
Journal of Automated Reasoning 15: 1-40, 1995. 1 
@ 1995 Kluwer Academic Publishers. Printed in the Netherlands. 

Default Reasoning by Deductive Planning 

M I C H A E L  T H I E L S C H E R  
FG Intellektik, TH Darmstadt, AIexanderstrafie 10, D-64283 Darmstadt, Germany 
e-mail: mit@intellektik.informatik.th-darmstadt.de 

and 

T O R S T E N  S C H A U B *  
IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France 
e-mail: torsten@irisa.fr 

(Received: 30 March 1994) 

Abstract. This paper deals with the automation of reasoning from incomplete information by means 
of default logics. We provide proof procedures for default logics' major reasoning modes, namely, 
credulous and skeptical reasoning. We start by reformulating the task of credulous reasoning 
in default logics as deductive planning problems. This interpretation supplies us with several 
interesting and valuable insights into the proof theory of default logics. Foremost, it allows us 
to take advantage of the large number of available methods, algorithms, and implementations for 
solving deductive planning problems. As an example, we demonstrate how credulous reasoning 
in certain variants of default logic is implementable by means of a planning method based on 
equational logic programming. In addition, our interpretation allows us to transfer theoretical 
results, such as complexity results, from the field of planning to that of default logics. In this 
way, we have isolated two yet unknown classes of default theories for which deciding credulous 
entailment is polynomial. 
Our approach to skeptical reasoning relies on an arbitrary method for credulous reasoning. It 
does not strictly require rather the inspection of all extensions, nor does it strictly require the 
computation of entire extensions to decide whether a formula is skeptically entailed. Notably, our 
approach abstracts from an underlying credulous reasoner. In this way, it can be used to extend 
existing formalisms for credulous reasoning to skeptical reasoning. 

Key words: default logics; deductive planning; credulous and skeptical reasoning; logic program- 
ming. 

AMS Subject Classification: 68T15, 68T27 

1. Introduction 

The  t rea tment  o f  incomple te  in format ion  const i tutes  one  o f  the central  p rob lems  

for  c o m p l e x  in format ion  sys tems.  This issue was  isolated in the field o f  artifi- 
cial in te l l igence by  M i n s k y  [46], who  p r o m p t e d  with it the creat ion o f  an area, 

k n o w n  as nonmonotonic  reasoning. This term stems f r o m  the observa t ion  that 

the addi t ion  o f  in format ion  to an incomple te  k n o w l e d g e  base  m a y  c h a n g e  the 
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set of drawable conclusions. So far, however, this phenomenon has been studied 
primarily from a theoretic point of view. This has led to numerous different non- 
monotonic logics yet only a handful of resulting practical approaches, algorithms, 
or even implementations. 

In this paper, we turn to practical issues and consider one of the best-known 
and most widely used formalisms for nonmonotonic or, more specifically, default 
reasoning, namely, Ray Reiter's default logic [51] along with its descendants. This 
logical system deals with incomplete information by providing general rules that 
allow for exceptional cases. These so-called default rules are in turn added to a 
standard first-order logic. 

From the beginning, an important task was the development of proof theo- 
ries in order to automate reasoning in default logic, preferably by adopting and 
extending methods known from classical automated deduction. However, Reiter 
himself observed that automating the reasoning process in the entire framework 
is problematic because full-fledged default logic lacks the formal property of 
semi-monotonicity. This property, however, is indispensable for proving in a local 
fashion, since it allows us to restrict our attention to those parts of a given theory 
that are related to what shall be proved. For this purpose, Reiter defines in [51] 
a restricted class of default theories, called normal theories, that are provably 
semi-monotonic in general. Using this observation, he develops in [51] a first 
proof theory for this restricted class based on the resolution principle. 

Nonetheless, it soon became apparent that many interesting problems cannot 
be encoded via normal default theories [53]. Moreover, it turned out that apart 
from semi-monotonicity, other desirable properties are not present in the original 
approach. This insight prompted several authors to develop modifications of 
the first approach to default logic, for example, Lukaszewicz's Justified Default 
Logic 1 [39], Brewka's Cumulative Default Logic [8], or Constrained Default 
Logic [17]. These three variants turn out to be semi-monotonic even in case 
of arbitrary default theories. This is why they are of great interest, especially 
for automating default reasoning. In what follows, however, we will mainly 
focus on the finally mentioned dialect. The choice of constrained default logic as 
our prime exemplar is of course not an arbitrary one. Constrained default logic 
enjoys several desirable computational properties needed for reasonable proof 
procedures. Moreover, it has recently been shown in [18] that in certain fragments 
of constrained default logic, reasoning is significantly easier than in Reiter's 
default logic. All this renders our exemplar a prime candidate for computational 
purposes. However, we show also how our results can be directly applied to 
Reiter's original definition in case of normal default theories. Moreover, we 
illustrate how similar results can be obtained for Lukaszewicz's variant, while we 
do not explicitly consider cumulative default logic because of its tight relationship 
to constrained default logic (see [58, 17] for details). An important characteristic 
feature of constrained default logic, Lukaszewicz's variant, and classical default 
logic restricted to normal theories is that extensions can be generated in a truly 
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iterative way instead of by using the usual fixpoint construction. This observation 
is the starting point of our analysis. 

During the past decade, several calculi designed for classical logic have been 
applied to define proof theories for (variants of) default logic, for example, the 
resolution principle as in [51, 4], the tableau method [65] as in [61, 62], or the 
connection method [6] as in [55, 60]. The aim of this paper is not to provide just 
another specific implementation technique. Rather, we propose a new view on 
the reasoning task in default logics by regarding it as a problem-solving task, or, 
more specifically, as a planning problem. This view appears to be very natural and 
straightforward as soon as extensions can be generated truly iteratively. We claim 
that this interpretation reflects adequately the nature of what distinguishes default 
logics from classical logic, namely, the additional expressive power provided by 
default rules. Any formalism for proving in default theories that employs methods 
known from classical automated deduction has to comply with three substantial 
differences between a default 6 = (a : fl)/co (which allows to conclude co by 
default if o~ holds and/3 can be consistently assumed) and its classical counterpart, 
namely, the implication oz -+ co. First of all, the consistency requirement given 
by the so-called justification/3 may suppress the application of 6. Second, as 6 is 
a rule instead of a formula, it is impossible to apply it the other way round (i.e., 
via contraposition). For instance, we are allowed to conclude --~a from -~b given 
a --+ b but not by using the default (a : b)/b. Third, the so-called prerequisite 
o~ of a default must be explicitly derivable, which means that defaults cannot 
mutually satisfy their prerequisites. For example, from a -+ c and -~a -+ c it is 
possible to conclude c. This cannot be obtained from the two defaults (a : c)/c 
and (-~a : c)/c. 

These observations suggest a careful distinction between a default and a log- 
ical formula. To this end, we propose to interpret defaults as tools for acting in 
dynamically changing worlds. More precisely, starting from some given world 
knowledge W, which is assumed to be certain, we identify a particular set of 
actual beliefs with a particular state of (or situation in) a dynamical system. This 
set of beliefs is successively extended by applying defaults, which are identified 
with actions that transform situations into situations. The task of finding default 
proofs, which means to find an appropriate set of defaults that provide such a 
proof, can then be identified with the task of finding an appropriate sequence of 
actions that transforms the initial set of beliefs into a situation which classically 
entails the formula under consideration. In other words, we intend to identify 
default proving with solving planning problems. 

Although this view seems to be quite natural and shows some interesting and 
valuable consequences, it has not yet been formally established. Aside from the 
adequateness of the interpretation of default rules as actions operating on sets of 
formulas, some merits of this view are the following ones. 
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• There exist a variety of systems designed for planning problems which have 
been thoroughly investigated and improved for many years. All of them 
are candidates for competitive default-reasoning systems, provided they are 
suitable for the particular problem class determined by default logics. 

• Pure planning can be regarded as being only a part of a more extensive 
research field dealing with reasoning about actions and change in general. 
Other directions of research related to this field may suggest a variety of 
extensions as regards reasoning with default logics. For instance, abduc- 
tive planning is concerned with planning problems where the system may 
generate and apply additional (i.e., not previously given) facts that are nec- 
essary to achieve a goal. Adopting this concept, one may define abductive 
default reasoning where it is possible to abduce additional knowledge if it 
is necessary to obtain a default proof. 

• An important task regarding both default reasoning as well as planning con- 
sists in fixing tractable problem classes. A variety of results concerning 
tractable planning problems have recently been developed. As will be illus- 
trated later in this paper by two simple examples, these results can often 
be directly applied to define subclasses of default theories where the task 
of finding default proofs shows the same complexity. Our examples provide 
new classes of default theories in which deciding credulous entailment is 
polynomial. 

We have not yet explicitly mentioned that the preceding discussion is concerned 
with only one kind of reasoning in default logics, called credulous reasoning. In 
fact, a default logic may induce one or several so-called extensions (i.e., distinct 
sets of default conclusions) of an underlying world description. Then, a formula 
is said to be credulously entailed if it is contained in at least one extension 
of the default theory at hand. Other extensions may make no statement at all 
about the formula, or even claim its contrary. 2 Indeed, previous work has mainly 
concentrated on this reasoning mode. 

However, a second kind of reasoning in default logics deserves equal rights, 
namely, skeptical reasoning. For this, a formula is required to be in all extensions 
of the default theory under consideration. Apart from the naive way of checking 
this by simply generating and testing all extensions, only little effort has been put 
into automating skeptical reasoning up to this day. As a second major contribution 
of this paper, we formalize a more elaborated procedure to prove membership 
in all extensions. Yet our approach does neither require the computation of all 
extensions nor the computation of a single entire extension. Notably, it relies on 
an (almost) arbitrary procedure providing credulous proofs. In fact, apart from 
the provision of certain complete, preferably minimal sets of credulous default 
proofs, there is no further restriction on the underlying credulous reasoner. In 
particular, our method can be founded but does not rely on the results presented 
in the first part of this paper. Rather it can be used to extend any formalism 
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for automated credulous reasoning to skeptical reasoning. The basic ideas can 
be traced back to Poole's nonmonotonic THEORIST formalism [50]: First, it was 
applied to a restricted version of this theory [47, 48] and later extended to the 
entire framework [67]. 

The paper is organized as follows. We introduce in Section 2 Reiter's clas- 
sical approach, Lukaszewicz's modification to it, and constrained default logic. 
Furthermore, some fundamental observations and results concerning the itera- 
tire generation of extensions in constrained default logic are recapitulated. In 
Section 3, we argue that these results lead in a rather straightforward way to a 
formalization of credulous reasoning in terms of deductive planning. We discuss 
the merits of this reformulation and illustrate by means of a simple example how 
complexity results known from the field of planning can be directly applied to 
formulate analogous results regarding default logic. This section is mainly con- 
cerned with constrained default logic, but we also discuss the applicability of 
our results to Lukaszewicz's justified default logic. In Section 4, we exemplify 
how the aforementioned formalization leads to a concrete proof procedure for 
credulous reasoning. We use an approach designed for solving planning prob- 
lems by appeal to logic programs augmented by an equational theory [28]. This 
method turns out to capture a certain class of default theories in a direct man- 
ner. In Section 5, we turn to the problem of skeptical reasoning and develop a 
procedure that strictly requires neither the inspection of all extensions nor the 
computation of entire extensions. Again, this section is mainly concerned with 
constrained default logic, but we also discuss the applicability of our results 
to Reiter's classical definition (in case of normal default theories). Finally, our 
results are summarized in Section 6. 

2. Default Logics 

The following notions and notations are fundamental for all dialects of default 
logic. A default ~(~2) = (c~(Yc) : fl(~))/w(~) consists of three sets of first-order 
formulas, where :~ denotes a sequence of free variables occurring in these for- 
mulas. A default 3(:~) is interpreted as a representative of each instance 3(t-), 
where { is a sequence of ground terms. As usual, we call c~(t-) -- Prereq(6(t-)) 
the prerequisite,/3(t-) = Justif(c~(~) the justification, and w(~ = Conseq(~(~) 
the consequence of ~(t-). Furthermore, if D is a set of defaults, then Prereq(D) = 
UrcD Prereq(~), Justif(D) = Ur~D Justif(~), and Conseq(D) = UreD Conseq(~). 
A default theory A = (D, W) consists of a set of defaults D and a set of closed 
first-order formulas W, called world knowledge or background knowledge. A 
closed default theory does not contain defaults with free variables. For notation- 
al convenience, a closed default is simply written as ~ = (c~ : fl)/w. This paper 
mainly focuses on closed default theories. Handling defaults with free variables 
is discussed in, for example, [51, 37], and we will briefly raise this problem at the 
end of Sections 3 and 4. If each member of D is of the form (o~ : w)/w (i.e., if 
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justification and consequence coincide), then A is called a normal default theory. 
A default theory (D, W) is said to be inconsistent iff W is inconsistent. If F is 
a set of first-order formulas, then we denote by Th(F)  the theory determined by 
F,  that is, the set of all formulas that are classically entailed by F.  Finally, the 
symbol 3-(_1_) denotes a formula that is always true (false). 

2.1. THE CLASSICAL APPROACH 

Drawing conclusions in default theories is based on the formation of extensions, 
each of them representing a possible, maximal set of beliefs. The different ways 
of constructing a set of extensions for a default theory characterize the three vari- 
ants discussed in this section. Reiter's classical default logic uses the following 
definition, which is based on a fixpoint construction [51]. 

DEFINITION 2.1. If (D, W) is a closed default theory and S a set of closed 
first-order formulas, then let P(S)  be the smallest set of formulas such that the 
following conditions are satisfied: 

(1) W c_ 1-'(S); 
(2) Th(P(S))  = P(S);  and 
(3) for any (c~ :/3)/co E D, if o~ E P(S) and S o {p} g= ±, then co E F(S).  

A set of formulas E is an extension of (D, W) iff r(E) = E. 

Based on the concept of extensions, there are two different ways to determine 
what are the logical consequences of a default theory. First, a formula is called 
credulously entailed iff it is contained in at least one extension. Second, a formula 
is called skeptically entailed iff it is contained in every extension. In what fol- 
lows, we concentrate on credulous reasoning and turn our attention to skeptical 
reasoning in Section 5. 

In Reiter's original paper [51], attention is also restricted to proving mem- 
bership in one extension. There, it is pointed out that in view of the automation 
of proving in default theories, it is of great practical importance to avoid the 
generation of an entire extension when trying to prove the entailment of a par- 
ticular formula. Rather, one prefers to prove in a local fashion, which means 
to restrict one's attention to those defaults which are needed to obtain a deriva- 
tion of the formula under consideration. The formal property reflecting this is 
called semi-monotonicity, stating that the entailment relation that is defined for a 
default theory is monotonic regarding additional defaults. More formally, if E is 
an extension of a theory (D, W) and D ~ is obtained by adding elements to D, 
then semi-monotonicity guarantees the existence of an extension E ~ of (D ~, W) 
such that E ~ D_ E. Hence, if we need defaults D c_ D ~ to determine a proof 
of a formula given the entire theory (D ~, W) then semi-monotonicity allows us 
to conclude that the formula is indeed credulously entailed by the whole theory. 
Unfortunately, as pointed out in [51], semi-monotonicity does not hold in gen- 
eral. As an example, consider an arbitrary default theory A = (D, W) and a 
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propositional constant a that does not occur elsewhere in A. Independently from 
whatever the extensions of A are, adding the default : a/-~a makes the whole 
theory collapse because (D U {: a/-~a}, W) admits no extensions at all. This 
situation illustrates that it is inevitably necessary to consider the entire set of 
defaults in general when reasoning credulously. 

On the other hand, semi-monotonicity is guaranteed in case of normal default 
theories [51]. This observation enabled Reiter to develop a proof theory which 
admits local proofs according to the preceding discussion. Based on his work, 
several authors applied theorem proving methods to normal default theories dur- 
ing the past decade; see, for example, [4, 20, 61, 62]. 

2.2. t:,UKASZEWICZ' DEFINITION OF JUSTIFIED EXTENSIONS 

Starting out from the problem of semi-monotonicity, Lukaszewicz proposed a 
redefinition of the original notion of extensions [39]. He observed that the lack 
of semi-monotonicity stems from requiring the application of a default even if 
its consequence is inconsistent with its justification or the justification of other 
applied defaults. Lukaszewicz addresses this problem via a slightly more com- 
plicated definition of extensions, where an additional set of formulas J is used to 
collect the justifications of applied defaults. This set can then be used to suppress 
the application of further defaults: 

DEFINITION 2.2. If (D, W) is a closed default theory and S, T are sets of closed 
first-order formulas, then let P(S, T) be the pair of smallest sets of formulas 
(S', T ~) such that the following conditions are satisfied: 

(1) W __ S'; 
(2) Th(S ' )  = S'; and 
(3) for any (c~"/3)/w E D, if o~ E S' and for any 3' E T U {/3} we have that 

S U {co} U {7} ~ _1_, then co E S' and/3 E T'. 
A set of formulas E is a justified extension of (D, W) wrt. a set of formulas J 
iff F (E ,  J)  = (E, J) .  

As regards this definition, semi-monotonicity is guaranteed in case of arbitrary 
default theories [39]. For instance, the crucial default : a/-~a can never be applied 
because the contradiction between its consequence and its justification are detect- 
ed in Lukaszewicz's variant (via condition 3 in the above definition). It is, how- 
ever, noteworthy that the set of justifications J of applied defaults is required 
neither to be consistent with the entire extension nor to be consistent itself. 

2.3. CONSTRAINED DEFAULT LOGIC 

Constrained default logic [57, 58, 17] has recently been developed because of 
an unintuitive behavior of classical default logic, which is also not addressed in 
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the modification described above. As first pointed out in [49], Reiter's approach 
is incapable of what is usually called committing to assumptions. 

EXAMPLE 2.1. Let A1 denote the default theory 3 ({61 = (ho • -~ra)/sw,  62 = 
(ho • ra ) /ba} ,  {ho}).  According to Definition 2.1, A1 has exactly one exten- 
sion: Th({ho, sw, ba}). Analogously, according to Definition 2.2 this is the only 
justified extension of A~ (wrt. J = {-~ra, ra}).  

Obtaining a single extension of A1 appears to be counterintuitive because this 
extension can be said to be based on the two conflicting assumptions ra and 
-~ra (see, e.g., [49, 8, 16, 17]). Rather, one expects A 1 to admit two different 
extensions, one containing sw and the other one containing ba. 

Constrained default logic was developed in view of guaranteeing both semi- 
monotonicity and commitment  to assumptions. Informally, the idea is to extend 
the consistency requirement of Definition 2.2 such that the justifications of all 
applied defaults have to be consistent with the underlying extension. Example 2.1 
- where J = {-~ra, ra}  - illustrates that this is not required in Lukaszewicz's 
method. As for Definition 2.2, an additional set of formulas is used, but now 
both the justifications and consequences of applied defaults are collected. The 
formal definition is as follows. 

DEFINITION 2.3. If (D, W) is a closed default theory and S, T are two sets of 
closed first-order formulas, then let F(T)  be the pair of smallest sets of formulas 
(S', T t) such that the following conditions are satisfied: 

(1) W C _ S ' C _ T ' ;  
(2) for any (~" f l ) /~  E D, if o~ E S' and T U {fl} U {co} ~ ±,  then co E S' 

and fl A co E T'. 
A pair of sets of formulas (E, C) is a constrained extension of (D, W) iff 
F(C):(E,C). 

The so-called constraints C form a superset of E by construction. G' includes 
the justifications and consequences of all applied defaults and is required to be 
consistent - provided the underlying default theory is not inconsistent itself. As 
for Lukaszewicz's method, the property of being semi-monotonic is guaranteed in 
general wrt. constrained extensions [57, 17]. Moreover, our example concerning 
commitment  of assumptions is treated satisfactorily: 

EXAMPLE 2.1 (continued). Our default theory A1 admits two constrained exten- 
sions, namely, (Th( { ho, sw }), Th( { ho, ~ r a  A sw } )) and (Th( { ho, ba } ), Th( { ho, 
ra A ba})). The reason for not obtaining a single extension is that after having 
applied 61, say, ~ r a  is included in the corresponding set of constraints and, then, 
6 2 cannot be applied due to Th({ho , - , r a  A sw})  t] {ra}  ~ _1_. 

On the analogy of a result concerning classical default logic, it is possible to 
give a more intuitive, pseudo-iterative 4 characterization of constrained extensions 
that is not based on a fixpoint construction [57, 17]: 
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THEOREM 2.4. If (D, W) is a closed default theory and iF,, C are two sets of 
closed first-order formulas, then let Eo := I/V, Co := W, and for each i >1 0 

Ei+l : :  Th(Ei) U J'w I a~ "/3 6 D,o~ 6 Ei ,CU {fi} U{co} ~ J--It ( co ) 

:= Th(COU{ A I 

(E, c )  is a constrained extension d (D, W) /if (£, C) = (U %o U %o cd. 

Based on this observation, the authors of [55, 60] develop a third characterization 
of constrained extensions that enables one to describe the generation process in a 
truly iterative manner (i.e., without the necessity of using a fixpoint construction). 
Stating their result requires to define the notion of groundedness, which was first 
applied to defaults in [61 ]. 

DEFINITION 2.5. If (D, W) is a default theory, then a set D t C_ D is called 
grounded in W (or simply grounded) iff there exists an enumeration (5)ies of 
D'  such that for each i E I,  

W U Conseq({61, . . .  ,~i-1}) ~ Prereq(~i). 

Based on this definition, the following result has been proved in [55, 60]. 

THEOREM 2.6. Let (D, W) be a default theory and E, C be two sets of formu- 
las. (E, C) is a constrained extension of (D, W) iff there exists a maximal (wrt. 
set inclusion), groundedset D' such that D' C D, WUJustif(D')UConseq( D t) ~= 
2_ and the following holds: 

(1) /~ = Th(W U Conseq(D'))  and 
(2) C = Th(W U Justif(D') U Conseq(D')) .  

Groundedness is, for instance, necessary to ensure that defaults do not mutually 
satisfy their prerequisites, for example, that (Th({a,b}),Th({a,b})) is not a 
constrained extension of ({(b:  a)/a, ( a :  b)/b}, { }). In general, groundedness 
can be seen as the counterpart of the minimality requirement in the fixpoint 
Definitions 2.1, 2.2, and 2.3. 

Theorem 2.6 is fundamental for our results as regards both credulous as well 
as skeptical reasoning. To this end, we introduce some further useful notions 
regarding a proof theory in constrained default logic. 

DEFINITION 2.7. Let A = (D, W) be a default theory. We call a subset D ~ _ D 
a base of extensions (or simply base) of A iff A t is grounded and WUJust i f (D t) U 
Conseq(D t) ~: ±.  A default proof of a closed formula 9 from A is a base D t 
such that W U Conseq(D')  ~ 9. We say that 9 is provable by default (or just 
provable) from A if we can find such a default proof. 5 
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A trivial base is the empty set, which can be regarded as a default proof of any 
formula implied by the background knowledge. Each maximal base determines a 
single constrained extension according to Theorem 2.6. Hence, a set of defaults 
is a base if it can be extended to one or more constrained extensions in the spirit 
of Theorem 2.6. 

EXAMPLE 2.2. Recall our default theory A 1 (cf. Example 2.1) augmented by 
a third default, viz. A2 = ({($1 = (ho : ~ra)/sw, ($2 = (ho : ra)/ba, ($3 = 
(sw : f u n ) / f u n } ,  {ho}). According to the previous definition, we find the four 
bases { }, {($1}, {($2}, and {($1,($3}, respectively. The last two are maximal and 
determine the two different constrained extensions (Th({ho, ba}), Th({ho, ra A 
ha})) and (Th({ho, sw, fun}) ,  Th({ho,-,raAsw, fun}))  of A2. Both {($1} and 
{51,53} are default proofs of sw, and each of the four sets is a default proof of 
ho, since ho E W. 

Following Theorem 2.6, it is easy to see that our notion of provability coincides 
with the definition of credulous reasoning: 

PROPOSITION 2.8. Let A = (D, W) be a closed default theory and 9 be a 
closed formula. There exists a constrained extension (E, C) of A such that 
9 E E iff g is provable from A. 

Proof. 
' 3 ' :  If (E,C)  is a constrained extension, then we can find a base D'  such 

that E = Th(W U Conseq(D'))  according to Theorem 2.6. Since 9 ~ E, D'  is a 
default proof of 9. 

' ~ ' :  Assume D'  to be some default proof of 9 from A, i.e., WUConseq(D')  
9- Then we can find by semi-monotonicity at least one maximal (wrt. set inclu- 
sion) base D" of A such that D" _D D'. According to Theorem 2.6, the pair 
(E, C), where 
(1) E = Th(W U Conseq(D"))  and 
(2) C = T h ( W  U Justif(D") U Conseq(D")),  

is a constrained extension of A. From D ~ C_ D" and W U Conseq(D ~) ~ 9 we 
conclude by monotonicity that W U Conseq(D") ~ g, hence 9 E E. [] 

Finally, on the analogy of a result already implicitly used in [51], we make use 
of the compactness property of first-order logic [19], which implies a certain 
finiteness criterion of default proofs. This is essential for our results concerning 
skeptical reasoning in Section 5. 

Remark 2.9. If 9 is provable from a default theory (D, W), then we can find 
a finite base of (D, W) proving 9. 

Theorem 2.6 illustrates that extensions can be generated by successively applying 
defaults. Moreover, Definition 2.7 in conjunction with Proposition 2.8 ensures 
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that default proofs can be found in the very same fashion by successively gener- 
ating and extending bases. In the following section, we identify the application 
of a default with the execution of an action within a current set of beliefs (along 
with some constraints), referred to as a situation. Hence, searching for bases in 
order to provide a default proof can be formulated as a planning problem. The 
latter is solved as soon as the formula we wish to prove is a logical consequence 
of the situation at hand. 

3. Planning 

Understanding and modeling the ability of humans to reason about dynamically 
changing worlds are key issues in artificial intelligence and cognitive science 
(see, e.g., [1]). The fundamental concepts to describe the behavior of dynamic 
systems are situations and actions. A situation is a snapshot of the world at 
a particular instant. Actions serve as descriptions of the dynamical aspect by 
defining how situations can be transformed. An important application of this kind 
of information processing is the field of planning, which describes the problem of 
searching for a sequence of actions such that its successive application transforms 
a given situation into a situation satisfying a certain criterion, given by the goal 
specification. 

In case of deductive planning, situations are represented by means of logical 
formulas. The formal concept is as follows. 

DEFINITION 3.1. A deductive planning problem is a quadruple (~, ~2,Z, g), 
where ~, the space of situations, is a set of sets of formulas, f~ is a set of 
partially defined functions of type ~ ~-~ ~ (called operations or actions), 27 C 
(called initial situation), and g is an arbitrary formula (the goal specification). 

An action a ~ f~ is called applicable in a situation ,9 E ~ iff a(S) is defined. In 
this case the application of a to S yields the new situation a(5'). A solution to 
a planning problem consists of a finite sequence [al,. • •, aN] of actions, called a 
plan, such that there exist situations S 0 , . . . ,  S~ E P, where So =- 27, S~ ~ 9, and 
for each i = 1 , . . . ,  n, ai is applicable in Si-i and its application yields Si. 

A planning problem is called solvable if it has a solution. 

In what follows, we use the concept of deductive planning problems to develop 
a proof theory for credulous reasoning in constrained default logic. To this end, a 
particular set of beliefs along with a set of constraints is interpreted as a situation 
in the sense of Definition 3.1. To be more precise, we consider expressions of 
the form 

8 u (1) 

as situations, where S is a set of closed first-order formulas (representing the set 
of beliefs Th(S)), co is a special unique predicate, and 4~ is a closed first-order 
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formula (representing the constraints Th(~)).  Note that even if S is written as a 
conjunction of its elements, (1) is not a first-order formula. We will discuss the 
consequences of this fact later in this section. 

Based on this representation, each default of a given default theory is inter- 
preted as an action that, when executed in a situation, changes the current sets 
of beliefs and constraints, respectively, in the spirit of Theorem 2.6. We adopt 
the notion of applicability, which is implicitly determined by Theorem 2.6 to 
define applicability of actions in situations of the form (1). Altogether, the prob- 
lem of finding a default proof within the context of constrained default logic is 
interpreted in terms of deductive planning problems as follows. 

DEFINITION 3.2. If A = (D, W) is a closed default theory and 9 a formula, 
then the corresponding planning problem 7~A,9 = (N, f~,Z, 9) is as follows: 
(1) The set of possible situations E contains each expression of the form (1), 

where S is any closed set of first-order formulas and • is a closed first-order 
formula. 

(2) ~ contains exactly one element 3' for each 3 = (c~ : /3)/w E D. Such an 
action 6 t E f~ is defined for a situation S C N iff 
(a) S ~ ol and 
(b) • U {/3} U {w} ~= 3_ where co(g) C S. 
If 3' is defined, then 3'(S) := (S \ {c0(q~)}) U {co, co(~ A/3 A co)}. 

(3) z = w u {c0(w)}.  

Note that in general the application of an action is nonmonotonic because a fact 
c0(g) which holds in some situation S usually becomes false by replacing it by 
some c0(/b~). Hence, as the applicability of an action depends on a fact of this 
form (via condition (2)(b) above), the property of an action to be applicable in 
a certain situation might be lost in later situations. This is an important general 
characteristic of dynamical systems. 

For the sake of simplicity, we will not distinguish between the name 3 of a 
default and the corresponding element 3' E f~ in what follows. Before formally 
proving the adequateness of our formalization, let us illustrate it by the running 
example. 

EXAMPLE 2.2 (continued). Recall default theory A2. If 9 is the atom fun, then a 
solution to the corresponding planning problem 7~A2,9 is depicted in Figure 1. The 
resulting plan [~l, 33] corresponds to the base {31,33}, which is a default proof of 
fun from A2. Note that the action representing ~2 = (ho : ra)/ba is not applicable 
in the resulting situation, due to {ho A -~ra A sw A fun} U {ra} U {ba} ~ _l_. 

This example illustrates a one-to-one correspondence between the formation of 
bases and the generation of plans. As this observation holds in general, we are 
able to prove that credulous reasoning can be adequately modeled by solving 
deductive planning problems: 
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Plan Situation 
[1 {ho, co(ho)} 

! 

~1 = ho:~ra 1 8w 

[61] { ho, sw, CO(ho A ~ra A sw)} 

63 = fun  

[61,63] {ho, sw, f u n ,  CO (ho A ~ra A sw A f u n ) }  

Testing Applicability 

{ho} ~ ho 

{ho} U {~ra} U {sw} ~ ± 

{ho, s~} ~ sw 
{ho A -,r,~/x ~ }  u {/,,.,.~} u { f~,n} !~ _L 

Fig. 1. A solution to the planning problem 79A2,f~ generating the plan [6~, ~3]. 

THEOREM 3.3. Let A be a default theory and g be a closed formula. Then 9 
is provable from A iff 79A,9 is solvable. 

Proof. If A is inconsistent, then W is inconsistent, and there is exactly one 
constrained extension: (Th(_L), Th(_L)) (see [57]). In other words, each 9 is prov- 
able from A (recall Note 5). Similarly, since W is part of the initial situation of 
7)A,g, [] is a solution to g since g C Th(W) = Th(2_). 

Now, assume A = (D, W) to be consistent. 
' ~ ' :  If g is provable from A, then we can find a finite base D'  = (31, . - . ,  3~) 

C D proving g according to Remark 2.9. By induction on n we show that there 
is a solution p to 7)A,g = (E, f~, Z, g) that satisfies the following conditions: 

(1) p contains exactly the elements of D'  and 
(2) p transforms the initial situation Z into a situation ,S U {c0(~5)} such that 

S _-- W U Conseq(D t) and • - W U Justif(D') U Conseq(D').  
In case n = 0 we have D'  = { } and W ~ g. Since 27 = W U {co(W)}, from 
Definition 3.2 we conclude that Z ~ g and, hence, the empty sequence [] of 
actions solves T'A,9. 

' = (~l, .,c~n-l} and ~ = (~n "/3n)/con. Clearly, I f n  > 0, t hen le t  D n_l " 
' = (~I, . .  ~n) is grounded. Furthermore, Dn_ 1 is Dry_ I is grounded, since D'  ., 

a default proof of ozn following Definition 2.5. Thus the induction hypothesis 
implies that there is a solution Pn-1 to the planning problem (~, ~ , Z ,  O~n) such 
that Pn-I contains exactly the elements of D~_I, and applying Pn-i to 27 yields 
a situation 8n-1 U {c0(~n-1)} such that 8n-I ~ Ctn and 

Sn-1 = W U Conseq(D~_l)  

~sn_l = W U Jus t i f (D'n_l)UConseq(D~_l) .  

(2) 
(3) 

Following Definitions 3.1 and 3.2, dn is applicable in Sn-1 U {cO(~n-l)} since 
Sn-1 ~ o~n, WUJustif(D')UConseq(D') ~= L, and ~n_lU{~n}U{con} ~ W U  

Justif(D 0 U Conseq(D') .  Applying 3n to Sn_ 1 U {co (@n- l) } yields Sn- l  U {C~n } U 
{ co (~n - i / \ / 3n  A aJn)}. From (2) it follows that Sn-1 U {a~n } = W U Conseq(D');  
hence, applying p~_l followed by dr~ to Z solves the original planning problem 
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7~A,9. Furthermore, from (3) we conclude q~n-1 A fin/X con --z W t_J Justif(D ~) U 
Conseq(DI). 

' ~ ' :  Let p = [81,.. .  ,~n] be a solution to the planning problem T'Ag. By 
induction on n we show that D ~ = (dil,. . .  ,Sn) C_ D is a default proof of 
9. Furthermore, if 8n U {co(~)} is the result of applying p to Z, then Sn =- 
W U Conseq(D')  and • ___ W u Justif(D') LI Conseq(D').  

As the base case n = 0 can be proved as above, we directly turn to the 
induction step and assume n > 0. Letpn-1  = [~1, . . . ,  ~n-1], 3n = (an : ~n)/a2n, 
and let Sn-1 U {¢o(~n-1)} be the result of applying Pn-1 to Z. The induction 

= {~1, ~n-1} is a base such that again (2) and hypothesis implies that Dn_ 1 . . . ,  
(3) hold. 

From Definition 3. l, Definition 3.2, and the fact that ~n is applicable in Sn-  1LI 
{¢0((I)n_l) } we conclude that Sn-1 ~ O~n and @n-1 U{fln}l.-J{COn} ~= _1_. Hence, 
D'  is a base. Furthermore, from (2) it follows that Sn-IU{cOn} = WUConseq(D ~) 
and, hence, D ~ is a default proof of 9 due to Sn-1 U {wn} ~ g" Finally, from (3) 
we can conclude that 'I'n-1 A/3n A Wn = W U Justif(D') U Conseq(D').  [] 

The above result illustrates that methods to solve deductive planning problems 
in the sense of Definition 3.1 can be applied to address the task of automati- 
cally performing credulous reasoning in constrained default logic. The question 
naturally arises whether and how approaches known from the field of planning 
are applicable to our problem class, which is given by Definition 3.2. Today 
there exists a variety of deductive planning methods. Usually, each framework is 
characterized by the particular way it solves the so-called frame problem [43] .6 
Many approaches are based on the situation calculus [43, 45] where each atomic 
expression contains an additional argument to characterize a particular situation 
to which this atom refers. The frame problem within the situation calculus was 
tackled by a collection of frame axioms in [25] or [34], by a nonmonotonic rule 
in [44], or by so-called successor state axioms in [52]. On the other hand, there 
are methods that are not based on the situation calculus and that do not require 
special axioms to solve the frame problem, for example, STRIPS [21, 36], the 
linear connection method [5], an approach [42] based on linear logic [23], and 
a method [28] based on logic programming with equational theories [31, 22, 
27]. 

A principal difficulty stems from the fact that in our application situations 
are characterized by formulas of the form (1), that is, particularly containing a 
subformula c0(ff) where /b itself can be an arbitrary first-order formula. This 
restricts the number of approaches that are directly applicable. Methods that 
use the concept of reification appear to be the most suitable ones, because in 
reified approaches predicates describing a situation are treated as terms and they 
are therefore more flexibly manipulable than in first-order logic. The equational 
logic programming approach [28] mentioned above is such a method. To illustrate 
how the technique developed above can be used to obtain concrete proof systems, 
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we will investigate the applicability of the aforementioned method to deductive 
planning problems defined in Definition 3.2 in the following section. 

An interesting suggestion to weaken Definition 3. l, where a plan is a totally 
ordered set of actions, is provided by planning methods that create partial plans 
such as in [56, 35, 14]. If two or more actions can be executed in either order, 
then it is not necessary to require the members that constitute a plan to be 
totally ordered. This resembles the proof theory developed by Reiter, where a 
default proof actually consists in several sets of defaults that are ordered among 
themselves whereas each such set is unordered. 

Aside from developing a large number of planning formalisms and systems, 
recent work focused on complexity analyses to fix restricted problem classes that 
are especially tractable. Correspondingly, some tractable subclasses of default 
theories have been fixed in, for example, [33]. The link provided by our for- 
malization enables us to enrich this collection by adopting results known from 
planning. Although a detailed discussion of how to apply such results to default 
logic is beyond the scope of this paper, we wish to illustrate this point by two 
examples taken from [3] and [12], respectively. Both examples can be directly 
adapted to form two classes of default theories for which credulous entailment 
is decidable in polynomial time. 

THEOREM 3.4. Let A = ( D, W)  be a propositional, normal default theory such 
that 

(1) W is a conjunction of literaIs; 
(2) for each (Y E D, Prereq(~) is a conjunction of literals and Justif(~) = 

Conseq(3) is a single literal; and 
(3) there are no ~1, ~2 E D such that Prereq(dl) U Prereq(32) ~ ±. 

I f9  is a conjunction of literals, then determining the existence of a default proof 
of  9 from A is polynomial. 

Proof The result follows from Theorem 6.1 in [3] and Theorem 3.3. The 
former theorem implies that determining the existence of a solution to the cor- 
responding planning problem 7~,g is polynomial. [] 

THEOREM 3.5. Let A = (D, W) be a propositional, normal default theory such 
that 

(1) W is a conjunction of Iiterals and 
(2) for each (~ E D, Prereq(3) is a single literal and Justif(~) --= Conseq(~) 

is a conjunction of literals. 
I f  9 is a literal, then determining the existence of a default proof of  9 from A is 
polynomial. 

Proof The result follows from Theorem 3.8 in [12] and Theorem 3.3. Tile 
former theorem implies that determining the existence of a solution to the cor- 
responding planning problem ~/X,g is polynomial. [] 
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Notably, the two previous results hold for all default logics mentioned in 
this paper. This is so because constrained default logic coincides with Reiter's 
default logic (see Theorem 5.8) as well as the variants of Lukaszewicz [39] and 
Brewka [8] on the class of normal default theories (see [17] for details). 

Likewise, many other complexity results found in the context of planning (for 
example, [14, 11, 2, 3]) can be applied to obtain classes of default theories for 
which credulous reasoning is simpler than in the general case (which is known 
to be EzP-complete [24, 66, 13]). 

Finally, let us briefly illustrate how open defaults can be treated in our repre- 
sentation. Let 5(~) = (a(~) :/3(o2))/w(~) be such a default with free variables 
• . The usual interpretation in default logics is to take these defaults as repre- 
sentatives for all their infinitely many ground instantiations. This resembles the 
usual distinction that is made between an operator and an action in the context 
of deductive planning: 5(~) is handled as a single operator while each instance 
5(t-) is called an action, where { is a sequence of ground terms. Based on this 
refinement, Definition 3.2 can be straightforwardly modified if the notions of 
applicability and application are defined wrt. instances of members of ft. Con- 
sider, for example, the default theory 

( { 5 ( x )  =bird(x)" f l ies(x)A~peng(x)} ,  {bird(a),bird(b),peng(b)}) 
flies(x) 

Then the action 5(a) is an instance of the operator 5(x). This action is applicable 
in the corresponding initial situation, and its application yields 

{bird(a), bird(b), peng(b), flies(a)} U 
U{ co ( {bi~d(a), bind(b), Veng(b),-~Ven~(a), fries(a) }) }, 

whereas 5(b) is not applicable, since -~peng(b) contradicts the background knowl- 
edge. 

3.1. LUKASZEWICZ'S VARIANT 

Our claim is that the application of deductive planning to reasoning in default 
logics is not restricted to the particular variant we have discussed so far but can 
be useful in general derivatives, provided they are semi-monotonic. We illustrate 
this by showing how the main definition above can be modified to serve as an 
adequate proof mechanism for Lukaszewicz's variant of classical default log- 
ic [39]. The major difference between his definition of justified extensions and 
constrained extensions is that the former employs a weaker consistency require- 
ment. Fortunately, as has been shown by Risch [54], it is possible to characterize 
justified extensions in the sense of Definition 2.2 in a truly iterative fashion in 
analogy to Theorem 2.6. 

THEOREM 3.6. Let (D, W) be a default theory and E, J be two sets of for- 
mulas. E wrt. J is a justified extension of (D, W) iff there exists a maximal 
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(wrt. set inclusion), grounded set D' such that D' C_ D, E U {/3} ~= _J_ for each 
/3 E Justif(D~), and the following holds: 

(1) E = Th(W U Conseq(D'))  and 
(2) J =  Justif(D'). 

Similar to the approach developed in Section 3, this theorem can straightforward- 
ly be used to formalize the search for a credulous proof in Lukaszewicz's default 
logic as a deductive planning problem. To this end, let a situation description be 
of the form 

,5' U Ou(¢') }, (4) 

where $ is a set of closed first-order formulas, ~5 is a first-order formula, and ju 
is a special predicate symbol similar to co (i.e., here • is intended to contain the 
current set of justifications). On the analogy of Definition 3.2 we then define the 
following. 

DEFINITION 3.7. If A = (D, W) is a default theory and 9 a formula, then the 
corresponding planning problem 79zx,g = (E, f~,27,9 ) wrt. Definition 2.2 is as 
follows: 
(1) The set of possible situations E contains each expression of the form (4) 

where both S and ,I~ are closed sets of first-order formulas. 
(2) f~ contains exactly one element 6 ~ for each 6 = ~ E D. Such an action 

CO 

~ E f / i s  defined for a situation S E E iff 
(a) S ~ a and 
(b) V7 E ,I~ U {/3}. S U {w} U {~y} ~=, where ju(~) E 8.  
If 6' is defined, then 6 '($)  := (8 \ {ju(~5)}) U {co, ju(~ U {/3})}. 

(3) z = w u })}. 

As in Section 3, it is possible to prove the adequateness of this definition as 
regards credulous entailment in Lukaszewicz's variant of default logic: 

THEOREM 3.8. Let A be a closed default theory and 9 be a closed formula. 
Then 9 is provable from A iff 7~A (wrt. Definition 3.7) has a solution. 

4. The Equational Logic Programming Approach 

To illustrate the applicability of the ideas developed in the preceding section, we 
will use an approach based on logic programming with an underlying equational 
theory (ELP for short) to implement credulous reasoning for a subclass of default 
theories that we call conjunctive default theories: If each of the three components 
of 6(~) = (oz(Y:) : fl(~))/w(:~) is a conjunction of literals, then 6 is called a 
conjunctive default, and A = (D, W) is a conjunctive default theory iff each 
default in D is conjunctive and W is a set of conjunctions of literals as wel l ]  
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Our class is similar to the most expressive class of default logics considered 
by Kautz and Selman [33], who call them disjunction-free theories, but who 
additionally require semi-normal defaults, that is, each default has to be of the 
form (o@2):/3(.~) A co(:2))/co(:2). 

Let us first of all briefly summarize the notions and notations regarding logic 
programs with underlying equational theories as used, for instance, in [22, 27, 63]. 
A normal logic program [38] consists of a finite set of clauses A +-- L1 , . . . ,  Lm 
(ra/> 0), where the head A is an atom and the elements of the body L 1 , . . . ,  Lm 
are literals. A normal goal is a clause of the form +-- L a , . . . ,  Lm (m >/0), where 
LI , . .  •, Lm are again literals. If m = 0, then the so-called empty goal is denoted 
by D. In what follows, we adopt the usual practice of denoting variables by 
uppercase letters such as X, Y, . . . ,  and denoting predicate and function symbols 
by lowercase letters. 

In a normal equational logic programs (P, 17,), the program P itself is aug- 
mented by a special equational theory 17, which defines an equality relation on 
the terms. 8 Formally, such a theory E consists of a set of expressions s = t 
that are implicitly assumed to be universally closed. Two terms s and t are 
called E-equivalent - written s =E  t - if they are equal wrt. 17,. For instance, 
if E c  = { X  o Y = Y o X }  describes the law of commutativity for the binary 
function o, then a o X =-Ec X o a. A substitution 0 is called an E-unifier of 
two terms s and t i f f  sO =E tO. If such a substitution exists, then s and t are 
called E-unifiable. For instance, a o X and b o Y are not unifiable in general, 
but they are Ec-unifiable using the Ec-unifier {X ~-+ b, Y ~-~ a}. The notion of 
E-unifiers is extended to atoms in the obvious way. 

An adequate computation procedure for normal equational programs is 
SLDENF-Resolution 9 [63, 69]: This resolution principle is based on the inte- 
gration of the equational theory into the unification procedure [31, 22, 27]. 
Furthermore, negative subgoals -~A are treated by the negation-as-failure con- 
cept [15], namely, by trying to prove that each derivation of the affirmative part 
A fails. More formally, let (P, 17,) be a normal equational logic program and G = 
+-- L 1 , . . . ,  L k , . . . ,  Lm a normal goal. An SLDENF-derivation of (P, 17,) U {G} 
consists of a sequence of single SLDENF-steps that are successively applied to 
G wrt. (P, 17,). An SLDENF-step applied to G wrt. (P, 17,) consists of selecting 
a literal Lk of G (1 ~< k ~ m). If Lk is positive, then let A +- B 1 , . . . ,  BL be a 
new variant of a program clause in P such that its head A and the selected literal 
Lk are E-unifiable with E-unifier 0. Then, the result of this SLDENF-step is the 
goal +- (L1, . . .  , L k - I , B 1 , . . .  ,BI ,L~+I , . . .  ,Lm)O. If, on the other hand, Lk is 
a negative literal -~A, then we try to determine whether each SLDENF-derivation 
of +- A fails: An SLDENF-derivation is successful if it ends up with the empty 
clause n,  and it fails if the final goal is nonempty and no further SLDENF- 
derivation step is possible. If each SLDENF-derivation of +- A fails, then the 
negative literal Lk =-- -~A has been solved and is removed from G. Otherwise, 
the original derivation of (P, 17,) tO {G} fails at this point. It is assumed that 
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negative literals are selected only if they are ground [15]. A successful deriva- 
tion is also called a refutation. The combination of all E-unifiers used during 
a refutation, restricted to the variables in the original goal, is called computed 
answer substitution. All these concepts will be illustrated by examples later in 
this section. 

The most significant feature of the ELP-based approach to planning is that 
a situation is completely reified by representing the various facts that hold in 
this situation as terms. These terms are connected via a binary function symbol 
denoted by o [28, 26, 29, 30, 70]. This representation technique can be applied 
to (sets of) conjunctions of literals: An atom p(t-) is represented by the identical 
term p(t-), but p is treated as a function symbol. A negative literal -~p(t-) is 
represented by additionally employing a unary function that denotes the negation 
of its argument, illustratively written as ~o(~]-. For instance, the formula ho A 
f u n  A ~ra  can be represented by the term 

(ho o f u n )  o r a - ,  (5) 

where the connective o is written in infix notation. As a set of formulas can be 
adequately interpreted as a conjunction of its elements, a set of conjunctions of 
literals is treated in the very same way (i.e., (5) is as well a representation of 
{ho, f u n  A ~ra} ,  etc.). The formal definition of how to represent conjunctions 
and sets of conjunctions is as follows. 

DEFINITION 4.1. The representation T of a conjunction (resp. a set of conjunc- 
tions) of literals 1° is inductively defined by 

(1) ra = a, 
(2) r~a = a - ,  
(3) rllA...Ab ~ = rll o . . .  o rb~ , 
(4) r{k,...,/,~ } = rfl o . . .  o r i ,  , and 

(5) r r = r {  } = 

where a is an atom (treated as a term on the right-hand side), l~ , . . . ,  In are literals, 
f l , . . . ,  fn  are conjunctions of literals (n/> 1), and 0 is a special constant. 

To ensure the adequateness of Definition 4.1, we have to introduce some prop- 
erties of our connection function o. Obviously, the occurrence of parentheses 
and the order of the subterms should be irrelevant insofar as, for instance, 
f u n  o ( ra -  o ho) should denote the very same situation as (5). We therefore 
employ an equational theory that captures the intention of our special function 
symbol. More precisely, o is required to be associative (A) and commutative (C) 
and to admit the constant 1~ (introduced in the previous definition) as its unit ele- 
ment (1) defining the empty situation, or, equivalently, the formula T. Formally, 
the equational theory (AC1) defined by the three axioms 

( X o Y )  o Z  = X o ( Y o Z )  
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X o Y  = Y o X  (AC1) 

X o O  = X 

is fundamental for our approach. In other words, whenever terms are compared or 
have to be unified, then comparison and unification are performed modulo (AC 1). 
From the first axiom of associativity we are allowed to omit all parentheses at 
the level of o. Based on this equational theory, we can make the following 
observation. 

R e m a r k  4.2. Let/I) and ~ be two sets of conjunctions of literals. Then 
(1) • =- • iff % =ACl r,~; H 

(2) • is inconsistent iff r e =ACl t o t -  o s for some terms s, t; and 

(3) if q~ is consistent and f is a literal, then q? ~ f iff r =ACl ry o s 

for some term s, where = denotes logical equivalence and =ACl denotes 
equality wrt. the theory (AC1). 

Since our formalism is based on reification, it admits an elegant way to integrate 
the second-order component which occurs in situations of the form (1). If • is a 
conjunction of literals, then the special formula c0(~) can be represented by the 
term 

c0(%), 
where we treat c0 as a unary function symbol and % denotes the term represen- 

tation of • as defined above. For instance, the resulting situation after having 
applied the first default 51 depicted in Figure 1 can be encoded via 

ho  o s w  o co(ho o r a -  o s w ) .  (6) 

Having discussed the formalization of situations, we now concentrate on the 
representation of action descriptions, which are used to transform situations. In 
the ELP-based approach, an action description is determined by its name a and 
two terms cl o . . .  o cm, called condit ions,  and el o . . .  o en, called effects. Such 
an action description is introduced in the program via a unit clause based on the 
ternary predicate action,  namely, by 

a c t i o n ( c l  o . . .  o Cm, a, el o . . . e n ) .  (7) 

For instance, the fact 

a c t i o n ( s w  o c0(X), 5 1 , s w  o f u n  o c0(X o f u n ) )  (8) 

will be used later to encode the action corresponding to the default 53 = ( s w  : 

f u n ) / f u n  in Example 2.2. 
An action description is said to be appl icable  in a situation represented by 

the term s iff its conditions can be satisfied in s and the resulting situation is 
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consistent. More precisely, conditions c 1 o. • • o C m can be satisfied in s iff we can 
find a substitution 0 for the variables occurring in the conditions such that each 
ciO (1 ~< i ~< m) is contained in s. In other words, we have to find a solution 0 
to the ACl-unification problem 

(e l  O ' ' "  0 C m 0 V)O ?AC1 80, (9) 

where V is a variable not occurring elsewhere. For instance, the conditions of (8) 
can be satisfied in (6) because the corresponding unification problem 

(sw o co(X) o V)O LACl (ho o sw o co(ho o r a -  o sw))O (lo) 

is solvable by using the ACl-unifier 0 = { X  ~-+ ho o r a -  o sw, V ~ ho}. 
Now, if an instance of an action description (7) is applied to a situation s, then 
the resulting situation is computed by removing the conditions (cl o . . .  o c~)O 
from s and adding the effects (el o . . .  o en)0 afterwards. 12 To perform these two 
operations formally, observe that a side effect of solving the unification problem 
(9) is that the variable V becomes bound to exactly those subterms that are 
in s but not among the conditions. Hence, the task left is to add the effects 
(el o . . .  o en)0 to the term VO yielding the new situation (V o el o . . .  o en)0.13 
For instance, the application of (8) to (6) via 0 = {X ~-+ h o o r a -  osw,  V ~-+ ho} 
results in the new situation term 

ho o sw o f u n  o co(ho o r a -  o sw o f u n ) .  

The reasoning process described so far can be encoded by using two program 
clauses 14 that define the ternary predicate causes with the intended meaning that 
the instance causes(i ,  [a l , . . . ,  an], 9) is tree if the middle argument is a sequence 
of action names whose successive application to the situation term i yields the 
situation term g: 

causes ( I ,  [], G) +- 

causes ( I ,  [A I P], c )  

Hence, if the empty sequence 

I : A C 1  G .  

action(C, A, E),  (11) 

C o V =AC1 / ,  

-~inconsis tent (V o E),  

causes (V  o E, P, G). 

of actions is applied, then i and g are required 
to be identical modulo (AC1). Otherwise we have to find an action description 
with name A = al, conditions C, and effects E such that an instance of C is 
contained in i and the resulting situation V o E is consistent and used as the first 
argument of the recursive call that employs the remainder P = [a2 , . . . ,  an] of 
the sequence of actions. 

Finally, we have to define the notion of inconsistency in view of our applica- 
tion. According to Definition 3.2, (2)(b), a situation is defined to be inconsistent 
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iff it contains a subterm c0('r¢,) such that ¢) is (classically) inconsistent. The 
latter condition can be easily fixed following Remark 4.2, so that we need the 
clause 

i n c o n s i s t e n t ( V  o c0(X o Y o y - l ) ) .  (12) 

Example (8) already illustrates how defaults can be encoded by using unit clauses 
that represent the respective action descriptions. In general, the conditions of an 
action description of the form (7) consist of the prerequisite of the corresponding 
default - e.g., sw in (8) - along with the subterm c0(X) in order to be prepared for 
changing the current context of reasoning given by the set of constraints. Since 
it is not intended to lose the prerequisite, it is included in the effects together 
with the consequence - e.g., f u n  in (8). Furthermore, the set of constraints is 
augmented by both justification and consequence of the default - which both are 
the atom f u n  in (8). Formally, given a finite set {61 = (Oq : / ~ l ) / a ) l , . . . ,  (~rn 
(o~m : /3m)/wm} of closed, conjunctive defaults, the following program clauses 
are generated: 

acfion(Tal o c0(X), 51, Tal o "/-a;l o c0(X o 7-11 o "/-o31)), 

: (13) 

action(~-c~.~ o c0(X), 5m, 7-.~ o ~-~.~ o co( X o TZm o Tx,~) ). 

To summarize, a closed, conjunctive default theory A = (D, W )  is translated 
into the equational logic program (PA, AC1), where PA consists of the clauses 
(11), (12), and (13). 

As an example, consider the default theory Aa of Example 2.2 whose defaults 
are represented by the three clauses depicted at the top of Figure 2. Let PA 2 
consist of the clauses (11) and (12) along with these three facts. Since the 
background knowledge of A2 is {ho},  the initial situation is represented by 
the term ho o co(ho) according to Definition 3.2. Now, to test whether the 
planning problem Pzx2,sw, say, is solvable, we try to derive the empty goal 
[] given the goal +-- causes(ho  o co(ho),L,  sw  o Z)  by SLDENF-resolution 
and (P~2,AC1).  In other words, we try to find a sequence of actions L such 
that its application to ho o co(ho) yields the situation sw o Z for some arbi- 
trary Z. A corresponding SLDENF-refutation is depicted 15 in Figure 2. Observe 
that the fourth step (the one not labeled with a unifier) is justified by the fact 
that the goal +-- i n c o n s i s t e n t ( h o  o sw o co(ho o r a -  o sw))  fails as the two 
terms ho o sw o co(ho o r a -  o sw)  and V o co(X o Y o Y - )  (cf. clause (12)) 
are not ACl-unifiable. The refutation yields the computed answer substitution 
{L ~ [~1], Z ~-~ h o o c o ( h o o r a -  osw)}. Hence, [51] is a solution to our planning 
problem 79A2,sw. 

By investigating this refutation it becomes obvious that applying the second 
clause in (11) and then solving the first three subgoals resembles the topmost 
planning step depicted in Figure 1. 

This observation provably holds in general. 
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ac t ion(  ho o CO(X), 51, h o o  s w  o ¢O( X o r a -  o s w )  ). 

ac t ion (ho  o CO(X), 5z, h o o  bao  ¢O(X o ra  o ha)). 

actio,~(sw o co(X), ~3, s~ o fun o co(x o fun)). 

+- c a u s e s ( h o  o ¢O(ho), L,  s w  o Z )  

01 = { I  ~-+ h o d  CO(ho), L ~-+ [A ] P], G ~ +  s w o  Z }  

+-- ac t ion (C ,  A ,  E ) ,  C o V =Ac1 h o o  cO(ho), ~ i n c o n s i s t e n t ( V  o E ) ,  c a u s e s ( V  o E ,  P, s w  o Z )  

02 = { C ~-~ h o d  CO(X), A ~-+ 51, E ~-~ h o d  s w  o ¢O(X o r a -  o s w )  } 

+- ho o CO(X) o V --ACI h o o  CO(ho), - ~ i n c o n s i s t e n t ( V  o h o o  s w  o CO(X o r a -  o s w )  ), 

c a u s e s ( V  o h o o  s w  o CO(X o r a -  o sw) ,  P, s w  o Z )  

l O 3 = { X ~ - ~ h o ,  V ~-+ @} 

+- ~ i n c o n s i s t e n t ( h o  o s w  o ¢O(ho o r a -  o s w )  ), c a u s e s ( h o  o s w  o ¢O(ho o r a -  o sw) ,  P, s w  o Z )  

+- c a u s e s ( h o  o s w  o gO(ho o r a -  o sw) ,  P, s w  o Z )  

04 = { I '  ~ h o o  s w  o gO(hoo r a -  o sw), P ~ [], a '  ~+ s w  o Z }  

+-- h o o  s w  o ¢o(ho o r a -  o s w )  =ACI s w  o Z 

05 = { Z  ~ h o o  C0(hoo r a -  o s w ) }  

[] 

Fig. 2. An SLDENF-refutation of (PA2, AC1) U {+-- c a u s e s ( h o  o co (h o ) ,  L ,  s w  o Z)}, 
where P/'2 consists of the clauses (11) and (12) along with the facts depicted at the top. 

LEMMA 4.3. Let A = (D, W) be a closed, conjunctive default theory that 
determines a set of  situations E along with a set of  actions ~-I according to 
Definition 3.2. Furthermore, let S 0 (co(g)} be a situation where both the set 
of  conjunctions S and the conjunction • are consistent. Then, an action 5 is 
applicable in S t2 {co(g)} and yields S ' D  {co({b')} iff the goal +-- causes(T S o 
co(T¢), [5 I p],g ) can be reduced to +-- causes(T8, o cO(T~,),p, 9) for  arbitrary 

terms p, g via (.PA, AC1) and SLDENF-resolution. 
Proof. Let 5 = (a : 13)/w. The goal +-- causes (~  o C0(T~), [5 [ p], g) can 

always be ACl-unified with the head of the second defnition of causes in (11), 
but it is not unifiable with the head of any other clause, since [5 [ p] and [] 
are never ACl-unifiable. With the ACl-unifier {I ~-+ T s o C0(T~), A ~-+ 5, P ~-+ 
p, G ~-+ g}, the resulting goal is 

+- action(C, 5, E), 

c o y = A C l  ° ¢°(%)' 
-~inconsistent(V o E), 
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c a u s e s ( V  o E , p ,  g).  

Since 6 E D, the first literal in this goal is unifiable with the head of exactly 
one clause, namely, the particular clause in (13) that stems from the translation 
of 6. With the ACl-unifier {C ~+ 7-~ o c0(X), E ~+ 7-~ o 7~ o co (X  o 7-~ o 7-~o)}, 
the resulting goal is 

+-- 7-c~ o g o ( X )  o V =AC1 q-S o ¢0(7-~), 

~ i n c o n s i s t e n t ( V  o To o r~ o c o ( X  o T~ o 7-w)), 

c a u s e s ( V  o -ca o "rco o co( X o 7-~ o 7-w ), p, g).  

The unification problem corresponding to the first literal has a solution iff each 
element occurring in 7-a is also contained in 7-s (i.e., if and only ff S ~ c~ 
according to Remark 4.2). In this case, there is a unique (modulo AC1) most- 
general unifier that substitutes X by ~ and V by a term v such that 7-c~ o v =ACl 

7-S" Hence, the above goal reduces to 

+-- ~ i n c o n s i s t e n t (  7- s o 7-~ o co( 7- ~ o 7-~ o 7-~ ) ) , 

 a s s(7- s o o c o ( %  o o g) .  

From clause (12) defining consistency and since there is exactly one subterm 
with leading function symbol c0 in the argument of the first literal above, we 
find that +-- i n c o n s i s t e n t ( 7 -  s o 7-~ o c0(7-~ o 7-~ o 7-~)) fails iff 7-o o 7-fl o 7-~o does 

not contain two subterms of the form t and t - .  According to Remark 4.2, this 
is equivalent to ~5 U {/3} U {co} ~= _L. 

To summarize, we are left with the goal 

+-- c a u s e s ( T  s o 7-~ o ¢o(7-~ o T~ o 7-~),P, 9) (14) 

iff the two requirements (2)(a) and (2)(b) of Definition 3.2 are satisfied, that 
is, if 5 is applicable in S U {¢0(~)}. Furthermore, $ '  - $ U {w} and ~'  = 
/I~ A fl A co according to Definition 3.2. Relating this to our final goal (14) proves 

our claim. [] 

Having proved that the application of the second clause in (11) adequately 
models the performance of a single planning step, we are now prepared to apply 
the ELP-based approach to the problem class discussed in Section 3. Recall that 
plan p is a solution to a given planning problem 79A,9 iff 9 is classically entailed 
by the situation that is obtained after applying p. Following Remark 4.2, this can 
be easily checked in case of a conjunctive theory A and if 9 is a variable-free 
conjunction of literals as well, provided the resulting situation Sn is consistent. 
This is guaranteed whenever the original default theory is consistent. 16 Hence, 
to ensure that Sn  ~ g, we simply require the corresponding term ~-& to be of 

the form 7- 9 o z for some arbitrary term z (see also Figure 2). 
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THEOREM 4.4. Let A = (D, W)  be a consistent closed and conjunctive default 
theory, 9 a variable-free conjunction, and p a finite sequence of elements of D. 
Then p is a solution to the corresponding planning problem Jgex,a iff there is an 
SLDENF-refutation for +-- causes('r W o cO(Zw),p , Tg o Z) wrt. (PA, AC1). 

Proof Let n be the length of p = [51,. . . ,  ~n]. 
In case n = 0, p solves 79A iff W ~ 9. Correspondingly, the goal 

+-- causes(T W o CO(TW) , [], 7g o Z) can be resolved only with the first defini- 

tion of causes in (11), since [] and [A I P] are not ACl-unifiable. Hence, we 
can find an SLDENF-refutation for the goal iffT W o cO(7W) and -rg e Z are AC1- 
unifiable, which is true iff each element occurring in 7g is also contained in T w. 

This is equivalent to W ~ 9 according to Remark 4.2, since W is consistent by 
assumption. 

If n > 0, then by successively applying Lemma 4.3 n-times we conclude that 
applying p to W LJ {c0(W)} yields a situation S U {co(~)} if and only if the 
goal +-- causes(T W o cO(Tw),p , Tg o Z) can be reduced to some +-- causes(s o 

co(t), [],~-g o Z) such that s ~---AC1 T S and t = A C 1 % -  Now we can easily apply 
the argument above (where n = 0) to obtain the result. [] 

In order to generate a plan (i.e., a default proof), the middle argument in a goal 
of the form +-- causes( i, p, 9) can be left variable. 

COROLLARY 4.5. Let A = (D, W)  be a consistent closed and conjunctive 
default theory and 9 a variable-free conjunction. Then g is provable from A iff 
+-- causes(T W o CO(Tw ) , P, T 9 o Z) has an SLDEXF-refutation wrt. (PA, AC1). 

Each refutation of such a goal determines a binding for the variable P,  which 
the denotes a plan that solves the planning problem under consideration. 

In case A is inconsistent, the empty plan solves PZX,g for any 9- Inconsistency 
of a default theory means inconsistency of the background knowledge W. This 
can be checked in conjunctive default theories wrt. clause (12) using the goal 
+- inconsis tent(  CO(T W) ). 

On the analogy of the discussion at the very end of the preceding section, 
it is also possible to formalize open defaults in this approach. For instance, the 
default 5(x) = (bird(x) : f l i e s ( z )  A ~peng(x ) ) / f l i e s (x )  can be encoded via 
the fact 

a c t i o n ( b i r d ( X )  o c0(Z), 8(X), 
b i r d ( X )  o f l i e s ( X )  o co(Y o f l i e s ( X )  o 

Now, for instance, let ~-w be an abbreviation of the term bird(a) o bird(b) o 
peng(b). Then it is easy to verify that the goal 

ea ses(  o C) 
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can be reduced to 

+-- causes(T W o f l ies(a) o co(T W o f l ies(a) o pen9(a)-) ,  [], G) 

in the spirit of Lemma 4.3. In contrast, each SLDENF-derivation of 

+- causes(7 w o CO(T w),  [5(b)], G) 

fails. 
The reader should be aware of the fact that the approach presented in this 

section, as it stands, is just a straightforward implementation of the ideas devel- 
oped in Section 3. In order to constitute a satisfactory and competitive system, 
improvements regarding efficiency are needed. For instance, ACl-unification is 
known to be hard in general [10, 32] but, as argued in [26], we are concerned only 
with very restricted unification problems. This boils down to testing submultiset 
relations, which can be computed much more efficiently, namely, in polynomial 
time. Moreover, loop-detecting mechanisms [64] should be applied to suppress 
the application of defaults that do not provide new information. These and other 
aspects have been discussed in, for instance, [9]. 

5. Skeptical Reasoning 

Now we turn to the problem of skeptical reasoning in our exemplary default logic, 
namely, constrained default logic. Recall that a formula is skeptically entailed by 
a default theory iff it is contained in all of its extensions. 

EXAMPLE 5.1. Let A3 = (D3, W3) be our default theory A 2 (cf. Example 2.2) 
augmented by yet another default, 54 = (ba : f u n ) / f u n .  We obtain D3 = 
{51 = (ho : -~ra)/sw, 52 = (ho : ra)/ba, 53 = (sw : f u n ) / f u n ,  54 = (ba : 
f u n ) / f u n }  and, as before, W3 = {ho}. A3 has two constrained extensions: 
(Th({ho, sw,  f un} ) ,  Th({ho, -~raAsw, fun} ) )  and (Th({ho, ba, fun} ) ,  Th({ho, 
raAba, fun} ) ) .  Both of them contain fun;  hence this atom is skeptically entailed 
by A3. On the other hand, neither sw nor ba is in all extensions while ho E W3 
trivially is skeptically entailed as well. 

Note that in order to prove skeptical entailment of a formula 9, it does not 
suffice to show that there is no default proof of -~9 (i.e., no extension containing 
-"9) because there might be extensions that make no statement about g at all. 

A naive way to guarantee membership in every extension is to check all of 
them. From a practical point of view, this is obviously not satisfactory, because 
it does not reflect the idea of locality whose important r61e has already been 
elaborated in the preceding sections. Consider, for instance, a default 5 =:  a/a, 
and assume that the atom a does not occur elsewhere. Certainly, a is skeptically 
entailed whatever the concrete extensions are, since 5 can be regarded as a kind 
of universal or unassailable proof of a. Hence there is no need to check all 
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extensions for a. Moreover, it is of course difficult to check exponentially many 
extensions (in the worst case), or even to create and investigate entire extensions 
built up from defaults totally unrelated to the considered query. 

Here, we follow a more promising approach whose underlying principle was 
originally applied by Poole [50] to a restricted version of his nonmonotonic 
THEORIST formalism [47, 48] and which was extended to the entire THEORIST 
framework by the first author [67]. Informally, the approach is based on the 
notion of a discourse in which two protagonists alternately raise arguments and 
counterarguments. Specifically, to prove skeptical entailment, the first protagonist 
tries to find a single default proof of the formula under consideration; then his 
antagonist replies by giving a counterargument that 'annuls' this proof (this shall 
be formalized below). Afterwards, it is again the first protagonist who searches 
for another default proof in view of the restriction determined by the preceding 
counterargument, and so on. This procedure ends if it is impossible to find either a 
default proof or a counterargument at some state. In the former case, the formula 
is not skeptically entailed, while it is in the latter. Note that this method takes 
into account locality: Take, for instance, the default a =:  a/a, which is a default 
proof of a that cannot be refuted if a does not occur elsewhere in the theory. In 
this case, the above procedure terminates with success after just a single step. 

In the sequel, we develop a formal approach along with an algorithm based on 
the above description while following the line of [67]. We start with the formal 
definition of skeptical entailment in constrained default logic. For this purpose, 
we have to formalize the aforementioned notion of discourse. This involves in 
particular the formalization of default proofs taking into account the restrictions 
imposed by the antagonist's counterarguments. This is accomplished by a simple 
yet powerful extension to constrained default logic, introduced in [59]. The basic 
idea is to supplement the set of constraints found in a constrained extension with 
some sort of initial consistency constraints. 17 The purpose of these constraints 
is to direct the reasoning process by enforcing their consistency. This is a well- 
known technique, also used in THEORIST [47]. These constraints allow us to 
capture the aforementioned restrictions on default proofs. Formally, a default 
theory becomes a triple (D, W, Up), 18 where D and W are as before and Cp 
is some set of formulas. Then, a (pre)constrained extension is specified as in 
Theorem 2.4 with the exception that Co := W U Up. This results in the following 
counterpart to Theorem 2.6. 

THEOREM 5.1. Let (D, W) be a default theory and E, C be two sets of for- 
mulas. (E, C) is a constrained extension of (D, W) iff there exists" a maximal 
(wrt. set inclusion), grounded set D ~ such that D ~ C D, W U G'p U Justif(D') U 
Conseq(D t) ~: _1_ and the following holds: 

(1) E --= Th(W U Conseq(D')) and 
(2) C = Th(W U Justif(D') U Conseq(D')). 

Proof Analogous to the one in [60]. [] 
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The only difference between the previous specification and the one given in 
Theorem 2.6 is that Cp enters the consistency criterion in Theorem 5.1. 

The notion of a base is also extended in the obvious way: A base of a 
default theory (D, W, Cp), is a subset D r C_ D such that D r is grounded and 
W U Cp U Justif(D') U Conseq(D') ~: _L. All other notions, like that of a default 
proof, remain the same. Hence, the notion of skeptical entailment in constrained 
default logic is formally defined as follows: 

DEFINITION 5.2. A closed formula g is skeptically provable from a default 
theory A = (D, W, Cp) iff for each constrained extension (E, C) of A, we have 
g E E .  

Another central r61e is played by the notion of credulous proving from certain 
bases. This complements the proof-theoretic counterpart of finding a default proof 
under certain restrictions. Formally, we say that a closed formula 9 is provable 
from a base D r of some A = (D, W, Cp) iff there exists a default proof D" of 9 
from A such that D" D_ D r. Recall Example 5.1: Although sw is provable from 
A3, it is not provable from base {32}, since 31 is inapplicable o n c e  (~2 has been 
applied. This leads us to the following characterization of skeptical entailment 
based on the concept of credulous proofs from given bases. 

LEMMA 5.3. Let A = (D,W, Cp) be a default theory. A closed formula g is 
skeptically provable from A iff it is provable from every base of A. 

Proof. ' ~ ' :  Assume that g is skeptically provable from A. For each base D ~ 
of A we can find some maximal D" _D D r such that (E rr, C") is a constrained 
extension of A, where 

E rr = Th(W U Conseq(Dr')) 

C r' = Th(W U Cp U Justif(D r') U Conseq(Dr')). 

From the fact that 9 is skeptically provable, we conclude that g E E". Hence, 
W U Conseq(D") ~ 9. In other words, 9 is provable from D' (by using D"). 

' ~ ' :  Assume that g is provable from every base. For each constrained exten- 
sion (E' ,  C')  of A = (D, W, Cp) we can find a corresponding maximal base 
D r c D generating this extension according to Theorem 5.1. 

Let D" _D D ~ be a default proof of 9 from D r, i.e., W U Conseq(D") ~ 9. 
From D r being maximal we conclude that D" = D r and, hence, 9 E E ~ = 
Th(W 0 Conseq(D')).  [] 

A second crucial point is the formalization of the concept of a counterargument 
against a proof. Similar to the standard definition, we introduce the notion of 
orthogonality 19 of bases: 
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DEFINITION 5.4. Let (D, W, Cp) be a default theory. Two bases D' and D" of 
( D, W, Cp ) are called Cp-orthogonal iff 

W U Cp U Justif(D') U Conseq(D') U Justif(D") U Conseq(D") ~ ±. 

We simply say orthogonal whenever the given set of constraints is empty, that 
is, Cp = { }. For instance, in Example 5.1 {3~} and {~2} are orthogonal since 
-~ra E Justif({31}) and ra E Justif({32}). 

Because orthogonality is the formal characterization of what we call 'annulling' 
a counterargument, we are now prepared to formalize the discourse-based approach 
described at the beginning. The following theorem claims that in order to prove 
skeptical entailment (i.e., provability from every base according to Lemma 5.3), 
it suffices to find a default proof and, furthermore, to ensure that the formu- 
la under consideration is skeptically provable from every counterargument (i.e., 
from every orthogonal base). 

THEOREM 5.5. Let A = (D, W, C~,) be a default theory and g be a closed 
formula. Then, 9 is provable from every base of A iff there exists a default proof 
D' of 9 from A such that the following holds: For all bases D" of A that are 
Cp-orthogonal to D I, 9 is provable from D". 

Proof ' ~ ' :  If 9 is provable from every base, then it is in particular provable 
from the empty base { }. Hence, there is a default proof of g from A. Furthermore, 
by assumption, 9 is clearly also provable from every Cp-orthogonal (wrt. D') 
base. 

' ~ ' :  We have to show that 9 is provable from every base of A. By assumption, 
9 is provable from every base that is Cp-orthogonal to D'. Now, if D" is a base 
that is not Cp-orthogonal to D ~, then the combination D ~ to D" is also a base of 
A because it is obviously grounded and we also have 

W U Cp U Justif(D') U Conseq(D') U Justif(D") tO Conseq(D") ~ _1_. 

D' U D" is a default proof of 9 from D", since just D' itself proves g- Hence, 
9 is also provable from every non-Cp-orthogonal (wrt. D') base, which proves 
our claim. [] 

EXAMPLE 5.1 (continued). A default proof of fun from A32° is D' = { 6 1 , 3 3 } .  

There are two bases orthogonal ({ }-orthogonal, to be precise) to D': D~' = {32} 
and D~' = {32, &}. Since {~2, &} is also a default proof of fun ,  we conclude 
that f u n  is provable from D]' as well as D~'. Hence, f u n  is skeptically entailed. 
On the other hand, although D' is also a proof of sw, this atom is provable 
neither from D~ ~ nor from D~'; thus it is not skeptically provable. Furthermore, 
{ } is a proof of ho E W3. Since { } is not orthogonal to any base, ho is therefore 
skeptically entailed as well. 

The above theorem suggests that we investigate all orthogonal bases. This is 
likely to be a heavy task and appears to be no improvement compared with the 
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naive way of checking every extension from the start. Fortunately it suffices 
to investigate only minimal (wrt. set inclusion) orthogonal bases if we perform 
skeptical instead of credulous reasoning from these bases. This is a consequence 
of the following observation. 

LEMMA 5.6. Let A = (D, W, Cp) be a default theory and g be a closed for- 
mula. Furthermore, let D ~ be a base of  A. Then, 9 is provable from every 
base D" D D ~ of  A iff 9 is skeptically provable from AD, := (D, W U 
Conseq(D'), Cp u Justif(D')). 

Proof. If D" is a base of A such that D" _D D ~, then D" is also a base of 
AD,. Conversely, a base D" of AD, is also a base of A and, moreover, D" is 
equivalent to D" U D ~ in any case. 21 Hence, the set of bases of AD, equals the 
set of bases of A that are supersets of D ~. Thus, the claim follows immediately 
from Lemma 5.3. [] 

EXAMPLE 5.2. Consider a slight modification of our default theory A 3 (cf. 
Example 5.1): Let A 4 = (D4 ,  W 4 ,  { }) ,  where D4 = {~0 = " -~work/ho} U D 3 
and W4 = { }. Furthermore, let D ~ = {5o} be a base of A4. From the preceding 
discussion of Example 5.1, we conclude that f u n  is provable from every base 
D" D D ~ of A4. Correspondingly, f u n  is skeptically provable from A N, = 
(D4, {ho}, {~work}) .  22 

For skeptical query answering, we can thus start with a single credulous proof. 
Then, we have to ensure the provability of our query from all orthogonal bases 
- in the spirit of Theorem 5.5. For this, we take advantage of Lemma 5.6, and 
we simply investigate the minimal elements among all orthogonal bases. Then, 
we create the respective modified default theories (denoted by AD, above) and 
use each such default theory for a recursive call of the overall algorithm. 

Finally, there is an important task left, namely, how are we to determine 
the set of all (minimal) orthogonal bases, given a particular default proof? The 
key idea is again to map this onto credulous reasoning. Recall Definition 5.4 of 
orthogonality where not only the consequences of the involved defaults have to 
be considered but also the justifications. For this purpose, we introduce the notion 
of normalizing a default theory by adding the justifications of each default to the 
respective consequences. Formally, if D is a set of defaults, then its normalized 
variant D is defined by 23 

_ } 
D =  [ f l A w  w E D  . 

Based on this concept, the following theorem induces an elegant way of generat- 
ing orthogonal bases. For notational convenience, let JC(D)  be an abbreviation 
for Justif(D) U Conseq(D), where D is a set of defaults. 
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THEOREM 5.7. Let A = (D, W, Cp) be a default theory and 9 be a closed 
formula. Furthermore, let D ~ = {51,. . . ,  6r~} be a finite base and D ~f be an 
arbitrary base of A. Then, D ~ and D" are Cp-orthogonaI iff there exists some 
i E {1 , . . . ,  n} such that D" is a default proof of =(Justif(Si) A Conseq(Si)) from 
the default theory Ai_ 1 = (D, I/V U JC({61 , . . . ,  6i-1), Cp). 

Proof. ' ~ ' :  Since D ~ and D" are Cp-orthogonal, we have 

WUCpUJC({SI,...,Sn})UJC(D") ~1 

according to Definition 5.4. Following the deduction theorem [19] there must be 
some i E { 1 , . . . , n }  such that 

W U Cp U JC({(~I, . . . ,  5i-1}) U JC(D") 

-, (Justif(Si) A Conseq(Si)) (i5) 

and the left-hand side of (15) is consistent. 24 Now, let ~ C D denote the set 
of defaults that correspond to the elements in D" C_ D. Then, D" is a base of 
Ai_l as D" is grounded and the left-hand side of (15) is consistent. Furthermore, 
(15) and Conseq(D") ~ Justif(D") U Conseq(D") imply that D" is a proof of 
~(Justif(5i) A Conseq(6i)) from Ai_ 1. 

' ~ ' :  If D" is a default proof of -~(Justif(6i) AConseq(6i_l)) from Ai_l, then 
we have 

W U Cp U JC({61 , . . . ,  6i-i}) U JC(D") ~ -~(Justif(6i) A Conseq(6i)). 

That is, W U Cp U JC({S1 , . . . ,6 i } )  U JC(D") and then also W U Cp U 
JC({61,. . ., 6i}) O JC(D")  are inconsistent. Hence, D' D_ {61, . . . ,  5i} and D" 
are Cp-orthogonal. 

EXAMPLE 5.1 (continued). We have already observed earlier that 2x3 has two 
bases orthogonal to {51}: D~I t = {62} and D~ t = {62 ,64} .  Correspondingly, 
let A = (~3, W3{ }), where D3 = {51 = (ho" -,ra)/(-~ra A sw), ~2 = (ho" 
ra)/(raAba), 53 = (sw " f u n ) / f u n ,  54 = (ba " f u n ) / f u n } .  Then both D~' and 
D~ ~ are proofs of --,(Justif(51)/~ Conseq(51)) = sw V ra, since Conseq(52) ~ ra. 

Now, we are ready to formulate our algorithm for skeptical reasoning in our 
exemplary system, constrained default logic. In fact, Theorem 5.5 (in conjunc- 
tion with Lemma 5.6) and Theorem 5.7 provide the formal foundations for this 
undertaking. The resulting algorithm is depicted in Figure 3. It starts with search- 
ing for a credulous default proof D t of the given formula g (Step 1). Notably, the 
choice of the (single) credulous default proof is a don't care-choice. That is, the 
result is independent of what credulous default proof is taken. If there is no such 
proof (Step 2), then 9 cannot be contained in any extension (see Lemma 5.3) of 
the default theory at hand. Otherwise, in Step 3 along with Step 3a, all mini- 
mal orthogonal bases wrt. the proof D ~ are generated according to Theorem 5.7. 
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Algorithm skeptically_provable 
Input A = (D, W, Cp): default theory 

g: closed first-order formula. 

Step 1 D I := credulous_default_proof(A, 9). 
Step 2 If there is no such D t then return no and stop. 

Step 3 Otherwise let D ~ = {51, . . . ,  5n}. For all i = 1 , . . . ,  n do the wollowing. 

Step 3a Let A i _ l  := (D, W U J C ( { ~ I  . . . .  ,~ i -1}) ,  Cp) .  

For all D "  := credulous_defaul t -proof(Ai_l ,  
~(Justif(Si) A Conseq(~i))) do the following. 

Step 3a.1 Let A "  = (D, W U Conseq(D"),  Cp U Just i f (D")) .  

If skeptically_provable(A", g) = no then return no and stop. 

Step 4 Return yes. 

Fig. 3. This  a lgor i thm determines  whether  a closed formula  g is skeptically provable  f rom 
a defaul t  theory A. It is assumed that  c r e d u l o u s - d e f a u l t - p r o o f ( A ~ , g  ') is a funct ion 
re turning min imal  default  proofs of  a c losed formula  g~ f rom a default  theory A ~. 

Note that we employ a function credulous_default_proof(A~,g~), which is 
assumed to return minimal (wrt. set inclusion) proofs of some g ~ from some A ~. 
Generating only minimal proofs is sufficient according to Lemma 5.6. Finally, 
a recursive call is performed in Step 3a.1 following the line of Theorem 5.5 
and Lemma 5.6. That is, while the consequences of defaults in D" are added to 
W, the justifications of the same defaults are added to the initial constraints of 
theory A". If at least one of these calls returns a negative answer, then g is not 
skeptically entailed. Otherwise, a positive answer is given via Step 4. 

EXAMPLE 5.1 (continued). Let us illustrate our algorithm by applying it to 
A 3  = ( D 3 , W 3 ,  { } )  = ({51  = ( h o  " - - n r a ) / s z o ,  ~2 = ( h o  "ra)/ba, 53 = 

(sw" fun)/ fun),  (~4 : (ba" fun)/fun},  {ho}, { }) and g = fun. 

Step 1. 

Step 3a. 

Step 3a.1. 

Assume that eredulous-default-proof(A3, fun) yields 
D'  = {51,53}. 

~ 0  ---- ( ' D 3 ,  {ho}, { }). 
credulous_default_proof(~o,~(-~ra A sw)) yields the 

minimal proof-D" = {52}. 

skeptically_provable( ( D3, { ho, ba } , {ra} ), fun) is called: 

Step 1. credulous_default_proof((D3, {ho, ba}, {ra}), 
fun) yields D'= {54}. 

Step 3a. ~ 0  = (93,  {ho, ba}, {ra}). 

credulous_default_proof(-ZXo, =fun) fails to 
find an orthogonal proof. 

Step 4. returns yes. 
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Step 3a. 

Step 4. 

A 1 • ( D 3 ,  {ho,~ra, sw}, { }). 
credulous_ default_proof (A1, -~ f un ) 
orthogonal proof. 
returns yes. 

fails to find an 

Hence, f u n  is skeptically entailed from A 3. 
It is interesting to observe that, apart from the original default theory A 3 

and its normalized form Ao, all other theories are extended by formulas impos- 
ing restrictions on the corresponding extensions. Observe, for instance, that the 
transformation of the original default theory A3 = (D3, {ho}, { }) into the the- 
ory (D3, {ho, ha}, {ra}) used in Step 3a.1 adds the restrictions imposed by the 
counterargument D"  = {52} determined in Step 3a. In this way, we are able 
to focus on the second constrained extension of default theory A3 (cf. Exam- 
ple 5.1), (Th({ho, ba, fun}) ,  Th({ho, ra A ba, fun})) ,  while the first extension, 
(Th({ho, sw, fun}) ,  Th({ho, -~raAsw, fun}) ) ,  has been eliminated. That is, the 
former is the only constrained extension of default theory (D3, {ho, ba}, {ra}). 
In fact, each recursive call of our algorithm skeptically_provable results in 
a default theory having less extensions than the default theory at hand. These 
extensions form a subset of the extensions of the previously considered default 
theory. 

5.1.  REITER 'S  NORMAL DEFAULT THEORIES 

So far, we focused on constrained default logic defining the underlying notion 
of extensions. At this point, we wish to discuss how our results can be applied 
to Reiter's original definition in case of normal default theories. The extension 
to Lukaszewicz's variant of default logic is analogous and for brevity omitted 
here. 

For the sake of clarity, we call an extension in the sense of Definition 2.1 
a classical extension. It has been shown that in case of normal default theo- 
ries, Reiter's definition and the definition of constrained extensions coincide [58, 
17]: 

THEOREM 5.8. Let (D, W) be a normal default theory and E be a set of 
formulas. Then, t~, is a classical extension of (D, W) iff (E, E) is a constrained 
extension of (D, W). 

Based on this observation, the method developed above for skeptical reasoning in 
constrained default logic can be directly applied to classical default logic as soon 
as only normal defaults are involved. To this end, we do not have to distinguish 
between justification and consequents anymore. In this way, the treatment of 
additional constraints along with the extended notion of a default theory becomes 
obsolete. Now, a classical base of a normal default theory (D, W) is defined as 
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a grounded set D / C_ D such that W U Conseq(D I) ~ 2_. Two classical bases 
D ~ and D" are then called orthogonal iff W U Conseq(D) U Conseq(D ~) ~ _L. 
Following Theorem 5.7, we obtain a similar result that allows for computing 
orthogonal, classical bases via credulously reasoning. 

COROLLARY 5.9. Let A = ( D, W)  be a closed, normal default theory and g be 
a closed formula. Furthermore, let D ~ = {51 , . . . ,  5n} be a finite, classical base 
and D" be an arbitrary classical base of A. Then, D ~ and D" are orthogonal iff 
there exists some i E { 1 , . . . ,  n} such that D" is a default proof of  -~Conseq(Si) 
from the normal default theory (D, W U Conseq({51,. . . ,  5i-1})). 

Hence, the algorithm depicted in Figure 3 can be simplified in case of normal 
default theories as follows. Steps 1-3 as well as Step 4 remain unchanged (except 
that there are no constraints anymore) while Step 3a and Step 3a.1 are replaced 
by 

Step 3a. Let Ai-1 := (D, WUConseq({51 , . . . , S i_ l } ) ) .  

For all D" := credulous_defaul t_proof(Ai_l ,  
~Conseq(5i)) do the following 

Step 3a.1. If skeptically_provable((D, W U Conseq(D")),9) = 
no then return no and stop. 

Thus, using these two modifications, we obtain an algorithm to perform skeptical 
reasoning in Reiter's original approach, provided that attention is restricted to nor- 
mal defaults. Again, this algorithm is based on a procedure credulous_default_ 
p r o o f ( A ,  9) which is assumed to provide minimal default proofs of 9 from the 
normal default theory A. Note that our algorithm does not require a special pro- 
cedure as regards this problem, so that any known implementation of credulous 
reasoning can be extended to skeptical reasoning in this way. 

6. Conclusion 

In the first part of this paper, we have developed a method that identifies credulous 
reasoning in default logics with planning problems. We have illustrated that 
finding a default proof can straightforwardly be modeled by finding a solution 
to a deductive planning problem - provided that the generation of extensions in 
the considered (fragment of) default logic is characterizable in a truly iterative 
fashion. Based on our formalization of this concept, we have discussed some 
interesting and valuable implications. For instance, our approach should provide 
a large number of new proof procedures for default logics by applying well- 
known methods designed for solving planning problems. As an example, we 
have investigated a method based on equational logic programming, which is 
suitable for a certain subclass of default theories. With this approach to deductive 
planning, we have presented a straightforward encoding of credulous reasoning 
in constrained default logic. We have argued that treating defaults as actions 
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modifying particular sets of beliefs (including constraints, or justifications as in 
Lukaszewicz's variant) captures the difference between a default as a role and 
a formula. Furthermore, two particular complexity results known from the field 
of planning were used to define classes of default theories for which credulous 
entailment can be efficiently computed. From a more general point of view, we 
have bridged the gap between the field of planning and default reasoning. As 
a consequence, there is reason for hope that numerous other complexity results 
become transferable from the area of planning to that of default logic by means 
of our bridging results. Among other benefits, this should lead us to even more 
undiscovered tractable subclasses of default logic. 

A comparison between our methodology and existing proof theories is dif- 
ficult because there is principally a whole variety of different implementations 
of our approach depending on the chosen deductive planning method. Interpret- 
ing reasoning in default logics as deductive planning problems cannot be, for 
instance, said to be either goal-oriented [51, 55] or bottom-up [4] because this 
depends, of course, on the specific planning system being applied. However, two 
main features are characteristic for our approach. 

First of all, we follow Reiter's philosophy in so far as our method does not 
require generating and testing extensions. This distinguishes our approach from 
implementations such as [20], where extensions are approximately computed, or 
tableau-based formalisms [61, 62], or the methods described in [40, 41]. 

Second, both the consistency check and the groundedness requirement are 
directly associated with the application of a default. As regards the consistency 
requirement, this is reflected in most of the existing approaches, except Reiter's 
original proof theory where consistency is checked at the very end of the pro- 
cedure, or the algorithm presented in [55] where consistency is guaranteed by 
computing a precompilation step. On the other hand, there are many different 
ways of testing groundedness. For instance, Reiter's method does not explicitly 
take groundedness into account, which may lead, as argued in [55], to infinite 
loops. Checking groundedness separately at the end is performed in the tablean- 
based approaches [61, 62]. The method in [60] complies with our approach in 
describing an incremental verification of both groundedness and consistency. 

In the second part of this paper, we have developed an approach to skeptical 
reasoning in our exemplar, constrained default logic. As illustrated at the end, the 
resulting algorithm is also applicable, in a simplified form, to classical default 
logic in case of normal default theories. In general, this approach is applicable to 
any semi-monotonic (fragment of) default logic, since then queries are answerable 
in a local way. We have adopted an idea originally applied to the THEORIST system 
[47, 48, 67]. This method does not require the investigation of all extensions 
to decide membership in all extensions. Moreover, it is based on an arbitrary 
procedure providing credulous default proofs. Hence, any known algorithm that 
is designed either for credulous reasoning in constrained default logic or at least 
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f o r  c l a s s i c a l  d e f a u l t  l o g i c  a n d  n o r m a l  d e f a u l t  t h e o r i e s  c a n  b e  e x t e n d e d  to s k e p t i c a l  

r e a s o n i n g  in th is  w a y .  
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Notes 

I This variant was originally called modified default logic [39]. 
2 Curiously enough, a credulously entailed formula is often called a nonmonotonic theorem in 

the literature, despite the fact that it may happen that both a formula and its negation are credulously 
entailed. 

3 Read ho as 'taking a holiday', ra as 'it is raining', sw as 'going for a swim', and ba as 
'joining a basketball match'. 

4 Observe that the specification of a constrained extension in Theorem 2.4 is not truly iterative, 
since E~+I and Ci+l make reference to the final extension C. 

5 Note that an inconsistent default theory has no bases. To be consistent with the usual defnition 
of provability, we therefore extend this definition and say that { } is a default proof of any 9 from 
an inconsistent A. 

6 The (technical) frame problem addresses the task to formalize the natural assumption that facts 
that hold in a situation and that are not affected by the action to be applied continue to hold in the 
resulting situation. 

7 A conjunction of literals is also called a 1CNF-formula, for example, in [33, 13]. 
Since equality relations are intended to be defined by the additional theory E,  no head of a 

program clause in P will contain the equality predicate =E.  
9 I.e., linear resolution with selection function on definite clauses with equality and negation- 

as-failure. 
10 For the sake of simplicity, we assume here and in the sequel that no conjunction or set of 

conjunctions is redundant in so far as it contains a single literal more than once. 
1~ Of course this is true only when neither ~5 nor t9 contains some literal twice or more (recall 

Note 10) because a ¢ACl a o a, say. The reason for not requiring o to be idempotent is explained 
below. 

12 Thus, planning in this approach is related to planning in STRIPS [21, 36], yet it is performed 
in a purely deductive context. In [70, 7] it is illustrated that this fundamental difference allows 
for applying this approach to more general problem classes in the context of reasoning about 
actions and change, for instance, postdiction problems, nondeterministic actions, reasoning about 
hypothetical developments of a dynamical system [68], and concurrent actions. 

13 Note that this method does not require any additional effort to solve the frame problem (cf. 
Note 6) because each member of a situation term that is not among the conditions or effects, 
respectively, is obviously contained in the resulting situation term. For this solution to the frame 
problem it is important that the function o is not required to be idempotent (i.e., t o t CACl t), 
since otherwise (I0) would have the second, unintended solution 0 = {X ~-+ hoo r a -  o sw, V ~-+ 
hooswoco(hoora-  osw)}.  This would be undesired as V contains the subterm co(hoora- osw), 
which must not be among the facts which continue to be true in the resulting situation (see, 
e.g., [30]). 

14 In what follows we adopt the usual PROLOG notation [h [ t] to denote a sequence with head 
h and tail t. 

15 The variables F and G ~ denote new copies of the variables I and G in the first program clause 
of (11). 
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16 This observation follows inductively from Lemma 4.3 and the fact that the application of a 
default to a consistent situation S U co(~) yields again a consistent situation. 

iv Called pre-constraints in [59]. 
is Such a default theory is called a pre-constrained default theory in [59]. 
19 The term orthogonality was used in [51] to express that two extensions are mutually contra- 

dictory to each other. 
~o Whenever there is no mention of any initial constraints, we assume that there are no such 

constraints. For A3, we thus have (D3, W3, { }). 
21 We call two bases to be equivalent iff they determine identical sets of constrained exten- 

sions. 
22 Observe that this is the first place where deal with a nonempty set of initial constraints. 

23 In what follows, we assume for simplicity that D provides a one-to-one mapping between 
default rules and their normalized format. An easy way of achieving this is to label defaults. 

24 Note that at least in case i = 0 the left-hand side is consistent as D" is a base. 
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