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Abstract. We consider the problem of verifying whether one action the-
ory can simulate a second one. Action theories provide modular descrip-
tions of state machines, and simulation means that all possible sequences
of actions in one transition system can be matched by the other. We show
how Answer Set Programming can be used to automatically prove sim-
ulation by induction from an axiomatisation of two action theories and
a projection function between them. Our interest in simulation of action
theories comes from general game-playing robots as systems that can
understand the rules of new games and learn to play them effectively in
a physical environment. A crucial property of such games is their playa-
bility , that is, each legal play sequence in the abstract game must be
executable in the real environment.

1 Introduction

Simulation, and bisimulation, of state transition systems is an important and
well researched concept in theoretical computer science and formal logic [30, 3]
but has not been applied in the context of action languages that provide logic-
based, compact descriptions of state machines [5, 14, 29, 32]. We consider the
problem of automatically proving whether the transition system represented by
one action theory can simulate the system described by another theory.

Our interest in simulation of action theories comes from an open problem in
general game-playing robotics, which is concerned with the design of autonomous
systems that can understand descriptions of new games and learn to play them in
a physical game environment [28]. This is an attempt to create a new generation
of AI systems that can understand the rules of new games and then learn to play
these games without human intervention [16]. Unlike specialised game-playing
systems such as the chess program Deep Blue [19], a general game player cannot
rely on algorithms that have been designed in advance for specific games. Rather,
it requires a form of general intelligence that enables the player to autonomously
adapt to new and possibly radically different problems. General game playing
programs therefore are a quintessential example of a new generation of systems
that end users can customise for their own specific tasks and special needs [15],



Fig. 1. A physical game environment.

and general game-playing robots extend this capability to AI systems that play
games in the real world [28].

In general game playing, games are represented using a special-purpose ac-
tion description language [16]. These game descriptions must satisfy a few basic
requirements to ensure that a game is effectively playable; for example, there
should always be at least one legal move in every nonterminal position [17]. In
bringing gameplay from mere virtual into physical environments, general game-
playing robots require an additional property that concern the manifestation of
the game rules in the real world. Notably, a suitable game description requires
all moves deemed legal by the rules of the abstract game to be executable in the
real world [28].

As an example, consider the robotic environment shown in Fig. 1. It features
a 4×4 chess-like board with an additional row of 4 marked positions on the right.
Tin cans are the only type of objects and can be moved between the marked
position (but cannot be stacked). This game environment can be interpreted
in countless ways as physical manifestations of a game, including all kinds of
mini chess-like games but also, say, single-player games like the 15-puzzle, where
individual cans represent numbered tiles that need to be brought in the right
order [28]. In fact, any abstract game is playable in this environment provided
that all legal play sequences can be executed by the robot.

In order to prove the playability of a game, we consider its rules and those
that govern the robotic environment as formal descriptions of state transition
systems. This allows us to reduce the problem of verifying that a game is playable
to the problem of proving that an action theory describing the environment can
simulate the action theory that encodes the game. As a general technique, we
will show how Answer Set Programming can be used to automatically prove
the simulation of action theories based on their axiomatisation along with a
projection function between the states of the two systems.



The remainder of the paper is organised as follows. Section 2 introduces a
basic action description language that we will use for our analysis and which
derives from the general game description language GDL [16]. In Section 3, we
formally define the concept of simulation for action theories. The use of Answer
Set Programming to automatically prove this property by induction are given in
Section 4, and in Section 5 we show how the result can be applied to proving the
playability of abstract games in physical environments. We conclude in Section 6.

2 Action Theories

A variety of knowledge representation languages exist for describing actions and
change, including first-order formalisms such as the classical Situation Calculus
and its variants [26, 20, 33], special-purpose action description languages [14,
29], planning formalisms [8, 11] or the general game description language [16].
While they are all subtly different, action languages invariably share the following
standard elements:

– fluents, which describe atomic, variable properties of states;
– actions, whose execution triggers state transitions;
– action preconditions, defining conditions on states for an action to be exe-

cutable;
– effect specifications, defining the result of actions;
– initial state description.

For the purpose of this paper, we will use a simple and generic specification lan-
guage for basic action theories that uses Answer Set Programming (ASP) syntax
to describe all of these basic elements. Many of the aforementioned action for-
malisms have straightforward translations into ASP, e.g. [21, 6, 2, 12, 34]. Hence,
while our language borrows its five pre-defined predicates from the game descrip-
tion language GDL [16] in view of our motivating application, our definitions and
results can be easily adapted to similar action representation formalisms.

Example. Before providing the formal language definition, let us consider the
example of a 4×4 sliding puzzle, which is formally described by the action theory
given in Fig. 2. The rules use the fluent cell(x, y, z) to indicate the current
state of position (x, y) as either occupied by tile z or being empty, where
x, y ∈ {1, . . . , 4} and z ∈ {1, . . . , 15, empty}. A second fluent step(x) counts
the number of moves, which has been limited to x ∈ {1, . . . , 80} . The only action
in this domain is move(u, v, x, y), denoting the move of sliding the tile in (u, v)
into position (x, y), where u, v, x, y ∈ {1, . . . , 4}. Intuitively, the description can
be understood as follows:

– Facts 1–17 completely describe the initial state as depicted.
– The precondition axioms 19–22 say that a tile can be slid into the adjacent

empty cell.
– The result of sliding the tile in (u, v) into position (x, y) is that



1 init(cell(1,1, 9)).
2 init(cell(2,1, 2)).
3 init(cell(3,1, 8)).
4 init(cell (4 ,1 ,12)).
5 init(cell (1 ,2 ,11)).
6 init(cell(2,2, 3)).
7 init(cell (3 ,2 ,15)).
8 init(cell (4 ,2 ,10)).
9 init(cell(1,3, 6)).

10 init(cell(2,3,empty )).
11 init(cell (3 ,3 ,13)).
12 init(cell(4,3, 5)).
13 init(cell (1 ,4 ,14)).
14 init(cell(2,4, 4)).
15 init(cell(3,4, 1)).
16 init(cell(4,4, 7)).
17 init(step (1)).
18

19 legal(move(U,Y,X,Y)) :- true(cell(X,Y,empty)), succ(U,X), true(cell(U,Y,Z)).
20 legal(move(U,Y,X,Y)) :- true(cell(X,Y,empty)), succ(X,U), true(cell(U,Y,Z)).
21 legal(move(X,V,X,Y)) :- true(cell(X,Y,empty)), succ(V,Y), true(cell(X,V,Z)).
22 legal(move(X,V,X,Y)) :- true(cell(X,Y,empty)), succ(Y,V), true(cell(X,V,Z)).
23

24 next(cell(U,V,empty)) :- does(move(U,V,X,Y)).
25 next(cell(X,Y,Z)) :- does(move(U,V,X,Y)), true(cell(U,V,Z)).
26

27 next(cell(R,S,Z)) :- true(cell(R,S,Z)), does(move(U,V,X,Y)), R != U, R != X.
28 next(cell(R,S,Z)) :- true(cell(R,S,Z)), does(move(U,V,X,Y)), R != U, S != Y.
29 next(cell(R,S,Z)) :- true(cell(R,S,Z)), does(move(U,V,X,Y)), S != V, R != X.
30 next(cell(R,S,Z)) :- true(cell(R,S,Z)), does(move(U,V,X,Y)), S != V, S != Y.
31

32 next(step(Y)) :- true(step(X)), succ(X,Y).
33

34 succ (1 ,2). succ (2,3). ... succ (79 ,80).
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Fig. 2. The 15-puzzle described by an action theory.

• cell (u, v) becomes empty while the tile is now in (x, y) (clauses 24,
25);

• all other cells retain their tiles (clauses 27–30);
• the step counter is incremented (clause 25).

As can be seen from this example, our action theory uses the following unary
predicates as pre-defined keywords:

– init(f), to define fluent f to be true initially;
– true(f), denoting the condition that f is true in a state;
– does(a), denoting the condition that a is performed in a state;
– legal(a), meaning that action a is possible;
– next(f), to define the fluents that are true after an action is performed.

For the formal definition of the syntax of the action specification language, we
assume that the reader is familiar with basic concepts of logic programs [23] and
Answer Set Programming [4]. Our action theories are normal logic programs that
have to satisfy a few syntactic restrictions borrowed from GDL [17] in order to
ensure that they admit a unique and finite interpretation.



Definition 1. Consider an alphabet that includes the unary predicates init ,
legal , next , true and does . An action theory is a normal logic program P
such that

1. P is stratified, that is, its dependency graph has no cycles with a negative
edge [1];

2. P is allowed, that is, each variable in a clause occurs in a positive atom of
the body of that clause [24];

3. P satisfies the following restrictions on the pre-defined predicates:
(a) init occurs only in the head of clauses and does not depend on any of

the other special keywords;
(b) legal occurs only in the head of clauses and does not depend on does ;
(c) next occurs only in the head of clauses;
(d) true and does occur only in the body of clauses.

4. P obeys the following recursion restriction to ensure finite groundings: If
predicates p and q occur in a cycle in the dependency graph of P , or if
p = true and q = next , and P contains a clause

p(s1, . . . , sm) :– b1( t1), . . . , q(v1, . . . , vk), . . . , bn( tn)

then for every i ∈ {1, . . . , k},
– vi is variable-free, or
– vi is one of s1, . . . , sm, or
– vi occurs in some tj (1 ≤ j ≤ n) such that bj does not occur in a

cycle with p in the dependency graph of P .

It is straightforward to verify that the action theory in Fig. 2 satisfies this defi-
nition of a proper action theory.

3 Simulation of Action Theories

The concept of simulation for action theories needs to be defined on the state
transition systems that they describe, where generally states are identified by the
fluents that hold and state transitions are triggered by actions [14, 29, 32]. In case
of the action description language of Definition 1, this interpretation is obtained
with the help of the stable models [13] of Answer Set Programs. Below, SM[P ]
denotes the unique stable model of a stratified, finitely groundable program P .

Definition 2. Let P be an action theory in the language of Definition 1 with
ground fluents F and ground actions A . P determines a finite state ma-
chine (A, S, s0, δ) as follows:

1. S = 2F are the states;
2. s0 = {f ∈ F : init(f) ∈ SM[P ]} is the initial state;
3. δ(a, s) = {f ∈ F : next(f) ∈ SM[P ∪ does(a) ∪ true|s]} is the transition

function, where
– a ∈ A



– s ∈ S
– true|s = {true(f) : f ∈ s}
– legal(a) ∈ SM[P ∪ true|s] (that is, a is possible in s).

A state s ∈ S is called reachable if there is a finite sequence of actions a1, . . . , ak
such that s = δ(ak, . . . , δ(a1, s0) . . .).

Put in words,

– states are sets of ground fluents;
– the initial state is given by all derivable instances of init(f);
– to determine if an action is legal in a state s , this state s has to be encoded

using facts true(f), and then a is possible if legal(a) can be derived;
– likewise, to determine the effects of an action a in a state s, the action and

the state have to be encoded using facts does(a) and true(f), respectively,
and then the resulting state is given by all derivable instances of next(f).

Example. Recall the action theory in Fig. 2 describing the 15-puzzle. It is easy
to see that the initial state is

s0 = {cell(1, 1, 9), . . . , cell(1, 3, 6), cell(2, 3, empty), . . . , step(1)} (1)

It is straightforward to verify that the action move(1, 3, 2, 3) is possible in this
state: After adding each of the facts in true|s0 , the unique stable model of
the resulting program includes true(cell(2, 3, empty)), true(cell(1, 3, 6)) and
succ(1, 2), hence also legal(move(1, 3, 2, 3)) according to clause 19. From Def-
inition 2 and the clauses 24–32 it follows that

δ(move(1, 3, 2, 3), s0) =
{cell(1, 1, 9), . . . , cell(1, 3, empty), cell(2, 3, 6), . . . , step(2)}

Given two state transition systems, the standard definition of a simulation re-
quires that one matches all actions in the other. In case of two action theories P1

and P2, this requires that the actions and states of the simulated domain, P1,
can be projected onto actions and states in the simulating domain, P2 , such
that

– the initial state of P1 projects onto the initial state of P2 ;
– if an action is possible in P2 , then the corresponding action is possible in

the corresponding state in P2 and the resulting states correspond, too.

This is formally captured by the following definition.

Definition 3. Let P1 and P2 be two action theories, which describe finite state
machines (A, S, s0, δ) and (B, T, t0, ε), respectively. A projection of P1 onto P2

is a function π such that

– π(a) ∈ B for all a ∈ A
– π(s) ∈ T for all s ∈ S



1 init(piece(a,1)).
2 init(piece(b,1)).
3 init(piece(c,1)).
4 init(piece(d,1)).
5 init(piece(a,2)).
6 init(piece(c,2)).
7 init(piece(d,2)).
8 init(piece(a,3)).
9 init(piece(b,3)).

10 init(piece(c,3)).
11 init(piece(d,3)).
12 init(piece(a,4)).
13 init(piece(b,4)).
14 init(piece(c,4)).
15 init(piece(d,4)).
16

17 legal(put(U,V,X,Y)) :- true(piece(U,V)), coord(X,Y), not true(piece(X,Y)).
18

19 next(piece(X,Y)) :- does(put(U,V,X,Y)).
20 next(piece(X,Y)) :- true(piece(X,Y)), not moved(X,Y).
21

22 moved(X,Y) :- does(put(X,Y,U,V)).
23 coord(a,1). coord(a,2). coord(a,3). coord(a,4).
24 ...
25 coord(x,1). coord(x,2). coord(x,3). coord(x,4).
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Fig. 3. An action theory describing the physical environment of the robot in Fig. 1.

A projection π is a simulation of P1 by P2 if

1. π(s0) = t0 and
2. for all a ∈ A and all reachable s ∈ S,

(a) if a is possible in s then π(a) is possible in π(s)
(b) π(δ(a, s)) = ε(π(a), π(s))

Example. The action theory in Fig. 3 describes the physical environment of the
robot in Fig. 1 with the help of a single fluent, piece(i, j), indicating whether a
can has been placed at (i, j) where i ∈ {a, b, c, x} and j ∈ {1, 2, 3}; and the
action put(i, j, k, l) of lifting the object at location (i, j) and putting it down
at location (k, l).

The following projection function maps every action and state in the 15-
puzzle to an action and state in the robotic game environment:

1. π(move(u, v, x, y)) = put(u, 5− v, x, 5− y),
where 1 = a, . . . , 4 = d (to account for the different coordinate systems);

2. π(s) = {piece(x, 5− y) : cell(x, y, z) ∈ s, z 6= empty}.

It is easy to see that under this function, initial state (1) of the 15-puzzle projects
onto the initial state of the action theory for the robotic environment. Indeed, the
projection provides a simulation of the 15-puzzle in the physical robot domain:
According to the rules in Fig. 2, the possible actions in the 15-puzzle are to move
from a cell (u, v) to an adjacent and empty cell (x, y). This implies that there is
no piece in the corresponding location (x, 5− y) on the physical board and also



that there is a piece at (u, 5 − v) since there can be no more than one empty
cell in any reachable state of the game. Hence, the corresponding put action in
the robotic environment is possible in the projected state according to clause 17
in Fig. 3. Moreover, the result of sliding a tile is that the tile and the empty
location swap places, which corresponds to the effect of moving the respective
tin can.

It is worth noting that the reverse does not hold: The robot can of course move
any of the pieces into a non-adjacent, empty location, including the 4 marked
positions to the right of the board. None of these actions can be matched by a
legal move in the 15-puzzle.

4 Automating Simulation Proofs

An automated proof that one action theory indeed simulates a second one
through a given projection, in general needs to inspect all action sequences pos-
sible in the simulated transition system. A viable and sound but incomplete
alternative is to use induction proofs—a technique that has been successfully
applied to automatically proving state constraints in action theories [18, 22]. In-
deed, the required properties of a simulation according to Definition 3 can be
considered as state constraints over the combined action theories. In the follow-
ing, we adapt the existing ASP-based proof technique for state constraints in
general games [18] to solve the problem of automatically proving simulation of
two action theories by induction.

Consider two action theories P1 and P2 . We combine these into a single
answer set program P1 ∪ P2 , which is then augmented as follows:

1. An encoding of a given projection function π from P1 to P2 by:

(a) Clauses

1 isimulation_error :- ¬Π[init ] .
2 tsimulation_error :- ¬Π[true ] .
3 nsimulation_error :- ¬Π[next ] .

Here, Π stands for an ASP encoding of the conditions (on the fluents
in the two action theories) under which a state from P1 projects onto a
state from P2 according to π. The expression Π[init] etc. means to
replace every occurrence of a fluent f in Π by init(f) etc.1

(b) Clauses

4 does (π(a)) :- does (a).

for actions a from P1 .

2. An encoding of the induction hypothesis as

1 For example, if the projection function requires that there be no empty cell (x, y)
in the abstract game that houses a piece in the physical environment, then
¬Π could be (∃x, y) cell(x, y, empty) ∧ piece(x, y), in which case ¬Π[init] is
(∃x, y) init(cell(x, y, empty)) ∧ init(piece(x, y)).



5 { true(F) : fluent(F) }.

6 1 { does(A) : action(A) } 1.

7 :- action(A), does(A), not legal(A).

8 :- tsimulation_error.

where the auxiliary predicate fluent ranges over all fluents in either P1 or
P2 while action ranges over the actions of P1 only.

3. The negation of the base case and of the induction step as

9 counterexample :- isimulation_error.

10 counterexample :- does(A), not legal(A).

11 counterexample :- nsimulation_error.

12 :- not counterexample.

If the resulting ASP admits no stable models, then this proves the projection
function to be a simulation of P1 by P2: Clause 12 excludes solutions without
a counter-example, which according to clauses 9–11 is obtained when

1. the initial state does not project, which corresponds to condition 1 in Defi-
nition 3;

2. an action exists (clause 6) that is legal (clause 7) but whose projection is
not possible, which corresponds to condition 2(a) in Definition 3;

3. a state, i.e. a set of fluents, exists (clause 5) so that the result of a state tran-
sition does not project, which corresponds to condition 2(b) in Definition 3.

We have thus obtained at a technique for automating simulation proofs that is
correct and also very viable in practice as it avoids inspecting all possible action
sequences of the simulated state transition system, as a variety of systematic
experiments with similar inductive proof techniques have demonstrated in the
past [18].

While sound, these induction proofs are in general incomplete as can be
shown with our two example action theories for the 15-puzzle and the robotic
environment as given in Fig. 2 and 3, respectively.

Example. Using the same schema as the generic clauses 1–4 above, the projec-
tion function defined for our example in Section 3 can be encoded thus (where
for the sake of clarity we assume that the two coordinate systems were identical):

does(put(U,V,X,Y)) :- does(move(U,V,X,Y)).

isimulation_error :- init(piece(X,Y)), not icell_tile(X,Y).

isimulation_error :- not init(piece(X,Y)), icell_tile(X,Y).

tsimulation_error :- true(piece(X,Y)), not tcell_tile(X,Y).

tsimulation_error :- not true(piece(X,Y)), tcell_tile(X,Y).

nsimulation_error :- next(piece(X,Y)), not ncell_tile(X,Y).

nsimulation_error :- not next(piece(X,Y)), ncell_tile(X,Y).

icell_tile(X,Y) :- init(cell(X,Y,Z)), Z != empty.

tcell_tile(X,Y) :- true(cell(X,Y,Z)), Z != empty.

ncell_tile(X,Y) :- next(cell(X,Y,Z)), Z != empty.



Put in words, a projected state requires a tin can at location (x, y) if, and only
if, the corresponding cell in the 15-puzzle exists and is not empty. Combined
with the action theories of Fig. 2 and 3 and augmented by the general clauses
5–12 from above, the resulting ASP does admit stable models. For instance, one
model of the ASP includes

true(cell(1, 1, empty)), true(cell(1, 2, empty)), legal(move(1, 1, 1, 2))

Indeed, the action theory in Fig. 2 sanctions the move from one empty cell to
a neighbouring empty cell while this is not possible in the robot domain, where
only pieces can be moved. Another model of the ASP includes

true(cell(1, 1, 1)), true(cell(1, 2, empty)), legal(move(1, 1, 1, 2))
true(cell(1, 2, 2)), true(piece(1, 2))

Indeed, the action theory in Fig. 2 sanctions the move into a cell with a numbered
tile, here (1, 2), if the fluent is also true that says that this cell is empty. Again
this is not possible in the robot domain, where a tin can cannot be put down at
a location already occupied by an object.

Clearly, both these generated counter-examples refer to unreachable states in
the 15-puzzle, hence their existence does not disprove our projection to provide
a simulation of this game by the robot. In fact, we can enhance the capability
of any ASP for proving simulation by adding state constraints of the simulated
action theory that help to exclude unreachable states from being considered as
counter-examples. Specifically, the 15-puzzle satisfies these state constraints:

inconsistent :-

true(cell(U,V,empty)), true(cell(X,Y,empty)), U != X.

inconsistent :-

true(cell(U,V,empty)), true(cell(X,Y,empty)), V != Y.

inconsistent :-

true(cell(X,Y,empty)), true(cell(X,Y,Z)), Z != empty.

:- inconsistent.

Put in words, no consistent state contains two different cells that are both empty,
or a cell that is both empty and occupied by a numbered tile. These constraints
themselves can be automatically proved from the underlying action theory of
Fig. 2 using existing methods [18, 22]. Once they are added, the ASP for proving
that the robotic domain can simulate the 15-puzzle admits no stable model,
which establishes the intended result.

5 General Game-Playing Robots and the Playability of
Games

The annual AAAI GGP Competition [16] defines a general game player as a sys-
tem that understands the formal Game Description Language (GDL) [25] and
is able to play effectively any game described therein. Since the first contest in
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Fig. 4. (a) Different games and (b) their projections onto the game environment of
Fig. 1.

2005, General Game Playing has evolved into a thriving AI research area. Es-
tablished methods include Monte Carlo tree search [9], the automatic generation
of heuristic evaluation functions [7, 31], and learning [10].

General game-playing robots extend this capability to AI systems that play
games in the real world [28]. In bringing gameplay from mere virtual into physical
environments, this adds a new requirement for suitable game descriptions, which
concerns the manifestation of the game rules in the real world: An abstract game
described in GDL can be played in a real robotic environment only if all moves
deemed legal by the rules are actually possible in the physical world.

When we use a physical environment to play a game, the real objects become
representatives of entities in the abstract game. A pawn in chess, for instance,
is typically manifested by an actual wooden piece of a certain shape and colour.
But any other physical object, including a tin can, can serve the same purpose.
Conversely, any game environment like the 4×4(+ 4) board with cans depicted
in Fig. 1 can be interpreted in countless ways as physical manifestation of a
game. For example, Fig. 4(a) shows two positions from two different games, a
mini chess-like game and the 8-puzzle as a smaller variant of the standard sliding
tile game. We can view the states depicted to the left of each position (Fig. 4(b))
as their projection onto our example physical game environment, in which the
extra row can be used to park captured pieces (in chess-like games) or where
gameplay is confined to a subregion of the board (for the 8-puzzle). Note that
this manifestation abstracts away possible differences in the type of cans such
as their colour or shape (or contents for that matter). Hence, it is only through
a projection function that the robotic player knows whether a can stands for a
white or a black pawn, say. The same holds for the sliding puzzles, where the
goal position (with all tiles in ascending order) actually projects onto the very
same abstract environment state as the starting position—the distinction lies
entirely in the meaning attached to individual cans in regard to which number
they represent. It is noteworthy that a similar feature is found in many games



humans play, where also the physical manifestation of a game position is often
an incomplete representation; for example, the pieces on a chessboard alone are
not telling us whose move it is or which side still has castling rights [27].

The manifestation of a game in a physical environment can be mathematically
captured by projecting the positions from the abstract game onto actual states of
the game environment, and then a game is playable if all actions in the abstract
game can be matched by actions in the projected environment [28]. The language
GDL, which is commonly used to describe games in general game playing and
which supports the description of any finite n-player game (n ≥ 1), includes
elements for the specifications of different players and goals [16]. Since these are
irrelevant for the question whether a game is playable and because our action
language of Definition 1 is in fact a stripped-down version of GDL, the formal
concept of simulation of action theories, along with our proof technique, can be
employed for the purpose of automatically proving that a game is playable in a
robotic environment. The only requirement is to symbolically describe the latter
by an action theory in the same language.

6 Conclusion

In this paper we have defined the concept of one action theory being able to
simulate a second one. We have shown how Answer Set Programming can be
used to automatically prove simulation by induction from an axiomatisation
of the two action theories and a projection function between them. We have
motivated and applied these results in the context of systems that draw together
two topical yet disparate areas of artificial intelligence research: general game
playing and robotics.

Our definition of simulation in action theories follows the standard one in
theoretical computer science and formal logic, in that actions always need to
be matched by single actions. In practice, this requires a similar level of ab-
straction in both models. But our notion of projection in Definition 3 can be
straightforwardly generalised to allow for different degrees of abstraction in that
an action in one model corresponds to a sequence of actions in the other one. A
single move in the abstract 15-puzzle, for example, could then be mapped onto
a complex movement of the robot arm in the physical environment: move above
the can, open the fingers, go down, close the fingers, move to the target location,
open the fingers, raise above the can, close the fingers and return back to the
home position. The automation of simulation proofs then needs to be suitably
extended by incorporating sequences of state updates in one action theory [18]
and aligning them with a single state transition in the simulated system.
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