriva-
tions [13].

These syntactic restrictions are imposed in order to ensure that a set of
GDL-II rules can be effectively and unambiguously interpreted by a state
transition system as a formal game model, as follows.

4The meaning of this predicate is given by assuming the unary clause distinct(s, t).,
for every pair s, t of syntactically different ground (i.e., variable-free) terms.

5The nodes of the dependency graph for G are the relation constants in the vocabulary.
There is an edge from r2 to r1 whenever there is a rule with r1 in the head and r2 in the
body. That edge is labeled with the negation symbol ¬ whenever r2 is in a negative literal.

Logical-Epistemic Foundations of General Game Descriptions 321

2.2. GDL-II Semantics

A unique game model can be obtained from a valid GDL-II game description
by using the notion of the stable models of logic programs with negation [5].

Definition 2. Given a set of clauses G and an interpretation I (i.e., a set of
ground atoms), letGI be the set of negation-free implications h <= b1∧. . .∧bk
obtained by taking all ground instances of clauses in G and

• deleting all clauses with a negative body literal ¬bi such that bi ∈ I,

• deleting all negative body literals from the remaining clauses.

Then I is a stable model for G if and only if I is the least model for GI .

A useful property of stable models is that they provide a unique model
whenever the underlying set of clauses is stratified [5], as is always the case
in GDL-II. In the following, by G ⊢ p we denote that ground atom p is
contained in this unique standard model for a stratified set of clauses G. The
syntactic restrictions in GDL-II ensure that all logic programs we consider
have a unique and finite stable model [13]. Hence, for the following game
model underlying GDL-II we assume a finite set of players, finite states, and
finitely many legal moves in each state.

Specifically, then, the derivable instances of role(?r) from a given
game description define the players. The initial state is composed of the
derivable instances of init(?f). In order to determine the legal moves in
any given state, this state has to be encoded first, using the keyword true.
Let, to this end, S = {f1, . . . , fn} be a state (i.e., a finite set of ground
terms), then the game rules G are augmented by the n facts

Strue
def
= {true(f1). . . . true(fn).}

Those instances of legal(?r,?m) that are derivable from G∪Strue define
all legal moves M for player R in position S. In the same way, the clauses for
terminal and goal(?r,?n) define termination and goal values relative
to the encoding of a given position.

Determining a position update and the percepts of the players requires
the encoding of both the current position and a joint move. Suppose joint
move M is such that players r1, . . . , rk make moves m1, . . . ,mk, then let

Mdoes def
= {does(r1,m1). . . . does(rk,mk). }

The instances of next(?f) derivable from G ∪ Mdoes ∪ Strue compose
the updated position; likewise, the derivable instances of sees(?r,?p)

322 J. Ruan, M. Thielscher

describe what a player perceives when the given joint move is made in the
given position.

All of the above is summarised in the following definition.

Definition 3. [21] Let G be a valid GDL specification. The semantics of
G is the state transition system (R, s0, t, l, u, I, g) given by

• roles R = {r : G ⊢ role(r)};
• initial position s0 = {f : G ⊢ init(f)}6;
• terminal positions t = {S : G ∪ Strue ⊢ terminal};
• legal moves l = {(r,m, S) : G ∪ Strue ⊢ legal(r,m)};
• state update function u(M,S) = {f : G ∪Mdoes ∪ Strue ⊢ next(f)}7,

for all joint moves M (i.e., one for each role in R) and states S;

• information relation I = {(r,M, S, p) : G∪Mdoes∪Strue ⊢ sees(r, p)};
• goal relation g = {(r, n, S) : G ∪ Strue ⊢ goal(r, n)}.

Different runs of a game can be described by developments, which are
sequences of states and moves by each player up to a certain round, and a
player cannot distinguish two developments if he makes the same moves and
perceptions in the two.

Definition 4. [21] Let ⟨R, s0, t, l, u, I, g⟩ be the semantics of a GDL-II de-
scription G, then a development δ is a sequence

⟨s0,M1, s1, . . . , sd−1,Md, sd⟩

such that

• d ≥ 0

• for all i ∈ {1, . . . , d},
– Mi is a joint move

– si = u(Mi, si−1).

The length of a development δ, denoted as len(δ), is the number of states in
δ, and M(j) denotes agent j’s move in the joint move M .

A player j ∈ R \ {random}8 cannot distinguish two developments δ =
⟨s0,M1, s1, . . .⟩ and δ′ = ⟨s0,M ′

1, s
′
1 . . .⟩ (written as δ ∼j δ

′) iff

6Note that only f , not init(f), can be contained in states.
7Note that only f , not next(f), can be contained in states.
8The random player acts randomly and thus increases the uncertainty of the other

agents. We do not usually consider its ability to distinguish two developments.

Logical-Epistemic Foundations of General Game Descriptions 323

• len(δ) = len(δ′)

• for all i ∈ {1, . . . , len(δ)− 1}:
– {p : (j,Mi, si−1, p) ∈ I} = {p : (j,M ′

i , s
′
i−1, p) ∈ I}

– Mi(j) =M ′
i(j).

This definition captures two features of general game playing compe-
titions: all agents are aware of the time progressing (Synchronicity) and
remember what they have seen and done in the past (Perfect Recall). Note
that perfect recall does not mean that if an agent sees an atom p, it will
keep seeing this. Also in general, the persistence of facts in the course of de-
velopments is only possible if there are rules (frame axioms) to guarantee it.

2.3. Modal Epistemic Logic

In order to analyse the epistemic logic behind GDL-II and its semantics, we
recapitulate basic notions from standard Modal Epistemic Logic [3].

Definition 5. (Language) A basic Modal Epistemic Logic Language for
epistemic formulas is given by the following Backus-Naur Form:

ϕ := P | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | CXϕ

where P is an atomic proposition, i is an agent, and X is a non-empty set
of agents. ⊤,⊥,∨,→ are defined as usual.

Intuitively, Kiϕ means agent i knows ϕ, and CXϕ means that ϕ is common
knowledge among the agents in X; for example, “agent k knows that agent
j knows P” can be expressed as KiKjP . To give precise meanings to this
language, we use multi-agent epistemic models.

Definition 6. A multi-agent epistemic model E is a structure ⟨W, {∼i: i ∈
Ag}, V ⟩, where W is a set of possible worlds, Ag is a set of agents, each
∼i⊆W ×W is an equivalence relation (called the accessibility relation)9 for
agent i, and V :W 7→ 2Atoms is a valuation function that assigns each world
a set of atomic propositions (said to be true in that world).

Definition 7. Given an epistemic model E and an epistemic formula ϕ,
the entailment relation |= is defined as follows:

9Note that in general the accessibility relation ∼i in E does not have to be an equiva-
lence relation, but since epistemic models in this paper are meant to represent the knowl-
edge of agents—rather than belief or other modalities—we restrict ∼i to be an equivalence
relation; hence all epistemic models are S5-models [3].

324 J. Ruan, M. Thielscher

• E,w |= P iff P ∈ V (w);

• E,w |= ¬ϕ iff E,w ̸|= ϕ;

• E,w |= ϕ ∧ ψ iff E,w |= ϕ and E,w |= ψ;

• E,w |= Kiϕ iff for all w′, if w ∼i w
′ then E,w′ |= ϕ;

• E,w |= CXϕ iff for all w′, if w ∼X w′ then E,w′ |= ϕ.

where ∼X is the transitive and reflexive closure of ∪i∈X ∼i.

3. From GDL-II to Epistemic Models

This section relates the game descriptions in GDL-II to epistemic models
so that we can reason about these games using the modal epistemic logic
presented in the previous section.

The choice of S5-models is based on our intention to model the knowledge
of players, which is defined via the notion of indistinguishable worlds: agent i
cannot distinguish two worlds if and only if i observes the same information
in these two worlds; in other words, if agent i knows ϕ, then ϕ must be
true in all worlds that agent i cannot distinguish from the current world.
GDL-II itself only allows us to talk about factual knowledge of agents, e.g.,
“agent j sees P .” It does not allow us to talk about an agent’s knowledge
or higher-order knowledge (the knowledge about the knowledge of agents),
as in, “agent i knows ϕ” or “agent i knows that agent j knows ϕ.” The
epistemic language of modal logic S5 bridges this gap.

Meanwhile, there is certain information commonly known by all agents.
Specifically, in general game playing the game description itself is such com-
mon knowledge among all agents. More precisely, not only do all agents
know the game description they are going to play, but also they know that
each other player knows this, and so on. This is implicit in the execution
model for GDL, as the Game Master makes sure that every agent gets the
same game description before starting the game. Accordingly, the initial
state of a game is common knowledge as well. This motivates our use of the
CXϕ operator in the epistemic language (cf. Definition 5), which allows us
to reason about such knowledge explicitly.

Before we present our results in all technical detail, we introduce a run-
ning example adopted from [3] to illustrate that GDL-II is indeed expressive
enough to allow for modelling complex epistemic situations.

Logical-Epistemic Foundations of General Game Descriptions 325

1 role(generalA). role(generalB). role(random).
2 succ(0,1). succ(1,2). ... succ(8,9).
3 time(3am). time(9pm).
4

5 init(round(0)).
6

7 gets_message(?g,?m) <= role(?g), does(?g1,send(?m)), does(random,pass),
8 distinct(?g,?g1), distinct(?g,random).
9 gets_new_message(?g) <= gets_message(?g,?m).

10 has_a_message(?g) <= true(message(?g,?m)).
11

12 legal(random,noop) <= true(round(0)).
13 legal(random,pass) <= not true(round(0)).
14 legal(random,stop) <= not true(round(0)).
15 legal(generalA,settime(?t)) <= true(round(0)), time(?t).
16 legal(generalB,noop) <= true(round(0)).
17 legal(generalA,send(?t)) <= true(round(1)), true(attack(?t)).
18 legal(?g,noop) <= true(control(?g)),
19 not has_a_message(?g).
20 legal(?g,send(ack(?m))) <= true(control(?g)), true(message(?g,?m)).
21 legal(generalA,noop) <= true(control(generalB)).
22 legal(generalB,noop) <= true(control(generalA)).
23

24 sees(?g,?m) <= gets_message(?g,?m).
25 next(message(generalA,?t)) <= does(generalA,settime(?t)).
26 next(attack(?t)) <= does(generalA,settime(?t)).
27 next(attack(?t)) <= true(attack(?t)).
28 next(message(?g,?m)) <= gets_message(?g,?m).
29 next(message(?g,?m)) <= true(message(?g,?m)),
30 not gets_new_message(?g).
31 next(control(generalA)) <= true(round(0)).
32 next(control(generalA)) <= true(round(1)).
33 next(control(generalA)) <= true(control(generalB)).
34 next(control(generalB)) <= true(control(generalA)),not true(round(0)).
35 next(round(?n)) <= true(round(?m)), succ(?m,?n).
36 terminal <= true(round(9)).

Figure 1. A GDL-II description of the Two Generals’ Coordinated Attack Game: Gca.

Example 1. (Coordinated Attack Problem) A valley separates two hills.
Two armies, each on its own hill and led by General A and B, respectively,
are preparing to attack their common enemy in the valley. The two generals
must have their armies attack the valley at the same time in order to succeed.
The only way for the two generals to communicate is by sending messengers
through the valley. Unfortunately, there is a chance that any given messenger
sent through the valley will be stopped by the enemy, in which case the
message is lost but the content is not leaked. The problem is to come up
with algorithms that the generals can use, including sending messages and
processing received messages, that can allow them to correctly agree upon a
time to attack.

326 J. Ruan, M. Thielscher

It has been proved that such a coordinated attack is impossible [3]. We
use this example to show that complex epistemic situations can arise in
GDL-II games; specifically, we will use the game semantics to show why a
coordinated attack is not possible.

Figure 1 gives a GDL-II description of the Coordinated Attack Problem
as a 3-player game, where generals A and B are modelled as two roles and
the enemy is modelled by the standard ‘random’ role (line 1). For the sake of
simplicity, general A starts by selecting from just two possible attack times:
‘3am’ or ‘9pm’ (line 3 and 15), and then sends his choice as a message to
B (line 17 and 26). Subsequently, each general takes control in turn (lines
33–34), and if one receives a message m then he sends an acknowledgement
ack(m) back to the other general (line 20), otherwise he does noop (lines
18–19); simultaneously, the ‘random’ role always chooses randomly between
either pass, which allows the message to go to the other general (line 13),
or stop, which intercepts the message (line 14). For the sake of simplicity,
we assume that the game terminates at round 9 (line 36) and leave out the
specification of goal values.

The semantics of a game description G according to Definition 3 derives
a state transition system from a set of rules. In the following, we use the
operational semantics implicit in Definition 4 to define the special concept
of epistemic game models for GDL-II.

Definition 8 (GDL-II Epistemic Game Model). Given an arbitrary GDL-II
description G and its semantics ⟨R, s0, t, l, u, I, g⟩, an epistemic game model
of G, denoted by E(G), is a structure ⟨W,Ag, {∼i: i ∈ Ag}, V ⟩ where

• W is the set of developments of G;

• Ag is the set of roles R \ {random};
• ∼i⊆ W × W is the accessibility relation for agent i ∈ Ag given by

(δ, δ′) ∈∼i (also written as δ ∼i δ
′) iff role i cannot distinguish develop-

ments δ and δ′;

• V : W → 2Σ is an interpretation function which associates with each
development δ the set of ground terms in Σ that are true in the last
state of δ.

In the following, we restrict our attention to finite epistemic models.
As an example, from the game description Gca for the Coordinated

Attack Problem, we derive a game model E(Gca) in two steps (see Fig-
ure 2). The first step is to use the game semantics for GDL-II to deter-
mine all states that are reachable from the initial state. A joint move is

Logical-Epistemic Foundations of General Game Descriptions 327

ss0
s s1���������

ss2HHHHHHHHH
(settime(3am), noop, noop) (settime(9pm), noop, noop)

B

s s11���������

ss12J
J

J
JJ

(send(3am), noop, pass) (send(3am), noop, stop)

BA A ss21HHHHHHHHH

...

ss22

...

(send(9pm), noop, stop) (send(9pm), noop, pass)

ss111�
�

�
�
��

...

ss112B
B
B
BB

...

ss121

...

ss122@
@

@
@@

...

(noop, send(ack(3am)), pass)

(noop, send(ack(3am)), stop)

(noop, noop, pass)

(noop, noop, stop)

B A AB

0

1

2

3

Figure 2. Epistemic game model E(Gca) for the Two Generals’ Coordinated Attack Game.

depicted as (a, b, c), where a, b, c are the moves of, respectively, general A,
general B, and ‘random’. For instance, there are two possible joint moves at
s0,M1 = (settime(3am), noop, noop) andM2 = (settime(9pm), noop, noop),
which transit s0 to s1 and s2 respectively. From s1 there are again two pos-
sible joint moves which result in s11 where B receives A’s message, and s12
where B receives nothing. Accordingly at state s11, it is legal for B to send
an acknowledgement, and s11 transits to two possible states s111 and s112.
This process goes on utill a terminal state is reached.

The second step is to collect all the developments and then determine
the individual accessibility relations. For example, consider the two devel-
opments δ1 = ⟨s0,M1, s1⟩ and δ2 = ⟨s0,M2, s2⟩. It is easy to check that
δ1 ̸∼A δ2 since General A moves differently in M1 and M2. On the other
hand, δ1 ∼B δ2 since B makes the same move in M1 and M2 and perceives
nothing.

Based on our concept of an epistemic game model for GDL-II, we can
define how to interpret formulas in the basic epistemic language over such
models in a fashion similar to Definition 7.

Definition 9. Given an epistemic game model E(G), a development δ, and
an epistemic formula ϕ, the entailment relation |= is defined as follows:

• E(G), δ |= P iff P ∈ V (last(δ));

• E(G), δ |= ¬ϕ iff E(G), δ ̸|= ϕ;

• E(G), δ |= ϕ ∧ ψ iff E(G), δ |= ϕ and E(G), δ |= ψ;

• E(G), δ |= Kiϕ iff for all δ′, if δ ∼i δ
′ then E(G), δ′ |= ϕ;

• E(G), δ |= CXϕ iff for all δ′, if δ ∼X δ′ then E(G), δ′ |= ϕ.

where last(δ) is the last state of development δ, and ∼X is the transitive
and reflexive closure of ∪i∈X ∼i.

328 J. Ruan, M. Thielscher

Coming back to our running example, a simple and elegant argument
can be given now on why a coordinated attack is never possible. First, using
the epistemic language (Definition 5) we can express knowledge conditions
such as:

• KAP for “general A knows that P,” where P is an atomic expression,
e.g., attack(3am), which means “attack is set to be at 3am;”

• ¬KBKAP for “general B does not know whether general A knows P ;”

• C{A,B}P for “P is common knowledge for both A and B.”

Let P = attack(3am) and δ1, δ11, δ111 be the left-most developments
with length 1, 2, and 3 in Figure 2, then we can verify each of the following:
E(Gca), δ1 |= KAP ∧¬KBKAP ; E(Gca), δ11 |= KBKAP ∧¬KAKBKAP ; and
E(Gca), δ111 |= KAKBKAP ∧ ¬KBKAKBKAP . It implies that E(Gca), δ |=
¬C{A,B}P for δ = δ1, δ11, δ111, that is, the attack time is not common knowl-
edge among A and B even after the successful delivery of all messages during
three rounds. We can generalise this to developments of arbitrary length.
Such common knowledge is a precondition of coordinated attack, which is
why it is never possible to achieve the latter.

In general, it is easy to show that the epistemic game model we con-
structed for GDL-II is equivalent to the standard concept of models and
entailment in Modal Epistemic Logic: Specifically, we can pick up an arbi-
trary valid round10 and build a finite epistemic model for this round such
that the truth of epistemic formulas is preserved.

Theorem 1. Given an arbitrary GDL-II description G and any valid round
of playing k ≥ 0 (with round 0 corresponding to the initial state), we can
derive a finite epistemic model Ek(G) which characterises this round of the
game, formally:

Ek(G), δ |= ϕ iff E(G), δ |= ϕ.

Proof. Let E(G) = ⟨W,Ag, {∼i: i ∈ Ag}, V ⟩ be constructed from G ac-
cording to Definition 8, and assume that the game playing is at round k.

Based on E(G), we construct a finite epistemic model Ek(G) = ⟨W ′, {∼i:
i ∈ Ag′}, V ′⟩ for round k as follows:

1. W ′ is the set of any game development δ ∈W with len(δ) = k + 1;

2. Ag′ is the same set of agents as Ag;

3. ∼′
i is the equivalence relation ∼i restricted on the new domain W ′, i.e.,

∼′
i=∼i ∩(W ′ ×W ′);

10A round k is valid in a game if at least one development has length k + 1.

Logical-Epistemic Foundations of General Game Descriptions 329

4. V is a valuation function such that P ∈ V ′(δ) iff P ∈ V (δ) for any atomic
proposition P and δ ∈W ′.

We show by induction on the structure of formula ϕ that for all δ ∈ W ′:
Ek(G), δ |= ϕ iff E(G), δ |= ϕ. The propositional cases follow from the fact
that the valuation does not change. For the case of ϕ := Kiψ, by definition,
we have that Ek(G), δ |= Kiψ iff for all δ′, if δ ∼′

i δ
′ then Ek(G), δ′ |= ψ. If

two developments δ, δ′ have different lengths, then any agent can distinguish
them, so if δ ∼′

i δ
′, then len(δ) = len(δ′) = k+1, which means that δ′ ∈W ′

as well. So by induction, for all δ′, if δ ∼′
i δ

′ then Ek(G), δ′ |= ϕ iff for all
δ′, if δ ∼′

i δ
′ then E(G), δ′ |= ϕ; therefore Ek(G), δ |= Kiψ iff E(G), δ |= Kiψ.

For the case of ϕ := CXψ, the reasoning is similar as the developments in
the transitive and reflexive closure of ∪i∈X ∼i are also of the same length
k + 1.

Taking the running example Gca (Figure 2), we can see that E1(Gca) con-
sists of two developments of length 2: δ1 = ⟨s0,M1, s1⟩ and δ2 = ⟨s0,M2, s2⟩.
The equivalence relations are given naturally by ∼A= {(δ1, δ1), (δ2, δ2)} and
∼B= {(δ1, δ1), (δ2, δ2), (δ1, δ2), (δ2, δ1)}, and so is the valuation.

As a corollary, we can show, for instance, that the round number is
common knowledge for all the agents in all rounds. In our running example,
this if formally obtained as

E(Gca), δ |=
∧
k

(round(k) → C{A,B}round(k)).

4. From Epistemic Models to GDL-II

We now look at the other direction and show that for any given finite multi-
agent epistemic model E we can construct a valid GDL-II game description
such that E arises when playing the game. This formally shows that GDL-II
is sufficiently expressive to allow for modelling arbitrarily complex epistemic
situations as games. As a matter of fact, a (very abstract) game can always
be constructed where a single move suffices to bring about an arbitrary given
epistemic model.

Theorem 2. For an arbitrary finite multi-agent epistemic model E =
⟨W, {∼i: i ∈ Ag}, V ⟩, a GDL-II game description G can be constructed
such that E arises from playing G, namely E is isomorphic to E1(G) which
characterises the situation after the first move.

330 J. Ruan, M. Thielscher

1 role(1). ... role(n). role(random).
2 world(w1). ... world(wk).
3

4 init(round(0)).
5

6 legal(random,select(?w)) <= true(round(0)), world(?w).
7 legal(?r,noop) <= true(round(0)),
8 role(?r), distinct(?r,random).
9

10 val(w1,P1). ... val(wk,Pm).
11 next(?p) <= does(random,select(?w)), val(?w,?p).
12

13 equiv(1,wa,wa). equiv(1,wa,wb). ... equiv(n,wx,wy).
14 sees(?r,class(?w2)) <= does(random,select(?w1)), equiv(?r,?w1,?w2).

Figure 3. A GDL-II description for any epistemic model E

Proof. Let W = {w1, . . . , wk} and Ag = {1, . . . , n}. G can be constructed
as shown in Figure 3: The game has n+ 1 roles, namely, the n agents plus
the standard ‘random’ role (line 1). Initially, ‘random’ has a legal move
select(w) for any world w ∈ W (lines 2–6) while all other players can only
do noop (lines 7–8). The move select(w) results in a state in which all
atomic propositions hold that are true in world w (line 11). The rule in
line 10 uses an explicit enumeration of all pairs (w,P) such that P ∈ V (w).
Furthermore, in order to arrive at the desired epistemic structure, the players
get to see all worlds in their equivalence class {w′ : (w,w′) ∈∼i} (line 14).
The rule in line 13 uses an explicit enumeration of all triples (i, wa, wb) such
that wa ∼i wb. We omit definitions for terminal and goal since they are
not relevant here.

It is easy to see that the set of rules in Figure 3 satisfy all syntactic re-
quirements of valid GDL specifications according to Definition 1. We show
that G indeed gives E according to the semantics in Definition 3. The initial
state is s0 = {round(0)}, and G ∪ strue0 entails legal(random, select(wj))
for all j ∈ [1..k], and legal(1, noop), . . . ,legal(n, noop). Accordingly,
each agent in Ag can only do noop, while ‘random’ may select an arbi-
trary world from E. Define joint moveM j def

= (noop, ..., noop, select(wj)) and
consider new states sx = u(Mx, s0), and sy = u(My, s0), corresponding to
the developments δx = ⟨s0,Mx, sx⟩ and δy = ⟨s0,My, sy⟩ respectively. If
wx ∼i wy, then agent i gets to see both class(wx) and class(wy) in both
states sx and sy, in which case the agent cannot distinguish δx from δy (note
also his actions are the same in both M1 and M2). On the other hand, if
wx ̸∼i wy then agent i can distinguish the two developments based on his
percepts. Altogether this process gives us an epistemic game model E(G).

Logical-Epistemic Foundations of General Game Descriptions 331

Then we define a standard epistemic model E1(G) = ⟨W ′, {∼′
i: i ∈ Ag}, V ′⟩

from E(G) as follows: W ′ is the set of all developments of length 2 from
E(G); ∼′

i and V
′ are restrictions of ∼i and V on W ′ respectively.

Now E and E1(G) are isomorphic: Each world wj ∈ W corresponds
to the state sj and hence to the development δj ∈ W ′. (wx, wy) ∈∼i iff
(δx, δy) ∈∼′

i for agent i, and for all atomic proposition P we have that
P ∈ V (wj) iff P ∈ V ′(δj).

This theorem shows that GDL-II is sufficiently expressive to model any
situation that can be described by a (finite) epistemic model. Combining
Theorem 1 and 2, we conclude that GDL-II and epistemic models are equally
expressive in terms of the description of incomplete information situations.

It is worth pointing out, however, that this does not mean that GDL-
II has the equal expressivity as the epistemic logic in general, because the
epistemic language can express more subtle properties. For example, a rule
that explicitly refers to agents’ knowledge like “if A and B achieve common
knowledge about P , then the game terminates” can be expressed as a for-
mula “C{A,B}P → terminal” in epistemic logic, but such a rule cannot be
specified in GDL-II. Nevertheless, as a game specification language, GDL-II
is sufficiently expressive to describe objective game rules in a very succinct
way, while an explicit representation of games states in epistemic models
may require exponential space.

When it comes to reasoning about GDL-II game rules and what they
entail about the knowledge of players, additional language elements are nec-
essary, such as provided by epistemic logic, which can then be interpreted
in the epistemic model that is derived from a GDL-II description as shown
in Section 3.

5. Conclusion and Further Work

In this paper, we analysed the epistemic structure and expressiveness of
GDL-II in terms of modal epistemic logic and presented two results: (1) The
operational semantics of GDL-II entails that the situation in any round of
a game can be characterised by a multi-agent epistemic model, (2) GDL-II
is sufficiently expressive to model any situation that can be described by a
finite multi-agent epistemic model.

In terms of related work, in [22] we have related GDL-II to the general
mathematical concept of extensive-form games in order to show that any
such game can be described faithfully in GDL-II. Other related work de-
scribes the use of Alternating-time Temporal Logic to represent and verify

332 J. Ruan, M. Thielscher

properties of general games [20], but this is restricted to original GDL and
hence to games with perfect information. There is of course a large body
of work on epistemic logic of incomplete-information situations (such as [24]
for formalising agents’ perception and knowledge), but ours is the first ap-
plication of this line of research to formally analyse the epistemic structure
behind the general Game Description Language.

We outline some issues for further work. Apart from theoretical results,
we are interested in investigating a more practical side of the problem. Our
results in this paper provide the foundation for automated reasoning about
epistemic properties of games. The next step will be to use model checking
methods for the purpose of game verification. For example, given that agents
may have only partial observation ability, it is easy to construct games in
which agents do not have sufficient information to derive their legal moves;
this may render a game unfair or even not playable. We can express the
property that “all agents know their legal moves” in the basic epistemic
language as ∧

i∈Ag

∧
m∈Σ

(legal(i,m) → Kilegal(i,m)).

To check such properties systematically amounts to the following model
checking problem: given a GDL-II description G, a round number k, and an
epistemic formula ϕ, verify that E(G), δ≤k |= ϕ for all δ of length ≤ k. Our
preliminary study [9] shows how in principle it is possible to apply model
checking in our setting.

We are also interested in reasoning about how players’ knowledge evolves
as the game progresses, and the strategic ability of players to reach a desir-
able state (possibly in cooperation with other players), etc. All these aspects
presuppose the use of an underlying logic that goes beyond standard epis-
temic logic in that it combines both strategic and epistemic reasoning. Our
recent paper [19] has made a start.

Finally, recall that GDL-II assumes a finite set of players, finite states,
and finitely many legal moves in each state. Lifting such assumptions can
easily lead to infinite game models. It is an interesting line of future research
to extend the results in this paper to such infinite models.

Acknowledgements. A preliminary version of this paper has been pub-
lished in the Proceedings of the Twenty-Fifth AAAI Conference on Arti-
ficial Intelligence (AAAI’11). We thank Jérôme Lang for suggesting the
example for the paper, the anonymous reviewers from AAAI’11 and Stu-
dia Logica for their helpful comments. This research was supported under

Logical-Epistemic Foundations of General Game Descriptions 333

Australian Research Council’s (ARC) Discovery Projects funding scheme
(project DP120102023). The second author is the recipient of an Australian
Research Council Future Fellowship (project FT0991348) and is also affili-
ated with the University of Western Sydney.

References

[1] Apt, Krzysztof, Howard A. Blair, and Adrian Walker, Towards a theory of

declarative knowledge, in J. Minker, (ed.), Foundations of Deductive Databases and

Logic Programming, chap. 2, Morgan Kaufmann, 1987, pp. 89–148.

[2] Aumann, Robert, andAdam Brandenburger, Epistemic conditions for Nash equi-

librium, Econometrica 63:1161–1180, 1995.

[3] Fagin, Ronald, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi, Rea-

soning About Knowledge, The MIT Press: Cambridge, MA, 1995.

[4] Gelder, Allen Van, The alternating fixpoint of logic programs with negation, in

Proceedings of the 8th Symposium on Principles of Database Systems, ACM SIGACT-

SIGMOD, 1989, pp. 1–10.

[5] Gelfond, Michael, and Vladimir Lifschitz, The stable model semantics for logic

programming, in R. Kowalski, and K. Bowen, (eds.), Proceedings of the International

Joint Conference and Symposium on Logic Programming (IJCSLP), MIT Press, Seat-

tle, OR, 1988, pp. 1070–1080.

[6] Genesereth, Michael, Nathaniel Love, and Barney Pell, General game play-

ing: Overview of the AAAI competition, AI Magazine 26(2):62–72, 2005.

[7] Halpern, Joseph Y., and Moshe Y. Vardi, The complexity of reasoning about

knowledge and time, in Proceedings 18th ACM Symposium on Theory of Computing,

1986, pp. 304–315.

[8] Hintikka, Jaakko, Knowledge and Belief, Cornell University Press, Ithaca, NY,

1962.

[9] Huang, Xiaowei, Ji Ruan, and Michael Thielscher, Model checking for reason-

ing about incomplete information games, in Proceedings of the Australasian Confer-

ence on Artificial Intelligence, Springer LNAI 8272, Dunedin, New Zealand, 2013,

pp. 246–258.

[10] Kripke, Saul, Semantical analysis of modal logic, Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik 9:67–96, 1963.

[11] Lloyd, John, Foundations of Logic Programming, second, extended edn., Series

Symbolic Computation, Springer, 1987.

[12] Lloyd, John W., and Rodney W. Topor, A basis for deductive database systems

II, J. Log. Program. 3(1):55–67, 1986.

[13] Love, Nathaniel, Timothy Hinrichs, David Haley, Eric Schkufza, and

Michael Genesereth, General Game Playing: Game Description Language Speci-

fication, Tech. Rep. LG–2006–01, Stanford Logic Group, Computer Science Depart-

ment, Stanford University, 2006.

[14] Moore, Robert C., A formal theory of knowledge and action, in J.F. Allen,

J. Hendler, and A. Tate, (eds.), Readings in Planning, Morgan Kaufmann Publishers,

San Mateo, CA, 1990, pp. 480–519.

334 J. Ruan, M. Thielscher

[15] Pell, Barney, Strategy Generation and Evaluation for Meta-Game Playing, Ph.D.

thesis, Computer Laboratory, University of Cambridge, 1993.

[16] Pitrat, Jacques, A general game playing program, in N. Findler, and B. Meltzer,

(eds.), Artificial Intelligence and Heuristic Programming, Edinburgh University Press,

1971, pp. 125–155.

[17] Pritchard, David, The Encyclopedia of Chess Variants, Godalming, 1994.

[18] Rao, Anand S., and Michael P. Georgeff, Modeling rational agents within a

BDI-architecture, in James F. Allen, Richard Fikes, and Erik Sandewall, (eds.), KR,

Morgan Kaufmann, 1991, pp. 473–484.

[19] Ruan, Ji, and Michael Thielscher, Strategic and epistemic reasoning for the game

description language GDL-II, in Proceedings of the European Conference on Artificial

Intelligence (ECAI 2012), IOS Press, Montpellier, France, 2012, pp. 696–701.

[20] Ruan, Ji, Wiebe van der Hoek, and Michael Wooldridge, Verification of games

in the Game Description Language, Journal Logic and Computation 19(6):1127–1156,

2009.

[21] Thielscher, Michael, A general game description language for incomplete infor-

mation games, in Proceedings of the Conference on the Advancement of Artificial

Intelligence (AAAI), Atlanta, 2010, pp. 994–999.

[22] Thielscher, Michael, The general game playing description language is univer-

sal, in Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI), Barcelona, 2011, pp. 1107–1112.

[23] Wooldridge, Michael, An Introduction to Multiagent Systems, John Wiley & Sons,

2002.

[24] Wooldridge, Michael, and Alessio Lomuscio, A computationally grounded logic

of visibility, perception, and knowledge, Logic Journal of the IGPL 9(2):257–272,

2001.

[25] Wright, Georg H. von, An Essay in Modal Logic, North-Holland, Amsterdam,

1951.

Ji Ruan
School of Computer and Mathematical Sciences
Auckland University of Technology
Auckland 1142, New Zealand
ji@jiruan.net

Michael Thielscher
School of Computer Science and Engineering
The University of New South Wales
Sydney, NSW 2052, Australia
mit@cse.unsw.edu.au

