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Abstract. Plan constraints are the most recent addition to the ever growing Plan-
ning Domain Definition Language (PDDL). In this work we consider the PDDL
fragment consisting of basic ADL extended by plan constraints. We provide a
purely declarative semantics for this fragment by interpreting it in the basic Fluent
Calculus. We thus obtain a logical semantics for this fragment of PDDL instead
of the usual meta-theoretical state transition semantics.

1 Introduction

Research in specialized planning languages originates with STRIPS [1]. Over the years
this basic language has seen numerous extensions: first to the language ADL [2] and
then to PDDL [3], the ever growing language that underlies the annual planning com-
petitions. The new feature in the most recent version PDDL 3.0 [4] are plan constraints
that allow to express both requirements and preferences with regard to plan quality.

Traditionally the semantics of planning languages is given in terms of state transi-
tions. There also is a parallel line of research that seeks to provide a logical semantics
for planning languages. Such complementary semantics exist for STRIPS [1, 5] and
ADL [6, 7]. The recent works [8, 9] aim at successively covering all of the semantics of
PDDL 2.1 [10].

In this work we provide a purely declarative semantics for the fragment of PDDL
3.0 consisting of basic ADL and plan constraints. We do so by interpreting this fragment
in the basic Fluent Calculus. The resulting system is both natural and expressive.

2 Preliminaries

In this section we recall the theoretical basis upon which our work rests. We start by
recalling the basics of Fluent Calculus. Then we identify the fragment of PDDL under
consideration — ADL with plan constraints.

2.1 Fluent Calculus

The Fluent Calculus [11] can be seen as a modern extension of the classical Situation
Calculus [12]. One of the major differences between Fluent and Situation Calculus is



2 Conrad Drescher and Michael Thielscher

that the former is action-centered while the latter is fluent-centered — at least in the
popular version based on Reiter’s successor state axioms [12]. That is to say, in Fluent
Calculus we specify for eachaction the effects it has while a successor state axiom
specifies for afluentby which actions it is affected. Thus Fluent Calculus arguably is
closer to current planning languages, which are also action-centered.

Our work uses a reformulation of the basic Fluent Calculus in a recently proposed
unifying action calculus (UAC) [13] that allows us to keep the technical overhead to a
minimum. A comprehensive treatment of the classical Fluent Calculus — which also
captures the notion of state, i.e. of collections of fluents — can be found in [11].

Unifying Action Calculus The UAC has been introduced with the stated goal of
bundling research efforts in the reasoning about action community; it has been shown
to encompass the Event, Fluent, and Situation Calculus, as well as planning languages
such as ADL.

Formally, the UAC is based on many-sorted first order logic with equality and the
four sortsTIME, FLUENT, OBJECT, andACTION.1 Fluents are reified, i.e. modeled as
terms, and the predicate Holds: FLUENT×TIME is used to indicate whether a particular
fluent evaluates to true at a particular time. For axiomatizing action preconditions the
predicate Poss: ACTION×TIME×TIME is used.2 There are only finitely many function
symbols into sortsFLUENT andACTION, respectively.

The UAC abstracts from a particular time structure. It can be instantiated, e.g., by
the natural numbers that serve as the linear time structure of the Event Calculus, or by
situations that provide the branching time structure of the Fluent and Situation Calculus.

Fluent Calculus Domains Fluent Calculus domains are axiomatized in the UAC with
the help of the following formula types:

Definition 1 (Basic Formulas).
For s̄, a sequence of variables of sortTIME, a state formulaΦ[s̄ ] in s̄ is a first-order

formula with free variables̄s and where

– for each occurrence of Holds(f, s) we haves ∈ s̄;
– predicate Poss does not occur.

LetA be a function into sortACTION.

– A domain constraintis a state formula ins:

(∀s)δ[s].

– A precondition axiomis of the form

(∀)Poss(A(x̄), s1, s2) ≡ πA[s1] ∧ s2 = Do(A(x̄), s1),

whereπA[s1] is a state formula ins1 with free variables amongs1, x̄.3

1 By convention variable symbolss, f , x, anda are used for terms of sortTIME, FLUENT,
OBJECT, andACTION, respectively.

2 Having two arguments of sortTIME allows to model actions with duration or indirect effects.
3 By (∀)ϕ we denote the universal closure ofϕ.
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– Aneffect axiomis of the form

(∀)Poss(A(x̄), s, t) ⊃∨
k

(∃ȳk)(Φk[s] ∧ (∀f) [
∨
i

f = fki ∨ Holds(f, s) ∧
∧
j

f 6= gkj ≡ Holds(f, t)])

Thefki andgkj are fluent terms with variables amongx̄, ȳk and denote the positive
and negative effects, respectively. TheΦk are state formulas ins with free variables
amongs, x̄, ȳ and represent conditions under which the effects materialize. Positive
and negative action effects are subject to a natural consistency assumption, namely,
we require that ∧

i

∧
j

fki 6= gkj

holds for allk = 1, . . . , n.
– An initial state axiomis a state formula in the least elementS0 of sortTIME.
– Foundational axiomsΣaux contain a first order axiomatization of situations (the

underlying time structure). It is based on two functions into sortTIME; the constant
S0 denotes the initial situation and the function Do of sortACTION× TIME is used
to construct successor situations:

(∀)Do(a1, s1) = Do(a2, s2) ≡ a1 = a2 ∧ s1 = s2

(∀)¬s @ S0

(∀)s @ Do(a, s′) ≡ s v s′

φ[S0] ∧ (∀s, a)(φ[s] ⊃ φ[Do(a, s)]) ⊃ (∀s′)φ[s′]

where in the axiom scheme on the last lineφ ranges over all state formulas ins,
with only s free. Foundational axiomsΣaux also contain unique name axioms for
sortsACTION andFLUENT; that is, an axiom of the form

(∀x̄∀ȳ)
∧

i=1..n−1

∧
j=i+1..n

Ti(x̄) 6= Tj(ȳ) ∧
∧

i=1..n

Ti(x̄) = Ti(ȳ) ⊃ x̄ = ȳ,

where theTi range over all function symbols of the respective sorts. For dealing
with arithmetic later on we introduce the sortNUMBER and include an axiomati-
zation of Presburger arithmetic.

Definition 2 (Domain Axiomatizations).A domain axiomatizationΣ consists of a set
ΣPoss of precondition-, and a setΣEffects of effect axioms, each containing one axiom
for every function into sortACTION, along with a finite set of domain constraintsΣdc,
a finite set of initial state axiomsΣInit , and foundational axiomsΣaux.

Let us illustrate all the introduced notions by an axiomatization of the familiar
blocks world domain:
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Example 1 (Blocks World Axiomatization).The preconditionof moving a block from
some locationx to locationy is expressed by the following axiom:

(∀)Poss(Move(block1, x, y), s1, s2) ≡
Holds(On(block1, x), s1) ∧ x 6= y ∧
(¬∃block2)Holds(On(block2,block1), s1) ∧
(¬∃block3)(Holds(On(block3, y), s1) ∨ y = Table) ∧
s2 = Do(Move(block1, x, y), s1).

Theeffectsof moving a block are axiomatized as follows:

(∀)Poss(Move(block1, x, y), s1, s2) ⊃
[(∀f)(f = On(block1, y) ∨ (Holds(f, s1) ∧ f 6= On(block1, x))) ≡ Holds(f, s2)].

The following domain constraintexpresses the fact that every block is situated at ex-
actly one location:4

(∃!y)Holds(On(x, y), s).

Finally, suppose that the following axiom describes what is known about the initial
situation:

(∀f)Holds(f, S0) ≡ f = On(Block1,Table) ∨ f = On(Block2,Table).

It can be easily verified that this axiomatization, together with the unique name axioms
for the blocks and the table, entails

Holds(On(Block2,Block1),Do(Move(Block2,Table,Block1), S0)).

3 ADL with Plan Constraints

In this section we introduce the fragment of PDDL 3.0 that we consider in this work
— ADL with plan constraints. For a general introduction to action languages based on
state transition semantics the reader is referred to [14].

3.1 ADL

ADL has originally been introduced to cover the expressive middle-ground between
STRIPS and the Situation Calculus. It still plays an important role in the sequential,
deterministic part of the international planning competitions.

Definition 3 (ADL Signature). An ADL signature is based on a finite set of types,
where types may also be defined as unions of other types. The basic typeOBJECT is
always included. The signature then contains a finite set of typed constantsC and typed
variablesV. It also includes a finite set of typed fluentsF of arity ≥ 0 and likewise a
finite set of typed operator namesA with associated arity.

4 By ∃!xφ[x] we abbreviate the first order formula expressing that there is exactly onex such
thatφ[x].
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Planning problems are expressed in ADL with the help of the following constructs:

Definition 4 (Basic ADL Constructs).

– A state formulaφ[x̄] is a first order formula with free variables amongx̄ containing
as atoms only fluentsF (t̄) and equalities̄t1 = t̄2.

– An effect formula is the universal closure of a first order conjunction built from the
following inductively defined admissible components:
• fluent literalsF (t̄) and¬F (t̄) are admissible;
• if φ andψ are admissible then the conjunctionφ∧ψ and the universally quan-

tified (∀x̄)φ are;
• if φ is a state formula andψ is admissible with no occurrence of⇒ or ∀ then
φ⇒ ψ is.

– For an operator nameA ∈ A theADL operatorA is a triple 〈x̄, πA, εA〉, where
• the variables̄x denote the operator’s typedparameters(possibly zero);
• thestate formulaπA[x̄] denotes the operator’s precondition; and
• theeffect formulaεA[x̄] denotes the operator’s effects.

The⇒ construct is not to be confused with implication; its purpose is to relate states
and successor states. The definition ensures that to the right of the⇒ construct there
is always a conjunction of fluent literals. We proceed by defining a normal form for
ADL operators; the informed reader should note that this definition deviates from the
one used in [9, 13].

Definition 5 (Operator Normal Form). An ADL operator A is innormal formif its
effect formula has the following syntactic form:∨

k

(∀x̄k)φk[x̄k] ⇒ δk[x̄k]

whereφk[x̄k] is a state formula with free variables amongx̄k andδk[x̄k] is a conjunc-
tion of fluent literals with free variables amonḡxk. Further, we require that allφk are
mutually exclusive.

The following proposition states that we lose nothing by making this operator nor-
mal form mandatory:

Proposition 1 (Operator Normal Form). For every effect formula there exists an
equivalent effect formula in normal form.

Proof (Sketch).The key observation is that we can always replace e.g.> ⇒ δ1∧φ⇒ δ2
by the formula(φ⇒ δ1 ∧ δ2) ∨ (¬φ⇒ δ1). ut

Observe that rewriting an operator to normal form may introduce an exponential
blowup.

Example 2 (Blocks World ADL Operator).The following is an ADL operator in normal
form for the action Move(block, x, y) in the blocks world:

Precondition: On(block1, x) ∧ x 6= y ∧
(¬∃block2)On(block2,block1)∧
(¬∃block3)(On(block3, y) ∨ y = Table)

Effects:> ⇒ On(block1, x) ∧ ¬On(block1, y)
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Definition 6 (ADL Problem Descriptions). An ADL planning problem consists of :

– an ADL operator in normal form for each operator name;
– an initial state specification in the form of a conjunction of ground fluent literals;

and
– a goal description in the form of a closed state formula.

The following is an ADL problem description analogous to the Fluent Calculus
domain from example 1:

Example 3 (ADL Blocks World Description).The only operator shall be as given in ex-
ample 2 above. Let the initial state be specified by On(Block1,Table)∧On(Block1,Table)
and the goal consist of stacking up all blocks, axiomatized as(∃!block)On(block,Table).

ADL admits both open and closed world reasoning – in the open world case the
truth-value of fluent literals may be unknown. The existing state transition semantics
for ADL from [10], however, is based on the closed world assumption. In this setting
the initial state specification is a conjunction of ground fluent atoms. This specification
is completed by adding the negation of every ground fluent atom that does not yet
occur in the initial state specification, so that eventually every ground fluent atom of the
language or its negation occurs in the initial state specification.

The semantics of ADL also makes strong assumptions about the meaning of the
constantsC: no two constants denote the same object (uniqueness of names) and all
existing objects are named by some constant. This latter requirement allows for sub-
stitutional quantification: e.g. a subformula(∀x)P (x) can equivalently be written as∧

Ci
P (Ci) where theCi are all the constants of the domain. Thus, although ADL uses

the language of first order logic it does not employ first order semantics.
A plan for an ADL planning problem is a ground sequence〈A1(t̄1), . . . , An(t̄n)〉

of operatorsAi with constants̄ti substituted for the parametersx̄i. A plan is a solution
for the planning problem iff the state obtained by sequentially applying the operators
Ai(t̄i) to the initial state yields a state satisfying the goal description.

3.2 Plan Constraints

Plan constraints allow to express both hard and soft constraints on the computed plans:
“hard” means that a constrainthasto be satisfied while “soft” means that itshould, if
possible.

State Trajectory Constraints State trajectory constraints are the hard constraints.
They allow to express that some property has to hold throughout/at some point/etc.
in the plan.

Formally, state trajectory constraints are handled by introducing modalities that
can be used in goal descriptions. The available modalities areat end , always ,
sometime , at-most-once , sometime-after , andsometime-before . We
omit the modalitieswithin andalways-within since these require an explicit no-
tion of time that is not supported by the ADL subset of PDDL. The modalities may
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not be nested. They can be combined by logical conjunction and be universally quan-
tified from the outside. Universally quantified constraints only serve as shorthand for
the equivalent ground formula.5 For example we can enforce that a propertyφ holds
throughout a plan that achieves the goalψ by writingψ ∧ always φ.

The original semantics for state trajectory constraints in PDDL has been defined in
terms of sequences of state-timepoint pairs〈(S0, 0), (S1, t1), . . . , (Sn, tn)〉, where the
Si denote all the states that occur during plan execution in chronological order. In the
case of ADL this can be simplified to sequences of states〈S0, . . . , Sn〉.

Definition 7 (Semantics of Temporal Modalities).The semantics of the temporal
modalities is then as follows:

〈S0, . . . , Sn〉 � φ iff Sn � φ
〈S0, . . . , Sn〉 � at end φ iff Sn � φ
〈S0, . . . , Sn〉 � always φ iff ∀i : 0 ≤ i ≤ n : Si � φ
〈S0, . . . , Sn〉 � sometime φ iff ∃i : 0 ≤ i ≤ n : Si � φ
〈S0, . . . , Sn〉 � at-most-once φ iff ∀i : 0 ≤ i ≤ n : if Si � φ then

¬∃j, k : i < j < k ≤ n :
Sj � ¬φ andSk � φ

〈S0, . . . , Sn〉 � sometime-after φ ψ iff ∃i : 0 ≤ i ≤ n : Si � φ implies
∃j : i < j ≤ n : Sj � ψ

〈S0, . . . , Sn〉 � sometime-before φ ψ iff ∃i : 0 ≤ i ≤ n : Si � φ implies
∃j : 0 ≤ j < i : Sj � ψ

The expressionat-most-once φ prohibits thatφ changes its truth-value to false
and back to true in the course of a plan. A constraint using thealways modality
might conflict with the initial state specification; we tacitly assume that initial state
specificationsφ do not violate any constraints. State trajectory constraints can appear
both in the planning problem file and in the action domain file [4].

PreferencesPreferences are the soft constraints, i.e. properties that are desired but not
required to hold. Instead of an elaborate qualitative model of preferences PDDL adopts
a quantitative model.

The syntax for ADL preferences is

preference φ,

whereφ denotes a state formula possibly containing state trajectory constraints.6 As
in the case of state trajectory constraints preferences may not be nested, and only be
combined by logical conjunction. Again, formulas of the form

(∀x̄)preference φ(x̄)

may be used as shorthand for the logical equivalent conjunction∧
t̄

preference φ(t̄)

5 Recall that ADL admits substitutional quantification.
6 But note that state trajectory constraints may not contain preferences.
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wheret̄ denotes all possible ground substitutions for the variablesx̄. ADL preferences
may occur in goals and in operator preconditions. In the latter case they must not contain
the state trajectory modalities.

The semantics of preferences is simple and intuitive. A preference simply always
evaluates to true. However, a preference can be satisfied or violated. Let〈S0, . . . , Sn〉
denote the sequence of states corresponding to a plan. If the precondition of the oper-
ator applied to stateSi contains a preferencepreference φ, then the preference is
violated if 〈Si〉 � ¬φ. Likewise a preference occurring in the planning goal is violated
if 〈S0, . . . , Sn〉 � ¬φ. An overall penalty is assigned to the plan and equals the sum of

– the number ofpreference φ expressions from operator preconditions that have
been violated; and

– the number ofpreference φ expressions from the goal description that have
been violated.

The optimal plan in the setting of ADL with plan constraints is the plan with the
minimal number of preferences violated. It is worth pointing out that the notion of
optimality crucially depends on complete information — in the case of open world
ADL it may be impossible to identify whether a plan is optimal.

4 The Fluent Calculus Semantics for ADL with Plan Constraints

The Fluent Calculus semantics for ADL with plan constraints is obtained by correctly
embedding the latter into the former.

4.1 Scope of the ADL Constraints

First off we have to decide whether the constraints from the action domain file and the
planning problem file should be treated alike or not. Quoting from [4], “constraints (...)
specified in the action domain file (...) might be seen as safety conditions (...) that must
alway be respected in any valid plan for the domain (...).” This seems to suggest that
these constraints are intended to serve a purpose similar to that of domain constraints in
the Fluent Calculus. However, quoting from [15] constraints from the planning problem
file “(...) are added to those (if any) in the domain file and together they represent a
collection of goals that must be satisfied by any valid plan.”. So we adopt the viewpoint
that the constraints apply only to the planning goal and not to the action domain as a
whole. Let us illustrate the issue at hand by a small example.

Example 4 (Scope of ADL Constraints).Assume that in the ADL blocks world domain
from example 3 the constraintalways On(Block1,Table) is part of the action domain
file. LetΣ denote the Fluent Calculus axiomatization of this domain from example 1. If
we extendΣ by the domain constraint(∀s)Holds(On(Block1,Table), s) the resulting
theory is inconsistent. Instead we extend the reasoning problemΣ � (∃s)φ(s) to the
additionally qualifiedΣ � (∃s)φ(s) ∧ ¬(∃s′)s′ v s ∧ ¬Holds(On(Block1,Table), s′)
— whereφ denotes the goal description.
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4.2 The Mapping

We are finally ready to define the mapping:

A Corresponding Language We start by defining a Fluent Calculus signature based
on the ADL signature. In order to simplify the presentation we will assume that ADL
problems only include the single typeOBJECT. Our results can easily be reformulated
in an appropriately sorted version of the Fluent Calculus, so that this is without loss
of generality. Given an ADL problem based on a signature with constantsC, operator
namesA, and fluent predicatesF we create a Fluent Calculus signature with corre-
sponding constantsC′, functions into sortACTION A′, and functions into sortFLUENT

F ′. In order to deal with preferences we introduce the additional sortNUMBER and
extend the foundational axiomsΣaux by an axiomatization of the natural numbers.

Based on this signature we include unique-name-axioms for sortOBJECT. Likewise
we include a domain closure axiom for sortOBJECT, that is an axiom of the form:

(∀x)
∨

i=1..n

x = ci,

wherex is a variable of sortOBJECTand theci denote all object constants of the signa-
ture. For dealing with preferences we introduce a special fluent, Penalty/1, that takes a
natural number as argument.

The Initial State Mapping ADL initial state specificationsφ to Fluent Calculus ini-
tial state axiomsφ′[S0] is done in the obvious way: replace every fluentF (x̄) in φ
by Holds(F ′(x̄), S0). Below for an ADL state formulaψ by ψ′[s] we will denote the
corresponding Fluent Calculus state formula obtained in this fashion for an arbitrary
situations. Finally we include Holds(Penalty(0), S0) into φ[S0]. The purpose of this
fluent will be to accumulate the number of preferences violated.

The Operators Mapping ADL operators to Fluent Calculus consists of creating corre-
sponding precondition and effect axioms. First we introduce a bit of notation. LetA be
an operator with operator preconditionπA. Without loss of generality we assume that
πA is of the formπA1 ∧ πA2 whereπA1 is an ordinary ADL precondition andπA2 is a
conjunction of preferences. Then denote

– byΠApref the set consisting of the logical partsψi of the preferencespreference ψi

from πA2 ; and
– by ΠApref-cases the set of pairs〈

∧
i(¬)ψi, nj〉 where eachψi ∈ ΠApref andnj ∈ N

equals the number of¬ψi that occur in
∧

i(¬)ψi whereψi ∈ ΠApref.

That is to say,nj denotes the number of preferences that are violated if
∧

i(¬)ψi holds.
There are2i such pairs inΠApref-casesand by construction these pairs are mutually exclu-
sive.

For every ADL operatorA = 〈x̄, πA, εA〉 from the planning problem we define the
action precondition axiom

(∀x̄, s)Poss(A(x̄), s1, s2) ≡ π′A1
∧ s2 = Do(A(x̄), s).
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Recall that we assumeεA to be of the form
∨

k(∀x̄k)φ[x̄k] ⇒ δ[x̄k]. By ∆+ (∆−)
denote the set of positive (negative) literals fromδ[x̄k]. Define the corresponding Fluent
Calculus effect axiom as:

(∀)Poss(A(x̄), s1, s2) ⊃∨
ki

φ′[x̄k, s1] ∧ γ′i[s1] ∧ Holds(Penalty(n1), s1) ∧ n2 = n1 + ni ∧

J(∀f)[f = Penalty(n2) ∨
∨

F (x̄)∈∆+

f = F (ȳ)]∨

[Holds(f, s1) ∧ f 6= Penalty(n1) ∧
∧

F (x̄)∈∆−

f 6= F (x̄)]

≡ Holds(f, s2)K,

where〈γi, ni〉 ∈ ΠApref-cases. Each of theki disjuncts states that, if prior to action appli-
cation

– the accumulated penalty equatesn1; and
– casek of the ADL operator applies,

then after action application a fluentf holds if-and-only if

– f is equal to Penalty(n2) wheren2 is the new accumulated penalty; or
– f is a positive effect of the ADL operator; or
– f does not equal Penalty(n1); or
– f held prior to action application and is not a negative effect of the ADL operator.

Let us stress that all theki disjuncts are mutually exclusive. This completes the defini-
tion of a Fluent Calculus domainΣ corresponding to an ADL planning problem.

The Goal Descriptions We now turn to goal descriptions. These will be mapped to
Fluent Calculus queries that will be evaluated with regard to the domain axiomatization
Σ. If the ADL goal descriptionφ does not contain any constraints our task is easy: we
simply ask whether

Σ � (∃s, n)φ′[s] ∧ Holds(Penalty(n), s)∧
(¬∃s′, n′)φ′[s′] ∧ Holds(Penalty(n′), s′) ∧ n′ < n.

(1)

We proceed by extending this mapping to goal descriptions containing constraints.
Without loss of generality we can assume that the goal descriptionφ is of the form
φ1 ∧ φ2 ∧ φ3, where

– φ1 is an ordinary ADL goal;
– φ2 is a conjunction of state trajectory constraints; and
– φ3 is a conjunction of preferences.

The corresponding Fluent Calculus query is of the form

(∃s, n, nfinal)ψ1[s, n] ∧ ψ2[s] ∧ ψ3[s, n, nfinal],

whereψ1[s, n]



A Fluent Calculus Semantics for ADL with Plan Constraints 11

– is the formula from (1) if there are no preferencesφ3 in the goal description;
– is (∃s, n)φ′[s] ∧ Holds(Penalty(n), s) otherwise.

The mapping from the hard state trajectory constraintsφ2 to ψ2[s] can be obtained
from the base cases depicted in figure 1.

ADL constraint Fluent Calculus subquery

at end ψ ψ′[s]

always ψ (∀s1)s1 v s ⊃ ψ′[s1]

sometime ψ (∃s1)s1 v s ∧ ψ′[s1]

at-most-once ψ (∃s1)s1 v s ∧ ψ′[s1] ⊃
¬(∃s2, s3)s1 v s2 ∧ s2 v s3 ∧ s3 v s ∧ ¬ψ′[s2] ∧ ψ′[s3]

sometime-after ψ1 ψ2 (∃s1)s1 v s ∧ ψ′
1[s1] ⊃ (∃s2)s1 v s2 ∧ s2 v s ∧ ψ′

2[s2]

sometime-before ψ1 ψ2 (∃s1)s1 v s ∧ ψ′
1[s1] ⊃ (∃s2)s2 v s1 ∧ ψ′

2[s2]

Fig. 1.Mapping State Trajectory Constraints to Fluent Calculus.

For the mapping from the preferencesφ3 =
∧

k preference ϕk in the goal de-
scription to the Fluent Calculus subqueryψ3[s, n, nfinal] we introduce again some nota-
tion: denote byΦcasesthe set of pairs〈

∧
k(¬)ϕk, nk〉 wherenk ∈ N equals the number

of ¬ϕk that occur in
∧

k(¬)ϕk. Without loss of generality we assume thatϕk is of the
form ϕk1 ∧ ϕk2 , whereϕk1 is an ADL state formula andϕk2 is a conjunction of state
trajectory constraints. We mapϕk1 to ϕ′k1

[s] andϕk2 to ϕ∗k2
[s] — whereϕ∗k2

[s] is ob-
tained analogously to the mapping fromφ2 to ψ2[s]. With a little abuse of notation we
denoteϕ′k1

[s] ∧ ϕ∗k2
[s] byϕ′k[s].

We now define the Fluent Calculus subqueryψ3[s, n, n′] corresponding toφ3 to be∧
i

∧
k

(¬)ϕ′k[s] ⊃ nfinal = n+ ni)∧

(¬∃s′, n′, n′final)ψ1[s′, n′] ∧ ψ2[s′]∧∧
i

∧
k

(¬)ϕ′k[s′] ⊃ n′final = n′ + ni) ∧ n′final < nfinal,

where〈
∧

k(¬)ϕk, ni〉 ∈ Φcases. This subquery ensures plan optimality by requiring that

– nfinal is the sum of
• the penaltyn that stems from violated preferences in action preconditions and
• the numberni of preferencesϕk from the goal description violated bys; and

– there does not exists a situations′ satisfying the goal descriptionψ1 and the hard
plan constraintsψ2 with a smaller final penalty.

4.3 Correctness of the Translation

We have defined a mapping from ADL planning problems with plan constraints to Flu-
ent Calculus domain axiomatizationsΣ and Fluent Calculus queries(∃s)φ[s]. We are
now ready to state our main result:
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Theorem 1 (Correctness of the Translation).Let the Fluent Calculus domainΣ and
query (∃s)φ[s] be obtained from an ADL planning problem via our mapping. A se-
quence〈A1(t̄1), . . . , An(t̄n)〉 of ground ADL operatorsAi(t̄i) is an optimal solution
for the planning problem if and only ifΣ � φ[Do(An(t̄n),Do(An−1(t̄n−1), . . . S0) . . .)].

Proof (Sketch).The full proof of this theorem is quite tedious and therefore omitted.
However, in order to provide some evidence for the correctness of the theorem, we point
out that our embedding is very generic, in the sense that the Fluent Calculus domain
axiomatizationΣ and the ADL planning problem correspond axiom-by-axiom. ut

5 Summary

5.1 Related Work

The series of works [7–9] successively provided logical semantics for more and more
expressive fragments of PDDL by interpreting these in a recently proposed first order
modal variant of the Situation Calculus [16]. None of these works covers plan con-
straints yet. Many ontological features of PDDL like e.g. concurrent actions and actions
with duration are not present in the basic Situation Calculus, however. Thus, in order to
obtain a mapping from PDDL fragments to Situation Calculus the underlying logic had
to be considerably extended. For Fluent Calculus such extensions have first been intro-
duced in [17]. Most likely these ideas can be adapted in order to obtain Fluent Calculus
semantics for equally expressive fragments of PDDL as those covered in [7–9].

Using a mapping defined in [13] we can obtain Situation Calculus axiomatizations
corresponding to their Fluent Calculus counterparts. This immediately yields a Situation
Calculus semantics for ADL with plan constraints.

Instead of plan constraints costs associated to actions have been introduced for the
sequential deterministic part of this year’s planning competition at ICAPS-08.7 This
system can also very naturally be interpreted in the Fluent Calculus; plan costs can be
computed by summing over situation terms.

Our result identifies a fragment of the Fluent Calculus for which reasoning can be
based on efficient specialized planning software instead of the more general constraint
logic programming implementation Flux [11]. A tight integration may be achieved by
adopting ideas from [18], where planning problems have efficiently been encoded and
solved in CLP(FD). Note that reversing our mapping does not introduce an additional
blowup as opposed to compiling operators to normal form.

5.2 Conclusion

We have given a purely declarative semantics for ADL with plan constraints by inter-
preting it in the basic Fluent Calculus. Our semantics is logical, as opposed to the only
previously available semantics, which was based on state transitions. Along the way we
have clarified the role played by state trajectory constraints by determining their scope.
The resulting system is expressive and — since both PDDL and the Fluent Calculus are
action-centered formalisms — very natural.

7 Seehttp://ipc.informatik.uni-freiburg.de/ .
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