
Journal of Automated Reasoning 17: 199-214, 1996. 199
(~) 1996 Kluwer Academic Publishers. Printed in the Netherlands.

On the Completeness of SLDENF-Resolution

MICHAEL THIELSCHER
FG Intellektik, TH Darmstadt, Alexanderstrafle 10, D-64283 Darmstadt, Germany
e-mail: mit@inteIlektik.informatik.th-darmstadt.de

(Received: 1 September 1994)

Abstract. SLDENF-resolution combines the negation-as-failure principle for logic programs involv-
ing negation, and SLDE-resolution for logic programs with an underlying equational theory. Recent-
ly, J. Shepherdson proved the soundness of this resolution principle wrt. an extended completion
semantics. In this note, we investigate the particular problems of obtaining completeness which
are caused by adding equational theories. As a concrete result we show to what extent the classical
result for hierarchical and allowed nonequational programs can be generalized.

Key words: logic programming, negation as failure, unification theory.

1. In troduc t ion

The notion of equality undoubtedly plays a fundamental role in most areas of
mathematics and is therefore widely used, especially in mathematical applications
of automated deduction. It emerged early that the simplest way of treating equal-
ity in automated theorem proving, namely, adding the standard equality axioms
to the premises, is intractable in practice. Following a vision of Robinson [14],
Plotkin [13] showed that the presence of equational theories can adequately and
much more efficiently be modeled by integrating equational theories into the
unification procedure. Plotkin's pioneering work was the signal for the formation
of a subfield in automated deduction called unification theory, which has estab-
lished itself today and is still growing (a survey is given in [22] or [3], e.g.).
Among others, the field of logic programming profits from these developments
insofar as the standard SLD-resolution for logic programs was also extended to
handle equational theories. The resulting computation mechanism, called SLDE-
resolution, was developed in the past decade [9, 5, 6]. Though less expressive
than a general constraint-based approach [10], incorporating equational theories
into logic programs offers the advantage of being a straightforward extension
of standard logic programming, thus allowing for adapting many concepts and
results from the special case (see [3] for a more detailed comparison).

Meanwhile, but independently, semantics for the treatment of negation in
logic programs were developed and thoroughly analyzed. The first basic idea was
introduced in [4], namely, the notion of completion as a uniform semantics for
the negation-as-failure principle, where negation is regarded as failure to prove.
Since then, most work concerning the so-called SLDNF-resolution concentrated

200 MICHAEL THIELSCHER

on the one hand on aspects of consistency by defining classes of programs that
have a consistent completion, and on the other hand on completeness of this
computation mechanism (e.g., [8, 16, 18, 1, 15, 23]; a survey is given in [2]).

A first step towards the combination of proving with equality and employ-
ing negation-as-failure was made in [9], where the concept of failure in case of
equational theories was investigated by extending the notion of Clark's comple-
tion semantics [4] to handle equality. However, this work concentrated on failure
in so-called definite logic programs, where no negation occurs in the program
clauses. Recently, resolution in equational logic programs involving negation was
investigated in [20], where Shepherdson proved the soundness of what we call
SLDENF-resolution wrt. this extended completion semantics. In this note, we
investigate the particular problems of obtaining completeness which are caused
by the additional equational theories. As a concrete result we show to what extent
the classical result for hierarchical and allowed nonequational programs can be
generalized.

In the following section, we briefly repeat the fundamental concepts of equa-
tional logic programs with negation, some important notions from unification
theory, and the extended completion semantics required in case of equational
theories. We also define SLDENF-resolution (in a slightly modified way com-
pared with [20]). In Section 3, we discuss the obstacles for a completeness result
that are caused by additional equational theories. As a consequence, we estab-
lish a completeness result for hierarchical and allowed equational logic programs
provided the underlying equational theory meets two important restrictions.

2. Foundations

2.1. NORMAL EQUATIONAL LOGIC PROGRAMS

We adopt the universal language approach of [11] in this paper; that is, we
assume the programs and goal clauses under consideration be built up from a
countable set of predicates and functions given once and forever. The set of
predicate symbols should include the special equality predicate - . A normal
program clause is an expression

A +-- B I , . . . , B t ,

where the head A is an atom, but not an instance of the equality predicate, and
the elements of the body B1,. . . , Bt are literals, possibly the equality predicate
being among them (l /> 0). If p is the predicate symbol occurring in the head
of a clause, this clause is said to define p. The reason for restricting the head
of a program clause to nonequational atoms is that equality relations are defined
separately: A normal equational logic program (P, E) consists of a finite set P
of normal program clauses along with an equational theory E. Such a theory

ON THE COMPLETENESS OF SLDENF-RESOLUTION 201

consists of a number of axioms s - t that are implicitly assumed to be universally
closed. For example, the equational theory

E c = {h(x, y) - h(y, x)} (1)

describes the law of commutativity for the function h. The following classification
is required later in this paper: An equational theory E is called regular iff for
each s - t E E the set of variables occurring in s equals the set of variables
occurring in t. For instance, E c is regular, while

Eo = {h(x , 0) - 0} (2)

describing a neutralizing element 0 is not.l
A program (P, E) is called hierarchical [4, 12] if we can find a level mapping

that assigns a natural number to each predicate symbol such that the following
holds for each clause in P: The level of the predicate symbol occurring in the
head is greater than the level of each predicate occurring in the body.

2.2. UNIFICATION THEORY

By 12ar(e) we denote the variables occurring in the expression e. The restriction
of a substitution a to a set 1; of variables - written alv - is defined by x(crlv) =
xo" if x E 12 and x(crlv) = x otherwise. Given an equational theory E, by
E ~ �9 we denote that the formula �9 is a logical consequence of the axioms
in E plus the standard axioms of equality, viz. V(x - x) (reflexivity), V(x -
y -4 y - x) (symmetry), V(x - y A y " - - z -4 x -- z) (transitivity), V(x~ -
y --+ f (x l , . . . , x i , . . . , Xn) - f (x l , . . . , i f , . . . , xn)) (substi tut ivi tyforfunctions),
V(x~ - y --+ [p (x l , . . . , x z , . . . , X n) ++ p (x l , . . . , y , . . . , x n)]) (substitutivity f o r
predicates). We call two terms s and t equal wrt. E - written s = E t - iff
E ~ s - t .

A substitution a is called an E-unifier of s and t iff so" : E t a . E.g., {x
b, y F-+ a} is an Ec-unif ier of h(x, a) and h(y, b) (cf. (1)). An E-unification
problem consists of two terms s and t and is the problem of establishing whether
there exists an E-unifier of s and t, i.e., whether s and t are E-unifiable. The
set of all E-unifiers of s and t is denoted by UE(s, t).

As usual, we can define a subsumption ordering on substitutions: Two substi-
tutions cr and 0 are E-equivalent wrt. a set 12 of variables - written (or : E 0)IV -
iff Vx E 12. xcr = E xO. A substitution ~r is called more general than a substitution
0 wrt. a set 12 of variables - written (or <~E O)[V - iff there is a substitution "r

i For sake of clarity, our definitlon differs from the one used in [20] insofar as we adopt the
(restricted) notion of equational theories used in unification theory instead of including the case
where equality is defined through (more general) Horn formulas based on the equality predicate.
We chose this notion because it allows to adopt the concept of regularity, which is of importance
in our analysis. However, our results are also valid in the general setting where the notion of a
regular theory is replaced by the general property that whenever two terms are equal under the
theory, they contain an identical set of variables.

202 MICHAEL THIELSCHER

such that (aT =E O)lv. A set cUE(s, t) is then called a complete set of E-unifiers
iff cUE(s, t) C_ UE(S, t) (correctness) and VO E UE(s, t). 3~r E cUE(s, t). (~r <<.E
O)[var(s)UVar(t) (completeness). A set #UE(s,t) is called a minimal set of E-
unifiers iff it is complete and Vcr, 0 E #UE(s, t)[(a <~E O)lvar(s)uVar(t) ~ ~ = O]
(minimally). The unification problem wrt. an equational theory E is called fini-
tary if for any pair of terms s and t a set #UE(s, t) exists that contains at most
finitely many elements. It is called infinitary if for any pair of terms s and t a
set #UE(s, t) exists and there are at least two terms s and t such that there is no
finite #UE(s, t). For instance, E c is known to be finitary [21]; an example for
an infinitary theory is considered in Section 2.

The notions of E-unifier, set of E-unifiers, etc. are extended to atoms in the
obvious way. An E-unification procedure is a procedure that takes two terms s
and t (resp. two atoms A and B) as input and generates a subset of UE(s,t)
(resp. UE(A, B)). It is called complete iff it generates a complete set of unifiers
and minimal iff it generates a minimal set of unifiers.

2.3. THE COMPLETION SEMANTICS

Following the direction of [9] and [20], we use a generalization of Clark's com-
pletion procedure [4] to define a semantics of normal equational programs. The
idea is to consider the set of program clauses that define a predicate p as a
complete description of the positive information regarding p. Formally, the com-
pletion procedure applied to a set of clauses P is as follows.

DEFINITION 1. Let p(t l , . . . , tn) +- L1, . . . , Lm be a program clause in P, and
let ~ denote a sequence of all variables that occur in this clause. Let Z l , . . . , zn
be pairwise different variables not in ~. Then the rectified form of this clause is
the formula

p(x l , . . . ,xn) +-- 3~(xl "-- tl A ' " A xn -- tn A LI A "" A Lm).

Let p be an arbitrary predicate symbol and

p(xl , . . . ,Xn) +'- D1

Dk

be all clauses in P defining p in rectified form (k t> 0). The completed definition
of p in P is the formula

v . . . v Dk).

(In case k = 0 this reduces to V(~p (x l , . . . , zn)).) The completion P* of P is
the conjunction of the completed definitions of all predicate symbols occurring
in the alphabet except for the equality predicate - .

ON THE COMPLETENESS OF SLDENF-RESOLUTION 203

As an example, consider the two clauses

p(h(a,b))
q(h(z, b)) b)). (3)

Their completion P* is the conjunction of the formulas

vx(p(x) x-- h(a,b))
Vx(q(x) ~ ~z(x - h(z,b) A-~p(h(z,b)))) (4)

together with all formulas VS. --w(2) where r is a predicate symbol that does not
occur in {p, q --}.

In order to derive negative information using the completion, it is necessary to
extend the standard equality axioms by axioms that allow for proving inequalities.
For instance, given the completed formula (4), it is intended one can conclude
-~p(c) be logical consequence, say. This, however, cannot be obtained unless
c ~ h(a, b) is provable. Clark added some axiom schemata to the completed
formula that allow for proving inequality of two terms whenever these are not
unifiable under the empty equational theory [4].

In case of equational theories the original method has to be modified because
the direct use of the axiom schemata may lead to undesired results. For instance,
Clark's axioms imply h(a, b) ~ h(b,a), which we clearly do not expect on
the basis of our equational theory Ec (1). The following generalization, called
unification completeness, was introduced in [9] and improved in [20]. As in [20],
given a substitution 0 = {xl ~-~ t l , . . . , xn ~-~ tn}, we use eqn(O) to denote the
formula xl -- tl A . . . A Xn "-- tn:

DEFINITION 2. Let E be an equational theory. A consistent set of formulas
E* is called unification complete wrt. E if it consists of the axioms in E, the
standard equality axioms, and a number of equational formulas, that is, formulas
with - as the only predicate, such that for any two terms s and t with variables
2 the following holds:

1. If s and t are not E-unifiable, then E* ~ -~32. s - t.
2. If s and t are E-unifiable, then for each complete set of unifiers cUE(s, t)

we have

E* ~ V2(s "-z-t-+ V 39. eqn(O)) (5)
OecUE(S,t)

where ~ denotes the variables that occur in eqn(O) but not in 2. 2

For example, the following extension of Clark's axioms along with the axiom in
(1) and the standard equality axioms are unification complete wrt. Ec:

2 Note that in case of infinitary equational theories the disjunct in (5) may contain infinitely
many elements.

204 MICHAEL THIELSCHER

f (x l , . - . ,Xn) ~ g (Y l , . . . ,Ym)

f (x l , . . . ,Xn) "-:- f (Yl , . . . ,Yn)
Xl -- Yl A " �9 A Xn -- y,~

h(xl , x2) -- h(yl, Y2)
xl " : -y lAx2 "--y2

Vxl -- Y2 A x2 -- Yl

f , g different function symbols;
m , n >~ O
f function symbol (f r h); n >/ 1

"r[x] nonvariable term containing x.

(6)

As pointed out in [20] the use of ~ in Definition 2, which was missing in [9], is
necessary due to the fact that E-unifiers might introduce new variables.

It can be easily proved that Clark's axioms form a unification complete theory
for the empty equational theory, where standard unification is used. In general,
it is not at all clear how to find an appropriate unification complete theory for
a given set of equations. On the other hand, we know that such a theory exists
whenever it is possible to compute complete sets of E-unifiers wrt. the given
equational theory. A formal proof of the following proposition can be found
in [7].

PROPOSITION 3. I f E is an equational theory and 79 a complete E-unification
procedure, there is a unification complete theory wrt. E.

Throughout this paper we assume the equational theories under consideration
to admit a unification complete theory. Given a normal equational logic pro-
gram (P, E), we call (P*, E*) its completion whenever P* completes P as in
Definition 1 and E* is unification complete wrt. E.

2.4. SLDENF-RESOLUTION

Let (P, E) be a normal equational program and G a normal goal clause, namely,
an expression

+-- L 1 , . . . , Lm,

where each subgoal L 1 , . . . , Lm is a literal (m /> 0). The empty goal (where
m = 0) is usually denoted by [3. In the sequel we define SLDENF-refutations,
finitely failed SLDENF-trees, and SLDENF-derivation trees analogously to [20]
by simultaneous induction on the rank, but with a slight simplifications: To deal
with equality subgoals of the form s - t, we assume the clause - (x, x) to be
implicitly available if the equality predicate occurs in a program clause or the
current goal. As a second, more substantial difference to [20], we concentrate on
finitely failed trees, which consist of finitely many nodes, instead of generally
failed trees, which consist of (possibly infinitely many) finite branches (see also
[9]). We chose the former notion as in general it is impossible to finitely compute
a generally failed tree. We will raise this problem later, in Section 3. A selection

ON THE COMPLETENESS OF SLDENF-RESOLUTION 205

rule determines for each goal which literal is selected to proceed. As usual, we
assume that negative subgoals are not selected until they are ground. If a goal
consists of only nonground negative literals, the derivation is said to flounder
[121.

DEFINITION 4. An SLDENF-refutation of rank r (r) 0) for (P, E) U {G} via
a selection riale R consists of a sequence G o , . . . , G,~ of normal goals such that
G = Go and Gn = C], and for each i = 1 , . . . , n the following holds:

1. If the selected literal Lk of Gi-1 = +-L1,. . . , Lm is positive, there is a new
variant A +- B I , . . . , BI of a program clause in P and an E-unifier 0i of Lk
and A, and Gi is +- (L1 , . . . ,Lk - I ,B1 , . . . ,B t ,Lk+I , . . . ,Lm)Oi .

2. If the selected literal Lk of Gi-1 = +-@l, . . . ,Lm is a negative ground
literal -~A, there is a finitely failed SLDENF-tree of rank less than r for
(P, E) U {+--A} via R, and Gi is as Gi-i except that it does not contain Lk.

The number n is called the length of the SLDENF-refutation. The composition
of the substitutions 01,. �9 �9 On restricted to the variables in the original goal (i.e.,
(01 "-' On)IVar(C)) is called computed answer substitution.

A finitely failed SLDENF- tree of rank r (r /> 0) for (/9, E) U {G} via a
selection rule R is a finite tree such that

+--q(h(a, a)) +--q(h(b, a))

t {z~a}

+---~p(h(a,b))

Figure 1. A complete SLDENF-derivation tree of rank 1 wrt. the equational program
((3), (1)), which is finitely failed. The root has two successor nodes corresponding to the
two most general Ec-unifiers of h(x, y) and h(a, b). The tree's leftmost branch fails because
q(h(a, a)) does not Ec-unify with q(h(z, b)), while its rightmost branch fails because of
the existence of an SLDENF-refutation of rank 0 for the goal +--p(h(a, b)). The reader is
invited to verify that indeed ~3z, y(p(h(x, y)) A q(h(z, a))) is a logical consequence of
the completion ((3)*, (1)*) (see (4) and (6)).

1. Each node is labeled with a nonempty normal goal, and the root is labeled
with G.

2. For each leaf node +--Ll,..., Lk, �9 �9 �9 Lm such that Lk is selected,
(a) If Lk is a positive literal, it does not E-unify with the head of a new

variant of any program clause in P.

206 MICHAEL THIELSCHER

(b) If Lk is a negative ground literal --,A, there exists an SLDENF-refutation
of rank less than r for (P, E) tO {F--A} via R.

3. For each inner node +--L1,..., Lk , . . . , Lm such that Lk is selected,
(a) If Lk is a positive literal, for each program clause in P let A +--

B1 , . . . , Bt be a new variant and cU(Lk, A) a complete set of E-unifiers
of Lk and A. 3 For each 0 E cU(Lk, A), the node labeled with +--(Ll,. �9
Lk-1, B l , . . �9 Bz, Lk+ l , . . . , L,,~)O is a child of this inner node.

(b) If Lk is a negative ground literal ~A, there exists a finitely failed SLDENF
-tree of rank less than r for (P, E) tO {+--A} via R, and the only child of
the inner node is labeled with +--L1,..., Lk-l , Lk+ l , . . . , Lm.

A complete SLDENF-derivation tree is a finitely failed SLDENF-tree but may
consist of infinitely many branches, possibly of infinite length, and a leaf can
also be labeled with the empty goal (denoting a success branch) or with a goal
containing only nonground negative literals (denoting a branch that flounders).

As usual, the depth of a finitely failed SLDENF-tree (resp. an SLDENF-
derivation tree) is defined as the length of the longest path from the root node
to a leaf. []

To illustrate these definitions, Figure 1 depicts an example based on the equational
program that consists of the clauses (3) along with the theory of commutativity
Ec (1). It is obvious that Shepherdson's soundness result [20] can be adapted to
our definition:

THEOREM 5. Let (P, E) be a normal equational program and (P*, E*) its
completion. Furthermore, let G = +--L1,..., Lm be a normal goal (m >>. 0).
Then

1. if (P, E)U {G} has an SLDENF-refutation with computed answer substitution
O, then P* U E* ~ V((rl A - " Arm)O), and

2. if (P, E) U {G} has a finitely failed SLDENF-tree, then P* U E* p -~B(Ll A

�9 . . A Lm).

3. A Completeness Result

Completeness of SLDENF-resolution wrt. the extended completion semantics
of Subsection 2.3 means that every correct answer can be computed by this
calculus: A substitution 0 is a correct answer to a goal G = +-L1, . . . , Lm in
conjunction with a program (/9, E) iff the domain of 0 is a subset of Vat(G)
and P* U E* ~ V((L1 A . . - A Lm)O). We already know from nonequational
logic programming that a main obstacle for obtaining completeness of SLDENF-
resolution is that the completion P* of a set of normal program clauses P might

3 Although not necessary it is usually desirable to use a minimal set of unifiers whenever one
exists. Especially in case of finitary equational theories we assume cU(Lk, A) to be finite in any

case.

ON THE COMPLETENESS OF SLDENF-RESOLUTION 207

be inconsistent. Inconsistency of the completion implies that any substitution is
correct for any goal; this, of course, cannot be achieved by applying SLDENF-
resolution. Hence, in view of our intended completeness theorem, which concerns
hierarchical equational programs, we have to ensure that their completion is
always consistent.

LEMMA 6. Let (P, E) be a hierarchical equational program and (P*, E*) its
completion. Then P* U E* is satisfiable.

Proof. We prove this by an inductive construction of a model Z whose
universe consists of the congruence classes [tie determined by the finest E-
congruence relation on the set of ground terms. Let 2"0 = {[s]z - [t]z I s, t
ground terms}. Then it is easy to see that Zo is a model of E*. Now, let lev be
an adequate level mapping, that is, one that satisfies the hierarchy property as
regards/9. Let n E N be the maximal level, and let P*I~ C_ P* contain the com-
pleted definitions for all predicates with a level not greater than k (1 <~ k <~ n);
hence, P*[k = {V2(p(2) ++ if)) E P* I lev(p) <<. k}. For each k = 1 , . . . , n
construct a model Z-k as follows:

Zk := Zk- , (2 {p([tl]E,. . . , [tn]E) I lev(p) = k,

V x , , . . . , x n (p (x , , . . . , x n) ~ q)) e P*, and

(~{xl ~ t l , . . . , X n ~+ tn} is true in Zk- l } .

It is easy to verify that each :Zk is a model of the corresponding set of formulas
P*lk U E*; hence, :Zn is a model of P* U E*. []

Aside from requiring the programs under consideration to have a consistent com-
pletion, from the special case of nonequational logic programming we know two
further conditions that are necessary to obtain completeness. In what follows,
we discuss how equational theories cause additional problems in meeting these
conditions.

Finite derivation trees. To obtain a general completeness result for SLD(E)NF-
resolution wrt. the (extended) completion semantics, one has to ensure finiteness
of any complete derivation tree [4, 1]. From nonequational logic programming
we know that this is guaranteed in the case of hierarchical programs. In the case
of underlying equational theories, however, the theory itself may lead to infinite
complete derivation trees. As an example, consider the clauses

p(b)

q(x, x) +-- p(x) (7)

r +- g (h(a ,y) ,h (y ,a))

208 MICHAEL THIELSCHER

/-..?~

t y~h(~,a) S ~-p(h(a, a)) +--p(h(h(a, a), a)) ...

/ f 7

Figure 2. An infinite SLDENF-tree for (P, EA) U {+---r} - where P consists of the clauses
(7) and EA describes the law of associativity.

along with the equational theory EA = {h(h(x, y), z) - h(x, h(y, z))} defining
associativity, which is known to be infinitary [13]. This program is hierarchical.
Clearly, its completion implies that q is true only in case q(b, b) and, hence, ~ r is a
consequence of the completion. However, we cannot find an SLDENF-refutation
for the goal +-~r since unifying the literals q(h(a, y), h(y, a)) and q(x, x) wrt.
associativity yields the infinite minimal set of unifiers {{x ~+ h(a,a),y
a}, {x ~ h(h(a, a), a), y ~ h(a, a)} , . . . } (see Fig. 2). Hence, besides the logic
program being hierarchical, we have to require that the underlying equational
theory is finitary when finiteness of derivation trees is guaranteed. 4

Nonfloundering goals. A second condition towards completeness of SLDENF-
resolution concerns the problem of floundering, which has to be avoided [4, 17].
Again, from nonequational logic programming we know a sufficient syntactic cri-
terion: A clause A +-- L1, . . . , Lm (resp. a goal +--L1,..., Lm) is called allowed
if every variable that occurs in the clause (resp. the goal) occurs in at least one
positive literal of the body L1,... ,Lm (see [12], e.g.). It is obvious that an
allowed goal does not flounder immediately because, if it contains variables, it
must contain a positive literal. In addition, a derivation step applied to an allowed
goal and an allowed program yields again an allowed goal in case of standard
unification. Hence, no derivation can flounder under this condition. In general,
however, this criterion does not always apply. As a counterexample, consider the
single program clause

p(0) (8)

along with the (nonregular) equational theory E0 (2). Both this program clause
and the goal +-p(h(x, y)), ~q(x) are allowed. The leftmost subgoal can be solved

4 At this point it is important to realize the difference between finitely and generally failed
SLDENF-trees (see Subsection 2.4). Had we adopted Shepherdson's definition, there would be no
need to additionally restrict the equational theories to finitary ones (note that the tree in Figure 2 is
generally failed!). On the other hand, it is in general impossible to finitely compute generally failed
trees; hence, a completeness result based on general failure would not imply that a refutation of a
valid formula can be obtained in a finite number of computation steps. In case of finitary equational
theories, both concepts - finite and general failure - coincide.

ON THE COMPLETENESS OF SLDENF-RESOLUTION 209

by applying the E0-unifier (y ~-~ 0} of the two terms h(x , y) and 0. This, how-
ever, yields +---~q(z) as the new goal, which is no longer allowed and flounders
immediately.

The problem encountered in this example is that two terms might be E-equi-
valent although they include different variables. This might destroy the property
that the application of an allowed clause preserves allowance of a goal. Hence, to
guarantee nonfloundering, we have to find an additional condition to be met by
the underlying equational theory. The following lemma shows that the concept
of regularity (see Subsection 2.1) forms an adequate condition.

LEMMA 7. Let E be a regular equational theory, A +-- B1, . �9 �9 Bl an allowed

clause, G = +--L1, . . . , Lk, . . . , Lm an allowed goal (m >1 1), and 0 an E-unifier

o f Lk and A. Then G ~ = +-(L1, . . . , L k - l , B1, . . . , Bl, Lk + l, . . . , Lm)O is allowed.
Proo f The applied clause being allowed implies that +-- (B 1 , . . . , B I) O is

allowed. Furthermore, +-- (L 1 , . . . , L k , . . . , Lm)O is allowed as G itself is assumed
to be allowed. In order to gain allowance of both together but without the
literal L~O, each x E]2ar(LkO) should occur in a positive subgoal of G ~.
From LkO =E AO and E being regular, we know that x E ~ar(LkO) implies
x ~ ~ar(AO) . This and the fact that the applied clause is allowed guarantees that
for each x E Var(LkO) there is some positive B,O (1 ~< i ~< l) containing x. []

In the remainder of this section we take the preceding discussion into account
by concentrating on hierarchical and allowed programs, that is, programs that
contain only allowed clauses, along with an underlying equational theory that
is both finitary and regular. Note that these two properties do not depend on
each other; for example, the infinitary theory of associativity used in Figure 2 is
regular, whereas unification wrt. the nonregular theory E0 is finitary.

To generalize the classical completeness theorem, we need the following
notion of decidability and a certain measure: A complete SLDENF-derivation
tree is called decidable if it is finite and contains no branch that flounders. Given
a hierarchical normal equational program (P, E), let n be the maximal number
of literals occurring in the body of a clause in P plus 1. Furthermore, let lev be
an adequate level mapping, that is, one that satisfies the hierarchy property. We
define the following measure:

1. # (p(t l , . . . , tn)) = t~ 2"lev(p) for each atom,
2. #(-~A) = #(A) + 1 for each negative literal, and
3. # (e - L 1 , . . . , L m) = E~=I # (L i) for each normal goal (m/> 0).

It is easy to verify that for each clause A +-- B 1 , . . . , Bt in a hierarchical program
the relation #(A) > • l=l #(B~) holds.

THEOREM 8. Let (P, E) be a hierarchical and allowed normal equational pro-
gram such that E is both finitary and regular. Furthermore, let G be an allowed
goal and R a selection rule. Then each complete SLDENF-derivation tree for
(P, E) t2 {G} wrt. R is decidable.

2] 0 MICHAEL THIELSCHER

Proof. By induction on the measure ~(G) we show that each complete
SLDENF-derivation tree for (P, E) U {G} wrt. R is decidable and of rank #(G).
The base case is trivial because #(G) = 0 implies G = D.

Let G = +--Ll , . . . ,Lm (m) 1), and assume that the claim holds for
each allowed goal with measure smaller than /~(G). Lemma 7 ensures that no
SLDENF-derivation for (P, E) U {G} flounders. Let Lk be the selected literal
(1 < k

1. If Lk is an atom, then
(a) if there is no variant of a clause in P such that its head is E-unifiable

with Lk, then the only SLDENF-derivation tree consists in the node G.
This tree is decidable and of rank 0, hence also of rank #(G);

(b) otherwise each complete SLDENF-derivation tree consists of the root G
and has a finite number of successor nodes

G' = +--(Ll,...,Lk-l,B1,...,Bt, L~+l,...,Lm)O,

since P contains finitely many clauses and E is finitary. From

1

~t(Lk) = #(A) > ~ # (B ,)
l = l

it follows that #(G') < #(G) for each successor G'. Thus, the induction
hypothesis implies that each complete SLDENF-derivation tree for each
such (P, E) U {G/} wrt. R is decidable and of rank less than #(G).
Hence, each SLDENF-derivation tree for (P, E) U {G} wrt. R is also
decidable and of rank p(G).

2. Otherwise Lk is a negative ground literal --,A and #(A) < /~(G), since
#(A) = p(Lk) - 1. Following the induction hypothesis, each complete
SLDENF-derivation tree for (P, E) U {e--A} wrt. R is decidable and of rank
less than #(G). Decidability along with soundness of SLDENF-resolution
(Theorem 5) and consistency of P* U E* (Lemma 6) implies that either each
such tree is finitely failed or else each such tree contains a success branch.
(a) In the former case, each complete SLDENF-derivation tree for (P, E) U

{G} wrt. R consists of the root G and its single successor G ~ = +--Ll, �9 �9 �9
Lk-1, Lk+l,..., Lm. From #(Lk) > 0 we conclude that #(G') < p(G);
hence, each complete SLDENF-derivation tree for (P, E)U{G ~ } is decid-
able and especially of rank #(G) because of the induction hypothesis
(note that G' is allowed as it is like G except for the ground literal
L~). Altogether, each complete SLDENF-tree for (P, E) U {G} wrt. R
is decidable and of rank #(G).

(b) In the latter case, each success branch in the SLDENF-derivation tree
for (P, E) U {+--A} constitutes an SLDENF-refutation of rank less than
#(G). Hence, the only SLDENF-derivation tree for (P, E) U {G} wrt. R
consists in the node G - this tree is decidable and of rank ~(G). []

ON THE COMPLETENESS OF SLDENF-RESOLUTION 21 1

We are now in a position to prove the intended generalization of the classical
completeness result [4, 1]. An answer substitution 0 to a goal G is called ground
iff GO is variable-free.

THEOREM 9. Let (P, E) be a hierarchical and allowed normal equational pro-
gram such that E is both finitary and regular. Furthermore, let G be an allowed
goal and R h selection rule. I f 0 is a correct ground answer to G, there exists an
SLDENF-refutation for (P, E) U {G} wrt. R with computed answer substitution
O=E O.

Proof The proof is by induction on the measure #(G). In case #(G) = 0, r
(the empty substitution) is the only correct answer to G = [] wrt. (P, E), and it
is also the computed answer.

Let G = +--L1,... , L k , . . . , Lm (m >1 1), and assume that the claim holds for
all allowed goals G' such that #(G t) < #(G). As 0 is a correct ground answer
to G, we know that

P* U E * p (LI A - , - A Lk A . - . ALm)O. (9)

Let Lk be the literal selected by R (1 ~< k ~ m).

1. If Lk is positive, then according to Theorem 8 we can find a decidable
complete SLDENF-derivation tree B for (P, E) U {GO} wrt. some selection
rule that selects LkO in GO. From (9) and soundness of SLDENF-resolution
it follows that this tree cannot be finitely failed because of the consistency
of P* tO E* (Lemma 6). Hence, as B is decidable, it must include a success
branch; that is, we can find an SLDENF-refutation for (P, E)U {GO} wherein
LkO is selected at the beginning. Let A +-- B 1 , . . . , Bl be the variant of a
clause that is used in conjunction with the E-unifier a in the first step of this
refutation, which implies Aa =E LkOa = LkO (recall that LkO is ground).
Without loss of generality we assume that the domain of cr is restricted to
Vat (A) and that a does not introduce variables occurring in G. The resulting
goal is

+--(LIO, . . . , Lk_lO, B1, . . . , Bl, L~+lO, . . . , LmO)cr.

Since this goal occurs within the refutation for (P, E) U {GO}, soundness of
SLDENF-resolution implies

P*uE*
3((LI A . . . A L k - l A B~ A . . . A Bt A Lk+t A . . . A L,~)Ocr) (10)

(note that B~o- = B, Oa (1 ~< i ~< I), since the goal, G, and the applied clause
do not share variables). Now, let 01 = O[var(Lk) and 02 = Olvar(C)\Var(Lk)
(this implies 0 = 0102 because of 0l is a ground substitution). From LkO =E
Ao- it follows LkOtcr =-z AOtc~ because of Var(LkOt) = {} and 12ar(Lk) Cl

212 MICHAEL TH1ELSCHER

))ar(A) = {}. In other words, 01a is an E-unifier of Lk and A. Hence, we
can apply an SLDENF-step to (P, E) U (G} wrt. R which yields

G' = +--(L1, �9 �9 �9 Lk-1, B 1 , . . . , Bt, L k + j , . . . , Lm)Ola. (11)

From the above assumption concerning o-, the fact that Var(G) N Var(A) =
{}, and 02 being a ground substitution, we conclude that 01o '02 : 0102cr :

Oa. Furthermore, (10) guarantees the existence of some ground instance Oap
of the literals occurring in (11) such that their conjunction is a logical conse-
quence of the completion. Hence, since Oap = OlcyOzp, we can find a substi-
tution p such that 02p is a correct ground answer to G'. Since # (G I) < #(G)
and G I is allowed (Lemma 7), we can apply the induction hypothesis to find
a computed answer t5 for (P, E) U {G') wrt. R such that F5 = E Ozp. Com-
bined with the first step from G to G ~ (11), this yields the computed answer
01~r~ for (P, E) U {G} wrt. R, which is E-equivalent to 0:

(OlO'p)[Var(G) : E (OIO'02p)IVar(G) : (Ol02crp)]var(G) : 0102 : 0 .

2. If Lk is a negative ground literal -~A, then (9) implies/9*UE* ~ ~A. Accord-
ing to Theorem 8 we can find a decidable complete SLDENF-derivation tree
for (P, E) U {+--A} wrt. R. This tree cannot contain a success branch, since
otherwise soundness of SLDENF-resolution implies /9. U E* ~ A, which
contradicts the consistency o f / 9 . U E*. Hence, this tree is finitely failed.
Moreover, (9) implies

P* U E* ~ (L1 A . . . A Lk-1 A Lk+l A . . . A Lm)O;

that is, 0 is a correct ground answer to G t = e - L 1 , . . . , Lk - l , L k + l , . . . , Lm
wrt. (P, E). Since #(G') < #(G) and G' is allowed because of the allowance
of G, the induction hypothesis implies the existence of an SLDENF-refutation
for (P, E) U {G'} wrt. R with computed answer 0 =E 0. Combined with the
SLDENF-tree for (P, E) U {e--A} this refutation constitutes an SLDENF-
refutation for (P, E) U {G} wrt. R with 0 as its computed answer substitu-
tion. []

4. Conclusion

By investigating important aspects concerning the completeness of the SLDENF-
resolution principle for normal equational logic programs wrt. an extended com-
pletion semantics, we have extended the work of Shepherdson, who proved
soundness of this calculus [20]. We have illustrated that the classical complete-
ness theorem known from nonequational logic programming with negation [4,
1] can be generalized only to some extent. As a concrete result, we have proved
completeness for hierarchical and allowed programs, provided the underlying
equational theories meet two conditions: they are finitary and regular. Moreover,
these conditions turn out to be strict in a certain sense:

ON THE COMPLETENESS OF SLDENF-RESOLUTION 213

�9 Whenever E is an infinitary equational theory with unification complete E*,
it is possible to construct a hierarchical program (P, E) and a generally but
not finitely failed SLDENF-tree in the spirit of (7) and Figure 2: Let s, t be
two E-unifiable terms such that no finite #UE(s, t) exists, and let P denote
the program clauses

q(x, x) +- p(x)
+-- q(s, t)

then P* U E* ~ -~r but (P, E) t_J {+--~r} has no SLDENF-refutation.

�9 Whenever E is an equational theory such that two terms s, t exist with s =E t
but Vat(s) ~ Var(t), it is possible to construct an allowed program (P, E)
along with an allowed but floundering goal in the spirit of (8): Without loss of
generality assume there is some x E ~ar(s) \ ~ar(t). Let cr be a substitution
that grounds all variables in s and t except z. Let P denote the allowed
program clause

This clause can be applied to the allowed goal +--p(scr), ~q(x) using the
E-unifier {~), and the resulting goal flounders immediately.

The restriction to hierarchical programs in our completeness theorem is adopted
from insight into nonequational logic programming. For instance, a simple coun-
terexample shows that SLDENF-resolution is incomplete for the more general
class of stratified programs [12, 2].

Finally, our result concerns only ground answer substitutions. Regarding the
special case, we know that correct answers to allowed nonequational programs
and allowed goals are necessarily ground, provided the completion of the program
is consistent [19]. It is obvious that this result cannot be generalized to arbitrary
equational theories (just recall the program (8) along with the theory E0 (2),
whose completion entails Vx. p(h(x, 0))). However, we believe that it continues
to hold in case of regular theories, which then would make the groundedness
condition in Theorem 9 redundant, but a detailed proof remains to be done.

Acknowledgements

The author thanks Steffen H611dobler for valuable remarks on a draft version
of this paper. The author was partially supported by ESPRIT within basic research
action MEDLAR-II under grant, no. 6471 and by the German Research Com-
munity (DFG) within project KONNEKTIONSBEWEISER under grant no. Bi
228/6-2.

214 MICHAEL THIELSCHER

References

1. Apt, K. R., Blair, H. A., and Walker, A.: Towards a theory of declarative knowledge, in
J. Minker (ed.), Foundations of Deductive Databases an Logic Programming, Chapter 2,
Morgan Kaufmann Publishers Inc., 1987, pp. 89-148.

2. Apt, K. R. and Bol, R.: Logic programming and negation: a survey, J. Logic Programming
19/20 (1994), 9-71.

3. Baader, E and Siekmann, J. H.: Unification theory, in D. M. Gabbay, C. J. Hogger, and
J. A. Robinson (eds), Handbook of Logic in Artificial Intelligence and Logic Programming,
Oxford University Press, 1993.

4. Clark, K. L.: Negation as failure, in H. Gallaire and J. Minker (eds), Logic and Data Bases,
Plenum, New York, 1978, pp. 293-322.

5. Gallier, J. H. and Raatz, S.: Extending SLD-resolution to equational horn clauses using E-
unification, J. Logic Programming 6 (1989), 3--44.

6. H611dobler, S.: Foundations of Equational Logic Programming, LNAI 353, Springer, 1989.
7. H611dobler, S. and Thielscher, M.: Computing change and specificity with equational logic

programs, Ann. Mathematics and Artificial Intelligence 14(1) (1995), 99-133.
8, Jaffar, J., Lassez, J.-U, and Lloyd, J.: Completeness of the negation as failure rule, in A. Bundy

(ed.), Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI), Karlsruhe, Germany, 1983,
pp. 500-506.

9. Jaffar, J., Lassez, J.-L., and Maher, M. J.: A theory of complete logic programs with equality,
J. Logic Programming 1(3) (1984), 211-223.

10. Jaffar, J. and Maher, M. J.: Constraint logic programming: a survey, Z Logic Programming
19/20 (1994), 503-581.

11. Kunen, K.: Signed data dependencies in logic programs, J. Logic Programming 7 (1989),
231-246.

12. Lloyd, J. W.: Foundations of Logic Programming, Series Symbolic Computation, 2nd extended
edition, Springer, 1987.

13. Plotkin, G.: Building in equational theories, Machine Intelligence 7 (1972), 73-90.
14. Robinson, J. A.: A review of automatic theorem proving, in Annual Symposium in Applied

Mathematics, American Mathematical Society, 1967, pp. 1-18.
15. Sato, T.: Completed logic programs and their consistency, J. Logic Programming 9 (1990),

33--44.
16. Shepherdson, J. C.: Negation as failure: a comparison of Clark's completed data base and

Reiter's closed world assumption, J. Logic Programming 1 (1984), 51-79.
17. Shepherdson, J. C.: Negation as failure II, J. Logic Programming 3 (1985), 185-202.
18. Shepherdson, J. C.: Negation in logic programming for general logic programs, in J. Minker

(ed.), Foundations of Deductive Databases and Logic Programming, Chapter 1, Morgan Kauf-
mann Publishers Inc., 1987, pp. 19-88.

19. Shepherdson, J. C.: Correct answers to allowed programs and queries are ground, J. Logic
Programming 11 (1991), 359-362.

20. Shepherdson, J. C.: SLDNF-resolution with equality, J. Automated Reasoning 8 (1992), 297-
306.

21. Siekmann, J. H.: Unification of commutative terms, in Proc. Int. Symp. on Symbolic andAlge-
braic Manipulation (EUROSAM), Marseille, France, June 1979, Springer LNCS 72, pp. 531-
545.

22. Siekmann, J. H.: Unification theory, J. Symbolic Computation 7 (1989), 207-274. Special Issue
on Unification.

23. Stroetmann, K.: A completeness result for SLDNF-resolution, J. Logic Programming 15
(1993), 337-355.

