
Automated Verification of Epistemic Properties for General Game Playing

Sebastian Haufe
Department of Computer Science

Dresden University of Technology, Germany
sebastian.haufe@tu-dresden.de

Michael Thielscher
School of Computer Science and Engineering
The University of New South Wales, Australia

mit@cse.unsw.edu.au

Abstract
Automatically deriving properties of new games is one of the
fundamental challenges for general game-playing systems,
whose task is to learn to play any previously unknown game
solely by being given the rules of that game. A recently de-
veloped method uses Answer Set Programming for verify-
ing finitely-bounded temporal invariance properties against a
given game description by structural induction. Addressing
the new challenge posed by the recent extension of the gen-
eral Game Description Language to include games with im-
perfect information and randomness, we extend this method
to epistemic properties about games. We formally prove this
extension to be correct, and we report on experiments that
show its practical applicability.

1 Introduction
General Game Playing is concerned with the development
of intelligent systems that learn to play previously unknown
games well without human intervention. Identified as a
Grand Challenge for Artificial Intelligence, this endeav-
our requires to combine methods from a variety of sub-
disciplines, including reasoning, search, computer game
playing, and learning (Pell 1993; Genesereth, Love, and Pell
2005).

Automated Theorem Proving is among the fundamental
techniques in General Game Playing, where it serves two
purposes (Haufe, Schiffel, and Thielscher 2012): In the first
place, it can be used for the formal verification of desired
properties during the game design phase. Secondly, gen-
eral game-playing systems can use theorem proving to ac-
quire knowledge of a previously unknown game, which is
a prerequisite for the automatic generation of both search
heuristics and an evaluation function for non-terminal po-
sitions (Kuhlmann, Dresner, and Stone 2006; Clune 2007;
Schiffel and Thielscher 2007). We have shown recently how
Answer Set Programming (Gelfond 2008) can be used to as-
sist in this endeavour by the automated verification of state
sequence invariants, that is, properties that may concern two
or more successive game states but do not require to analyse
the entire game tree (Haufe, Schiffel, and Thielscher 2012).

The recent extension of the general Game Descrip-
tion Language to imperfect information and randomness

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Thielscher 2010) poses new challenges to both designer and
player of a general game. Fundamental issues such as the
knowledge of a player about its legal moves, game termi-
nation, or its opponents’ viewpoints are no longer obvious.
The designer of a game must endow players with sufficient
information to guarantee that the game is playable, and play-
ers themselves require reliable information about the game
state to maximise their utility. Gaining this knowledge is
an intricate reasoning task over the game rules, and its au-
tomation is of major assistance for the game designer and
essential for a successful general game-playing program.

In this paper, we provide such an automated reasoning
method for epistemic properties by fundamentally extending
our proof method for state sequence invariants. To this end,
we specify syntax and semantics of a formula language for
the expression of epistemic game knowledge; we develop an
inductive proof theory that allows to verify “positive” epis-
temic formulas against a given game specification without
analysis of the entire game tree; we prove the correctness
of our proof theory; and we demonstrate its efficiency by
reporting on experiments with a practical implementation.

2 The Game Description Language GDL

GDL is based on the standard syntax and semantics of logic
programming (Genesereth, Love, and Pell 2005). We fol-
low the Prolog convention of denoting variables by upper-
case letters while predicate and function symbols start with a
lowercase letter. GDL is characterised by the following spe-
cial keywords, two of which (random, sees) were recently
added for games with randomness and imperfect informa-
tion (Thielscher 2010).

role(R) R is a player
random the random player
init(F) F holds in the initial position
distinct(X,Y) X and Y are syntactically different
true(F) F holds in the current position
legal(R,M) R can do move M in the current position
does(R,M) player R does move M
next(F) F holds in the next position
sees(R,P) R perceives P in the next position
terminal the current position is terminal
goal(R,N) R gets N points in the current position

1 r o l e(x). r o l e(o).
2 i n i t (control(x)). i n i t (cell(1,1,b)). ... i n i t (cell(3,3,b)).
3

4 l e g a l(R,mark(M,N)) :- t rue(control(R)), t rue(cell(M,N,Z)), not t rue(tried(M,N)).
5 l e g a l(x,noop) :- t rue(control(o)).
6 l e g a l(o,noop) :- t rue(control(x)).
7

8 validmove :- does(R,mark(M,N)), t rue(cell(M,N,b)).
9

10 next(tried(M,N)) :- not validmove, does(P,mark(M,N)).
11 next(F) :- not validmove, t rue(F).
12 next(cell(M,N,x)) :- validmove, does(x,mark(M,N)).
13 next(cell(M,N,o)) :- validmove, does(o,mark(M,N)).
14 next(cell(M,N,Z)) :- validmove, t rue(cell(M,N,Z)), does(P,mark(I,J)), d i s t i n c t (M,I).
15 next(cell(M,N,Z)) :- validmove, t rue(cell(M,N,Z)), does(P,mark(I,J)), d i s t i n c t (N,J).
16 next(control(o)) :- validmove, t rue(control(x)).
17 next(control(x)) :- validmove, t rue(control(o)).
18

19 s e e s(R,yourmove) :- not validmove, t rue(control(R)).
20 s e e s(x,yourmove) :- validmove, t rue(control(o)).
21 s e e s(o,yourmove) :- validmove, t rue(control(x)).

Figure 1: A GDL description of “Krieg-Tictactoe” (omitting the clauses for termination and goal values). The game positions
are encoded using the three features control(R), cell(M,N,Z), and tried(M,N), where R ∈ {x, o}; M,N ∈ {1, 2, 3}; and
Z ∈ {x, o, b}, with b meaning “blank.”

As an example consider Fig. 1, which shows a GDL
description of standard Tictactoe with the additional inter-
esting twist that the players cannot see their opponent’s
moves (Schiffel and Thielscher 2011). The names of the
players and the initial position are given in lines 1–2.
The moves are specified by the rules with head legal
(lines 4–6): The player whose turn it is can attempt to mark
any cell that it has not tried before (line 4). The other player
can only do noop, a move without effect (lines 5–6). This
is the usual way of modelling turn-taking games in GDL,
whose semantics and execution model assume all players to
move simultaneously.

The position update is specified by the rules with head
next (lines 10–17): If the submitted move mark(m,n) is
invalid (line 8), then a special token tried(m,n) becomes
true1 (line 10), and every feature that is true in the current
position continues to hold (line 11). If, on the other hand,
the move is valid, then cell (m,n) receives the player’s
mark (lines 12–13) while all other cells retain their contents
(lines 14–15). Moreover, move control goes to the other
player (lines 16–17). The reader should also note that all
instances of tried(m,n) cease to hold as there is no clause
with head next(tried(m,n)) if validmove is true.

The clauses with head sees (lines 19–21), finally, say
that the player whose turn it is will be informed about
this (which is sufficient for a player to always know which
squares contain its own marks). We have omitted the clauses
for termination (a game state is terminal if there is a line of

1It is important to note the difference between legal and valid
moves in Krieg-Tictactoe: each attempt to mark a cell is consid-
ered legal, but only those moves that are actually possible in the
current position are accepted as valid. Feature tried(m,n) is used
to prevent a player from resubmitting a previously rejected move.

three equal markers or the board is completely filled) and
goal values.

2.1 Formal Syntax and Semantics
In order to admit an unambiguous interpretation, GDL game
descriptions must obey certain general syntactic restric-
tions. Specifically, a valid game description must be strati-
fied (Apt, Blair, and Walker 1987) and allowed (Lloyd and
Topor 1986). A further syntactic restriction ensures that only
finitely many positive instances are true in this model; for
details we must refer to Love et al. (2006) for space rea-
sons. Finally, the special keywords are to be used as fol-
lows (Thielscher 2010):
• role only appears in facts (i.e., clauses with empty body)

or in the body of clauses;
• init only appears as head of clauses and does not depend

on any of true, legal , does, next, sees, terminal,
goal;

• true only appears in the body of clauses;
• does only appears in the body of clauses, and none of

legal , terminal, or goal depends on does;
• next and sees only appear as head of clauses.
These restrictions are imposed to ensure that a set of GDL
rules can be effectively and unambiguously interpreted by
a state transition system as follows. To begin with, any
set of clauses determines an implicit domain-dependent
set of ground symbolic expressions Σ, like cell(1, 1, b),
mark(1, 3), yourmove, etc. Game positions (i.e., states) are
represented by subsets of Σ since they are composed of in-
dividual features. Although Σ itself is usually infinite, the
syntactic restrictions in GDL ensure that the set of roles, the

reachable states, and the set of legal moves are always finite
subsets of Σ (Love et al. 2006).

In order to determine the legal moves of a player in any
given state, this state is encoded using the keyword true.
More precisely, let S = {f1, . . . , fk} be a finite state (e.g.,
the derivable instances of init(F) at the beginning), then
game description G is extended by the k facts

Strue
def
= { true(f1). . . . true(fk). }

Those instances of legal(R,M) that are derivable from
G ∪ Strue define all legal moves M for player R in po-
sition S . In addition to the encoding of the current position,
determining a position update and the percepts of the play-
ers requires a joint action, which consists of an action for
each of the players. Specifically, if joint action A is such
that players r1, . . . , rk take moves a1, . . . , ak , then let

Adoes def
= { does(r1, a1). . . . does(rk, ak). }.

The instances of next(F) that are derivable from G ∪
Adoes ∪ Strue compose the updated position; likewise, the
derivable instances of sees(R,P) describe what a player
perceives when the given joint action is done in the given
position. All this is summarised in the following definition.2

Definition 1 (Thielscher 2010) Let G be a GDL spec-
ification whose signature determines the set of ground
terms Σ. Let “ `” denote entailment by the standard
model (Apt, Blair, and Walker 1987) of a stratified pro-
gram, then the semantics of G is the state transition system
(R,Sinit, T, l, u, I, g) given by
• R = {r : G ` role(r)} (player names);
• Sinit = {f : G ` init (f)} (initial state);
• T = {S : G ∪ Strue ` terminal} (terminal states);
• l = {(r, a, S) : G ∪ Strue ` legal(r, a)} (legal moves);
• u(A,S) = {f : G ∪Adoes ∪ Strue ` next(f)};
• I = {(r,A, S, p) : G∪Adoes∪Strue ` sees(r, p)} (players’

percepts);
• g = {(r, n, S) : G ∪ Strue ` goal(r, n)} (goal values);

for all finite subsets S ⊆ Σ (called states) and functions
A : R→ Σ (called joint actions).

For states S, S′ and a joint action A, we write S A−→ S′

if (r,A(r), S) ∈ l for each role r; S′ = u(A,S); and
S /∈ T . We call σ = (S0

A0−→ S1 . . .
Am−1−→ Sm) (where

m ≥ 0) a sequence (of legal moves), sometimes abbreviated
as (S0, S1, . . . , Sm). When S0 = Sinit , we also call σ a
development, and we call a state S reachable if there is a
development that ends in S .
We will denote sequences with σ and developments
with δ, possibly with super- or subscripts. For two se-
quences σ1 = (S0, . . . , Sm) and σ2 = (Sm, . . . , Sm+k),
we also write (σ1, σ2) to denote their composition
(S0, . . . , Sm, . . . , Sm+k). The length of a given sequence
σ = (S0, . . . , Sm) is m, sometimes denoted by |σ|, and
the last state Sm of σ is also referred to via the notion
last(σ).

2We omit the definition of the probability distribution over up-
dated positions in case random ∈ R, as this is irrelevant for the
present paper.

2.2 Indistinguishable Developments
We conclude this introduction by recalling what the execu-
tion model for GDL entails about what players know at any
stage during a game (Thielscher 2010). This is formalised
with the help of a binary equivalence relation ∼r over de-
velopments such that δ1 ∼r δ2 if, and only if, δ1 and δ2
are indistinguishable for player r.
Proposition 1 Let G be a GDL description with seman-
tics (R,Sinit, T, l, u, I, g). For two developments of G,

δ1 = (Sinit
A0−→S1 . . .

Am−1−→ Sm)

δ2 = (Sinit
A′0−→S′1 . . .

A′m−1−→ S′m)

we have δ1 ∼r δ2 iff for each 0 ≤ i ≤ m− 1:
• {p : (r,Ai, Si, p) ∈ I} = {p : (r,A′i, S

′
i, p) ∈ I} (that

is, r’s percepts are the same), and
• Ai(r) = A′i(r) (i.e., r always takes the same action). �
The proposition implies that each player r is aware of the
initial game state, which results from the fact that r gets to
know the complete game description prior to game play.

3 Formalising Epistemic Game Knowledge
We will now specify a language which allows to formulate
properties that involve finitely many successive game states
and the knowledge of different agents. It extends our previ-
ous language for game-specific properties (Haufe, Schiffel,
and Thielscher 2012) by a unary knowledge operator.

3.1 Syntax
Definition 2 Let G be a GDL specification. The set of
(epistemic) formulas (over G) is given by the following
Backus-Naur form:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ©ϕ | Krϕ,

where p is a ground atom over the signature of G which
is different from init and next and does not depend on
does, and r is any role of the game beside random.

Moreover, the degree of a formula ϕ is the maximal
“nesting” of the unary ©-operator in ϕ.

Formulas that do not contain any knowledge operators
Kr are also called knowledge-free. A formula ©ψ states
that ψ is true in the next game state, and a formula Krψ
states that agent r knows ψ. For example, in Krieg-
Tictactoe the property “if the game has terminated, then the
x-player knows that it has terminated” can be formulated via
the following epistemic formula ρ:

¬terminal ∨Kxterminal

3.2 Semantics
The following extends our existing semantics for knowl-
edge-free formulas (Haufe, Schiffel, and Thielscher 2012),
and we refer to this earlier work for a motivation to the non-
standard treatment of state sequences and the temporal oper-
ator © . The treatment of knowledge operators is motivated
by a recently developed semantics for epistemic formulas
over the GDL (Ruan and Thielscher 2011). Our semantics

employs the notion of an n-max sequence, which means a
sequence that is either of length n, or shorter and ends in a
terminal state.
Definition 3 Let G be a GDL description, ϕ a formula
over G with degree n, and δ = (Sinit, S1, . . . , Sk) a de-
velopment. We say that Sk satisfies ϕ wrt. δ (written
Sk �δ ϕ) if for all n-max sequences σ = (Sk, . . . , Sk+m)
(m ≤ n) we have that σ �δ ϕ according to the following
definition:

σ �δ p iff G ∪ Struek ` p (p ground atom)
σ �δ ¬ϕ iff σ 2δ ϕ (likewise for ∧,∨)
σ �δ©ϕ iff m = 0, or σ′ �δ′ ϕ

for δ′ = (Sinit, S1, . . . , Sk, Sk+1)
and σ′ = (Sk+1, . . . , Sk+m)

σ �δ Krϕ iff last(δ′) �δ′ ϕ for each δ′ s.t. δ ∼r δ′

Since ∼r is an equivalence relation, our semantics can
be proved to satisfy the S5 properties (Fagin et al. 1995).
Furthermore, since a GDL specification contains a complete
description of the initial state of the game, and since each
player gets to know the complete specification prior to play-
ing the game, each player knows all that is implied in the
initial game state.
Proposition 2 Let ϕ be an epistemic formula, let kf0(ϕ)
be the formula obtained from ϕ by removing each occur-
rence of a knowledge operator which is not in the scope of
any © , and let development δ be such that δ = (Sinit).
Then Sinit �δ ϕ iff Sinit �δ kf0(ϕ). �

4 Proof by Contradiction Using Linear Time
In our earlier work we have established an induction method
to reliably show the validity3 of arbitrary knowledge-free
formulas ϕ with respect to a given game description (Haufe,
Schiffel, and Thielscher 2012). The base case proof shows
that Sinit �δ ϕ holds for the initial development δ =
(Sinit). The induction step shows that any development
δ = (Sinit, S1, . . . , Sk) s.t. Sk �δ ϕ implies Sk+1 �δ′ ϕ
for each of its prolongations δ′ = (Sinit, S1, . . . , Sk, Sk+1).
We have constructed two answer set programs4 (ASP), one
for the base case and one for the induction step, which can be
fed into any answer-set solver to prove the validity of ϕ by
proving inconsistency of the two programs. This has been
achieved by creating a correspondence between counter ex-
amples of ϕ (which amount to be finite state sequences) and
answer sets of the programs, using a linear temporal exten-
sion of the GDL rules and a formula encoding which states
that the formula is violated.

In this paper, we will extend the summarised method to
(a subclass of) epistemic formulas. To this end, we first de-
fine the class of positive-knowledge formulas whose counter

3A formula is called valid if it is true in all reachable states.
4Answer sets are specific models of logic programs with nega-

tion (Gelfond 2008). We use two common additions (Niemelä,
Simons, and Soininen 1999): a weight atom m {p1, . . . , pk}n
means that an answer set satisfies at least m and at most n dif-
ferent pi . If n is omitted, there is no upper bound. A constraint
is a rule :- b1, . . . , bk , which excludes any answer set that satis-
fies b1, . . . , bk . Logic programs that contain these additions will
be called answer set programs.

examples correspond to multiple state sequences and can
hence succinctly be represented as answer sets using a lin-
ear time structure. As an intermediate step, we characterise
potential counter examples of positive-knowledge formulas
by a structure called sequence mapping, define an alterna-
tive formula semantics based on this structure and show its
equivalence to the original formula semantics from Defini-
tion 3. In a later section, this equivalence will provide the
link from developments that violate positive-knowledge for-
mulas according to the original semantics to answer sets for
the (later introduced) answer set programs.

4.1 Positive-Knowledge Formulas
Example formula ρ = ¬terminal∨Kxterminal is not valid
with respect to the GDL description of Krieg-Tictactoe. If
player o places a marker that completes a line of markers
o (which yields a terminal state) while having another op-
tion that does not (which yields a non-terminal state), player
x must consider both successor states possible afterwards
and does hence not know about termination. More pre-
cisely, we have last(δρ) 2δρ ρ for a game development
δρ = (Sinit

A0−→ S1 . . .
A5−→ S6), say, that is such that

A0(o) = A1(x) = A2(o) = . . . = A5(x) = noop and

A0(x) = mark(1, 1) A1(o) = mark(3, 1)
A2(x) = mark(1, 2) A3(o) = mark(3, 2)
A4(x) = mark(2, 1) A5(o) = mark(3, 3)

State S6 is terminal, hence the first disjunct ¬terminal of
ρ is violated. The second disjunct Kxterminal is violated
since there is a development δ′ρ such that δρ ∼x δ′ρ which
ends in a non-terminal state, e.g. the one resulting from δρ
by changing A5(o) = mark(3, 3) to A′5(o) = mark(1, 3).
We see that the violation of ρ is uniquely characterised by
the two developments δρ and δ′ρ . On the contrary, a counter
example for formula ¬terminal∨¬Kxterminal can not ap-
propriately be characterised by two sequences, as it requires
that Kxterminal be true and hence that all developments
δ′ such that δρ ∼x δ′ satisfy last(δ′) �δ′ terminal. The
following definition generalises this motivation to a class of
formulas whose counter examples can compactly be repre-
sented by single state sequences. Intuitively, it comprises all
formulas which do not include formulations of what players
do not know.

Definition 4 An epistemic formula ϕ is called positive-
knowledge formula if no Kr (for any role r) in ϕ is within
the scope of negation, ¬.

It is also possible to allow Kr in the scope of even num-
bers of negations. At a later point, however, these double
negations would have to be “compiled away,” which is why
we decided in favour of this more restrictive definition, for
the sake of simplicity.

4.2 Sequence Mappings
We will now define a structure for the formal representa-
tion of single state sequences which amount to be poten-
tial counter examples for positive-knowledge formulas. This
will be done by assigning one sequence to the formula itself,

and by assigning one further sequence to each occurrence of
a knowledge operator (handling multiple occurrences of the
same knowledge operator separately). Sequences will be as-
signed using the following set of names.
Definition 5 Let ϕ be a positive-knowledge formula with
n occurrences of knowledge operators, uniquely charac-
terised by their positions π1, . . . , πn in the syntax tree of
ϕ. A set of views5 of ϕ , denoted Vϕ , is a minimal set such
that
• v0 ∈ Vϕ , and
• there is a bijection from {v1, . . . , vn} to {π1, . . . , πn}

and {v1, . . . , vn} ⊆ Vϕ .
For each positive-knowledge formula ϕ, we consider the

set of views Vϕ for ϕ as uniquely given. A sequence map-
ping for ϕ wrt. a game development δ is then given as a
function M from views v ∈ Vϕ to developments over a
GDL specification that satisfies the following properties:
• Development M(v0) is of the form (δ, σ), where σ is

a deg(ϕ)-max sequence. That is to say, the given game
development δ is prolongated by a sequence σ of appro-
priate length which potentially violates ϕ.

• For each occurrence of a knowledge operator Kr in ϕ
and its corresponding view vi (vi 6= v0), and for the
view vj corresponding to the knowledge operator nearest
to Kr towards the root of the syntax tree of ϕ (in case it
exists) or such that vj = v0 (otherwise):
– development M(vi) is of the form (δ′, σ′), where
|δ| = |δ′| and σ′ is a deg(ϕ)-max sequence, and

– M(vi) “relates appropriately” to M(vj) according
to ∼r .

For the benefit of the reader, we refrain from a formal char-
acterisation of the term “relates appropriately” and, rather
than formalising all subsequent technical details, concen-
trate on showing the main ideas with the example formula
ρ = ¬terminal ∨ Kxterminal in the remainder of the pa-
per (a comprehensive presentation with all details is part of
a doctoral dissertation (Haufe 2012)). The set of views for
ρ can be given as {v0, v1} (where v0 corresponds to ρ
and v1 corresponds to Kx). Using the above-mentioned
developments δρ and δ′ρ , one possible sequence mapping
for ρ wrt. δρ is the function Mρ such that Mρ(v0) = δρ
and Mρ(v1) = δ′ρ . Both sequences “relate appropriately”
according to ∼x , e.g. we have Mρ(v0) ∼xMρ(v1).

4.3 An Equivalent Semantics Over Sequence
Mappings for Positive-Knowledge Formulas

The first step towards the establishment of our induction
proof method for the validity of positive-knowledge formu-
las via answer set programs is the construction of an equiv-
alent formula semantics over sequence mappings. A se-
quence mapping M for formula ϕ wrt. development δ

5Also the notion worlds is conceivable here. However, since
a possible world is widely understood to refer to a state which is
considered possible, whereas we are assigning names to knowl-
edge operators instead of particular worlds, we decide to introduce
a different notion.

can be used to interpret ϕ by interpreting each subformula
of ϕ with respect to the development assigned to the near-
est knowledge operator towards the root of the syntax tree of
ϕ, or with respect to development δ in case no such knowl-
edge operator exists. This is made precise with the following
definition.

Definition 6 Let G be a GDL specification, ϕ be a
positive-knowledge formula, δ be a development, and M
be a sequence mapping for ϕ wrt. δ. We say that M satis-
fies ϕ , denoted M
 ϕ, if (M, |δ|, v0)
 ϕ holds accord-
ing to the following definition (where 0 ≤ k ≤ deg(ϕ)):

(M, k, v)
 p iff G ∪ Struek ` p (p ground atom),
where M(v) = (Sinit, S1, . . . , Sk, . . . , Sk+m)

(M, k, v)
 ¬ψ iff (M, k, v) 1 ψ (likewise for ∧,∨)
(M, k, v)
 ©ψ iff m = 0, or (M, k + 1, v)
 ψ,

where M(v) = (Sinit, S1, . . . , Sk, . . . , Sk+m)
(M, k, v)
 Krψ iff (M, k, v′)
 ψ

where view v′ corresponds to Kr .

Note that all cases different from Krψ exactly corre-
spond to their counterparts in Definition 3. Case Krψ, on
the contrary, does not explicitly incorporate ∼r anymore.
Hence, (M, k, v)
 Krψ for a sequence mapping M
such that M(v) = (δ, σ) does not generally imply the cor-
respondent σ �δ Krψ, as this would require last(δ′) �δ′ ψ
to hold for all developments δ′ such that δ ∼r δ′ , whereas
(M, k, v)
 Krψ only provides that correspondence for
one such development δ′ . However, following the spirit of
a sequence mapping as structure for potential counter ex-
amples of a positive-knowledge formula, there is a corre-
spondence between the existence of a sequence mapping M
such that (M, k, v) 1 Krψ and the existence of a se-
quence σ such that σ 2δ Krψ. This is more generally
stated with the following theorem.

Theorem 1 Let ϕ be a positive-knowledge formula, δ be
a development, and σ be a deg(ϕ)-max sequence starting
at last(δ). Then the following are equivalent.

• σ 2δ ϕ
• There is a sequence mapping M for ϕ wrt. δ such that
M(v0) = (δ, σ) and M 1 ϕ.

Proof (sketch): Induction on the structure of ϕ. The
base case considers ϕ arbitrarily knowledge-free (possi-
bly containing negation). This allows to neglect negation in
the induction step (as ϕ is a positive-knowledge formula),
and single sequences can be related with single sequence-
mappings in all remaining cases. �

5 Encoding Epistemic Game Knowledge
In this section we provide the second step towards the estab-
lishment of our induction proof method. It is concerned with
the construction of a stratified logic program over a GDL
specification which allows to infer whether a given formula
is entailed with respect to a given sequence mapping solely
via the unique standard model of the constructed program.
To this end, we show how to extend the game rules to ac-
count for time and different views, how to encode a par-
ticular sequence mapping into these extended game rules,

and how to further encode a particular formula. We prove
that the resulting program admits a unique standard model
containing a special formula name token if, and only if, the
formula is true with respect to the encoded sequence map-
ping. This result will be necessary to relate arbitrary se-
quence mappings to answer sets of the (later introduced) an-
swer set programs for the induction proof method.

5.1 Epistemic Temporal GDL Extension
A sequence mapping interprets each subformula of a for-
mula ϕ with regard to the sequence associated with the
nearest knowledge operator towards the root of the syntax
tree of ϕ, or associated with ϕ in case this operator does
not exist. Accordingly, an encoding into the game descrip-
tion will require one “copy” of the description for each view.
Moreover, as we consider formulas with possible occur-
rences of operator © and hence with a finite lookahead in
time, we also need a temporal extension (Thielscher 2009).

Definition 7 For game G let G≤n(v)
def
=

⋃
0≤i≤nGi(v),

where each Gi(v) is constructed by
• omitting all clauses from G with head init;
• replacing each occurrence of

– next(f) by true(f, i+ 1, v),
– sees(r, s) by sees(r, s, i+ 1, v), and
– p(t1, . . . , tn) by p(t1, . . . , tn, i, v), for each predicate
p s.t. p 6= next and p 6= sees.

Let ϕ be a formula with degree n = deg(ϕ). The epistemic
temporal extension of G wrt. ϕ , denoted Gϕ , is defined as

Gϕ
def
=

⋃
v∈Vϕ

G≤n(v).

Put in words, an epistemic temporal extension of G
wrt. ϕ is composed of a temporal extension of G up to
depth deg(ϕ) for each of the views of ϕ. The resulting
program can be simplified by omitting the time and view ar-
gument in any atom over a predicate symbol that does not
depend on any GDL keyword.

As an example for the epistemic temporal GDL extension,
let G be the clauses in Figure 1, and reconsider example
formula ρ = ¬terminal ∨ Kxterminal with the views v0
and v1 . Then for clause 19, the following clause is in the
epistemic temporal extension Gρ of G for v0 (and simi-
larly for v1):

s e e s(R,yourmove,1,v0) :-
not validmove(0,v0),
t rue(control(R),0,v0).

5.2 Sequence-Mapping and Formula Encoding
A sequence mapping M for a formula ϕ wrt. a develop-
ment of length k is encoded to a program which solely con-
sists of facts. For each view v ∈ Vϕ and the corresponding
development M(v) = (Sinit, S1, . . . , Sk, . . . , Sk+m), it en-
codes the subsequence starting at Sk , i.e., all prefixes of
length k are omitted. This allows to use the same finite
lookahead deg(ϕ) in the epistemic temporal GDL extension

for each sequence mapping, and is especially important for
the later construction of the induction-step program which
will encode multiple sequence mappings “at once.”

Definition 8 Let M be a sequence mapping for a formula
ϕ wrt. a development of length k. The encoding of M , de-
noted Enc(M), is a program which consists of the following
facts for each view v ∈ Vϕ and its corresponding devel-
opment M(v) = Sinit

A0−→ S1 . . .
Ak−1−→ Sk . . .

Ak+m−1−→
Sk+m (where m ≥ 0):

• for all f ∈ Sk : true(f, 0, v). ∈ Enc(M); and
• for all players r, and for all i < m: if r takes move a

in joint action Ak+i , then does(r, a, i, v). ∈ Enc(M).

We have shown recently (Haufe, Schiffel, and Thielscher
2012) how arbitrary knowledge-free formulas ϕ can be en-
coded into a temporally extended game description and a
sequence encoding using a finite set of stratified clauses
Enc(ϕ). In case ϕ is a ground atom, Enc(ϕ) solely con-
tains a clause whose head is a unique name predicate of ar-
ity 0, denoted with nameϕ , and whose clause body refers
to a variant of this ground atom which is extended by a time
argument. In case ϕ is a composed formula, Enc(ϕ) con-
tains a clause, again with unique head nameϕ , whose body
recursively resolves the toplevel connective of ϕ by refer-
ring to the unique name predicates of its respective subfor-
mulas, and Enc(ϕ) additionally contains an encoding of
these subformulas.

This process can easily be extended to the knowledge set-
ting by adding the current view as further argument to the
encoding of ground atoms, we omit the formal specification
here. Example formula ρ = ¬terminal ∨ Kxterminal can
be encoded as Enc(ρ) such that nameρ = rho as follows
(removing some indirections in the generated clauses):

rho :- not terminal(0,v0).
rho :- terminal(0,v1). (1)

5.3 Linking Sequence-Mapping Semantics and
Logic-Program Encoding

The following theorem shows that a formula ϕ is violated
by some sequence mapping if, and only if, the corresponding
epistemic temporal GDL extension for ϕ together with an
encoding of that sequence mapping and an encoding of ϕ
does not contain the unique name token nameϕ .

Theorem 2 Let G be a GDL description, ϕ be a positive-
knowledge formula, δ = (Sinit, S1, . . . , Sk) be a develop-
ment and M be a sequence mapping for ϕ wrt. δ. Then
the following are equivalent:

• M 1 ϕ

• Gϕ ∪ Enc(M) ∪ Enc(ϕ)0 nameϕ .

Proof (sketch): Induction on the structure of ϕ, using
the corresponding Theorem 14 for knowledge-free formulas
in our earlier work (Haufe, Schiffel, and Thielscher 2012)
together with the observation that Gϕ ∪ Enc(M) ∪ Enc(ϕ)
is composed of independent subprograms which involve ex-
actly one view v ∈ Vϕ . �

6 Proving Epistemic Game Knowledge
We are now ready to extend our recent induction tech-
nique (Haufe, Schiffel, and Thielscher 2012) to the gen-
eral case of epistemic game knowledge. As mentioned be-
fore, for each formula which is to be proved, it relies on
the construction of two answer set programs, one to estab-
lish the base case and one to establish the induction step.
In case both answer set programs are inconsistent, the for-
mula is known to be true in each reachable state of the
game. In this section, we show how to specify these two pro-
grams, and prove the correctness of the extended method.
We will again refrain from the technical details and show
the ideas for program construction wrt. example formula
ρ = ¬terminal ∨Kxterminal.

6.1 Base Case Program
The answer set program for the base case proof of ρ is given
as

P bcρ (G) = Gρ ∪ Enc(Sinit) ∪ Enc(ρ) ∪ { :- rho.}.

Gρ = G≤0(v0) ∪ G≤0(v1) is the epistemic temporal ex-
tension of the clauses from Figure 1. Enc(Sinit) is an en-
coding for the initial state in both views v0 and v1 , i.e.,
Enc(Sinit) = {true(f, 0, v). : f ∈Sinit, v∈{v1, v2}}. Pro-
gram Gρ ∪ Enc(Sinit) admits a unique answer set which
corresponds to the (also unique) sequence mapping M
for ρ which is wrt. the initial development (Sinit). Enc(ρ)
is the encoding for ρ as specified in (1), enriched with
the constraint :- rho., which formulates that ρ should
not be true. The addition of Enc(ρ) ∪ { :- rho.} to
Gρ ∪ Enc(Sinit) (which yields P bcρ (G)) ensures that the
unique answer set is rejected in case M satisfies ρ and
hence establishes the correspondence between answer set
and counter example of ρ in the initial state. P bcρ (G)
is inconsistent in this particular example, as the clauses
G≤0(v0) and G≤0(v1) coincide up to renaming of the view
argument but are forced to deviate regarding terminal by
Enc(ρ) ∪ { :- rho.}.

6.2 Induction Step Program
The answer set program for the induction step proof of ρ is
given as

P isρ (G) = G©ρ ∪ Sgen ∪ P legal
©ρ ∪

Enc(ρ) ∪ {:- not rho. } ∪
Enc(©ρ) ∪ {:- nxt_rho. }.

The components of P isρ (G) are explained in the following.

Epistemic Temporal GDL Extension G©ρ: Compared
to the base case program, the extension of the game rules
involves a further time step: G©ρ = G≤1(v0) ∪G≤1(v1).

State Generator Sgen: Instead of the initial state encod-
ing Enc(Sinit) in both views v0 and v1 from ρ, we need
a “state generator” program whose answer sets correspond
exactly to pairs of states (S0, S1) such that 1) S0 is the
last state of some development δ0 for view v0 and 2) S1

is the last state of some development δ1 for view v1 such
that δ0 ∼x δ1 . However, obtaining this information requires
a full state space search in general, which is not feasible in
interesting games. This motivates to apply easily obtainable
overestimations of the reachable states and the relation ∼r
which do not influence the (yet to be established) correctness
of the method. The simplest approximation is the program

0{ true(f,0,v) :f ∈FDom, v∈{v0, v1}},

which, for the finite domain of all fluents FDom6, gener-
ates all possible combinations (S0, S1) of (not necessarily
reachable) states S0 for view v0 and S1 for v1 . Better
approximations of the reachable states, e.g. the restriction
to those which contain exactly one instance of cell(x, y, c)
for each coordinate pair (x, y), can be obtained automat-
ically from the game description by preceding proofs of
knowledge-free formulas (Haufe, Schiffel, and Thielscher
2012). Some restrictions on the estimation of ∼r are ob-
tained by the encoding of the induction hypothesis men-
tioned below, and we give directions to further restrictions
in Section 6.4.

State Sequence Encoding P legal
©ρ : Since the epistemic

temporal GDL extension G©ρ involves successive game
states, we need an additional encoding which ensures that
each player r performs one legal move out of the finite set
ADom of moves in each non-terminal state wrt. both views
v ∈ {v0, v1} of ρ:

1{does (r, a, 0, v) : a ∈ ADom}1.
:- does (r,A , 0, v),not legal (r,A , 0, v).

Moreover, the clause sets for v0 and v1 need to be related
according to ∼x , that is,
• The actions of player x in both views coincide at time

step 0:

:- does(x,A,0,v0) , not does(x,A,0,v1).
:- does(x,A,0,v1) , not does(x,A,0,v0).

• The percepts of player x in both views coincide at time
step 1:

:- sees(x,S,1,v0) , not sees(x,S,1,v1).
:- sees(x,S,1,v1) , not sees(x,S,1,v0).

Each sequence mapping M of ρ wrt. a development of
length k corresponds to an answer set of program G©ρ ∪
Sgen∪P legal

©ρ where, similarly to Definition 8, the prefixes of
length k are not represented. There are additional answer
sets due to the overestimation of the reachable states and the
relation ∼x in the state generator Sgen .

Formula Encoding Enc(ρ) ∪ Enc(©ρ) and Constraints:
To encode the induction hypothesis, we use the encod-
ing Enc(ρ) for ρ from (1) together with the constraint

6In our previous work (Haufe, Schiffel, and Thielscher 2012)
we describe in detail a method for automatically computing finite
domain sets like FDom and ADom (introduced later).

:- not rho. It restricts rho to be contained in each
answer set and hence implies that ρ is satisfied by the se-
quence mapping corresponding to the answer set (if it ex-
ists). Additionally, we encode that ρ is not true in a direct
successor state of S :

:- nxt_rho.
nxt_rho :- not terminal(1,v0).
nxt_rho :- terminal(1,v1).

It differs from the encoding for ρ in the increased time step
and in the constraint :- nxt_rho., which forces ρ to
be false at time step 1. Enc(ρ) uses the same views as
Enc(©ρ) and hence restricts the before-mentioned overes-
timation of ∼r , in this example by removing all answer sets
which correspond to state pairs (S0, S1) where S0 is ter-
minal and S1 is non-terminal.

The addition of the formula encodings and the constraints
:- not rho and :- nxt_rho. to program G©ρ ∪
Sgen ∪ P legal

©ρ (which yields P isρ (G)) ensures that each an-
swer set is rejected which represents a sequence mapping
that violates ρ in the current state or satisfies ρ in the next
state. This assures that each remaining answer set either cor-
responds to a counter example of the induction step or occurs
due to overestimation in the state generator. P isρ (G) admits
an answer set in this particular example, which can be ar-
gued using the constructed sequence mapping Mρ from the
end of Section 4.2. As mentioned before, Mρ violates ρ
at depth |δρ| = 6. Additionally, Mρ satisfies ρ when in-
terpreted at depth 5 (as state S5 is non-terminal). Hence,
P isρ (G) admits an answer set which represents Mρ with
omitted prefixes of length 5.

6.3 Correctness
We believe that the general idea of the correctness proof for
our method becomes clear without explicit representation of
the two general answer set programs P bcϕ (G) and P isϕ (G)
for arbitrary positive-knowledge formulas ϕ, which is why
we now state the result.

Theorem 3 Consider a GDL specification G and a
positive-knowledge formula ϕ over G. If both P bcϕ (G)

and P isϕ (G) are inconsistent, then for all developments

δ = (Sinit
A0−→ S1 . . .

Ak−1−→ Sk) we have Sk �δ ϕ.

Proof (sketch): Induction on k, similar to the proof of the
corresponding Theorem 17 for knowledge-free formulas in
our earlier work (Haufe, Schiffel, and Thielscher 2012).

Base case: Violation of ϕ by the development δ = (Sinit)
implies violation of ϕ via some sequence mapping for ϕ
wrt. δ (by Theorem 1), in turn implying satisfiability of
P bcϕ (G) (by Theorem 2).

Induction step: Satisfiability of P isϕ (G) is obtained simi-
larly to the base case, deriving existence of a sequence map-
ping M for formula ©ϕ wrt. an arbitrary development δ
using the following two arguments.

• The standard model of program G©ϕ ∪ Enc(M) is also
an answer set of program G©ϕ ∪ Sgen ∪ P legal

©ϕ .

• The induction hypothesis last(δ) �δ ϕ implies (by The-
orem 1 and the coinciding view structures of ϕ and
©ϕ) that also M satisfies ϕ and hence that adding
Enc(ϕ) ∪ { :- not rho.} retains consistency. �

6.4 Towards Completeness
Assume a state generator Sgen for the induction step pro-
gram P isρ (G) which does not rely on overestimation, i.e.,
which is such that each of its answer sets corresponds to a
sequence mapping satisfying ϕ and violating ©ϕ. Calling
such a state generator accurate, we get the following com-
pleteness result.

Theorem 4 Let G be a GDL specification, let ϕ be a
positive-knowledge formula over G, and let P isϕ (G) be
constructed over an accurate state generator. If for all devel-
opments δ = Sinit

A0−→ S1 . . .
Ak−1−→ Sk we have Sk �δ ϕ,

then P bcϕ (G) and P isϕ (G) are inconsistent.

Proof (sketch): Consistency of one of the programs
P bcϕ (G) and P isϕ (G) allows to conclude existence of a se-
quence mapping M which violates ϕ (by Theorem 2), in
turn implying existence of a development δ which ends in
some state Sk that violates ϕ (by Theorem 1). �

One of the main reasons for the practicability of our ap-
proach is the use of induction. It allows to verify formu-
las without having to traverse the usually vast state space
of a game by taking advantage of the comparably compact
structure of game rules formulated in the game description
language. The information which is necessary to construct
an accurate state generator, however, can in turn only be ob-
tained by a full state space traversal in the worst case. Hence,
exploiting the advantage of induction inherently requires to
apply quickly obtainable overestimations of reachable states
and the relation ∼r , which possibly introduces counter ex-
amples for actually valid formulas and thus causes the loss
of completeness in our approach.

Nevertheless, the accuracy of state generators can be in-
creased by the generalisation of techniques where reachable
states are approximated with increasing accuracy by adding
encodings of previously proved formulas (together with con-
straints that require them to be true) to subsequent answer set
programs (Haufe, Schiffel, and Thielscher 2012). Similarly,
the estimation of the accessibility relation can be made more
precise. For example, having proved that player x exactly
knows his legal moves allows to encode this information in
subsequent answer set programs by adding the clauses

:- legal(x,A,0,v0) , not legal(x,A,0,v1).
:- legal(x,A,0,v1) , not legal(x,A,0,v0).

As a result, each answer set violating this property is now
dismissed, making the method ”more complete”.

7 Experimental Results
To show the practical applicability of our proof method, we
have extended our implementation for proving knowledge-
free properties (Haufe, Schiffel, and Thielscher 2012). It
uses the general game-playing system FLUXPLAYER (Schif-
fel and Thielscher 2007) for program generation and tools

from POTASSCO (Gebser et al. 2011) to solve them. We
have performed automated proofs with a selection of general
epistemic properties in a variety of games, including Krieg-
Tictactoe, a simple card game (Thielscher 2010), the famous
Monty Hall problem (Rosenhouse 2009; Thielscher 2011),
and all incomplete-information games7 from the 1st German
Open in General Game Playing8, which recently featured the
first ever track on incomplete-information games in a GGP
competition.

7.1 Property Categories
To each of the aforementioned incomplete-information
games, we have attempted proofs for all formulas from the
following three categories, each referring to an arbitrarily
chosen player r different from random (the other players
yield similar results and are hence omitted here).
Knows Terminal We formulate that player r knows

whether the game has terminated with the formula

Krterminal ∨Kr¬terminal.

Knows Legals For all non-random players r′ , we formu-
late that player r knows which of the moves of r′ are
legal with the formula∧

a∈ADom
(Krlegal(r′, a) ∨Kr¬legal(r′, a)).

Knows Goals For all non-random players r′ and the set
GV of goal values that occur in the game description,
we formulate that r knows the goal values of r′ in a
terminal state with the formula

terminal ⊃ (
∧

g∈GV
(Krgoal(r′, g) ∨Kr¬goal(r′, g))).

7.2 Proof Procedure
Each newly considered game takes a few seconds for the ini-
tialisation of FLUXPLAYER (which includes the calculation
of the domains FDom and ADom). Afterwards, we attempt
to obtain a restrictive state generator for the induction step
programs by proving automatically generated knowledge-
free formulas for properties such as the uniqueness of cell
content, this process takes time in the range of 0.1 seconds
(Krieg-Tictactoe) to 4.6 seconds (Backgammon). We then
attempt separate proofs of all formulas from the three intro-
duced categories. Each attempt is done according to the fol-
lowing scheme, the results can be found in Figure 2. Let ϕ
be any formula of the mentioned categories which is to be
proved.
Phase 1 ϕ does not contain any © , hence according to

Proposition 2, omitting all knowledge operators from ϕ
yields a formula kf0(ϕ) which is equivalent to ϕ with
respect to entailment in the initial state of the game. Since
kf0(ϕ) is a tautology, the base-case proof can completely
be omitted (it will always prove ϕ in the initial state).
7All game descriptions can be found at ggpserver.general-

game-playing.de/public/show games.jsp.
8www.tzi.de/˜kissmann/ggp/go-ggp

Hence, we directly attempt the induction-step proof with
program P isϕ (G). If it is successful (i.e., if P isϕ (G) is
inconsistent), then the considered formula is valid, and
we skip Phase 2. If, on the other hand, P isϕ (G) admits
an answer set, the validity of ϕ is still unknown, as the
answer set does not necessarily correspond to a sequence
mapping due to the overestimation in the state generator
Sgen . In that case we move to Phase 2.

Phase 2 We can also disprove ϕ by finding a consistent
answer set program P bc©tϕ(G) for some t ∈ N. Con-
sistency allows to conclude that there is a development
δ of length t such that last(δ) 2δ ϕ (by Theorem 4).
Hence, ϕ is violated by the reachable state last(δ), im-
plying that ϕ is invalid. We attempt successive Base-
Case Proofs on ©tϕ for t = 1, 2, . . ., until one of the
following cases arises:

• A time limit of 20 seconds is reached. We stop the
process, the validity of the formula is still unknown.
For some t ≥ 1, the last proof attempt for the base case
has been on ©tϕ, and we indicate this t in Figure 2.
• We obtain an answer set for P bc©tϕ(G) for some
t ≥ 1, in which case ϕ is invalid, and t is again indi-
cated in Figure 2.

7.3 Interpretation of the Results
Formula Kxterminal∨Kx¬terminal (category Knows Ter-
minal) can be disproved in Krieg-Tictactoe in depth 6 of
the game tree first. Intuitively, this is due to the passed turn
information via sees in the GDL specification of Krieg-
Tictactoe in Figure 1, which causes each player to know the
amount of currently placed pieces after each development
of the game. Hence, player x first considers both a non-
terminal and a terminal state possible after at least 6 joint
actions, when player o could have completed a line.

Each formula ϕt in category Knows Terminal has an
associated set of views Vϕt of size |Vϕt | = 3, whereas
each formula ϕl in category Knows Legals is such that
|Vϕl | = 2 ∗ |ADom| + 1. This implies that the size of an
answer set program which is generated for ϕl exceeds the
size of the corresponding answer set program for ϕt by
factor |ADom|. Accordingly, in Figure 2, times for proof
attempts on formulas ϕl are generally higher than those
for ϕt . The induction step proofs mostly take time in the
range of a few seconds only and hence show the efficiency of
our method. However, some invariants cannot be proved due
to our rather uninformed state generator, and further meth-
ods to its restriction (e.g. by inclusion of previously-proved
positive-knowledge formulas as mentioned in Section 6.4)
are required.

8 Related Work
The first approach that addresses the automated verification
of epistemic properties over GDL specifications (Ruan and
Thielscher 2011) used standard epistemic logic over Kripke
semantics (Fagin et al. 1995), and the main focus of that
work is the introduction and equivalence proof of a new se-
mantics that allows the direct verification of epistemic logic

game Knows Terminal Knows Legals Knows Goals
backgammon r 20.2 (?,9) r of r: 86.5 (?,1) r of r: 21.7 (?,6)

r of b: 86.8 (?,1) r of b: 21.8 (?,6)
cardgame j 0.0 (y) j of j: 0.5 (y) j of j: 19.6 (?,25)

j of r: 0.4 (y) j of r: 19.6 (?,25)
kriegtictactoe x 1.5 (n,6) x of x: 0.2 (y) x of x: 2.7 (n,6)

x of o: 1.6 (n,4) x of o: 2.4 (n,6)
kriegTTT 5x5 x 1.4 (n,4) x of x: 20.3 (?,5) x of x: 2.2 (n,4)

x of o: 1.4 (n,1) x of o: 2.3 (n,4)
mastermind p 19.7 (?,17) p of p: 120.0 (?,1) p of p: 21.3 (?,4)

meier 1 0.1 (y) 1 of 1: 24.4 (?,4) 1 of 1: 2.3 (n,6)
1 of 2: 23.6 (?,4) 1 of 2: 2.3 (n,6)

montyhall c 0.0 (y) c of c: 0.1 (y) c of c: 0.3 (n,3)
transit t 19.5 (?,20) t of t: 20.1 (?,15) t of t: 19.5 (?,18)

t of p: 1.0 (n,2) t of p: 20.3 (?,19)
vis pacman3p p 20.8 (?,8) p of p: 21.6 (?,7) p of p: 9.7 (y)

p of b: 7.2 (n,3) p of b: 32.6 (?,4)
p of i: 7.2 (n,3) p of i: 32.7 (?,4)

Figure 2: Proof times in seconds for a selection of positive-knowledge formulas in several incomplete-information games,
where “y” means valid, “n” means invalid (violated in some reachable state), and “?” means validity unknown. The names
of players have been shortened to one letter, so that, e.g., “j of r” in Cardgame stands for “Jane knows the legal moves (goal
values, respectively) of Rick.” The time for result (y) indicates one induction-step proof (Phase 1). The time for results (n,t)
and (?,t) indicates the overall time needed for one induction-step proof (Phase 1) and t base-case proofs (Phase 2).

formulas over GDL descriptions. This previous work also
sketches an approach for model checking epistemic proper-
ties via answer set programming, which however requires to
systematically search the entire set of reachable positions in
a game and hence is not applicable in the time-restricted set-
ting of the general game playing competition except for very
simple games.

9 Summary and Discussion
Moving from complete to incomplete information poses a
new challenge to both designer and player of a general game.
While the former must endow each player with sufficient
information to guarantee unobstructed gameplay, the lat-
ter needs to incorporate all opponents’ viewpoints to max-
imise its utility. For this purpose, we have extended our
recently developed automated verification method (Haufe,
Schiffel, and Thielscher 2012) to incorporate a large class
of epistemic properties. We have shown its effectiveness by
proving several common epistemic properties in a variety of
games with a practical implementation that uses a state-of-
the-art answer set solver.

One of the two main reasons for the practicability of our
approach is the use of induction together with an easily ob-
tainable overestimation of the state space and the restriction
to formulas that only contain finite time reference. The other
main reason is the utilisation of a linear time structure. It al-
lows to linearly bound the growth of game rules which is
mandatory for the required temporal gdl extension, whereas
an also possible branching time structure causes an expo-
nential blowup which almost certainly drops performance
below practical usability. Linear time in answer set pro-
gramming, on the other hand, only allows the verification

of formulas which have succinct counter examples that are
representable using linear state sequences. Our introduced
class of positive-knowledge formulas hence forms a neces-
sary restriction to the utilisation of a linear time structure.

As only the lack of knowledge cannot be formulated,
positive-knowledge formulas still cover an interesting prop-
erty class. In our experiments, we have concentrated on
three game-independent properties whose discovered valid-
ity assist a game designer by showing that each player is
endowed with sufficient information to play a newly speci-
fied game. But also general game players can take advantage
of our approach. For example, the provable fact that play-
ers always know which cells contain their own marks when
playing the game Krieg-Tictactoe specified in Figure 1 al-
lows to spare repeated reasoning regarding this fact in every
reached game state. In exploration games such as the famous
Wumpus World, a general game player which is able to find
out what is known after certain actions in advance can prefer
those that reveal as much information as possible. The de-
velopment of imperfect information-game players is just at
the beginning, and we expect that many of the existing meth-
ods using knowledge will require the addition of epistemic
properties when being generalised to imperfect-information
games.

Acknowledgements. We thank our anonymous reviewers
for helpful suggestions on an earlier version of the paper.

This research was supported under Australian Re-
search Council’s (ARC) Discovery Projects funding scheme
(project number DP 120102023). Michael Thielscher is
the recipient of an ARC Future Fellowship (project num-
ber FT 0991348). He is also affiliated with the University of
Western Sydney.

References
Apt, K.; Blair, H. A.; and Walker, A. 1987. Towards a theory
of declarative knowledge. In Minker, J., ed., Foundations
of Deductive Databases and Logic Programming. Morgan
Kaufmann. chapter 2, 89–148.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. In Proceedings of the AAAI Conference on
Artificial Intelligence, 1134–1139. Vancouver: AAAI Press.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning About Knowledge. MIT Press.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The Pots-
dam answer set solving collection. AI Communications
24(2):105–124.
Gelfond, M. 2008. Answer sets. In van Harmelen, F.; Lifs-
chitz, V.; and Porter, B., eds., Handbook of Knowledge Rep-
resentation, 285–316. Elsevier.
Genesereth, M.; Love, N.; and Pell, B. 2005. General game
playing: Overview of the AAAI competition. AI Magazine
26(2):62–72.
Haufe, S.; Schiffel, S.; and Thielscher, M. 2012. Auto-
mated verification of state sequence invariants in general
game playing. Artificial Intelligence. To appear.
Haufe, S. 2012. Automated Theorem Proving for Gen-
eral Game Playing. Ph.D. Dissertation, Technische Univer-
sität Dresden, Germany. Available at www.general-game-
playing.de/downloads/diss-sebastian.html.
Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Automatic
heuristic construction in a complete general game player.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, 1457–1462. Boston: AAAI Press.
Lloyd, J., and Topor, R. 1986. A basis for deductive database
systems II. Journal of Logic Programming 3(1):55–67.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2006. General Game Playing: Game Descrip-
tion Language Specification. Technical Report LG–2006–
01, Stanford Logic Group, Computer Science Department,
Stanford University, 353 Serra Mall, Stanford, CA 94305.
Niemelä, I.; Simons, P.; and Soininen, T. 1999. Stable
model semantics of weight constraint rules. In Proceedings
of the 5th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’99), volume 1730
of Lecture, 317–331. Springer. LNAI.
Pell, B. 1993. Strategy Generation and Evaluation for Meta-
Game Playing. Ph.D. Dissertation, Trinity College, Univer-
sity of Cambridge.
Rosenhouse, J. 2009. The Monty Hall Problem. Oxford
University Press.
Ruan, J., and Thielscher, M. 2011. The epistemic logic
behind the game description language. In Proceedings of the
AAAI Conference on Artificial Intelligence, 840–845. San
Francisco: AAAI Press.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In Proceedings of the AAAI

Conference on Artificial Intelligence, 1191–1196. Vancou-
ver: AAAI Press.
Schiffel, S., and Thielscher, M. 2011. Reasoning about
general games described in GDL-II. In Proceedings of the
AAAI Conference on Artificial Intelligence, 846–851. San
Francisco: AAAI Press.
Thielscher, M. 2009. Answer set programming for single-
player games in general game playing. In Hill, P., and War-
ren, D., eds., Proceedings of the International Conference
on Logic Programming (ICLP), volume 5649 of LNCS, 327–
341. Pasadena: Springer.
Thielscher, M. 2010. A general game description language
for incomplete information games. In Proceedings of the
AAAI Conference on Artificial Intelligence, 994–999. At-
lanta: AAAI Press.
Thielscher, M. 2011. The general game playing descrip-
tion language is universal. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 1107–
1112. Barcelona: AAAI Press.

