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Abstract. SLDENF-resolution combines the negation-as-failure principle for logic programs involv- 
ing negation, and SLDE-resolution for logic programs with an underlying equational theory. Recent- 
ly, J. Shepherdson proved the soundness of this resolution principle wrt. an extended completion 
semantics. In this note, we investigate the particular problems of obtaining completeness which 
are caused by adding equational theories. As a concrete result we show to what extent the classical 
result for hierarchical and allowed nonequational programs can be generalized. 
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1. In troduc t ion  

The notion of equality undoubtedly plays a fundamental role in most areas of 
mathematics and is therefore widely used, especially in mathematical applications 
of automated deduction. It emerged early that the simplest way of treating equal- 
ity in automated theorem proving, namely, adding the standard equality axioms 
to the premises, is intractable in practice. Following a vision of Robinson [14], 
Plotkin [13] showed that the presence of equational theories can adequately and 
much more efficiently be modeled by integrating equational theories into the 
unification procedure. Plotkin's pioneering work was the signal for the formation 
of a subfield in automated deduction called unification theory, which has estab- 
lished itself today and is still growing (a survey is given in [22] or [3], e.g.). 
Among others, the field of logic programming profits from these developments 
insofar as the standard SLD-resolution for logic programs was also extended to 
handle equational theories. The resulting computation mechanism, called SLDE- 
resolution, was developed in the past decade [9, 5, 6]. Though less expressive 
than a general constraint-based approach [10], incorporating equational theories 
into logic programs offers the advantage of being a straightforward extension 
of standard logic programming, thus allowing for adapting many concepts and 
results from the special case (see [3] for a more detailed comparison). 

Meanwhile, but independently, semantics for the treatment of negation in 
logic programs were developed and thoroughly analyzed. The first basic idea was 
introduced in [4], namely, the notion of completion as a uniform semantics for 
the negation-as-failure principle, where negation is regarded as failure to prove. 
Since then, most work concerning the so-called SLDNF-resolution concentrated 
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on the one hand on aspects of consistency by defining classes of programs that 
have a consistent completion, and on the other hand on completeness of this 
computation mechanism (e.g., [8, 16, 18, 1, 15, 23]; a survey is given in [2]). 

A first step towards the combination of proving with equality and employ- 
ing negation-as-failure was made in [9], where the concept of failure in case of 
equational theories was investigated by extending the notion of Clark's comple- 
tion semantics [4] to handle equality. However, this work concentrated on failure 
in so-called definite logic programs, where no negation occurs in the program 
clauses. Recently, resolution in equational logic programs involving negation was 
investigated in [20], where Shepherdson proved the soundness of what we call 
SLDENF-resolution wrt. this extended completion semantics. In this note, we 
investigate the particular problems of obtaining completeness which are caused 
by the additional equational theories. As a concrete result we show to what extent 
the classical result for hierarchical and allowed nonequational programs can be 
generalized. 

In the following section, we briefly repeat the fundamental concepts of equa- 
tional logic programs with negation, some important notions from unification 
theory, and the extended completion semantics required in case of equational 
theories. We also define SLDENF-resolution (in a slightly modified way com- 
pared with [20]). In Section 3, we discuss the obstacles for a completeness result 
that are caused by additional equational theories. As a consequence, we estab- 
lish a completeness result for hierarchical and allowed equational logic programs 
provided the underlying equational theory meets two important restrictions. 

2. Foundations 

2.1. NORMAL EQUATIONAL LOGIC PROGRAMS 

We adopt the universal language approach of [11] in this paper; that is, we 
assume the programs and goal clauses under consideration be built up from a 
countable set of predicates and functions given once and forever. The set of 
predicate symbols should include the special equality predicate - .  A normal 
program clause is an expression 

A +-- B I , . . . , B t ,  

where the head A is an atom, but not an instance of the equality predicate, and 
the elements of the body B1,. . . ,  Bt are literals, possibly the equality predicate 
being among them (l /> 0). If p is the predicate symbol occurring in the head 
of a clause, this clause is said to define p. The reason for restricting the head 
of a program clause to nonequational atoms is that equality relations are defined 
separately: A normal equational logic program (P, E) consists of a finite set P 
of normal program clauses along with an equational theory E. Such a theory 
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consists of a number of  axioms s - t that are implicitly assumed to be universally 
closed. For example, the equational theory 

E c  = {h(x,  y) - h(y,  x)} (1) 

describes the law of  commutativity for the function h. The following classification 
is required later in this paper: An equational theory E is called regular iff for 
each s - t E E the set of variables occurring in s equals the set of  variables 
occurring in t. For instance, E c  is regular, while 

Eo = {h(x ,  0) - 0} (2) 

describing a neutralizing element 0 is not.l 
A program (P, E)  is called hierarchical [4, 12] if we can find a level mapping 

that assigns a natural number to each predicate symbol such that the following 
holds for each clause in P:  The level of the predicate symbol occurring in the 
head is greater than the level of  each predicate occurring in the body. 

2.2. UNIFICATION THEORY 

By 12ar(e) we denote the variables occurring in the expression e. The restriction 
of a substitution a to a set 1; of variables - written alv  - is defined by x(crlv ) = 
xo" if x E 12 and x(crlv ) = x otherwise. Given an equational theory E,  by 
E ~ �9 we denote that the formula �9 is a logical consequence of  the axioms 
in E plus the standard axioms of equality, viz. V(x - x) (reflexivity), V(x - 
y -4 y - x)  (symmetry), V(x - y A y  " - -  z -4 x -- z) (transitivity), V(x~ - 
y --+ f ( x l , . . . ,  x i , . . . ,  Xn) - f ( x l , . . . ,  i f , . . . ,  xn))  (substi tut ivi tyforfunctions),  
V(x~ - y --+ [ p ( x l , . . . , x z , . . . , X n )  ++ p ( x l , . . . , y , . . . , x n ) ] )  (substitutivity f o r  
predicates). We call two terms s and t equal wrt. E - written s = E  t - iff 
E ~ s - t .  

A substitution a is called an E-unifier of s and t iff so" : E t a .  E.g., {x 
b, y F-+ a} is an Ec-unif ier  of h(x,  a) and h(y,  b) (cf. (1)). An E-unification 
problem consists of two terms s and t and is the problem of establishing whether 
there exists an E-unifier of s and t, i.e., whether s and t are E-unifiable. The 
set of  all E-unifiers of  s and t is denoted by UE(s, t). 

As usual, we can define a subsumption ordering on substitutions: Two substi- 
tutions cr and 0 are E-equivalent  wrt. a set 12 of variables - written (or : E  0)IV - 
iff Vx E 12. xcr = E  xO. A substitution ~r is called more general than a substitution 
0 wrt. a set 12 of variables - written (or <~E O)[V - iff there is a substitution "r 

i For sake of clarity, our definitlon differs from the one used in [20] insofar as we adopt the 
(restricted) notion of equational theories used in unification theory instead of including the case 
where equality is defined through (more general) Horn formulas based on the equality predicate. 
We chose this notion because it allows to adopt the concept of regularity, which is of importance 
in our analysis. However, our results are also valid in the general setting where the notion of a 
regular theory is replaced by the general property that whenever two terms are equal under the 
theory, they contain an identical set of variables. 
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such that (aT =E O)lv. A set cUE(s, t) is then called a complete set of E-unifiers 
iff cUE(s, t) C_ UE(S, t) (correctness) and VO E UE(s, t). 3~r E cUE(s, t). (~r <<.E 
O)[var(s)UVar(t) (completeness). A set #UE(s,t) is called a minimal set of E- 
unifiers iff it is complete and Vcr, 0 E #UE(s, t)[(a <~E O)lvar(s)uVar(t) ~ ~ = O] 
(minimally). The unification problem wrt. an equational theory E is called fini- 
tary if for any pair of terms s and t a set #UE(s, t) exists that contains at most 
finitely many elements. It is called infinitary if for any pair of terms s and t a 
set #UE(s, t) exists and there are at least two terms s and t such that there is no 
finite #UE(s, t). For instance, E c  is known to be finitary [21]; an example for 
an infinitary theory is considered in Section 2. 

The notions of E-unifier, set of E-unifiers, etc. are extended to atoms in the 
obvious way. An E-unification procedure is a procedure that takes two terms s 
and t (resp. two atoms A and B) as input and generates a subset of UE(s,t) 
(resp. UE(A, B)). It is called complete iff it generates a complete set of unifiers 
and minimal iff it generates a minimal set of unifiers. 

2.3. THE COMPLETION SEMANTICS 

Following the direction of [9] and [20], we use a generalization of Clark's com- 
pletion procedure [4] to define a semantics of normal equational programs. The 
idea is to consider the set of program clauses that define a predicate p as a 
complete description of the positive information regarding p. Formally, the com- 
pletion procedure applied to a set of clauses P is as follows. 

DEFINITION 1. Let p( t l , . . . ,  tn) +- L1, . . . ,  Lm be a program clause in P,  and 
let ~ denote a sequence of all variables that occur in this clause. Let Z l , . . . ,  zn 
be pairwise different variables not in ~. Then the rectified form of this clause is 
the formula 

p(x l , . . .  ,xn) +-- 3~(xl "-- tl A ' "  A xn -- tn A LI A "" A Lm). 

Let p be an arbitrary predicate symbol and 

p(xl , . . . ,Xn)  +'- D1 

Dk 

be all clauses in P defining p in rectified form (k t> 0). The completed definition 
of p in P is the formula 

v . . .  v Dk). 

(In case k = 0 this reduces to V(~p (x l , . . . ,  zn)).) The completion P* of P is 
the conjunction of the completed definitions of all predicate symbols occurring 
in the alphabet except for the equality predicate - .  
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As an example, consider the two clauses 

p(h(a,b)) 
q(h(z, b)) b)). (3) 

Their completion P* is the conjunction of the formulas 

vx(p(x) x--  h(a,b)) 
Vx(q(x) ~ ~z(x - h(z,b) A-~p(h(z,b)))) (4) 

together with all formulas VS. --w(2) where r is a predicate symbol that does not 
occur in {p, q --}. 

In order to derive negative information using the completion, it is necessary to 
extend the standard equality axioms by axioms that allow for proving inequalities. 
For instance, given the completed formula (4), it is intended one can conclude 
-~p(c) be logical consequence, say. This, however, cannot be obtained unless 
c ~ h(a, b) is provable. Clark added some axiom schemata to the completed 
formula that allow for proving inequality of two terms whenever these are not 
unifiable under the empty equational theory [4]. 

In case of equational theories the original method has to be modified because 
the direct use of the axiom schemata may lead to undesired results. For instance, 
Clark's axioms imply h(a, b) ~ h(b,a), which we clearly do not expect on 
the basis of  our equational theory Ec (1). The following generalization, called 
unification completeness, was introduced in [9] and improved in [20]. As in [20], 
given a substitution 0 = {xl ~-~ t l , . . . ,  xn ~-~ tn}, we use eqn(O) to denote the 
formula xl -- tl A . . .  A Xn "-- tn: 

DEFINITION 2. Let E be an equational theory. A consistent set of formulas 
E* is called unification complete wrt. E if it consists of the axioms in E, the 
standard equality axioms, and a number of equational formulas, that is, formulas 
with - as the only predicate, such that for any two terms s and t with variables 
2 the following holds: 

1. If s and t are not E-unifiable, then E* ~ -~32. s - t. 
2. If s and t are E-unifiable, then for each complete set of unifiers cUE(s, t) 

we have 

E* ~ V2(s "-z-t-+ V 39. eqn(O)) (5) 
OecUE(S,t) 

where ~ denotes the variables that occur in eqn(O) but not in 2. 2 

For example, the following extension of Clark's axioms along with the axiom in 
(1) and the standard equality axioms are unification complete wrt. Ec: 

2 Note that in case of infinitary equational theories the disjunct in (5) may contain infinitely 
many elements. 
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f ( x l , . - .  ,Xn) ~ g (Y l , . . .  ,Ym) 

f ( x l , . . .  ,Xn) "-:- f (Yl , . . .  ,Yn) 
Xl -- Yl A " �9 A Xn -- y,~ 

h(xl ,  x2) -- h(yl, Y2) 
xl " : -y lAx2  "--y2 

Vxl  -- Y2 A x2 -- Yl 

f ,  g different function symbols; 
m , n  >~ O 
f function symbol ( f  r h); n >/ 1 

"r[x] nonvariable term containing x. 

(6) 

As pointed out in [20] the use of ~ in Definition 2, which was missing in [9], is 
necessary due to the fact that E-unifiers might introduce new variables. 

It can be easily proved that Clark's axioms form a unification complete theory 
for the empty equational theory, where standard unification is used. In general, 
it is not at all clear how to find an appropriate unification complete theory for 
a given set of equations. On the other hand, we know that such a theory exists 
whenever it is possible to compute complete sets of E-unifiers wrt. the given 
equational theory. A formal proof of the following proposition can be found 
in [7]. 

PROPOSITION 3. I f  E is an equational theory and 79 a complete E-unification 
procedure, there is a unification complete theory wrt. E. 

Throughout this paper we assume the equational theories under consideration 
to admit a unification complete theory. Given a normal equational logic pro- 
gram (P, E), we call (P*, E*) its completion whenever P* completes P as in 
Definition 1 and E* is unification complete wrt. E. 

2.4. SLDENF-RESOLUTION 

Let (P, E)  be a normal equational program and G a normal goal clause, namely, 
an expression 

+-- L 1 , . . . ,  Lm, 

where each subgoal L 1 , . . . ,  Lm is a literal (m /> 0). The empty goal (where 
m = 0) is usually denoted by [3. In the sequel we define SLDENF-refutations, 
finitely failed SLDENF-trees, and SLDENF-derivation trees analogously to [20] 
by simultaneous induction on the rank, but with a slight simplifications: To deal 
with equality subgoals of the form s - t, we assume the clause - (x, x) to be 
implicitly available if the equality predicate occurs in a program clause or the 
current goal. As a second, more substantial difference to [20], we concentrate on 
finitely failed trees, which consist of finitely many nodes, instead of generally 
failed trees, which consist of (possibly infinitely many) finite branches (see also 
[9]). We chose the former notion as in general it is impossible to finitely compute 
a generally failed tree. We will raise this problem later, in Section 3. A selection 
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rule determines for each goal which literal is selected to proceed. As usual, we 
assume that negative subgoals are not selected until they are ground. If a goal 
consists of only nonground negative literals, the derivation is said to flounder 
[121. 

DEFINITION 4. An SLDENF-refutation of rank r ( r )  0) for (P, E)  U {G} via 
a selection riale R consists of a sequence G o , . . . ,  G,~ of normal goals such that 
G = Go and Gn = C], and for each i = 1 , . . . ,  n the following holds: 

1. If the selected literal Lk of Gi-1 = +-L1,. . . ,  Lm is positive, there is a new 
variant A +- B I , . . . ,  BI of a program clause in P and an E-unifier 0i of Lk 
and A, and Gi is +- (L1 , . . . ,Lk - I ,B1 , . . . ,B t ,Lk+I , . . . ,Lm)Oi .  

2. If the selected literal Lk of Gi-1 = +-@l, . . . ,Lm is a negative ground 
literal -~A, there is a finitely failed SLDENF-tree of rank less than r for 
(P, E)  U {+--A} via R, and Gi is as Gi-i except that it does not contain Lk. 

The number n is called the length of the SLDENF-refutation. The composition 
of the substitutions 01,. �9 �9 On restricted to the variables in the original goal (i.e., 
(01 "-' On)IVar(C)) is called computed answer substitution. 

A finitely failed SLDENF- tree of rank r (r /> 0) for (/9, E) U {G} via a 
selection rule R is a finite tree such that 

+--q( h(a, a) ) +--q(h(b, a) ) 

t {z~a} 

+---~p(h(a,b)) 

Figure 1. A complete SLDENF-derivation tree of rank 1 wrt. the equational program 
((3), (1)), which is finitely failed. The root has two successor nodes corresponding to the 
two most general Ec-unifiers of h(x, y) and h(a, b). The tree's leftmost branch fails because 
q(h(a, a)) does not Ec-unify  with q(h(z, b)), while its rightmost branch fails because of 
the existence of an SLDENF-refutation of rank 0 for the goal +--p(h(a, b)). The reader is 
invited to verify that indeed ~3z, y(p(h(x, y)) A q(h(z, a))) is a logical consequence of 
the completion ((3)*, (1)*) (see (4) and (6)). 

1. Each node is labeled with a nonempty normal goal, and the root is labeled 
with G. 

2. For each leaf node +--Ll,..., Lk, �9 �9 �9 Lm such that Lk is selected, 
(a) If Lk is a positive literal, it does not E-unify with the head of a new 

variant of any program clause in P.  
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(b) If Lk is a negative ground literal --,A, there exists an SLDENF-refutation 
of rank less than r for (P, E) tO {F--A} via R. 

3. For each inner node +--L1,..., Lk , . . . ,  Lm such that Lk is selected, 
(a) If Lk is a positive literal, for each program clause in P let A +-- 

B1 , . . . ,  Bt be a new variant and cU(Lk, A) a complete set of E-unifiers 
of Lk and A. 3 For each 0 E cU(Lk, A), the node labeled with +--(Ll,. �9 
Lk-1, B l , . .  �9 Bz, Lk+ l , . . . ,  L,,~)O is a child of this inner node. 

(b) If Lk is a negative ground literal ~A, there exists a finitely failed SLDENF 
-tree of rank less than r for (P, E) tO {+--A} via R, and the only child of 
the inner node is labeled with +--L1,..., Lk-l ,  Lk+ l , . . . ,  Lm. 

A complete SLDENF-derivation tree is a finitely failed SLDENF-tree but may 
consist of infinitely many branches, possibly of infinite length, and a leaf can 
also be labeled with the empty goal (denoting a success branch) or with a goal 
containing only nonground negative literals (denoting a branch that flounders). 

As usual, the depth of a finitely failed SLDENF-tree (resp. an SLDENF- 
derivation tree) is defined as the length of the longest path from the root node 
to a leaf. [] 

To illustrate these definitions, Figure 1 depicts an example based on the equational 
program that consists of the clauses (3) along with the theory of commutativity 
Ec (1). It is obvious that Shepherdson's soundness result [20] can be adapted to 
our definition: 

THEOREM 5. Let (P, E) be a normal equational program and (P*, E*) its 
completion. Furthermore, let G = +--L1,..., Lm be a normal goal (m >>. 0). 
Then 

1. if (P, E)U {G} has an SLDENF-refutation with computed answer substitution 
O, then P* U E* ~ V((rl  A - "  Arm)O), and 

2. if (P, E) U {G} has a finitely failed SLDENF-tree, then P* U E* p -~B( Ll A 

�9 . .  A Lm). 

3. A Completeness Result 

Completeness of SLDENF-resolution wrt. the extended completion semantics 
of Subsection 2.3 means that every correct answer can be computed by this 
calculus: A substitution 0 is a correct answer to a goal G = +-L1, . . . ,  Lm in 
conjunction with a program (/9, E) iff the domain of 0 is a subset of Vat(G) 
and P* U E* ~ V((L1 A . . -  A Lm)O). We already know from nonequational 
logic programming that a main obstacle for obtaining completeness of SLDENF- 
resolution is that the completion P* of a set of normal program clauses P might 

3 Although not necessary it is usually desirable to use a minimal set of unifiers whenever one 
exists. Especially in case of finitary equational theories we assume cU(Lk, A) to be finite in any 

case. 
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be inconsistent. Inconsistency of the completion implies that any substitution is 
correct for any goal; this, of course, cannot be achieved by applying SLDENF- 
resolution. Hence, in view of our intended completeness theorem, which concerns 
hierarchical equational programs, we have to ensure that their completion is 
always consistent. 

LEMMA 6. Let (P, E) be a hierarchical equational program and (P*, E*) its 
completion. Then P* U E* is satisfiable. 

Proof. We prove this by an inductive construction of a model Z whose 
universe consists of the congruence classes [tie determined by the finest E- 
congruence relation on the set of ground terms. Let 2"0 = {[s]z - [t]z I s, t 
ground terms}. Then it is easy to see that Zo is a model of E*. Now, let lev be 
an adequate level mapping, that is, one that satisfies the hierarchy property as 
regards/9. Let n E N be the maximal level, and let P*I~ C_ P* contain the com- 
pleted definitions for all predicates with a level not greater than k (1 <~ k <~ n); 
hence, P*[k = {V2(p(2) ++ if)) E P* I lev(p) <<. k}. For each k = 1 , . . . , n  
construct a model Z-k as follows: 

Zk := Zk- ,  (2 {p([tl]E,. . . , [tn]E) I lev(p) = k, 

V x , , . . . , x n ( p ( x , , . . . , x n )  ~ q)) e P*, and 

(~{xl ~ t l , . . . , X n  ~+ tn} is true in Zk- l } .  

It is easy to verify that each :Zk is a model of the corresponding set of formulas 
P*lk U E*; hence, :Zn is a model of P* U E*. [] 

Aside from requiring the programs under consideration to have a consistent com- 
pletion, from the special case of nonequational logic programming we know two 
further conditions that are necessary to obtain completeness. In what follows, 
we discuss how equational theories cause additional problems in meeting these 
conditions. 

Finite derivation trees. To obtain a general completeness result for SLD(E)NF- 
resolution wrt. the (extended) completion semantics, one has to ensure finiteness 
of any complete derivation tree [4, 1]. From nonequational logic programming 
we know that this is guaranteed in the case of hierarchical programs. In the case 
of underlying equational theories, however, the theory itself may lead to infinite 
complete derivation trees. As an example, consider the clauses 

p(b) 

q(x, x) +-- p(x) (7) 

r +- g (h(a ,y ) ,h (y ,a ) )  
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/-..?~ 

t y~h(~,a) S ~-p(h(a, a)) +--p(h(h(a, a), a)) ... 

/ f 7 

Figure 2. An infinite SLDENF-tree for (P, EA) U {+---r} - where P consists of the clauses 
(7) and EA describes the law of associativity. 

along with the equational theory EA = {h(h(x, y), z) - h(x, h(y, z))} defining 
associativity, which is known to be infinitary [13]. This program is hierarchical. 
Clearly, its completion implies that q is true only in case q(b, b) and, hence, ~ r  is a 
consequence of the completion. However, we cannot find an SLDENF-refutation 
for the goal +-~r  since unifying the literals q(h(a, y), h(y, a)) and q(x, x) wrt. 
associativity yields the infinite minimal set of unifiers {{x ~+ h(a,a),y 
a}, {x ~ h(h(a, a), a), y ~ h(a, a )} , . . . }  (see Fig. 2). Hence, besides the logic 
program being hierarchical, we have to require that the underlying equational 
theory is finitary when finiteness of derivation trees is guaranteed. 4 

Nonfloundering goals. A second condition towards completeness of SLDENF- 
resolution concerns the problem of floundering, which has to be avoided [4, 17]. 
Again, from nonequational logic programming we know a sufficient syntactic cri- 
terion: A clause A +-- L1, . . . ,  Lm (resp. a goal +--L1,..., Lm) is called allowed 
if every variable that occurs in the clause (resp. the goal) occurs in at least one 
positive literal of the body L1,...  ,Lm (see [12], e.g.). It is obvious that an 
allowed goal does not flounder immediately because, if it contains variables, it 
must contain a positive literal. In addition, a derivation step applied to an allowed 
goal and an allowed program yields again an allowed goal in case of standard 
unification. Hence, no derivation can flounder under this condition. In general, 
however, this criterion does not always apply. As a counterexample, consider the 
single program clause 

p(0) (8) 

along with the (nonregular) equational theory E0 (2). Both this program clause 
and the goal +-p(h(x, y)), ~q(x) are allowed. The leftmost subgoal can be solved 

4 At this point it is important to realize the difference between finitely and generally failed 
SLDENF-trees (see Subsection 2.4). Had we adopted Shepherdson's definition, there would be no 
need to additionally restrict the equational theories to finitary ones (note that the tree in Figure 2 is 
generally failed!). On the other hand, it is in general impossible to finitely compute generally failed 
trees; hence, a completeness result based on general failure would not imply that a refutation of a 
valid formula can be obtained in a finite number of computation steps. In case of finitary equational 
theories, both concepts - finite and general failure - coincide. 
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by applying the E0-unifier (y ~-~ 0} of the two terms h(x ,  y) and 0. This, how- 
ever, yields +---~q(z) as the new goal, which is no longer allowed and flounders 
immediately. 

The problem encountered in this example is that two terms might be E-equi- 
valent although they include different variables. This might destroy the property 
that the application of an allowed clause preserves allowance of a goal. Hence, to 
guarantee nonfloundering, we have to find an additional condition to be met by 
the underlying equational theory. The following lemma shows that the concept 
of regularity (see Subsection 2.1) forms an adequate condition. 

LEMMA 7. Let E be a regular equational theory, A +-- B1, .  �9 �9 Bl an allowed 

clause, G = +--L1, . . . , Lk, . . . , Lm an allowed goal (m  >1 1), and 0 an E-unifier 

o f  Lk and A. Then G ~ = +-( L1, . . . , L k - l ,  B1, . . . , Bl,  Lk + l, . . . , Lm)O is allowed. 
Proo f  The applied clause being allowed implies that +-- ( B 1 , . . . , B I ) O  is 

allowed. Furthermore, +-- ( L 1 , . . . ,  L k , . . . ,  Lm)O is allowed as G itself is assumed 
to be allowed. In order to gain allowance of both together but without the 
literal L~O, each x E ]2ar(LkO) should occur in a positive subgoal of G ~. 
From LkO =E  AO and E being regular, we know that x E ~ar(LkO)  implies 
x ~ ~ar(AO) .  This and the fact that the applied clause is allowed guarantees that 
for each x E Var(LkO)  there is some positive B,O (1 ~< i ~< l) containing x. [] 

In the remainder of this section we take the preceding discussion into account 
by concentrating on hierarchical and allowed programs, that is, programs that 
contain only allowed clauses, along with an underlying equational theory that 
is both finitary and regular. Note that these two properties do not depend on 
each other; for example, the infinitary theory of associativity used in Figure 2 is 
regular, whereas unification wrt. the nonregular theory E0 is finitary. 

To generalize the classical completeness theorem, we need the following 
notion of decidability and a certain measure: A complete SLDENF-derivation 
tree is called decidable if it is finite and contains no branch that flounders. Given 
a hierarchical normal equational program (P, E), let n be the maximal number 
of literals occurring in the body of a clause in P plus 1. Furthermore, let lev be 
an adequate level mapping, that is, one that satisfies the hierarchy property. We 
define the following measure: 

1. # (p(  t l , . . . ,  tn )  ) = t~ 2"lev(p) for each atom, 
2. #(-~A) = #(A) + 1 for each negative literal, and 
3. # ( e - L 1 , . . .  , L m )  = E~=I # ( L i )  for each normal goal (m/> 0). 

It is easy to verify that for each clause A +-- B 1 , . . . ,  Bt in a hierarchical program 
the relation #(A) > • l=l  #(B~) holds. 

THEOREM 8. Let ( P, E )  be a hierarchical and allowed normal equational pro- 
gram such that E is both finitary and regular. Furthermore, let G be an allowed 
goal  and R a selection rule. Then each complete SLDENF-derivation tree for  
(P, E)  t2 {G} wrt. R is decidable. 
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Proof. By induction on the measure ~(G) we show that each complete 
SLDENF-derivation tree for (P, E) U {G} wrt. R is decidable and of rank #(G).  
The base case is trivial because #(G) = 0 implies G = D. 

Let G = +--Ll , . . .  ,Lm ( m )  1), and assume that the claim holds for 
each allowed goal with measure smaller than /~(G). Lemma 7 ensures that no 
SLDENF-derivation for (P, E) U {G} flounders. Let Lk be the selected literal 
(1 < k 

1. If Lk is an atom, then 
(a) if there is no variant of a clause in P such that its head is E-unifiable 

with Lk, then the only SLDENF-derivation tree consists in the node G. 
This tree is decidable and of rank 0, hence also of rank #(G); 

(b) otherwise each complete SLDENF-derivation tree consists of the root G 
and has a finite number of successor nodes 

G' = +--(Ll,...,Lk-l,B1,...,Bt, L~+l,...,Lm)O, 

since P contains finitely many clauses and E is finitary. From 

1 

~t(Lk) = #(A) > ~ # ( B , )  
l = l  

it follows that #(G') < #(G) for each successor G'. Thus, the induction 
hypothesis implies that each complete SLDENF-derivation tree for each 
such (P, E) U {G/} wrt. R is decidable and of rank less than #(G). 
Hence, each SLDENF-derivation tree for (P, E) U {G} wrt. R is also 
decidable and of rank p(G). 

2. Otherwise Lk is a negative ground literal --,A and #(A) < /~(G), since 
#(A) = p(Lk) - 1. Following the induction hypothesis, each complete 
SLDENF-derivation tree for (P, E) U {e--A} wrt. R is decidable and of rank 
less than #(G). Decidability along with soundness of SLDENF-resolution 
(Theorem 5) and consistency of P* U E* (Lemma 6) implies that either each 
such tree is finitely failed or else each such tree contains a success branch. 
(a) In the former case, each complete SLDENF-derivation tree for (P, E)  U 

{G} wrt. R consists of the root G and its single successor G ~ = +--Ll, �9 �9 �9 
Lk-1, Lk+l,..., Lm. From #(Lk) > 0 we conclude that #(G')  < p(G); 
hence, each complete SLDENF-derivation tree for (P, E )U{G ~ } is decid- 
able and especially of rank #(G) because of the induction hypothesis 
(note that G' is allowed as it is like G except for the ground literal 
L~). Altogether, each complete SLDENF-tree for (P, E) U {G} wrt. R 
is decidable and of rank #(G). 

(b) In the latter case, each success branch in the SLDENF-derivation tree 
for (P, E) U {+--A} constitutes an SLDENF-refutation of rank less than 
#(G). Hence, the only SLDENF-derivation tree for (P, E) U {G} wrt. R 
consists in the node G - this tree is decidable and of rank ~(G). [] 
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We are now in a position to prove the intended generalization of the classical 
completeness result [4, 1]. An answer substitution 0 to a goal G is called ground 
iff GO is variable-free. 

THEOREM 9. Let ( P, E) be a hierarchical and allowed normal equational pro- 
gram such that E is both finitary and regular. Furthermore, let G be an allowed 
goal and R h selection rule. I f  0 is a correct ground answer to G, there exists an 
SLDENF-refutation for  ( P, E) U {G} wrt. R with computed answer substitution 
O=E O. 

Proof The proof is by induction on the measure #(G). In case #(G) = 0, r 
(the empty substitution) is the only correct answer to G = [] wrt. (P, E),  and it 
is also the computed answer. 

Let G = +--L1,... ,  L k , . . . ,  Lm (m >1 1), and assume that the claim holds for 
all allowed goals G' such that #(G t) < #(G). As 0 is a correct ground answer 
to G, we know that 

P* U E *  p (LI A - , -  A Lk A . - .  ALm)O. (9) 

Let Lk be the literal selected by R (1 ~< k ~ m). 

1. If Lk is positive, then according to Theorem 8 we can find a decidable 
complete SLDENF-derivation tree B for (P, E)  U {GO} wrt. some selection 
rule that selects LkO in GO. From (9) and soundness of SLDENF-resolution 
it follows that this tree cannot be finitely failed because of the consistency 
of P* tO E* (Lemma 6). Hence, as B is decidable, it must include a success 
branch; that is, we can find an SLDENF-refutation for (P, E)U {GO} wherein 
LkO is selected at the beginning. Let A +-- B 1 , . . . ,  Bl be the variant of a 
clause that is used in conjunction with the E-unifier a in the first step of this 
refutation, which implies Aa =E LkOa = LkO (recall that LkO is ground). 
Without loss of generality we assume that the domain of cr is restricted to 
Vat (A)  and that a does not introduce variables occurring in G. The resulting 
goal is 

+--( LIO, . . . , Lk_lO, B1, . . . , Bl, L~+lO, . . . , LmO)cr. 

Since this goal occurs within the refutation for (P, E) U {GO}, soundness of 
SLDENF-resolution implies 

P*uE*  
3((LI A . . .  A L k - l  A B~ A . . .  A Bt A Lk+t A . . .  A L,~)Ocr) (10) 

(note that B~o- = B, Oa (1 ~< i ~< I), since the goal, G, and the applied clause 
do not share variables). Now, let 01 = O[var(Lk) and 02 = Olvar(C)\Var(Lk) 
(this implies 0 = 0102 because of 0l is a ground substitution). From LkO =E 
Ao- it follows LkOtcr =-z AOtc~ because of Var(LkOt) = {} and 12ar(Lk) Cl 
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))ar(A) = {}. In other words, 01a is an E-unifier of Lk and A. Hence, we 
can apply an SLDENF-step to (P, E)  U (G} wrt. R which yields 

G' = +--(L1, �9 �9 �9 Lk-1,  B 1 , . . . ,  Bt, L k + j , . . . ,  Lm)Ola. (11) 

From the above assumption concerning o-, the fact that Var(G) N Var(A)  = 
{}, and 02 being a ground substitution, we conclude that 01o '02  : 0102cr  : 

Oa. Furthermore, (10) guarantees the existence of some ground instance Oap 
of the literals occurring in (11) such that their conjunction is a logical conse- 
quence of the completion. Hence, since Oap = OlcyOzp, we can find a substi- 
tution p such that 02p is a correct ground answer to G'. Since # (G I) < #(G) 
and G I is allowed (Lemma 7), we can apply the induction hypothesis to find 
a computed answer t5 for (P, E)  U {G')  wrt. R such that F5 = E  Ozp. Com- 
bined with the first step from G to G ~ (11), this yields the computed answer 
01~r~ for (P, E) U {G} wrt. R, which is E-equivalent to 0: 

(OlO'p)[Var(G) : E  (OIO'02p)IVar(G) : (Ol02crp)]var(G) : 0102  : 0 .  

2. If Lk is a negative ground literal -~A, then (9) implies/9*UE* ~ ~A. Accord- 
ing to Theorem 8 we can find a decidable complete SLDENF-derivation tree 
for (P, E)  U {+--A} wrt. R. This tree cannot contain a success branch, since 
otherwise soundness of SLDENF-resolution implies /9. U E* ~ A, which 
contradicts the consistency o f / 9 .  U E*. Hence, this tree is finitely failed. 
Moreover, (9) implies 

P* U E* ~ (L1 A . . . A Lk-1 A Lk+l A . . .  A Lm)O; 

that is, 0 is a correct ground answer to G t = e - L 1 , . . . ,  Lk - l ,  L k + l , . . . ,  Lm 
wrt. (P, E). Since #(G') < #(G) and G' is allowed because of the allowance 
of G, the induction hypothesis implies the existence of an SLDENF-refutation 
for (P, E) U {G'} wrt. R with computed answer 0 =E  0. Combined with the 
SLDENF-tree for (P, E) U {e--A} this refutation constitutes an SLDENF- 
refutation for (P, E) U {G} wrt. R with 0 as its computed answer substitu- 
tion. [] 

4. Conclusion 

By investigating important aspects concerning the completeness of the SLDENF- 
resolution principle for normal equational logic programs wrt. an extended com- 
pletion semantics, we have extended the work of Shepherdson, who proved 
soundness of this calculus [20]. We have illustrated that the classical complete- 
ness theorem known from nonequational logic programming with negation [4, 
1] can be generalized only to some extent. As a concrete result, we have proved 
completeness for hierarchical and allowed programs, provided the underlying 
equational theories meet two conditions: they are finitary and regular. Moreover, 
these conditions turn out to be strict in a certain sense: 
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�9 Whenever E is an infinitary equational theory with unification complete E*, 
it is possible to construct a hierarchical program (P, E)  and a generally but 
not finitely failed SLDENF-tree in the spirit of (7) and Figure 2: Let s, t be 
two E-unifiable terms such that no finite #UE(s, t) exists, and let P denote 
the program clauses 

q(x, x) +- p(x) 
+-- q(s, t) 

then P* U E* ~ -~r but (P, E) t_J {+--~r} has no SLDENF-refutation. 

�9 Whenever E is an equational theory such that two terms s, t exist with s =E  t 
but Vat(s) ~ Var(t), it is possible to construct an allowed program (P, E)  
along with an allowed but floundering goal in the spirit of (8): Without loss of 
generality assume there is some x E ~ar(s) \ ~ar(t). Let cr be a substitution 
that grounds all variables in s and t except z. Let P denote the allowed 
program clause 

This clause can be applied to the allowed goal +--p(scr), ~q(x) using the 
E-unifier {~), and the resulting goal flounders immediately. 

The restriction to hierarchical programs in our completeness theorem is adopted 
from insight into nonequational logic programming. For instance, a simple coun- 
terexample shows that SLDENF-resolution is incomplete for the more general 
class of stratified programs [12, 2]. 

Finally, our result concerns only ground answer substitutions. Regarding the 
special case, we know that correct answers to allowed nonequational programs 
and allowed goals are necessarily ground, provided the completion of the program 
is consistent [19]. It is obvious that this result cannot be generalized to arbitrary 
equational theories (just recall the program (8) along with the theory E0 (2), 
whose completion entails Vx. p(h(x, 0))). However, we believe that it continues 
to hold in case of regular theories, which then would make the groundedness 
condition in Theorem 9 redundant, but a detailed proof remains to be done. 
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