
Towards State Update Axioms:

Reifying Successor State Axioms

Michael Thielscher?

Dresden University of Technology
mit@pikas.inf.tu-dresden.de

In: Proceedings of JELIA’98, c© Springer-Verlag

Abstract. Successor state axioms are an optimal solution to the famous
Frame Problem in reasoning about actions—but only as far as its repre-
sentational aspect is concerned. We show how by gradually applying the
principle of reification to these axioms, one can achieve gradual improve-
ment regarding the inferential aspect without losing the representational
merits. The resulting concept of state update axioms constitutes a novel
version of what is known as the Fluent Calculus. We illustrate that under
the provision that actions have no so-called open effects, any Situation
Calculus specification can be transformed into an essentially equivalent
Fluent Calculus specification, in which at the same time the represen-
tational and the inferential aspect of the Frame Problem are addressed.
This alternative access to the Fluent Calculus both clarifies its role in
relation to the most popular axiomatization paradigm and should help
to enhance its acceptance.

1 Introduction

For a long time, the Fluent Calculus, introduced in [7] and so christened in [3],
has been viewed exclusively as a close relative of approaches to the Frame Prob-
lem [12] which appeal to non-classical logics, namely, linearized versions of, re-
spectively, the connection method [1, 2] and Gentzen’s sequent calculus [11]. The
affinity of the Fluent Calculus and these two formalisms has been emphasized
by several formal comparison results. In [5], for example, the three approaches
have been proved to deliver equivalent solutions to a resource-sensitive variant
of Strips planning [4].
Yet the Fluent Calculus possesses a feature by which it stands out against the

two other frameworks: It stays entirely within classical logic. In this setting the
Fluent Calculus constitutes a successful attempt to address the Frame Problem
as regards both the representational aspect (since no effect axiom or any other
axiom needs to mention non-effects) and, at the same time, the inferential aspect
(since carrying over persistent fluents from one situation to the next does not
require separate deduction steps for each). Contrary to popular opinion, all this
is achieved without relying on complete knowledge of the initial or any other
situation. Nonetheless the Fluent Calculus has not yet received as much attention

? on leave from Darmstadt University of Technology

in the scientific community as, say, the Situation Calculus. One reason might be
that, due to its heritage, the relation to the mainstream calculi, and in particular
to the Situation Calculus, has not yet been convincingly elaborated.
The purpose of this paper is to present an alternative approach to the Fluent

Calculus, where we start off from the Situation Calculus in the version where
successor state axioms are used as means to solve the representational aspect of
the Frame Problem [13]. We illustrate how the Fluent Calculus can be viewed as
the result of gradually improving this approach in view of the inferential aspect
but without losing its representational merits. The key is to gradually apply the
principle of reification, which means to use terms instead of atoms as the formal
denotation of statements. Along the path leading from successor state axioms
to the Fluent Calculus lies an intermediate approach, namely, the alternative
formulation of successor state axioms described by [9], in which atomic fluent
formulas are reified. This alternative design inherits the representational advan-
tages and additionally addresses the inferential Frame Problem. Yet it does so
only under the severe restriction that complete knowledge of the values of the
relevant fluents in the initial situation is available. The Fluent Calculus can then
be viewed as a further improvement in that it overcomes this restriction by carry-
ing farther the principle of reification to conjunctions of fluents. In the following
section we illustrate by means of examples how successor state axioms can thus
be reified to what we call state update axioms. In Section 3 we then present a
fully mechanic method to derive state update axioms from effect specifications
with arbitrary first-order condition. One restriction turns out necessary for this
method to be correct, namely, that actions do not have so-called open effects.2

In Section 4, we will briefly show how to design state update axioms for actions
with such effects.
Viewed in the way we pursue in this paper, the Fluent Calculus presents itself

as the result of a successful attempt to cope with the inferential Frame Problem,
starting off from successor state axioms as a solution to the representational
aspect. Our hope is that this alternative access clarifies the role of this axioma-
tization paradigm in relation to the most popular approach and helps enhancing
its acceptance. Following the new motivation it should become clearer that the
Fluent Calculus provides an expressive axiomatization technique, in the setting
of classical logic, which altogether avoids non-effect axioms and at the same time
successfully copes with the inferential aspect of the Frame Problem.

2 From Situation Calculus to Fluent Calculus

2.1 From Successor State Axioms (I) . . .

Reasoning about actions is inherently concerned with change: Properties expire,
objects come into being and cease to exist, true statements about the state

2 This concept is best explained by an example. This axiom specifies an open effect:
∀x, y, s. Bomb(x) ∧ Nearby(x, y, s) ⊃ Destroyed(y,Do(Explodes(x), s)). Even after
instantiating the action expression Explodes(x) and the situation term s, the effect
literal still carries a variable, y , so that the action may have infinitely many effects.

of affairs at some time may be entirely wrong at another time. The first and
fundamental challenge of formalizing reasoning about actions is therefore to
account for the fact that most properties in the real world possess just a limited
period of validity. This unstable nature of properties which vary in the course of
time has led to calling them “fluents.” In order to account for fluents changing
their truth values in the course of time as consequences of actions, the Situation
Calculus paradigm [12] is to attach a situation argument to each fluent, thus
limiting its range of validity to a specific situation. The performance of an action
then brings about a new situation in which certain fluents may no longer hold.
As an example which will be used throughout the paper, we will formalize

the reasoning that led to the resolution of the following little mystery:

A reliable witness reported that the murderer poured some milk into a cup of
tea before offering it to his aunt. The old lady took a drink or two and then
she suddenly fell into the armchair and died an instant later, by poisoning as
has been diagnosed afterwards. According to the witness, the nephew had no
opportunity to poison the tea beforehand. This proves that it was the milk
which was poisoned and by which the victim was murdered.

The conclusion in this story is obviously based on some general commonsense
knowledge of poisoned substances and the way they may affect people’s health.
To begin with, let us formalize by means of the Situation Calculus the rel-
evant piece of knowledge that mixing a poisoned substance into another one
causes the latter to be poisoned as well. To this end, we use the binary predicate
Poisoned(x, s) representing the fact that x is poisoned in situation s, the ac-
tion term Mix (p, x, y) denoting the action carried out by agent p of mixing x

into y, and the binary function Do(a, s) which denotes the situation to which
leads the performance of action a in situation s.3 With this signature and its
semantics the following axiom formalizes the fact that if x is poisoned in sit-
uation s then y, too, is poisoned in the situation that obtains when someone
mixes x into y :

Poisoned(x, s) ⊃ Poisoned(y,Do(Mix (p, x, y), s)) (1)

The second piece of commonsense knowledge relevant to our example concerns
the effect of drinking poisoned liquids. Let Alive(x, s) represent the property
of x being alive in situation s, and let the action term Drink(p, x) denote that
p drinks x. Then the following axiom encodes the fact that if x is poisoned
then person p ceases to being among the livings after she had drunk x :

Alive(p, s) ∧ Poisoned(x, s) ⊃ ¬Alive(p,Do(Drink(p, x), s)) (2)

These two effect axioms, however, do not suffice to solve the mystery due to
the Frame Problem, which has been uncovered as early as in [12]. To see why,

3 A word on the notation: Predicate and function symbols, including constants, start
with a capital letter whereas variables are in lower case, sometimes with sub- or
superscripts. Free variables in formulas are assumed universally quantified.

let S0 be a constant by which we denote the initial situation, and consider the
assertion,

¬Poisoned(Tea, S0) ∧Alive(Nephew , S0) ∧Alive(Aunt , S0) (3)

Even with Poisoned(Milk , S0) added, ¬Alive(Aunt , S2) does not yet follow
(where S2 = Do(Drink(Aunt ,Tea),Do(Mix (Nephew ,Milk ,Tea), S0))), because
Alive(Aunt ,Do(Mix (Nephew ,Milk ,Tea), S0)) is needed for axiom (2) to apply
but cannot be concluded. In order to obtain this and other intuitively expected
conclusions, a number of non-effect axioms (or “frame axioms”) need to be sup-
plied, like the following, which says that people survive the mixing of substances:

Alive(x, s) ⊃ Alive(x,Do(Mix (p, y, z), s)) (4)

Now, the Frame Problem is concerned with the problems that arise from the
apparent need for non-effect axioms like (4). Actually there are two aspects of
this famous problem: The representational Frame Problem is concerned with
the proliferation of all the many frame axioms. The inferential Frame Problem
describes the computational difficulties raised by the presence of many non-effect
axioms when it comes to making inferences on the basis of an axiomatization:
To derive the consequences of a sequence of actions it is necessary to carry, one-
by-one and almost all the time using non-effect axioms, each property through
each intermediate situation.
With regard to the representational aspect of the Frame Problem, successor

state axioms [13] provide a solution which is optimal in a certain sense, namely,
in that it requires no extra frame axioms at all. The key idea is to combine, in a
clear elaborated fashion, several effect axioms into a single one. The result, more
complex than simple effect axioms like (1) and (2) but still mentioning solely
effects, is designed in such a clever way that it implicitly contains sufficient
information also about non-changes of fluents.
The procedure by which these axioms are set up is the following. Suppose

F (~x) is among the fluents one is interested in. On the assumption that a fixed,
finite set of actions is considered relevant, it should be possible to specify with
a single formula γ+

F (~x, a, s) all circumstances by which F (~x) would be caused
to become true. That is to say, γ+

F (~x, a, s) describes all actions a and condi-
tions relative to situation s so that F (~x) is a positive effect of performing a

in s. For example, among the actions we considered above there is one, and only
one, by which the fluent Poisoned(x) is made true, namely, mixing some poiso-
nous y into x. Hence an adequate definition of γ+

Poisoned
(x, a, s) is the formula

∃p, y[a = Mix (p, y, x) ∧ Poisoned(y, s)].
A dual formula, γ−F (~x, a, s), defines the circumstances by which fluent F (~x)

is caused to become false. In our example we consider no way to ‘decontaminate’
a substance, which is why γ−

Poisoned
(x, a, s) should be equated with a logical

contradiction. For our second fluent, Alive(x), the situation is just the other way
round: While γ+

Alive
(x, a, s) is false for any instance, the appropriate definition

of γ−
Alive

(x, a, s) is ∃y[a = Drink(x, y) ∧Alive(x, s) ∧ Poisoned(y, s)].

On the basis of suitable definitions for both γ+
F and γ−F , a complete account

can be given of how the truth value of fluent F in a new situation depends on
the old one, namely,

F (~x,Do(a, s)) ≡ γ+
F (~x, a, s) ∨ [F (~x, s) ∧ ¬ γ−F (~x, a, s)] (5)

This is the general form of successor state axioms.4 It says that the fluent F

holds in a new situation if, and only if, it is either a positive effect of the action
being performed, or it was already true and the circumstances were not such that
the fluent had to become false. Notice that both γ+ and γ− talk exclusively
about effects (positive and negative), not at all about non-effects. Nonetheless,
by virtue of being bi-conditional, a successor state axiom implicitly contains all
the information needed to entail any non-change of the fluent in question. For
whenever neither γ+

F (~x, a, s) nor γ−F (~x, a, s) is true, then (5) rewrites to the
simple equivalence F (~x,Do(a, s)) ≡ F (~x, s).
The two successor state axioms for our example domain, given the respective

formulas γ from above, are

Poisoned(x,Do(a, s)) ≡ ∃p, y [a = Mix (p, y, x) ∧ Poisoned(y, s)]

∨ Poisoned(x, s)
(6)

and

Alive(x,Do(a, s)) ≡

Alive(x, s) ∧ ¬∃y [a = Drink(x, y) ∧Alive(x, s) ∧ Poisoned(y, s)]
(7)

The latter, for instance, suffices to conclude that Alive(Aunt , S0) is not affected
by the action Mix (Nephew ,Milk ,Tea)—assuming “unique names” for actions,
i.e., Mix (p′, x′, y′) 6= Drink(x, y). Thus we can spare the frame axiom (4).
By specifying the effects of actions in form of successor state axioms it is

possible to avoid frame axioms altogether. These axioms thus provide us with
an in a certain sense optimal solution to the Frame Problem, as far as the
representational aspect is concerned.

2.2 . . . via Successor State Axioms (II) . . .

While successor state axioms are a good way to overcome the representational
Frame Problem since no frame axioms at all are required, the inferential aspect
is fully present. In order to derive which fluents hold and which do not after a
sequence of actions, it is still necessary to carry, one-by-one, each fluent through
each intermediate situation by separate instances of successor state axioms. In
this respect nothing seems gained by incorporating knowledge of non-effects in
complex effect axioms instead of using explicit frame axioms.
However, it has been shown in [9] that by formulating successor state axioms

in a way that is somehow dual to the scheme (5), the inferential aspect can be

4 For the sake of clarity we ignore the concept of action precondition in this paper, as
it is irrelevant for our discussion (see Section 4).

addressed at least to a certain extent. Central to this alternative is the repre-
sentation technique of reification. It means that properties like Poisoned(x) are
formally modeled as terms, in other words as objects, in logical axiomatizations.
This allows for a more flexible handling of these properties within first-order
logic. Let, to this end, Holds(f, s) be a binary predicate representing the fact
that in situation s holds the fluent f , now formally a term but still meaning a
proposition.
The key to the alternative form of successor state axioms is to devise one for

each action, and not for each fluent, which gives a complete account of the posi-
tive and negative effects of that action. Suppose A(~x) is an action, then it should
be possible to specify with a single formula δ+

A(~x, f, s) the necessary and suffi-
cient conditions on f and s so that f is a positive effect of performing A(~x)
in s. In our running example, the appropriate definition of δ+

Mix
(p, x, y, f, s), say,

is [f = Poisoned(y, s)]∧Holds(Poisoned(x), s), while δ+
Drink

(p, x, f, s) should be
equated with a logical contradiction since Drink(p, x) has no relevant positive
effect. A dual formula, δ−A(~x, f, s), defines the necessary and sufficient condi-
tions on f and s so that f is a negative effect of performing A(~x) in s. For
instance, δ−

Mix
(p, x, y, f, s) should be false in any case, while δ−

Drink
(p, x, f, s) is

suitably described by [f = Alive(p)]∧Holds(Alive(p), s)∧Holds(Poisoned(x), s).
On the basis of δ+

A and δ−A , a complete account can be given of which fluents
hold in situations reached by performing A(~x), namely,

Holds(f,Do(A(~x), s)) ≡ δ+
A(~x, f, s) ∨ [Holds(f, s) ∧ ¬ δ−A(~x, f, s)] (8)

That is to say, the fluents which hold after performing the action A(~x) are
exactly those which are among the positive effects or which held before and are
not among the negative effects. The reader may contrast this scheme with (5)
and in particular observe the reversed roles of fluents and actions.5

Given the formulas δ+
Mix
(p, x, y, f, s), δ−

Mix
(p, x, y, f, s), δ+

Drink
(p, x, f, s), and

δ+
Drink

(p, x, f, s), respectively, from above, we thus obtain these two successor
state axioms of type (II):

Holds(f,Do(Mix (p, x, y), s)) ≡ f = Poisoned(y) ∧Holds(Poisoned(x), s)

∨ Holds(f, s)
(9)

and
Holds(f,Do(Drink(p, x), s)) ≡

Holds(f, s) ∧ ¬ [f = Alive(p) ∧Holds(Alive(p), s)

∧Holds(Poisoned(x), s)]

(10)

Notice that as before non-effects are not explicitly mentioned and no additional
frame axioms are required, so the representational aspect of the Frame Problem
is addressed with the alternative notion of successor state axioms just as well.
The inferential advantage of the alternative design shows if we represent the

5 Much like [13] roots in the axiomatization technique of [6], the foundations for the
alternative form of successor state axioms were laid in [10].

collection of fluents that are true in a situation s by equating the atomic formula
Holds(f, s) with the conditions on f to hold in s. The following formula, for
instance, constitutes a suitable description of the initial situation in our example:

Holds(f, S0) ≡

f = Alive(Nephew) ∨ f = Alive(Aunt) ∨ f = Poisoned(Milk)
(11)

The crucial feature of this formula is that the situation argument, S0 , occurs
only once. With this representational trick it becomes possible to obtain a com-
plete description of a successor situation in one go, that is, by singular application
of a successor state axiom. To see why, consider the axiom which specifies the
effects of mixing, (9). If we substitute p, x, and y by Nephew , Milk , and Tea ,
respectively, and s by S0 , then we can replace the sub-formula Holds(f, S0) of
the resulting instance by the equivalent disjunction as given in axiom (11). So
doing yields the formula,

Holds(f,Do(Mix (Nephew ,Milk ,Tea), S0)) ≡

f = Poisoned(Tea) ∧Holds(Poisoned(Milk), S0)

∨ f = Alive(Nephew) ∨ f = Alive(Aunt) ∨ f = Poisoned(Milk)

which all at once provides a complete description of the successor situation.
Given suitable axioms for equality, the above can be simplified, with the aid
of (11), to

Holds(f,Do(Mix (Nephew ,Milk ,Tea), S0)) ≡

f = Poisoned(Tea) ∨ f = Alive(Nephew)

∨ f = Alive(Aunt) ∨ f = Poisoned(Milk)

The reader may verify that we can likewise infer the result of Drink(Aunt ,Tea)
in the new situation by applying the appropriate instance of successor state
axiom (10), which, after simplification, yields

Holds(f,Do(Drink(Aunt ,Tea),Do(Mix (Nephew ,Milk ,Tea), S0))) ≡

f = Poisoned(Tea) ∨ f = Alive(Nephew) ∨ f = Poisoned(Milk)

At first glance it seems that the alternative design of successor state axioms
provides an overall satisfactory solution to both aspects of the Frame Problem.
No frame axioms at all are needed, and one instance of a single successor state
axiom suffices to carry over to the next situation all unchanged fluents. However,
the proposed method of inference relies on the very strong assumption that we
can supply a complete account of what does and what does not hold in the
initial situation. Formula (11) provides such a complete specification, because it
says that any fluent is necessarily false in S0 which does not occur to the right
of the equivalence symbol. Unfortunately it is impossible to formulate partial
knowledge of the initial state of affairs in a similarly advantageous fashion. Of
course one can start with an incomplete specification like, for instance,

Holds(f, S0) ⊂ [f = Alive(Nephew) ∨ f = Alive(Aunt)] ∧ f 6= Poisoned(Tea)

which mirrors the incomplete description we used earlier (c.f. formula (3)). But
then the elegant inference step from above, where we have simply replaced a
sub-formula by an equivalent, is no longer feasible. In this case one is in no way
better off with the alternative notion of successor state axioms; again separate
instances need to be applied, one for each fluent, in order to deduce what holds
in a successor situation.

2.3 . . . to State Update Axioms

So far we have used reification to denote single properties by terms. The ‘meta’-
predicate Holds has been introduced which relates a reified fluent to a situ-
ation term, thus indicating whether the corresponding property is true in the
associated situation. When formalizing collected information about a particular
situation S as to which fluents are known to hold in it, the various correspond-
ing atoms Holds(fi, S) are conjuncted using the standard logical connectives.
We have seen how the inferential aspect of the Frame Problem is addressed if
this is carried out in a certain way, namely, by equating Holds(f, s) with some
suitable formula Ψ . The effects of an action a can then be specified in terms
of how Ψ modifies to some formula Ψ ′ such that Holds(f,Do(a, s)) ≡ Ψ ′ .
We have also seen, however, that this representation technique is still not suf-
ficiently flexible in that it is impossible to construct a first-order formula Ψ so
that Holds(f, S0) ≡ Ψ provides a correct incomplete specification of S0 . Yet
it is possible to circumvent this drawback by carrying farther the principle of
reification, to the extent that not only single fluents but also their conjunc-
tions are formally treated as terms. Required to this end is a binary func-
tion which to a certain extent reifies the logical conjunction. This function
shall be denoted by the symbol “ ◦ ” and written in infix notation, so that,
for instance, the term Alive(Nephew) ◦ Poisoned(Milk) is the reified version of
Alive(Nephew)∧Poisoned(Milk). The use of the function “ ◦ ” is the character-
istic feature of axiomatizations which follow the paradigm of Fluent Calculus.
The union of all relevant fluents that hold in a situation is called the state

(of the world) in that situation. Recall that a situation is characterized by the
sequence of actions that led to it. While the world possibly exhibits the very same
state in different situations,6 the world is in a unique state in each situation.
A function denoted by State(s) shall relate situations s to the corresponding
states, which are reified collections of fluents.
Modeling entire states as terms allows the use of variables to express mere

partial information about a situation. The following, for instance, is a correct
incomplete account of the initial situation S0 in our mystery story (c.f. (3)):

∃z [State(S0) = Alive(Nephew) ◦ Alive(Aunt) ◦ z

∧ ∀z′. z 6= Poisoned(Tea) ◦ z′]
(12)

6 If, for example, the tea was already poisoned initially, then the state of the world
prior to and after Mix (Nephew ,Milk ,Tea) would have been the same—in terms of
which of the two liquids are poisoned and who of our protagonists is alive.

That is to say, of the initial state it is known that both Alive(Nephew) and
Alive(Aunt) are true and that possibly some other facts z hold, too—with the
restriction that z must not include Poisoned(Tea), of which we know it is false.

The binary function “ ◦ ” needs to inherit from the logical conjunction an im-
portant property. Namely, the order is irrelevant in which conjuncts are given.
Formally, order ignorance is ensured by stipulating associativity and commuta-
tivity, that is, ∀x, y, z. (x ◦ y) ◦ z = x ◦ (y ◦ z) and ∀x, y. x ◦ y = y ◦ x. It is
convenient to also reify the empty conjunction, a logical tautology, by a con-
stant usually denoted ∅ and which satisfies ∀x. x ◦ ∅ = x. The three equational
axioms, jointly abbreviated AC1, in conjunction with the standard axioms of
equality entail the equivalence of two state terms whenever they are built up
from an identical collection of reified fluents.7 In addition, denials of equalities,
such as in the second part of formula (12), need to be derivable. This requires an
extension of the standard assumption of “unique names” for fluents to unique-
ness of states, denoted by EUNA (see, e.g., [8, 14]).

The assertion that some fluent f holds (resp. does not hold) in some situa-
tion s can now be formalized by ∃z. State(s) = f◦z (resp. ∀z. State(s) 6= f◦z).
This allows to reintroduce the Holds predicate, now, however, not as a primitive
notion but as a derived concept:

Holds(f, s) ≡ ∃z. State(s) = f ◦ z (13)

In this way, any Situation Calculus assertion about situations can be directly
transferred to a formula of the Fluent Calculus. For instance, the (quite arbi-
trary) Situation Calculus formula ∃x.Poisoned(x, S0) ∨ ¬Alive(Aunt , S0) reads
∃x.Holds(Poisoned(x), S0) ∨ ¬Holds(Alive(Aunt), S0) in the Fluent Calculus.
We will use the notation HOLDS (Ψ) to denote the formula that results from
transforming a Situation Calculus formula Ψ into the reified version using the
Holds predicate.

Knowledge of effects of actions is formalized in terms of specifying how a
current state modifies when moving on to a next situation. The universal form
of what we call state update axiom is

∆(s) ⊃ Γ [State(Do(A, s)),State(s)] (14)

where ∆(s) states conditions on s, or rather on the corresponding state, under
which the successor state is obtained by modifying the current state according
to Γ . Typically, condition ∆(s) is a compound formula consisting of Holds(f, s)
atoms, as defined with the foundational axiom (13). The component Γ defines
the way the state in situation s modifies according to the effects of the action
under consideration. Actions may initiate and terminate properties. We will
discuss the designing of Γ for these two cases in turn.

7 The reader may wonder why function “ ◦ ” is not expected to be idempotent, i.e.,
∀x. x ◦ x = x, which is yet another property of logical conjunction. The (subtle)
reason for this is given below.

If an action has a positive effect, then the fluent which becomes true simply
needs to be coupled onto the state term. An example is the following axiomati-
zation of the (conditional) effect of mixing a liquid into a second one:

Holds(Poisoned(x), s) ∧ ¬Holds(Poisoned(y), s) ⊃

State(Do(Mix (p, x, y), s)) = State(s) ◦ Poisoned(y)

¬Holds(Poisoned(x), s) ∨Holds(Poisoned(y), s) ⊃

State(Do(Mix (p, x, y), s)) = State(s)

(15)

That is to say, if x is poisoned and y is not, then the new state is obtained
from the predecessor just by adding the fluent Poisoned(y), else nothing changes
at all and so the two states are identical. Notice that neither of the two state
update axioms mentions any non-effects.
If we substitute, in the two axioms (15), p, x, and y by Nephew , Milk ,

and Tea , respectively, and s by S0 , then we can replace the term State(S0)
in both resulting instances by the equal term as given in axiom (12). So doing
yields,

∃z [Holds(Poisoned(Milk), S0) ∧ ¬Holds(Poisoned(Tea), S0) ⊃

State(Do(Mix (Nephew ,Milk ,Tea), S0))

= Alive(Nephew) ◦Alive(Aunt) ◦ z ◦ Poisoned(Tea)

∧ ¬Holds(Poisoned(Milk), S0) ∨Holds(Poisoned(Tea), S0) ⊃

State(Do(Mix (Nephew ,Milk ,Tea), S0))

= Alive(Nephew) ◦Alive(Aunt) ◦ z

∧ ∀z′. z 6= Poisoned(Tea) ◦ z′]

which implies, using the abbreviation S1 = Do(Mix (Nephew ,Milk ,Tea), S0)
and the correspondence (13) along with axioms for equality and assertion (12),

∃z [Holds(Poisoned(Milk), S0) ⊃

State(S1) = Alive(Nephew) ◦ Alive(Aunt)

◦Poisoned(Milk) ◦ Poisoned(Tea) ◦ z

∧ ¬Holds(Poisoned(Milk), S0) ⊃

State(S1) = Alive(Nephew) ◦Alive(Aunt) ◦ z

∧ ¬Holds(Poisoned(Tea), S1)]

In this way we have obtained from an incomplete initial specification a still
partial description of the successor state, which includes the unaffected fluents
Alive(Nephew) and Alive(Aunt). These properties thus survived the application
of the effects axioms without the need to be carried over, one-by-one, by separate
application of axioms.
If an action has a negative effect, then the fluent f which becomes false

needs to be withdrawn from the current state State(s). The schematic equation
State(Do(A, s)) ◦ f = State(s) serves this purpose. Incidentally, this scheme is

the sole reason for not stipulating that “ ◦ ” be idempotent. For otherwise the
equation State(Do(A, s)) ◦ f = State(s) would be satisfied if State(Do(A, s))
contained f . Hence this equation would not guarantee that f becomes false.
Vital for our scheme is also to ensure that state terms do not contain any fluent
twice or more, i.e.,

∀s, x, z. State(s) = x ◦ x ◦ z ⊃ x = ∅ (16)

These preparatory remarks lead us to the following axiomatization of the
(conditional) effect of drinking:

Holds(Alive(p) ◦ Poisoned(x), s) ⊃

State(Do(Drink(p, x), s)) ◦Alive(p) = State(s)

¬Holds(Alive(p), s) ∨ ¬Holds(Poisoned(x), s) ⊃

State(Do(Drink(p, x), s)) = State(s)

(17)

That is to say, if p is alive and x is poisoned, then the new state is obtained
from the predecessor just by terminating Alive(p), else nothing changes at all.8

Applying the two axioms (17) to what we have derived about the state in
situation S1 yields, setting S2 = Do(Drink(Aunt ,Tea), S1) and performing
straightforward simplifications,

∃z [Holds(Poisoned(Milk), S0) ⊃

State(S2) ◦ Alive(Aunt) = Alive(Nephew) ◦Alive(Aunt)

◦Poisoned(Milk) ◦ Poisoned(Tea) ◦ z

∧ ¬Holds(Poisoned(Milk), S0) ⊃

State(S2) = Alive(Nephew) ◦ Alive(Aunt) ◦ z]

This partial description9 of the successor state again includes every persistent
fluent without having applied separate deduction steps for each. The Fluent
Calculus thus provides a solution to both the representational and the inferen-
tial aspect of the Frame Problem which is capable of dealing with incomplete
knowledge about states.

3 The General Method

Having illustrated the design and use of state update axioms by example, in this
section we will present a general, fully mechanic procedure by which is generated

8 Actions may of course have both positive and negative effects at the same time, in
which case the component Γ of a state update axiom combines the schemes for
initiating and terminating fluents. This general case is dealt with in Section 3.

9 which by the way, since State(S2) = Alive(Nephew) ◦ Alive(Aunt) ◦ z implies that
Holds(Alive(Aunt), S2), leads directly to the resolution of the murder mystery: Along
with the statement of the witness, ¬Holds(Alive(Aunt), S2), the formula above log-
ically entails the explanation that Holds(Poisoned(Milk), S0).

a suitable set of state update axioms from a given collection of Situation Calculus
effect axioms, like (1) and (2). As indicated in the introduction, we will only
consider actions without open effects (c.f. Footnote 2). This is reflected in the
assumption that each positive effect specification be of the following form, where
A denotes an action and F a fluent:

ε+
A,F (~x, s) ⊃ F (~y,Do(A(~x), s)) (18)

Here, ε is a first-order formula whose free variables are among ~x, s; and ~y

contains only variables from ~x. Notice that it is the very last restriction which
ensures that the effect specification does not describe what is called an open
effect: Except for the situation term, all arguments of the effect F are bound
by the action term A(~x). Likewise, negative effect specifications are of the form

ε−A,F (~x, s) ⊃ ¬F (~y,Do(A(~x), s)) (19)

where again ε is a first-order formula whose free variables are among ~x, s and
where ~y contains only variables from ~x.10 We assume that a given set E of
effect axioms is consistent in that for all A and F the unique names assumption
entails ¬∃~x, s [ε+

A,F (~x, s) ∧ ε−A,F (~x, s)].
Fundamental for any attempt to solve the Frame Problem is the assumption

that a given set of effect axioms is complete in the sense that it specifies all
relevant effects of all involved actions.11 Our concern, therefore, is to design state
update axioms for a given set of effect specifications which suitably reflect the
completeness assumption. The following instance of scheme (14) is the general
form of state update axioms for deterministic actions with only direct effects:

∆(s) ⊃ State(Do(A, s)) ◦ ϑ− = State(s) ◦ ϑ+

where ϑ− are the negative effects and ϑ+ the positive effects, respectively,
of action A under condition ∆(s). The main challenge for the design of these
state update axioms is to make sure that condition ∆ is strong enough for the
equation in the consequent to be sound. Neither must ϑ+ include a fluent that
already holds in situation s (for this would contradict the foundational axiom
about multiple occurrences, (16)), nor should ϑ− specify a negative effect that
is already false in s (for then EUNA implies that the equation be false). This is
the motivation behind step 1 and 2 of the procedure below. The final and main
step 3 reflects the fact that actions with conditional effects require more than
one state update axiom, each applying in different contexts:

1. Rewrite to ε+
A,F (~x, s) ∧ ¬F (~y, s) ⊃ F (~y,Do(A(~x), s)) each positive effect

axiom of the form (18).

10 Our two effect axioms at the beginning of Section 2.1 fit this scheme, namely,
by equating ε+

Mix,Poisoned
(p, x, y, s) with Poisoned(x, s) and ε−

Drink,Alive
(p, x, s) with

Alive(p, s) ∧ Poisoned(x, s).
11 If actions have additional, indirect effects, then this gives rise to the so-called Ram-

ification Problem; see Section 4.

2. Similarly, rewrite to ε−A,F (~x, s)∧F (~y, s) ⊃ ¬F (~y,Do(A(~x), s)) each negative
effect axiom of the form (19).

3. For each action A, let the following n ≥ 0 axioms be all effect axioms thus
rewritten (positive and negative) concerning A:

ε1(~x, s) ⊃ F1(~y1,Do(A(~x), s)), . . . , εm(~x, s) ⊃ Fm(~ym,Do(A(~x), s))

εm+1(~x, s) ⊃ ¬Fm+1(~ym+1,Do(A(~x), s)), . . . ,

εn(~x, s) ⊃ ¬Fn(~yn,Do(A(~x), s))

Then, for any pair of subsets I+ ⊆ {1, . . . ,m}, I− ⊆ {m + 1, . . . , n} (in-
cluding the empty ones) introduce the following state update axiom:

∧

i∈I+∪I− HOLDS (εi(~x, s)) ∧
∧

j 6∈I+∪I− HOLDS (¬εj(~x, s))

⊃ State(Do(A(~x), s)) ◦ ϑ I− = State(s) ◦ ϑ I+

(20)

where ϑ I− is the term F1◦. . .◦Fk if {F1, . . . , Fk} = {Fi(~yi) : i ∈ I
−} and,

similarly, ϑ I+ is the term F1◦. . .◦Fk if {F1, . . . , Fk} = {Fi(~yi) : i ∈ I
+}.12

Step 3 blindly considers all combinations of positive and negative effects. Some of
the state update axiom thus obtained may have inconsistent antecedent, in which
case they can be removed. To illustrate the interaction of context-dependent
positive and negative effects, let us apply our procedure to these two effect
axioms:

Loaded(s) ⊃ Dead(Do(Shoot , s))
true ⊃ ¬Loaded(Do(Shoot , s))

After rewriting according to steps 1 and 2, step 3 produces four state update
axioms, viz.

¬ [Holds(Loaded , s) ∧ ¬Holds(Dead , s)] ∧ ¬ [true ∧Holds(Loaded , s)]
⊃ State(Do(Shoot , s)) ◦ ∅ = State(s) ◦ ∅

¬ [Holds(Loaded , s) ∧ ¬Holds(Dead , s)] ∧ true ∧Holds(Loaded , s)
⊃ State(Do(Shoot , s)) ◦ Loaded = State(s) ◦ ∅

Holds(Loaded , s) ∧ ¬Holds(Dead , s) ∧ ¬ [true ∧Holds(Loaded , s)]
⊃ State(Do(Shoot , s)) ◦ ∅ = State(s) ◦Dead

Holds(Loaded , s) ∧ ¬Holds(Dead , s) ∧ true ∧Holds(Loaded , s)
⊃ State(Do(Shoot , s)) ◦ Loaded = State(s) ◦Dead

Logical simplification of the premises of the topmost two axioms yields

¬Holds(Loaded , s) ⊃ State(Do(Shoot , s)) = State(s)
Holds(Dead , s) ∧Holds(Loaded , s) ⊃ State(Do(Shoot , s)) ◦ Loaded = State(s)

The third axiom can be abandoned because of an inconsistent antecedent, while
the fourth axiom simplifies to

Holds(Loaded , s) ∧ ¬Holds(Dead , s) ⊃
State(Do(Shoot , s)) ◦ Loaded = State(s) ◦Dead

12 Thus ϑ I− contains the negative effects and ϑ I+ the positive effects specified in the
update axiom. If either set is empty then the respective term is the unit element, ∅.

(The interested reader may verify that applying the general procedure to our
effect axioms (1) and (2) yields four axioms which, after straightforward simpli-
fication, turn out to be (15) and (17), respectively.)
The following primary theorem for the Fluent Calculus shows that the re-

sulting set of state update axioms correctly reflects the effect axioms if the
fundamental completeness assumption is made.

Theorem 1. Consider a finite set E of effect axioms which complies with the

assumption of consistency, and let SUA be the set of state update axioms gen-

erated from E . Suppose M is a model of SUA ∪ {(13), (16)} ∪ EUNA,13 and

consider a fluent term F (~τ), an action term A(~ρ), and a situation term σ.

Then M |= Holds(F (~τ),Do(A(~ρ), σ)) iff

1. M |= ε+
A,F (~ρ, σ), for the instance ε+

A,F (~ρ, σ) ⊃ F (~τ ,Do(A(~ρ), σ)) of some

axiom in E ;
2. or M |= Holds(F (~τ), σ) and no instance ε−A,F (~ρ, σ) ⊃ ¬F (~τ ,Do(A(~ρ), σ))

of an axiom in E exists such that M |= ε−A,F (~ρ, σ).

4 Conclusion

We have pursued a new motivation for the Fluent Calculus, namely, as the
outcome of applying the principle of reification to successor state axioms. The
resulting concept of state update axioms copes with the inferential Frame Prob-
lem without losing the solution to the representational aspect. We have shown
how, much like in [13], a suitable collection of these axioms can be automatically
derived from a complete (wrt. the relevant fluents and actions) set of single effect
axioms, provided actions have no open effects. Since state update axioms cover
the entire change an action causes in order to solve the inferential aspect of the
Frame Problem, their number is, in the worst case, exponentially larger than
the number of single effect axioms. This is perfectly acceptable since actions are
viewed as having very few effects compared to the overall number of fluents.
Open effects can only be implicitly described in state update axioms. An

example is the following axiom (c.f. Footnote 2):

Bomb(x) ⊃




∀f, y

[

f = Destroyed(y) ∧Holds(Nearby(x, y), s) ∧ ¬Holds(f, s)
≡ ∃z. w = f ◦ z

]

⊃ State(Do(Explodes(x), s)) = z ◦ w





in which w, the positive effects of the action, is defined rather than explicitly
given. It lies in the nature of open effects that a suitable state update axiom
can only implicitly describe the required update and so does no longer solve the
inferential Frame Problem (though it still covers the representational aspect).

13 Recall that EUNA, the extended unique names assumption, axiomatizes equality
and inequality of terms with the function “ ◦ ”.

The problem of action preconditions has been ignored for the sake of clarity.
Their dealing with requires no special treatment in the Fluent Calculus since
each Situation Calculus assertion about what holds in a situation corresponds
directly to a Fluent Calculus assertion via the fundamental relation (13).
The basic Fluent Calculus as investigated in this paper assumes state update

axioms to describe all effects of an action. The solution to the Ramification
Problem of [14], and in particular its axiomatization in the Fluent Calculus,
furnishes a ready approach for elaborating the ideas developed in the present
paper so as to deal with additional, indirect effects of actions.
The version of the Fluent Calculus we arrived at in this paper differs con-

siderably from its roots [7], e.g. in that it exploits the full expressive power of
first-order logic. In so doing it is much closer to the variant introduced in [14],
but still novel is the notion of state update axioms. In particular the new func-
tion State(s) seems to lend more elegance to effect specifications and at the
same time emphasizes the relation to the Situation Calculus.

References

1. W. Bibel. A deductive solution for plan generation. New Generation Computing,
4:115–132, 1986.

2. W. Bibel. Let’s plan it deductively! In M. Pollack, editor, Proceedings of IJCAI,
pages 1549–1562, Nagoya, Japan, August 1997. Also to appear in Artif. Intell.

3. S.-E. Bornscheuer and M. Thielscher. Explicit and implicit indeterminism: Rea-
soning about uncertain and contradictory specifications of dynamic systems. J. of
Logic Programming, 31(1–3):119–155, 1997.

4. R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artif. Intell., 2:189–208, 1971.

5. G. Große, S. Hölldobler, and J. Schneeberger. Linear Deductive Planning. J. of

Logic and Computation, 6(2):233–262, 1996.
6. A. R. Haas. The case for domain-specific frame axioms. In F. M. Brown, editor,

The Frame Problem in Artificial Intelligence, pages 343–348, Los Altos, CA, 1987.
7. S. Hölldobler and J. Schneeberger. A new deductive approach to planning. New

Generation Computing, 8:225–244, 1990.
8. S. Hölldobler and M. Thielscher. Computing change and specificity with equational

logic programs. Annals of Mathematics and Artif. Intell., 14(1):99–133, 1995.
9. H. Khalil. Formalizing the effects of actions in first order logic. Master’s thesis,

Dept. of Computer Science, Darmstadt University of Technology, 1996.
10. R. Kowalski. Logic for Problem Solving. Elsevier, 1979.
11. M. Masseron, C. Tollu, and J. Vauzielles. Generating plans in linear logic I. Actions

as proofs. J. of Theoretical Computer Science, 113:349–370, 1993.
12. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint

of artificial intelligence. Machine Intell., 4:463–502, 1969.
13. R. Reiter. The frame problem in the situation calculus: A simple solution (some-

times) and a completeness result for goal regression. In V. Lifschitz, editor, Arti-
ficial Intelligence and Mathematical Theory of Computation, pages 359–380, 1991.

14. M. Thielscher. Ramification and causality. Artif. Intell., 89(1–2):317–364, 1997.

