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Abstract

Logic programs with nonmonotonic negation are embedded in a general, ab-
stract disputation-based framework for nonmonotonic logics. This formaliza-
tion induces a particular semantics, which is proved to extend well-founded
semantics and whose expanded expressiveness is illustrated by different ex-
amples involving reasoning by cases. Moreover, we develop a formal proof
procedure for skeptical reasoning in the general disputation framework. Its
adaption to the logic programming context provides a goal-oriented and local
proof procedure for the induced semantics.

1 Introduction

Initiated by the comparative studies of the closed world-assumption [21] and
the negation as failure-rule [3] (see, e.g., [24]), the correspondence between
logic programming with negation and nonmonotonic reasoning has been sub-
ject of many research activities and led to a number of fruitful results. The
relationship between the two areas manifests in two directions. On the one
hand, logic programs with negation have been shown to provide means for
encoding problem domains involving default conclusions or implicit assump-
tions of minimality (see, e.g., [17]). On the other hand, the adaption of
nonmonotonic reasoning principles has inspired various new semantics for
logic programs, which show a wider range of applicability than the origi-
nal so-called completion semantics [3]; for an overview see, e.g., [16, 1, 6].
Moreover, formal properties characterizing nonmonotonic logics have been
transferred to the logic programming paradigm in order to assess and com-
pare different semantics [4, 5].

In this paper, we pursue the latter line of research by investigating the ap-
plicability of an abstract, argumentation-based framework designed for for-
malizing skeptical reasoning in various concrete nonmonotonic logics. Unlike
other general argumentation-based approaches, for instance [8], this frame-
work has been especially designed for skeptical reasoning in form of a dispu-
tation. The general idea is to model two disputants that bring up arguments
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supporting the claim under consideration and counter-arguments against it,
respectively, until one of the two arguers is unable to stick to the own stand-
point any longer. A decisive advantage of this procedure is that proving is
performed ‘locally’ insofar as it does not necessarily require to investigate
all nor even entire “extensions”—in terms of extension-based nonmonotonic
logics—to establish skeptical provability. This concept has been successfully
applied to different nonmonotonic logics such as Poole’s Theorist approach,
Circumscription, and Default Logic (see [18, 12, 25, 28]) and led to actual
implementations [19, 12, 25, 22].

Recently, the underlying ideas have been put on formal grounds by defin-
ing an abstract disputation-theoretic framework [26]. In this paper, we show
how the general approach can be applied to logic programming with nega-
tion. This is accomplished by defining appropriate notions for both argu-
ments and the way they may give rise to conflicts. This induces a particular
semantics for arbitrary logic programs with negation. It turns out that this
semantics extends well-founded semantics (WFS) [29] and supports, for in-
stance, so-called “reasoning-by-cases” in various forms.

Moreover, we develop a formal proof procedure for skeptical entailment
in the general disputation theory framework. This procedure models a dia-
logue as described above. The formalization of logic programs as disputation
theories then allows us to employ our proof procedure in this special con-
text. This essentially requires two suitable sub-routines for finding sound
arguments and for generating appropriate counter-arguments, respectively.
By achieving this for the case of propositional logic programs, we obtain
a proof procedure suitable for the induced nonmonotonic semantics. The
resulting algorithm has been prototypically implemented in Prolog.

The rest of this paper is organized as follows. In the next section, 2,
we recapitulate the basic notions underlying formal disputation theories, as
introduced in [26]. In Section 3, we formalize logic programs as disputation
theories, prove that the resulting induced semantics extends well-founded
semantics, and illustrate the additional expressiveness. In Section 4, we
then develop an abstract proof procedure for skeptical reasoning in arbitrary
disputation theories. On this basis, in Section 5 we create an algorithm,
including a simple loop checking mechanism, to compute entailment wrt. our
semantics of logic programs. Finally, our results are discussed and potential
extensions are outlined in Section 6. Due to lack of space, the proofs for the
results in Section 3 and 4 had to be omitted; they can be found in [27].

2 Disputation Theories

The arguments constitute the basic entities in any particular disputation
theory. In the general framework, an argument is considered a most ab-
stract object without bearing a specific internal structure. Each argument
is employed to support a certain claim. Claims, too, are considered abstract



objects in the general framework. While each argument is uniquely associ-
ated with a claim, claims themselves may be supported by several arguments
or even by none of them.

Some arguments may conflict with other arguments. This is formalized
by explicitly stating which subsets of arguments cannot reasonably be em-
ployed together. This is generally not restricted to sets consisting of two
elements; that is, even a single argument may be considered conflicting,
namely, if it is not reasonable in the current state of affairs; also, combining,
say, three arguments might cause a conflict even though any two of them are
mutually acceptable:

Definition 1 A disputation theory is a triple 〈AR,CL, conflict〉 where
AR is a set of arguments, CL is a set of claims, and conflict ⊆ 2AR such
that ∅ 6∈ conflict and each A ∈ conflict is finite. Each argument a ∈ AR
is associated with a particular claim, written claims(a) ∈ CL .

Here and in Section 4, for illustration we use an example disputation theory
with arguments AR = {A1, A2, B1, B2} and claims CL = {C1, C2, C3} such
that claims(A1) = C1 , claims(B1) = C2 , claims(A2) = claims(B2) = C3 ,
and

conflict = {{A1, B1}, {A1, B2}, {A2, B1}, {A2, B2}} (1)

Arguments can be grouped together in so-called extensions, with the
aim of establishing a reasonable set of beliefs on the basis of the available
arguments. Reasonable means not to simultaneously believe in arguments
which are conflicting but to accept any argument which does not conflict
with the set of beliefs:

Definition 2 Let DT = 〈AR,CL, conflict〉 be a disputation theory. A
set A ⊆ AR is conflict-free iff there is no B ⊆ A such that B ∈ conflict .
An extension of DT is a maximal (wrt. set inclusion) conflict-free set.

E.g., our example theory gives rise to two extensions, namely, E1 = {A1, A2}
and E2 = {B1, B2} . No mixture between these extensions is possible since
the elements of E1 are in pairwise conflict with the elements of E2 (c.f. (1)).

As usual, the concept of (possibly multiple) extensions gives rise to two
different notions of entailment, namely, a credulous and a skeptical one; the
focus here is on the latter:

Definition 3 Let DT = 〈AR,CL, conflict〉 be a disputation theory then
a claim ϕ ∈ CL is skeptically entailed iff it is claimed in every extension
of DT by some argument.

To ensure skeptical entailment, one generally needs to consider more than
a single argument supporting the claim under consideration, each of which
holds in some but not all extensions [26]:



Definition 4 Let 〈AR,CL, conflict〉 be a disputation theory and ϕ ∈ CL
a claim. A set P ⊆ AR of arguments, each of which claims ϕ , is a skeptical
proof for ϕ iff for each conflict-free set of arguments A ⊆ AR there is some
p ∈ P such that A ∪ {p} is conflict-free.

In other words, a skeptical proof contains, for each reasonable set of argu-
ments, an argument that can be added without getting tangled up. For
instance, we have the skeptical proof {A2, B2} for C3 in our example—while
it is impossible to find a skeptical proof for, say, C1 . It is easy to verify that
a claim is skeptically entailed iff it admits a skeptical proof [26].

3 Logic Programs as Disputation Theories

We now discuss how any logic program with nonmonotonic negation can be
formalized as disputation theory. The reader is assumed familiar with basic
concepts of logic programming, as can be found in, e.g., the textbook [15].
We assume that the programs and goal clauses under consideration be built
up from a countable set of predicates and functions given once and forever.
We call p0← p1, . . . , pm,¬pm+1, . . . ,¬pn a general clause if each pi is an
atomic formula ( 0 ≤ i ≤ n ) and 0 ≤ m ≤ n . A general logic program P is
a set of general program clauses. By grd(P ) we denote the set of all ground
instances of the clauses in P .

When aiming at formalizing a logic program as disputation theory, the
main task is to establish a suitable concept of arguments, their claims, and
how they give rise to conflicts. Suitable means to capture the intended mean-
ing of a clause p0← p1, . . . , pm,¬pm+1, . . . ,¬pn , namely, that p0 is derivable
if so are p1, . . . , pm but none of pm+1, . . . , pn . From this perspective, an
argument claiming some atom p will consist of a set d of negative literals
such that p is derivable assuming d . To this end, we employ the following
basic notions, which have previously been used in other argumentation-based
approaches to logic programming (e.g., [8, 9]):

Definition 5 Let P be a general logic program, d a set of negative
ground literals and ϕ a ground atom. A d-based chain for ϕ is a sequence
e0, e1, . . . , ek of ground atoms such that ek = ϕ and, for each 0 ≤ i ≤ k ,
ei← p1, . . . , pm,¬pm+1, . . . ,¬pn ∈ grd(P ) and p1, . . . , pm ∈ {e0, . . . , ei−1}
and ¬pm+1, . . . ,¬pn ∈ d .

A support for a ground atom ϕ is a set of ground negative literals d
such that there exists a d-based chain for ϕ . If ϕ is a negative ground
literal then d is support iff ϕ ∈ d . If d, d′ are two sets of negative ground
literals then d′ is said to contradict d iff there exists a d′-based chain for
some ground atom p such that ¬p ∈ d .

On this basis, an argument will be a pair consisting of the literal it claims
plus some suitable support.



To define an adequate notion of conflicts among arguments, we have to
take into account a well-known peculiarity of the intended meaning of logic
programs with nonmonotonic negation—compared to other nonmonotonic
logics: Consider the program P1 = {q←¬p} . Its intended meaning is that
p is not derivable and, hence, is taken false, which is why q is derivable,
hence true.2 This is reflected in the following main definition, which shows
how any general logic program can be interpreted as disputation theory:

Definition 6 Let P be a general logic program. The corresponding dis-
putation theory DTP = 〈ARP ,CLP , conflictP 〉 is defined as follows:

1. ARP = {(ϕ, d) : ϕ ground literal , d support for ϕ} ;
2. CLP = {ϕ : ϕ ground literal} , and claims((ϕ, d)) = ϕ ; and
3. conflictP consists of all finite sets A ⊆ ARP such that

(a)
⋃

(ϕ,d)∈A d contradicts itself, or
(b) there exists some d′ contradicting

⋃

(ϕ,d)∈A d but not vice versa.

Via Definition 3, this correspondence induces a particular semantics for
general logic programs. An important property of this semantics is that
it extends well-founded semantics, that is, given a program P any literal
entailed by WFS(P ) is also skeptically entailed in DTP . Prior to proving
this, for the sake of illustration we discuss some example programs, two of
which show why our semantics is a proper extension of WFS.

First, recall the singleton program P1 = {q←¬p} . Assuming the un-
derlying alphabet consists of the two predicates p, q only, the corresponding
disputation theory, DTP1 = 〈ARP1 ,CLP1 , conflictP1

〉, is as follows:

ARP1 = {(¬p, {¬p}), (¬p, {¬p,¬q}), (q, {¬p}), (q, {¬p,¬q}),

(¬q, {¬q}), (¬q, {¬p,¬q})}

CLP1 = {p,¬p, q,¬q}

conflictP1
= {A ⊆ ARP1 :

⋃

(ϕ,d)∈A d = {¬p,¬q} } (according to 3.(a))

∪ {A ⊆ ARP1 :
⋃

(ϕ,d)∈A d ⊇ {¬q} } (according to 3.(b))

Note that any argument containing ¬q in its support forms a singleton
conflicting set due to the fact that d′ = {¬p} contradicts d = {¬q} but not
vice versa (c.f. Definition 6, clause 3.(b)). Hence, DTP1 admits a unique
extension, namely, E = {(¬p, {¬p}), (q, {¬p})} . In other words, both ¬p
and q are skeptically entailed, as intended.

The following program, P2 , shows that, in contrast to WFS, our seman-
tics supports what is usually referred to as “reasoning-by-cases” (see, for

2 This contrasts the logic programming intuition with, for instance, simple (i.e., without
preferences among the predicates) minimization since the corresponding implication
¬p ⊃ q admits two minimal models, viz. M1 = {q} and also M2 = {p} .



instance, [23]):
q ← ¬p
p ← ¬q
r ← p

r ← q

(2)

Assume again that the underlying alphabet consists of exactly the predi-
cates occurring in this program. Among others, the corresponding set of ar-
guments, ARP2 , contains (q, {¬p}) , (p, {¬q}) and, therefore, (r, {¬p}) ,
(r, {¬q}) . Now, observe that d = {¬p} and d′ = {¬q} contradict each
other without being self-contradictory; hence, neither argument having just
{¬p} or else just {¬q} as support forms a singleton conflicting set. In con-
trast, {(¬r, {¬r})} ∈ conflictP2

since d′ = {¬p} (as well as d′ = {¬q} )
contradicts d = {¬r} but not vice versa. Moreover, it does not help to
extend the support for ¬r by, say, ¬p (in order to ‘defend’ against the
‘attack’ d′ = {¬q} ) since {¬p,¬r} contradicts itself. Therefore, DTP2

admits two extensions, viz.

E1 = {(¬p, {¬p}), (q, {¬p}), (r, {¬p})}

E2 = {(¬q, {¬q}), (p, {¬q}), (r, {¬q})}

Hence, r is skeptically entailed since it is claimed in both extensions.
Finally, consider the following program, P3 , which can be regarded as a

“reasoning-by-cases” example dual to P2 [13]:

q ← ¬p
p ← ¬q
r ← ¬p, ¬q

(3)

Here, the intuitive conclusion is that since either p or else q is true, as
above, r should be false. Our semantics supports this intuition: The reader
is invited to verify that again the corresponding disputation theory admits
two extensions, viz.

E1 = {(¬p, {¬p}), (¬p, {¬p,¬r}), (q, {¬p}), (q, {¬p,¬r}), (¬r, {¬p,¬r})}

E2 = {(¬q, {¬q}), (¬q, {¬q,¬r}), (p, {¬q}), (p, {¬q,¬r}), (¬r, {¬q,¬r})}

and, therefore, ¬r is skeptically entailed.
Having illustrated some properties of the semantics induced by repre-

senting general logic programs as disputation theories, in the remainder of
this section we formally prove that this semantics forms a proper extension
of well-founded semantics. To begin with, the latter is defined as follows:

Definition 7 [29] A pair I = (I+, I−) is called a three-valued interpre-
tation if I+ (atoms that are true) and I− (atoms that are false) are sets
of ground atoms.

Let P be a set of general program clauses. By P + we denote the clause
set obtained from P by deleting all clauses that contain a negative literal,



and by P− we denote the clause set obtained from P by deleting all nega-
tive literals. Moreover, we define T 3(P ) as the three-valued interpretation
(MP+ , MP−) , where MP (resp. MP ) denotes the minimal Herbrand model
of a program P (resp. all ground atoms not in MP ).

Let P be a general logic program and I a three-valued interpretation.
By P |I we denote the program obtained from grd(P ) by deleting all clauses
containing a literal that is false in I and by deleting all literals that are true
in I . Let ΦP be a unary function on three-valued interpretations such that
ΦP (I) = T 3(P |I) then the well-founded model of P , written WFP , is the
least fixpoint of ΦP .

It has been shown in [29] that this definition is applicable to arbitrary gen-
eral logic programs insofar as monotonicity of Φ guarantees uniqueness of
WFP = (WF+,WF−) and we always have WF + ∩WF− = ∅ . If p is a
ground atom then WFP |= p iff p ∈WF+ , and WFP |= ¬p iff p ∈WF− .

Proving that our semantics extend WFS requires three observations, be-
low stated as lemmas. Their proofs can be found in [27]. To ease presen-
tation, we assume that the elements of the second component, I− , of a
three-valued interpretation (I+, I−) be negated (ground) atoms.

Lemma 8 Let P be a general logic program with well-founded model
WFP = (WF+,WF−) then WF− does not contradict itself.

Lemma 9 Let P be a general logic program, and let I = (I+, I−) be a
three-valued interpretation such that I− ⊆ Φ− , where ΦP (I) = (Φ+,Φ−) .
If there exists an I−-based chain for each p ∈ I+ , then there exists a
Φ−-based chain for each p ∈ Φ+ .

Lemma 10 Let P be a general logic program and I = (I+, I−) be a
three-valued interpretation such that each p ∈ I+ is I−-supported. If each
set d of negative ground literals which contradicts I− is precluded,3 then
this holds for Φ− , too, where ΦP (I) = (Φ+,Φ−) .

On this basis, we can prove the following relationship between well-
founded semantics and the semantics induced via Definitions 6 and 3:

Theorem 11 Let P be a logic program and DTP the corresponding dis-
putation theory. If ϕ is a ground literal such that WFP |= ϕ then ϕ is
skeptically entailed in DTP .

4 Proving by Disputation

This section is devoted to a theory for constructing skeptical proofs by means
of alternately generating arguments and counter-arguments. Informally, the

3 We call a set d of negative literals precluded if d contradicts itself or there is some d′

contradicting d but not vice versa.



basic idea is to first come up with an argument p supporting the claim ϕ un-
der consideration. Thereafter, we investigate all sets of arguments A which
are, in some sense, incompatible with p and try to verify that they instead
admit other arguments supporting ϕ . Towards this end, we need to make
precise the notions of both incompatibility and “A admits an argument
claiming ϕ ” (below formalized as “ ϕ being A-claimable”):

Definition 12 Let 〈AR,CL, conflict〉 be a disputation theory. Two con-
flict-free sets A,B ⊆ AR are compatible (resp. incompatible) iff A ∪ B
is (resp. is not) conflict-free. An A-extension is an extension compatible
with A . A claim ϕ ∈ CL is A-claimable iff there is some a ∈ AR such
that claims(a) = ϕ and {a} is compatible with A .

Skeptical entailment can now be proved by generating a suitable argu-
ment and, then, investigating all incompatible (wrt. the former) arguments:

Proposition 13 Let 〈AR,CL, conflict〉 be a disputation theory, and let
ϕ ∈ CL be a claim. Then ϕ is skeptically entailed iff the following holds:
Let p be any conflict-free argument claiming ϕ, then for each conflict-free
A ⊆ AR which is incompatible with {p}, ϕ is A-claimable.

The reader should notice that, according to this result, argument p can be
chosen arbitrarily so that once we find some {p}-incompatible A such that
ϕ is not A-claimable, ϕ is known not to be skeptically entailed—there is
no need to backtrack over the first choice of p .

Recall our example from Section 2. Starting with p = A2 as argu-
ment claiming C3 , there are three conflict-free sets of arguments incom-
patible with p according to Definition 12, namely, all non-empty subsets
of {B1, B2} . Each of these is compatible with argument B2 , which also
claims C3 . Hence, this claim is skeptically entailed.

While this procedure avoids investigation of all extensions compatible
with the first argument being generated to support the claim, it still re-
quires exhaustive investigation among incompatible sets of arguments. We
therefore refine our method by searching for minimal counter-arguments A
only. The notion of minimality is based on a given partial ordering on sets
of arguments that should obey the following property:

Definition 14 Let 〈AR,CL, conflict〉 be a disputation theory. A partial
ordering ¹ ⊆ 2AR× 2AR is called conflict preserving iff the following holds
for each A,B ⊆ AR such that A¹B : For each C ⊆ AR , if C and A are
incompatible then so are C and B .

For instance, in our example theory we might use {}¹A for each A ⊆ AR ;
{A1}¹A for each non-empty A ⊆ {A1, A2} ; and {B1}¹B for each non-
empty B ⊆ {B1, B2} . This ordering is conflict preserving wrt. (1).

Now, given a particular, minimal counter-argument A (that is, a set of
arguments incompatible with the argument considered first, p ), we intend



to prove—by a recursive call of the entire procedure—that the claim, ϕ , is
claimed in every A-extension. This shall replace the task of verifying that
ϕ be A′-claimable for every A′ºA :

Proposition 15 Let 〈AR,CL, conflict〉 be a disputation theory, A ⊆ AR
a conflict-free set of arguments and ϕ ∈ CL a claim. Then ϕ is A′-
claimable for each conflict-free A′ ⊆ AR such that A¹A′ iff ϕ is claimed
in every A-extension.

Of course, we have to ensure that every incompatible (wrt. p ) A′ is covered;
that is, we have to find a whole collection of minimal counter-arguments
which is complete with that respect. Let p be an argument. We call a
set Ω of sets of arguments p-complete conflicting if for any conflict-free set
of arguments A′ either A′ and {p} are compatible or there exists some
A ∈ Ω such that A¹A′ . We then obtain the following main result:

Theorem 16 Let 〈AR,CL, conflict〉 be a disputation theory and ϕ ∈ CL
a claim. Then ϕ is skeptically entailed iff the following holds: Let p be
an arbitrary conflict-free argument claiming ϕ and let Ω be a p-complete
conflicting set, then for each A ∈ Ω , ϕ is claimed in every A-extension.

For instance, given the ordering above plus argument p = A2 claiming C3 ,
the singleton set Ω = {{B1}} is p-complete conflicting. The only {B1}-
extension is {B1, B2} , and claim C3 is also claimed in this extension (via B2 ).
This proves skeptical entailment of C3 according to the theorem.

It is possible to extract from this theorem the following abstract proof
procedure for skeptical entailment, which additionally offers a proof P (in
the sense of Definition 4) in case of success. To obtain the latter, we take the
argument p generated at the beginning and combine it with all arguments
generated in each recursive call:

1. Let p be a conflict-free argument claiming ϕ . If none exists, re-
turn no ; else let P := {p} .

2. Let Ω be p-complete conflicting. For all A ∈ Ω do:
2.1. Let P ′ be a skeptical proof for ϕ (obtained via a recursive call

of this procedure) in the A-restricted disputation theory. If it
does not exist, return no ; else let P := P ∪ P ′ .

3. Return P .
Here, “A-restricted disputation theory” means to restrict attention to argu-
ments compatible with A . In our example, we might start with p = A2 as
above (claiming C3 ), and the recursive call using A = {B1} adds P ′ = {B2}
to P = {A2} , which results in the skeptical proof {A2, B2} for C3 .

In order to employ this abstract procedure in the context of a concrete
nonmonotonic logic, steps 1 and 2 need to be made precise by developing
sub-routines for both finding conflict-free arguments and generating com-
plete conflicting sets. (See [19, 25, 28] for how these procedures have been
designed for example nonmonotonic logics). For the case of propositional
logic programs, this will be accomplished in the following section.



Type support = Set Of negative literal ;
Function find base(ϕ : atom) : support ;
Var goal , loop : Set Of atom;

d : support ;
Begin

goal := {ϕ}; loop := ∅; d := ∅;
Loop

If goal = ∅ Then Return d;
Choose p ∈ goal ;
goal := goal \ {p}; loop := loop ∪ {p};
Choose p← p1, . . . , pm,¬pm+1, . . . ,¬pn ∈ P ;
If {p1, . . . , pm} ∩ loop 6= ∅ Then Fail; /∗ 1 ∗/
goal := goal ∪ {p1, . . . , pm};
d := d ∪ {¬p

m+1, . . . ,¬pn
}

End-Loop

End-Function

Figure 1: A procedure generating support for a given atom ϕ on the basis
of program P . The command Choose describes nondeterministic choice,
and Fail initiates backtracking over all choice operations, which may finally
lead to failure of the entire procedure.

5 A Proof Procedure for Logic Programs

In order to adapt our general proof procedure to logic programming, let us
first consider the task to generate conflict-free arguments for some claim,
i.e., literal. Following Definition 6, this amounts to finding some supporting
negative literals d such that d is not precluded (c.f. Footnote 3). According
to Definition 5, a support for a negative literal is any set d containing it.
A support for an atom is essentially obtained by applying SLD-resolution
plus collecting, as the support, all negative literals occurring in applied pro-
gram clauses. In order to prevent infinite SLD-derivations, we additionally
employ a simple loop detecting mechanism. Figure 1 depicts the resulting
procedure, which defines a function find base(ϕ) and computes a set of neg-
ative literals d which support the atom ϕ wrt. the given program clauses.
We use the variable loop to collect all resolved atoms and, thereby, to avoid
applying clauses with previously resolved atoms in the body (see /∗ 1 ∗/ ).
Hence, a member p of the goal should not be selected until all clauses have
been applied which are needed for a successful derivation and have p in
their body. In case of finite propositional logic programs this procedure is
guaranteed to terminate.

Having generated a support d for the claim at hand, it remains to verify
that d does not contradict itself but contradicts any d′ which in turn con-
tradicts d . The latter may require to extend the computed support: Recall
program (3). The support {¬r} for ¬r does not provide a conflict-free ar-



Function find argument(D : support ; ϕ : literal) : support ;
Var verified , attacked : Set Of negative literal ;

d, d′, d : support ;
Begin

IF is atom(ϕ) Then Choose d := find base(ϕ) Else d := {ϕ};
d := d ∪ D; verified := ∅; attacked := ∅;
Loop

If verified = d Then Return d;
Let ¬p ∈ d \ verified ; /∗ 1 ∗/
For All d := find base(p) Do /∗ 2 ∗/

Choose ¬q ∈ d;
Choose d′ := find base(q); /∗ 3 ∗/
attacked := attacked ∪ {¬q};
d := d ∪ d′; /∗ 4 ∗/
If attacked ∩ d 6= ∅ Then Fail; /∗ 5 ∗/
verified := verified ∪ {¬p}

End-For;
End-Loop;

End-Function

Figure 2: A procedure generating conflict-free arguments for a given claim
(i.e., literal) ϕ while considering ‘pre-constraints’ given by D (c.f. Foot-
note 4).

gument, for {¬p,¬q} contradicts {¬r} but not vice versa. Yet adding, say,
¬p to the support yields the conflict-free argument (¬r, {¬p,¬r}) claim-
ing ¬r . This is reflected in our procedure depicted in Figure 2, which
defines a function find argument(D, ϕ) and computes a conflict-free, D-
compatible4 argument claiming literal ϕ : Given a support d , we have to
analyze any possible contradiction. To this end, we ‘verify’ each ¬p ∈ d
(see /∗ 1 ∗/ ) by investigating each d which contradicts d by support-
ing p (see /∗ 2 ∗/ ). More precisely, we have to ensure that d in turn
contradicts d , which is the case if we can find some ¬q ∈ d such that q
is supported by d (see /∗ 3 ∗/ ). As indicated above, this may require
to extend d (see /∗ 4 ∗/ ). Finally, /∗ 5 ∗/ ensures that the overall
resulting support d does not contradict itself. As an example, the reader
may verify that, given program (3), calling find argument(∅,¬r) results in
(¬r, {¬p,¬r}) as a conflict-free (and ∅-compatible) argument for ¬r .

Finally, we need a procedure that generates a complete conflicting set
of arguments given some conflict-free argument (ϕ, d) . This can easily be
obtained by employing our function find argument to compute all conflict-

4 Recall that the entire algorithm is a recursive procedure where each recursive call deals
with an “A-restricted” disputation theory for some set A of arguments (see the end
of Section 4). In the logic programming context, this can be obtained by requiring
that every support include the negative literals D := ∪(ϕ,d)∈Ad —a property which
we call D-compatibility .



Function complete conflicting(D : support ; d : support ; ) : Set Of support ;
Var d : support ;

Ω : Set Of support ;
Begin

For All ¬p ∈ d Do

For All d := find argument(D, p) Do Ω := Ω ∪ {d};
Return Ω

End-Function

Figure 3: A procedure generating complete conflicting sets for some argu-
ment with support d while considering ‘pre-constraints’ given by D .

free arguments supporting some p with ¬p ∈ d . This is depicted in Fig-
ure 3, where a function complete conflicting(D, d) is defined whose execu-
tion yields a (ϕ, d)-complete conflicting set wrt. an A-restricted disputa-
tion theory, where D =

⋃

(ϕ,d)∈A d . E.g., recall program (2). Assume we
have already computed (r, {¬p}) as a conflict-free argument for r , then
the function call complete conflicting(∅, {¬p}) yields {{¬q}} since {¬q}
is the (only) outcome of find argument(∅, p) . Or, assume we are interested
in a (r, {¬q})-complete conflicting set in the (p, {¬q})-restricted theory
then complete conflicting({¬q}, {¬q}) yields ∅ , for find argument({¬q}, q)
fails—there is obviously no conflict-free argument for q which contains ¬q
in its support.

On the basis of these sub-routines, we can now apply our general algo-
rithm from Section 4 to decide entailment wrt. the semantics obtained in
Section 3. As an example, consider program (2) again. We intend to prove
r be entailed:

1. Calling find argument(∅, r) yields {¬p};5 hence, (r, {¬p}) consti-
tutes a conflict-free argument claiming r . Let P = {(r, {¬p})} .

2. As argued above, calling complete conflicting(∅, {¬p}) yields {{¬q}};
hence, {{(p, {¬q})}} is (r, {¬p})-complete conflicting.
2.1. The recursive call first requires to find a conflict-free, {(p, {¬q})}-

compatible argument for r . Calling find argument({¬q}, r) re-
sults in {¬q} .6 Now, complete conflicting({¬q}, {¬q}) yields
∅ , as argued above, which is why we are done; that is, the recur-
sive call yields P ′ = {(r, {¬q})} as skeptical proof for r in the
{(p, {¬q})}-restricted disputation theory.

3. The computed proof for r thus is P ∪ P ′ = {(r, {¬p}), (r, {¬q})} .

5 Note that the result may equally well be {¬q}, depending on the nondeterministic
choice.

6 Note that now this is the only possible outcome since (¬p, {¬p}) is not {(p, {¬q})}-
compatible.



Internet Availability

We have implemented this proof procedure in Prolog. The program lp.pl
is available via ftp at aida.intellektik.informatik.th − darmstadt.de
and can be found, together with [27], in pub/AIDA/Disputation/ .

6 Discussion

We have shown how any logic program with nonmonotonic negation can
be embedded in a general, disputation-based framework for nonmonotonic
reasoning. We have proved that the induced semantics extends well-founded
semantics, and we have illustrated its expanded expressiveness regarding
different example programs that involve “reasoning-by-cases.” Moreover, we
have developed a general skeptical proof procedure for disputation theories,
and we have adapted this procedure to the logic programming paradigm.

The fact that the induced semantics extends WFS distinguishes our for-
malization from other argumentation-based approaches to logic program-
ming with negation, such as [7, 14, 9]. While the notion of “support” in
Definition 5 has been adopted from these methods, they employ different
intuitions when formalizing conflicts among arguments. This results in a
close correspondence to stable models [11] rather than WFS.7

A number of different semantics all of which extend WFS have been pro-
posed in the past years, most of which, like WFS+ and WFS′ (see [4]) or
WFSbc [23], produce a different result than ours when applied to program (3).
An extension which does treat this program similarly is “extended WFS”
as defined in [13], which, on the other hand, allows to derive p from the
program P = {p←¬p} , while neither p nor ¬p is skeptically entailed
in the corresponding disputation theory DTP . As regards yet another ex-
tension, namely, GWFS [2], Example 4.3 of [5] may serve as illustration
for the differences to the semantics obtained in this paper. On the other
hand, our Definitions 5 and 6 resemble the basic notions of regular model se-
mantics [30]. We even conjecture that there is a one-to-one correspondence
between the extensions of DTP and the regular models of a program P , in
which case our skeptical proof procedure would also be suitable for this and
other equivalent semantics (see [30]).

The general disputation framework has been developed especially in view
of skeptical reasoning in nonmonotonic logics. The underlying concept is to
model a disputation between two arguers who bring up arguments support-
ing the claim under consideration and counter-arguments, respectively. The
decisive advantage of this method is that it does neither strictly require the
inspection of all extensions nor the generation of entire extensions to de-
cide whether a formula is skeptically entailed. Thus, much like the standard

7 However, in [9] itself an alternative formalization of conflicting arguments is proposed,
which results in an equivalent of WFS. The application of our disputation framework
via Definition 6 may therefore be regarded as an extension of this proposal.



resolution variants applied in the logic programming context, the proof pro-
cedure described in Section 5 is goal-oriented and local. This distinguishes
it from both schemes based on stable models [11]—where unrelated clauses,
like p←¬p , may influence the derivability of the goal under consideration—
and algorithms that compute entire well-founded models. Since we have
restricted our proof procedure to propositional logic programs, an impor-
tant direction of future research is to lift it to the first-order case and, then,
to assess the resulting calculus in comparison with existing extensions of
SLDNF-resolution, like [10] (whose adequacy wrt. the argumentation-based
approach [9] has been shown) or SLS-resolution [20].
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