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Abstract. In games with imperfect information, the ‘information set’ is
a collection of all possible game histories that are consistent with, or ex-
plain, a player’s observations. Current game playing systems rely on these
best guesses of the true, partially-observable game as the foundation of
their decision making, yet finding these information sets is expensive.

We apply reactive Answer Set Programming (ASP) to the problem of
sampling information sets in the field of General Game Playing. Further-
more, we use this domain as a test bed for evaluating the effectiveness
of oClingo, a reactive answer set solver, in avoiding redundant search by
keeping learnt clauses during incremental solving.

1 Introduction

General Game Playing (GGP) research seeks to design systems able to under-
stand the rules of new games and use such descriptions to play those games
effectively. These systems must reason their way from the unadorned rules to
a strategy capable of defeating adverse opponents under tight time constraints.
The recent extension to stochastic games with imperfect information makes this
process even harder by requiring players to also reason about knowledge and
plan under uncertainty.

In game theory, the information set for a specific player is a collection of
models (possible histories) of the current state of the game, that are each consis-
tent with all observations made so far, and by extension are indistinguishable for
that player [7]. Consider a simple game of ‘number guessing’ where a player must
guess a (random) hidden number by asking a series of ‘is the number < n?’ ques-
tions. Clearly the best strategy is a binary search—by partitioning the search
space in half each time we can be guaranteed a logarithmic worst-case. Further,
this discovery can be detected in a game-general way by explicitly maintain-
ing every model in the information set. This can be seen as the possible worlds
approach. However the size of a typical game is so enormous that maintaining
every world is impossible.

One response to the limits of a possible worlds approach is to accept a subset
of all worlds. Traditional perfect information tree search can then be employed;
this is an efficient (and sometimes admissible) substitute for genuinely reasoning
about imperfect information [5,10]. In this scenario, a model is ‘sampled’ from
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the full set, either by progressing (and pruning) all possible worlds up to a
fixed size [2], or by re-generating models from the rules. There is evidence that
this latter case can be a sufficient approximation in a competition setting [10].
However this generation is expensive.

With this motivation, we seek to expand the current bounds on information
set sampling in GGP through a conventional technology—Answer Set Program-
ming (ASP). Specifically, we will benchmark the set sampling problem on Clingo
and then compare against the newer oClingo to assess its claims of avoiding re-
dundant search via learnt clauses. We test this problem on three games that
have been unplayable at international GGP competitions.1

The rest of the paper is organised as follows: first, we formally introduce the
Game Description Language, the gringo syntax for a logic program, and the
oClingo extension. In section 4 we explain how to translate GDL to a logic
program. Next we describe our experimental setup and present our findings. We
conclude with a short discussion.

2 Game Description Language

The science of General Game Playing requires a formal language that allows an
arbitrary game to be specified by a complete set of rules. The declarative Game
Description Language (GDL) serves this purpose [4]. It uses a logic programming-
like syntax and is characterised by the special keywords listed in Table 1.

Table 1. GDL-II keywords

role(?r) ?r is a player
init(?f) ?f holds in the initial position
true(?f) ?f holds in the current position
legal(?r,?m) ?r can do ?m in the current position
does(?r,?m) player ?r does move ?m

next(?f) ?f holds in the next position
terminal the current position is terminal
goal(?r,?v) ?r gets payoff ?v

sees(?r,?p) ?r perceives ?p in the next position
random the random player (aka. Nature)

Originally designed for games with complete information [4], GDL has recently
been extended to GDL-II (for: GDL with incomplete/imperfect information) by
the last two keywords (sees, random) to describe arbitrary (finite) games with
randomised moves and imperfect information [13].

Example 1. The GDL-II rules in Fig. 1 formalise a simple game in which a
player, whose role name is “guesser”, must guess a randomly chosen number

1 1st Australian Open 2012, see https://wiki.cse.unsw.edu.au/ai2012/GGP
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from 1 to 16. The player can ask a series of ‘is the number < n?’ questions before
announcing that it is ready to guess.

The intuition behind the rules is as follows.2 Line 1 introduces the players’
names. Lines 3–6 define some basic arithmetic relations as background knowl-
edge. Line 8 defines the two features that comprise the initial game state. The
possible moves are specified by the rules for legal: in the first round, the
random player chooses a number (lines 10–11); then the guesser can repeat-
edly ask “lessthan” questions (line 14) until it decides that it is ready to guess
(line 15), followed by making a guess (lines 16). The guesser’s only percepts are
true answers to its yes-no question (lines 18–21). The remaining rules specify
the state update (rules for next); the conditions for the game to end (rule for
terminal); and the payoff, which in case of the guesser depends on whether it
got the number right and how long it took (rules for goal).

GDL-II comes with some syntactic restrictions—for details we must refer to
[6,13] due to lack of space—that ensure that every valid game description has
a unique interpretation as a state transition system as follows. The players
in a game are determined by the derivable instances of role(?r). The initial
state is the set of derivable instances of init(?f). For any state S, the legal
moves of a player ?r are determined by the instances of legal(?r,?m) that
follow from the game rules augmented by an encoding of the facts in S using
the keyword true. Since game play is synchronous in the Game Description
Language,3 states are updated by joint moves (containing one move by each
player). The next position after joint move m is taken in state S is determined
by the instances of next(?f) that follow from the game rules augmented by
an encoding of m and S using the keywords does and true, respectively. The
percepts (aka. information) a player ?r gets as a result of joint move m being
taken in state S is likewise determined by the derivable instances of sees(?r,?p)
after encoding m and S using true and does. Finally, the rules for terminal
and goal determine whether a given state is terminal and what the players’
goal values are in this case.

On this basis, game play in GDL-II follows this protocol:

1. Starting with the initial state, which is completely known to all players, in
each state each player selects one of their legal moves. By definition random

must choose a legal move with uniform probability.
2. The next state is obtained by (synchronously) applying the joint move to

the current state. Each role receives their individual percepts resulting from
this update.

3. This continues until a terminal state is reached, and then the goal relation
determines the result for all players.

2 A word on the syntax: We use infix notation for GDL-II rules as we find this more
readable than the usual prefix notation.

3 Synchronous means that all players move simultaneously. Turn-taking games are
modelled by allowing players only one legal move without effect (such as noop) if it
is not their turn.
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1 role(guesser ). role(random ).
2

3 succ(0,1). succ(1,2). ... succ (15,16).
4 number (?n) <= succ(?m,?n).
5 less(?m,?n) <= succ(?m,?n).
6 less(?m,?n) <= succ(?m,?k), less(?k,?n).
7

8 init(step (0)). init(starttime).
9

10 legal(random ,choosenumber(?n)) <= number (?n), true(starttime).
11 legal(random ,noop) <= not true(starttime).
12

13 legal(guesser ,noop) <= true(starttime).
14 legal(guesser ,lessthan (?n)) <= number (?n), true(questiontime).
15 legal(guesser ,readytoguess) <= true(questiontime).
16 legal(guesser ,guess(?n)) <= number (?n), true(guesstime).
17

18 sees(guesser ,yes) <= does(guesser ,lessthan (?n)),
19 true(secretnumber(?m)), less(?m,?n).
20 sees(guesser , no) <= does(guesser ,lessthan (?n)),
21 true(secretnumber(?m)), not less(?m,?n).
22

23 next(secretnumber(?n)) <= does(random ,choosenumber(?n)).
24 next(secretnumber(?n)) <= true(secretnumber(?n)).
25

26 next(questiontime) <= true(starttime).
27 next(questiontime) <= true(questiontime), not does(guesser ,readytoguess).
28 next(guesstime) <= does(guesser ,readytoguess).
29 next(right) <= does(guesser ,guess(?n)), true(secretnumber(?n)).
30 next(end) <= does(guesser ,guess(?n)).
31 next(step(?n)) <= true(step(?m)), succ(?m,?n).
32

33 terminal <= true(end).
34 terminal <= true(step(16)).
35

36 goal(guesser ,100) <= true(right), true(step(?n)), less(?n,8).
37 goal(guesser , 90) <= true(right), true(step(?n)), less(?n,9).
38 ...
39 goal(guesser , 10) <= true(right), true(step(?n)), less(?n,16).
40 goal(guesser , 0) <= not true(right).
41 goal(random , 0).

Fig. 1. The GDL-II description of the Number Guessing game at the AI2012 GGP
Competition

3 Logic Programming, gringo, and reactive ASP

First we recapitulate standard logic programming and answer set programming
terminology. Rules are of the form hr ← a1, . . . , am, not am+1, . . . ,not an. where
each ai is an atom of the form p(t1, . . . , tk) and each ti is a term (constant,
variable, or function). The head hr of rule r is either an atom, a cardinality
constraint of the form l{h1, . . . , hk}u in which l, u are integers and h1, . . . , hk are
atoms, or the special symbol ⊥. If hr is a cardinality constraint, we call r a choice
rule, and an integrity constraint if hr = ⊥. We denote the atoms occurring in hr

by head(r), ie. head(r) = {hr} if hr is an atom, head(r) = {h1, . . . , hk} if hr =
l{h1, . . . , hk}u, and head(r) = ∅ if hr = ⊥. The atoms occurring positively and
negatively in the body are denoted by body(r)+ = {a1, . . . , am} and body(r)− =
{am+1, . . . , an}. A logic program R is a set of rules; atom(R) denotes the set



Evaluating Answer Set Clause Learning for General Game Playing 223

of atoms occurring in R. head(R) = ∪r∈Rhead(r) is the collection of all head
atoms. The ground program grd(R) is the set of all ground rules constructable
from rules r ∈ R by substituting every variable in r with some element of the
Herbrand Universe of R. For further details we recommend [1,11,3].

We now examine Incremental Logic Programs, an extension of logic program-
ming as described above. Incremental programs are constructed from modules,
which for the purposes of this paper are effectively subprograms. An
Incremental Logic Program (B,P [t], Q[t]) is composed of a base module B of
time-independent (‘rigid’) rules, and two parameterised modules: a ‘cumulative’
module P [t] (instantiated at each successive timestep t and which is accumu-
lated) and a ‘volatile’ module Q[t] (which is forgotten after each timestep; only
one instantiation exists at a time). This is further extended by oClingo to pro-
duce an Online Incremental Logic Program. These programs are accompanied by
an ‘online progression’—a sequence of input atoms for each timestep t. oClingo
programs rely on #external directives as domain predicates for grounding rules
that rely on these input atoms.

As a final note, a great strength of the Potassco suite of ASP solvers is that
clause learning is ‘baked in’.

4 Translation

An ASP system is a natural platform for the Game Description Language, due to
the finiteness guarantee, uninterpreted functions4, and the presence of negation-
as-failure. Indeed GDL is an extension of Datalog¬ with function symbols, so
a syntactic translation is fairly direct [12]. We will now briefly summarise this
process, which converts GDL rules to the gringo input language. After this, we
will present a modification that produces rules suitable for oClingo as well.

The key aspect of this translation is the ‘temporal extension’ of the GDL
features—GDL has implicit timepoints (initial, current, and next) which must
be made explicit for an ASP system. That is, init rules initialise fluents for time
zero. Rules for legal or the value of derived fluents are functions of the current
time (relative to a state). Fluent update needs to reference the fluent’s value
at the ‘next’ timepoint (relative to the current time). This extension is largely
achieved by wrapping fluents in binary holds(F,T) relations that tie the fluent
F to a given timepoint T . Fluent update is handled by rules for holds with a
timepoint one step ahead of the timepoints in the body (T + 1 vs T ). Derived
fluents have the same timepoint in the head and the body.

As noted in the original translation paper [12], this method temporalises all
user (derived) rules, even if they are time-independent ‘rigids’. This introduces
a substantial increase in redundant grounding. As such, we will first formally
define the notion of a rigid rule in terms of the dependency graph of the GDL

4 That is, functions have no fixed interpretation and must be specified by other axioms.
ASP in contrast typically interprets + as addition (and similarly for other simple
arithmetic operators). This means no additional logic needs to be ported along with
the GDL when translating to ASP.
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rules. Then we present our augmented translation that ensures rigids are left
unadorned.

Definition 1. Construct the dependency graph D = (V,E) of a set of GDL
rules G as follows:

– The vertex set V contains all predicate symbols found in G.
– If predicate symbol a appears in the head of some rule r ∈ G and predicate

symbol b appears in the body of r, then D has an edge from b to a, ie.
(b, a) ∈ E.

With the dependency graph, we can now formally define the common notion
of rigid rules:

Definition 2. A rule h(a1,. . .,am) <= b1,. . .,bn is rigid wrt a set of GDL
rules G iff there is no path from h to true or does in the dependency graph for
G.

We now present the main translation:5

Definition 3. Let G be a set of GDL rules, then the temporal extension of G,
written ext(G), is the set of logic program clauses obtained from G as follows.
Each occurrence of:

– init(φ) is replaced by holds(φ,0).
– true(φ) is replaced by holds(φ, T), and each next(φ) by holds(φ, T +1).
– sees(R, φ) is replaced by sees(R, φ, T + 1).
– distinct(t1, t2) is replaced by not t1 = t2.
– p(t1, . . . , tn) where p is keyword does, legal, terminal, or goal is replaced

by p(t1, . . . , tn, T ).
– p(t1, . . . , tn) where p is rigid (by Definition 2) is left unadorned.6

All other atoms p(t1, . . . , tn) are replaced by derived(p(t1, . . . , tn), T) (or by
derived(p(t1, . . . , tn), 0) if they are in the body of an init rule).

In order to produce a valid program, these rules must also be augmented with
information about the moves and percepts seen to date, constraints on move
selection, and a domain predicate for timepoint variables:

Definition 4. Given a set of GDL rules G, a role name N , a round number
R ≥ 1, the move history H of player N (a set of R does rules, one for each
timepoint) and a set of percepts P (of form observed(S, T) where S is a ground
percept and T ∈ [0, R) is the timepoint), construct a logic program L containing:

– the temporal extension of G (by Definition 3).
– a time domain predicate time(0..R-1). (or time(0). if R = 1).
– our move history H.

5 Due to space constraints we cannot present a full translation and instead refer to [12].
6 Note that this includes keyword role due to restrictions in the GDL specification [6].
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– an action ‘generator’ (choice rule)
{ does(R,A,T) } :- role(R), time(T), legal(R,A,T).

– a unique action constraint
:- not 1 { does(R,A,T) : input(R,A) } 1, role(R), time(T).

– constraints to guarantee correct percepts are generated
:- sees(N,P,T+1), not observed(P,T+1), time(T). and
:- not sees(N,P,T+1), observed(P,T+1), time(T).

The logic program produced by Definition 4 is now sufficient to produce a
sample of the information set and is the basis for our experiments. Note that
we also intend to apply this program to GGP competitions where we only want
Clingo to report back the latest game state, ie. holds statements (since the
state, not the history, is the foundation for move selection). This can be achieved
with the directives #hide. #show holds/2. appended to the rules. Note that
our introduction of a derived keyword (not present in the original translation)
allows us to easily retrieve the complete state if this is preferred.

This translation scheme was conceived for standard ASP systems, but we also
wish to employ the newer, reactive oClingo—we want to measure the benefit of
an incremental logic program to this domain. This introduces two new subtleties:
first, the latest timepoint is t, so ‘next’ rules must occupy this time (ie t instead
of T +1), and ‘now’ rules must be t-1 (instead of T )—timepoints will need to be
shuffled. A further complexity is that oClingo—for reactive, incremental logic
programs—has a program that must adhere to module theory, and in particular
a firm modularity condition7.

We first present the alternate temporal extension for an oClingo-compatible
domain, and then the game-independent rules that tell oClingo what problem
to solve.

Definition 5. Let G be a set of GDL rules, then the reactive temporal extension
of G, written oExt(G), is the set of logic program clauses obtained from G as
follows. For each rule, adorn the head:

head replaced by time variable
in body

init(φ) holds(φ, 0) 0
next(φ) holds(φ, t) t− 1
legal(R,A) legal(R,A, t− 1) t− 1
sees(R,P) sees(R,P, t− 1) t− 1
terminal terminal(t) t
goal(R, V ) goal(R, V, t) t
p(a1, . . . , an); p is not rigid derived(p(a1, . . . , an), t− 1) t− 1

otherwise the head is unmodified (it and its body are rigid)

Now update the atoms in the bodies with the appropriate time variable (as
determined by the head of the rule):

7 Due to space constraints we must defer this technical detail to [3].
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GDL time variable X (determined by head)

true(φ) holds(φ,X)

does(R,A) does(R,A,X)

distinct(t1, t2) not t1 = t2
p(a1, . . . , an); p is not rigid derived(p(a1, . . . , an), X)

otherwise the atom is unmodified (it is rigid)

Definition 6. Given a set of GDL rules G, a role name N , the move history H
of player N (a set of R does rules, one for each timepoint) and a set of percepts
P (of form observed(S, T) where S is a ground percept and T is the timepoint),
construct an reactive, incremental logic program L containing:

– the reactive temporal extension of G (by Definition 5). Note that the rigid
rules go in the base module, all other rules go in the cumulative section.

– domain predicates input(R,A) and percepts(P) for actions A and percepts
P .

– #external declarations: #external exec/2. #external observed/2.

– an action ‘generator’ (choice rule)
{ does(R,A,t-1) } :- role(R), legal(R,A,t-1).

– a combined uniqueness+liveness constraint
:- not 1 { does(R,A,t-1) : input(R,A) } 1, role(R).

– correct action constraint
:- not does(N,A,t-1), exec(A,t-1), input(N,A).

– constraints to guarantee correct percepts are generated
:- sees(N,P,t-1), not observed(P,t-1). and
:- not sees(N,P,t-1), observed(P,t-1), percepts(P).

And construct an online progression O, as a contiguous sequence of steps of the
form:

#step X.

exec(A,X-1).

observed(P,X-1).

#endstep.

For each round X ≥ 1. Note that each step will contain exactly one exec state-
ment (player N executed action A at time X − 1) and zero or more observed

statements for the percepts that resulted from that action (as per Definition 4).

These straight-forward procedures have two additional problems that we have
not yet discussed: domain predicates are not always present, and GDL permits
a large class of symbols for its identifiers8. Obviously the naming issue can be
addressed with a simple symbol table. The problem of domain predicates is start-
ing to be mitigated by a growing convention in the GGP community to supply

8 For example hyphens, which ASP systems tend to interpret as a subtraction operator
(or classical negation, based on context).
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these domains with ‘input’ and ‘base’ keywords (for actions and fluents, respec-
tively). However no such keyword has been proposed for percepts. Finding the
minimal model of the negation-free program is a reasonably efficient method for
grounding these domains on the back-catalog of games without these predicates.
Alternatively, more efficient GDL-centric methods have been proposed [12,9],
though these are beyond the scope of this paper.

Regarding timepoints. You may note that the choice of actions (does) occurs at
time T in Clingo and time t − 1 in oClingo. Similarly percepts (sees) occur at
time T + 1 compared with t − 1 between the two versions. The reason for this
is historical: the constraints on oClingo are firm9, but the translation for Clingo
was done first (and follows the original translation from [12]). Other variations
are possible, however these translations are the ones we tested, and so these are
the ones we present.

5 Method

In order to reason about the rules of a game we must first convert them fromGDL
to an ASP encoding, as presented in Section 4. Next we generate a random play
through of the game for each role. This yields a collection of legal (reachable)
states, the joint moves that led to those points, and the percepts that each
role would see at each step. By replaying one set of moves and percepts for a
select player, Clingo (or oClingo) can recreate the state (or find equivalent states
subject to its imperfect information). That is, it can sample the information set.

In our experiments we generate 100 random plays for each game for each
role10. We then ask (o)Clingo to solve for a sample of the game’s information
set at each round. All times are averaged over three duplicate runs. Experiments
were performed on the UNSW cluster to satisfy the time and RAM constraints.
Note that individual runs used a single 2.20 GHz Opteron core, but were allo-
cated a complete node (48 processor cores) to eliminate interference from other
processes.

We explicitly point out here that our results only measure the time to achieve
the first model, since we did not have time to repeat our experiments for larger
sample sizes. However this is still a useful metric: a single model is enough to
start evaluating moves in a game player. Further, the process can be dynamically
improved as more models are reported (as in [10]). From this perspective, the
time-to-first model is the most useful measure of the value of our (ASP) set-
sampler, since this is the ‘dead time’ before the GGP system can start making
decisions.

We also ran oClingo with the --ilearnt=forget flag, which disables clause
learning between timesteps (ie. clauses learnt in timestep n are thrown away be-
fore timestep n+1 begins). Comparing oClingo’s performance with and without

9 Facts added ‘to the future’ are prone to either violating oClingo’s modularity con-
dition, or being ignored by the target module parameterisation.

10 This number was reduced for the larger games due to time constraints.
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this feature should demonstrate the value of Incremental Logic Programs for
this type of search problem, as well as validate claims regarding the effectiveness
of oClingo’s clause learning. Finally, by measuring precisely the effect of clause
learning between timesteps we can account for how significant its impact is,
while controlling for other (smaller) differences between the Clingo and oClingo
systems.

Due to the youth of GDL-II and the complexity of games it describes, there
is a distinct lack of rules that tax an ASP system under our use-case. Early
tests revealed that most games are slow to ground, but their game trees are
then fairly simple. For most rounds of most games, both Clingo and oClingo
consistently solved the search problem presented in fractions of a second. As
such our experiments focus on the role of grounding, and we have chosen three
of the hardest domains for the task. These games, taken from past international
competitions, are:

Blind Breakthrough. A two-player, zero-sum, turn-taking game played on a chess
board. Each player has two rows of pieces against their side, but all pieces are
pawns. The winner is the first player to reach the other side of the board (‘break
through’ the opponent’s ranks). The ‘blind’ aspect indicates that a player can-
not see the opponent’s pieces and is instead informed of the success/failure of
attempted moves and the existence of a capturing move. We vary the board size
between 6x6, 7x7, and 8x8 squares.

Battleships in Fog. Two navies (on separate, 4x4 grid oceans) can fire at their
opponent and are informed of hit/miss. In this variant, players may also sail their
single, two-by-one cell ship to an adjacent square, or perform a ‘noisy sensing’
action that returns three possible opponent locations (one correct, the other two
not).

Small Dominion. Players each have a small hand of cards (either money or land)
that is filled from a larger, face-down deck. Several low-value cards (eg. copper)
can be used to buy a single higher-value card (eg. silver). Doing so allows a
player to slowly increase the value of their hand and get more ‘victory points’
as a result. The game finishes when certain sets of cards are exhausted. These
rules yield an interesting alternate strategy where a player buys low-value cards
as quickly as possible in order to trigger an early game termination (before the
opponent has won by high-value cards).

6 Results

The first and most important observation is that these domains are hard be-
cause their search spaces are huge. But these are human-playable games, which
suggests some structure must exist on their game trees. This is reflected in our re-
sults: grounding remains the most significant factor in the time to find a model,
while actually ‘solving’ is lightning quick. An exception to this case is Blind
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a. Grounding b. Preparing

c. Solving d. Total time

Fig. 2. Timing results for Clingo vs oClingo. Results are for Blind Breakthrough and
averaged across all board sizes. Error bars indicate a 95% confidence interval.

Breakthrough where solving time can be higher due to the myriad interleavings
of moves explaining the same observation.

The second observation is that grounding can be prohibitive in this space and
it is necessarily exacerbated by oClingo because it offers (potential) speedups
later in a game tree by doing extra work11 at each step. This was catastrophic for
the game of Small Dominion, where the dealer (random) chooses three—mostly
unused—random values in every round. Obviously this is a poor axiomatisation
from an ASP perspective (all these unused values must be ground before they can
be ignored), but this is the reality of the input GDL, where such encodings are
fine for Prolog-based systems. It should be noted that this ‘extra work’ is clearly

11 Eg. the grounding process needs to account for all the possible external inputs.
In contrast, Clingo needs to ground only the inputs it actually receives—a liberty
afforded to it since the ‘externals’ must be provided up-front with the program itself.
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a. Total time in Battleships in Fog b. Total time in Small Dominion

Fig. 3. Timing in Battleships and Small Dominion. Note that Clingo is dramatically
more effective in Small Dominion.

at fault, since straight Clingo was still competitive in this domain. This indicates
that there is a cross-over point: small domains are easy for both systems, oClingo
has a strong advantage for medium-size domains, but then falls behind as the
additional grounding increases and its rewards diminish. That is, after this point
oClingo is swamped by its own optimisation.

7 Conclusion

It is clear that oClingo’s ability to avoid redundant search and grounding offers
an impressive speed-up of over its predecessor Clingo. However this gain is tem-
pered by the size of the target domain; medium-size domains benefit most since
they are complex enough to utilise the learnt clauses, but not so large as to grind
to a halt whilest grounding. For the field of General Game Playing these fea-
tures literally increase the horizon of ‘solvable’ domains. Further, this is achieved
within the time constraints of a typical GGP competition—this system is ready
for competition play. oClingo is not a silver bullet though, and the largest games
are still well beyond the reach of game-general set sampling techniques.

Using an ASP system for a fixed-size sampling of a game’s information set is
not the only approach to the problem of imperfect-information game play; pos-
sible worlds systems store and incrementally update the complete information
set. As an efficiency-oriented optimisation, ‘particle filter’ systems [2] maintain
and progressively filter a large subset of the possible worlds—this helps miti-
gate the capacity demands of storing huge search spaces. Filtering has also been
augmented with backtracking in order to avoid pruning all the possible worlds
away [10]. This approach excels when successive information sets are local on the
game tree, but complex games bring out its exponential complexity. Yet complex
games are the interesting ones: games with high branching factors, long periods
without percepts, or multiple but very different12 explanations for the same ob-
servations. All of these properties are found in our harder test domains—Blind

12 ie. distant on the game tree



Evaluating Answer Set Clause Learning for General Game Playing 231

Breakthrough, Battleships in Fog, and Small Dominion—and demonstrate that
finding the information set under these constraints is fundamentally a search
problem, where an efficient, domain-independent system like an ASP solver is
well-suited. Of course other, more efficient methods are also possible when ad-
ditional assumptions can be made about the domain [8]. A full side-by-side
comparison of these methods remains as critical future work.

One notable shortcoming of our approach is the absence of model weights—
we find unique histories that describe the current state, but some states are
more likely than others. Essentially this means opponent modelling, which is
beyond the scope of this paper. Applying soft constraints or gringo’s #maximize
statements to this problem would also be valuable future work.
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