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Abstract
This paper establishes a framework that hierarchi-
cally integrates symbolic and sub-symbolic repre-
sentations in an architecture for cognitive robotics.
It is formalised abstractly as nodes in a hierar-
chy, with each node a sub-task that maintains its
own belief-state and generates behaviour. An in-
stantiation is developed for a real robot building
towers of blocks, subject to human interference;
this hierarchy uses a node with a concurrent multi-
tasking teleo-reactive program, a node embedding
a physics simulator to provide spatial knowledge,
and nodes for sensor processing and robot control.

1 Introduction
A physical symbol system as the sole basis for artificial in-
telligence has been criticised by many researchers. Allen
Newell and Herbert Simon introduced the physical symbol
system hypothesis (PSSH) [Newell and Simon, 1976] imply-
ing that human thinking is a kind of symbol manipulation pro-
cess, and that we can build machines to mimic human intel-
ligence. Detractors include Rodney Brooks who showed that
robots with superior behaviour do not necessarily use higher
level symbols at all [Brooks, 1990]. Recently the paradigm
has shifted more to probabilistic robotics [Thrun et al., 2005].
Nilsson [2006] analyses some of the attacks against the PSSH
and grants the need to supplement symbol systems with non-
symbolic processes in intelligent systems, mostly for percep-
tual and motor activities close to the environment.

Our architecture for cognitive robotics accommodates both
symbolic and sub-symbolic representation. The architecture
comprises nodes operating at different spatial and temporal
scales, linked in a hierarchy. Each node is a kind of sub-task
that maintains a belief state about an abstract representation
of part of the robot’s environment. It generates behaviour
based on the belief state. We are not proposing an expressive
language to include probabilities symbolically, but rather that
nodes can use different representations to interconnect sym-
bolic or probabilistic models and behaviour.

The two main contributions of this paper are:
1. The formalisation of a general architecture for cognitive

robotics and proof that cyclic updates of the hierarchy of
nodes are well defined.

2. The instantiation of the architecture with a Baxter robot1
tasked to build multiple towers. The main features are:
• A symbolic node with a concurrent multi-tasking

extension of Nilsson’s Teleo-Reactive (TR) rule
based robot agent programming language.

• A spatial node using a rigid-body simulator acting
as the “mind’s eye” of the robot. The physics sim-
ulator introduces common sense real-world spatial
knowledge that would otherwise be cumbersome to
represent by a formal symbol system.

• Controller nodes that process robot sensory input
and generate robot motor actions.

Baxter	in	blocks-world	

“Mind’s	Eye”	physics	simulator	

A	block	and	end-effector		

Camera	

Figure 1: Baxter in blocks-world. The belief state is reflected
in the “mind’s eye” (physics simulator). A closeup of a block
and the arm end-effector showing the co-location of the grip-
per and camera.

In the rest of this paper we position our robot architecture
in related work and formalise the architectural framework us-
ing a motivating example. We instantiate the architecture with
a real-world concrete example, namely a two armed robot
building towers in a blocks-world environment. Finally, we
discuss robustness, limitations, and future work.

2 Related Work
Several cognitive architectures have been proposed. Promi-
nent ones include SOAR [Laird et al., 1987] and ACT-R [An-

1The Baxter robot is built by Rethink Robotics, a company
founded by Rodney Brooks.



derson, 1993]. These architectures are based on the physical
symbol system hypothesis, but have been extended to inter-
face with an external environment. ICARUS [Langley and
Choi, 2006] has many similarities to SOAR and ACT-R, and
is directly grounded in perception and action, with concep-
tual inference and skill more basic than problem solving. A
well known sub-symbolic reactive architecture is Subsump-
tion [Brooks, 1986] in which higher-level layers can subsume
the roles of lower levels by suppressing their outputs.

Other related work includes: GWT [Baars, 1988], a cog-
nitive architecture to account for a multitude of communicat-
ing brain processes; RL-TOPS [Ryan and Pendrith, 1998],
a hybrid system for combining teleo-reactive planning and
reinforcement learning (RL); MAXQ task-hierarchies [Diet-
terich, 2000]; CRAM [Beetz et al., 2010], a cognitive robot
abstract machine; and MALA [Haber and Sammut, 2012], a
multi-agent blackboard based cognitive architecture inspired
by Minsky’s Society of Mind [Minsky, 1986].

Our architectural commitments are closest to the Robot
Control System (RCS) reference model architecture [Albus
and Meystel, 2001]. The RCS architecture was also the inspi-
ration for the triple-tower architecture [Nilsson, 2001] used to
illustrate the operation of a teleo-reactive program for block-
stacking tasks. The triple-tower instantiates the RCS architec-
ture for modelling at the symbolic level. However, it provides
no explicit representation of sub-symbolic processes, instead
assuming that there simply exists some underlying sensory
system from which symbolic facts are generated.

In contrast to all of these existing architectures, which are
either described informally or without connection to real-
world robotic implementations, we formally axiomatise our
model and instantiate it in a real robotic setting.

3 The Architectural Framework
The following formalisation presents a hierarchical system
consisting of interconnected abstract nodes, each with their
own internal belief state and reasoning mechanism. We use
the following simple running example as an explanatory aid.

Example. A self-driving car is tasked to park between 0.2m
and 0.3m rear-to-wall from an arbitrary initial position. The
car has camera and laser distance sensors providing Gaus-
sian measurements to the wall. At each time-step it is able to
move forward or backward by a small displacement, or stop.

3.1 Nodes
Nodes are tasked to achieve a goal, and have two primary
functions: world-modelling and behaviour-generation.
World-Modelling. The notion of a world-model appears in
many disciplines under different names (e.g., internal state,
hidden state, belief state). We adopt the term belief state as
the representation of a node’s internal world-model. The ter-
minology for updating a world-model similarly varies (e.g,
filtering, localisation, tracking, belief revision) and we adopt
the generic term: update. Update may depend on sensing ob-
servations, or may be an expectation update based on a node’s
actions. Finally, we distinguish between sensing and obser-
vation. Sensing is the process of extracting observations, the
latter of which is used to update a belief state.

Behaviour-Generation. The belief state helps the node se-
lect the next action. A function that maps states to actions is
a policy. Policies may be provided directly or determined by
planning or decision-theoretic methods. Typical examples are
GOLOG programs [Levesque et al., 1997], Teleo-Reactive
Programs [Nilsson, 1994], and RL policies.
Definition 1. A cognitive language is a tuple L =
(S,A, T ,O), where S is a set of belief states,A is a set of ac-
tions, T is a set of task parameters, andO is a set of observa-
tions. A cognitive node is a tuple N = (L,Π, λ, τ , γ, s0, π0)
s.t:
• L is the cognitive language for N , with initial belief

state s0 ∈ S.
• Π a set of policies such that for all π ∈ Π, π : S → 2A,

and an initial policy π0 ∈ Π.
• A policy selection function λ : 2T → Π, s.t. λ({}) = π0.
• A observation update operator τ : 2O × S → S.
• An action update operator γ : 2A × S → S.
Definition 1 provides a very abstract characterisation of a

node, allowing for an arbitrary representation and reasoning
mechanism for individual nodes. For example, it can encap-
sulate both stochastic and symbolic nodes.
Example. Let E = {〈x, σx〉 | x, σx ∈R, 0≤ x <+∞, and
−∞< σx<+∞}, consist of position estimates represented
as a Gaussian distribution with mean x and standard devia-
tion σx. Stochastic node N1 defines the cognitive language
(S1,A1, T 1,O1) as follows. The set of belief states consist of
(car) position estimates: S1 = E, with the initial belief state
s01 = 〈0.8, 0.1〉 being a known starting position and standard
deviation. The set of actions represents small independent
moves: A1 = {δx ∈ {−0.01, 0.0, 0.01}}. The task param-
eters represent the requirement to move forwards or back-
wards: T 1 = {F1, B1}. Finally, the observations represent
camera-laser pairs of observations: O1 = {〈c, l〉 | c, l ∈ E}.

There are three policies: to move forwards, to move back-
wards, and to stop: Π1 = {πF , πB , πS}, where πF (sx) =
{0.01}, πB(sx) = {−0.01}, and πS(sx) = {0.0}, for every
sx ∈ S1. Policy πS is also the initial policy.

The policy selection function λ1 respectively maps sets
{F1}, {B1}, {} ∈ 2T 1 to policies πF , πB , πS , with the action
update operator being:

γ1({δx}, 〈x, σx〉) = 〈x+ δx, σx + v〉
where v represents the increase in standard deviation due to
process noise during the last time-step.

The observation update operator is:

τ1({〈〈xc, σxc
〉, 〈xl, σxl

〉〉}, 〈x, σx〉) = 〈x′, σx′〉
where 〈xc, σxc

〉, 〈xl, σxl
〉 are independent camera and laser

distance observations, and 〈x′, σx′〉 is the corrected state af-
ter the observation update:
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The action update and observation update operators define a
Kalman filter estimating the belief state of the car.

The example shows how a stochastic node can be modelled
within our framework, where it is used to provide immediate
sensing and control of a car. We now show how to represent
the state and behaviour of the car at a symbolic level.
Example. The symbolic node N2 contains the cognitive lan-
guage (S2,A2, T 2,O2) as follows. The set of belief states
S2 = {too far, too close, on target}, where on target is the
initial belief state. The set of actions A2 = {F2, B2} yields
action sets {F2}, {B2}, {}, respectively to move the car for-
wards, backwards, and stop. The task parameter set is empty
T 2 = {} as N2 is a top-level node. Hence, the set of poli-
cies Π2 consists only of the initial policy π0

2 : on target 7→
{}, too far 7→ {B2}, too close 7→ {F2}. Finally, the set of
observations is identical to the set of beliefs: O2 = S2.

The observation update operator, τ2, replaces the current
state with an observation (i.e., for all x and s, τ2({x}, s) =
x), while the action update operator, γ2, makes no change to
the state (i.e., for all a and s, γ2(a, s) = s).

Note, due to space restrictions a number of the functions
in the example are only partially defined. However, as part of
the interconnection of nodes we shall ensure that the inputs to
these functions will be constrained to only the defined cases.

3.2 Cognitive Hierarchy
Nodes in the architecture are interlinked in a hierarchy, sim-
ilar to that of a task-graph [Dietterich, 2000]. Nodes in the
hierarchy represents sub-tasks, equipped with their own state
representations and reasoning mechanisms. The lowest level
node is a proxy for the external world, consisting of physi-
cal sensors and actuators. Sensing information is passed up
the hierarchy to the top-level nodes, while actions are passed
down, eventually resulting in physical actions (Figure 2(a)).

World
Modelling

Behaviour
Generation

State

Actions

Sensing function Task parameter function

Sensing function Task parameter function

External-
world Node

(a) Typical node hierarchy

Symbolic
Representation

Kalman
Filter

External-world

(b) Autonomous parking

Figure 2: Observations are propagated up the hierarchy, re-
vising beliefs. Actions are generated from belief states and
translate into task parameters for lower-level nodes. The node
with two children (Diagram (a)) could represent concurrently
setting behaviours for the two arms of a humanoid robot.

Definition 2. A cognitive hierarchy is a tuple H =
(N , N0, F ) s.t:
• N is a set of cognitive nodes; N0∈ N is a distinguished

node corresponding to the external environment.

• F is a set of function pairs 〈φi,j , ψj,i〉 ∈ F that connect
nodes N i, N j ∈ N where:

– φi,j : Si → 2Oj is a sensing function, and

– ψj,i : 2Aj → 2T i is a task parameter function.

• Sensing graph: each φi,j represents an edge from node
N i to N j and forms a directed acyclic graph with N0

as the unique source node of the graph.

• Action graph: the set of task parameter functions forms
a converse to the sensing graph such that N0 is the
unique sink node of the graph.

Definition 2 models the connection between nodes as con-
sisting of pairs of sensing and task parameter functions. The
sensing function extracts observations from a lower-level
node, while the task parameter function translates a higher-
level node’s action set to a task parameter set, which is then
used to select the active policy for a node. It is worth not-
ing that the pairing of these functions is not a restrictive re-
quirement and it is still possible to model a connection be-
tween two nodes with actions but no sensing and vice-versa.
This would simply correspond to a sensing, or task parameter,
function that always returns the empty set.

Finally, the external world is modelled as a distinguished
node, N0. Sensing functions allow other nodes to observe
properties of the external world, and task parameter functions
allow actuator values to be modified, but N0 doesn’t “sense”
properties of other nodes, nor does it generate task parameters
for those nodes. Beyond this external interface the internal
behaviour of N0 is considered to be opaque.

Continuing the running example we can now see how the
nodes are connected (displayed graphically in Figure 2(b)).

Example. With reference to nodes N1 and N2 defined
earlier, and Figure 2(b), we specify a cognitive hier-
archy H = (N , N0, F ) where N = {N0, N1, N2}
and F = {〈φ0,1, ψ1,0〉, 〈φ1,2, ψ2,1〉}. For the pair
〈φ1,2, ψ2,1〉 ∈ F we define:

φ1,2 : {(x < 0.2, ·)} 7→ {too close},
{(0.2 < x ≤ 0.3, ·)} 7→ {on target},
{(x > 0.3, ·)} 7→ {too far}.

ψ2,1 : {F2} 7→ {F1}, {B2} 7→ {B1}, {} 7→ {}.

The internal representation of N0 is opaque. Instead we
observe that the sensing function fromN0 toN1 takes a state
of N0 and returns camera and laser state observations. Sim-
ilarly, the matching task parameter function simply sets a re-
quired distance for the vehicle control sub-system:
φ0,1(s0 ∈ S0) = {〈〈xc, σxc〉, 〈xl, σxl

〉〉}
ψ1,0 : {0.01} 7→ {0.01}, {−0.01} 7→ {−0.01}, {0} 7→ {0}

3.3 Active Cognitive Hierarchy
A cognitive hierarchy captures only static properties and ad-
ditional details are required to model dynamic components,
such as the active belief state, policy, and actions.

Definition 3. An active cognitive node is a tuple Q =
(N, s, π, a) where: 1) N is a cognitive node with S, Π, and
A being the corresponding belief states, policies, and actions



respectively, 2) s ∈ S is the current belief state, π ∈ Π is the
current policy, and a ∈ 2A is the current set of actions.

Defining an active cognitive node naturally leads to an ac-
tive cognitive hierarchy as a collection of active nodes.

Definition 4. An active cognitive hierarchy is a tuple X =
(H,Q) whereH is a cognitive hierarchy with set of cognitive
nodes N such that for each N ∈ N there is a corresponding
active cognitive node Q = (N, s, π, a) ∈ Q and vice-versa.

An active cognitive hierarchy captures the complete state
of an operational system at some instant. The initial state of
such a system is an initial active cognitive hierarchy such that
the active cognitive nodes in the hierarchy are generated from
their corresponding cognitive nodes with each node’s initial
belief state, initial policy, and the empty set of actions.

3.4 Cognitive Process Model
So far we have formalised an abstraction of an active cogni-
tive hierarchy, but it remains to show how this hierarchy can
change over time. For this we introduce the notion of a pro-
cess model. Nodes in an active cognitive hierarchy can be
viewed as independent processes operating at synchronised
discrete time steps. At each time step the belief state for each
node is updated and actions taken. The intention of a process
model is that it allows a cognitive robot to operate in a phys-
ical environment. Therefore we now construct a model that
allows for sensing and actions up and down the cognitive hi-
erarchy. The model operates in two phases; a sensing update
phase followed by an action selection phase.

In order to characterise the sensing update for an active
cognitive hierarchy we first characterise the process update
of the beliefs of a single active cognitive node.

Definition 5. Let X = (H,Q) be an active cognitive hi-
erarchy with H = (N , N0, F ). The sensing process up-
date of X with respect to an active cognitive node Qi =
(N i, si, πi, ai) ∈ Q, written as SensingUpdate′(M,Qi) is:

• X , if there does not exist a node Nx such that
〈φi,x, ψx,i〉 ∈ F ,

• an active cognitive hierarchy X ′ = (H,Q′) where
Q′ = Q\{Qi} ∪ {Q′

i} and Q′
i = (N i, τ i(O, si), πi, ai)

s.t:
O =

⋃
{φx,i(sx) | 〈φx,i, ψi,x〉 ∈ F where
Qx = (Nx, sx, πx, ax) ∈ Q}

While somewhat complicated in structure, Definition 5 is
intuitively simple. An active cognitive hierarchy is updated
with respect to a particular node by gathering the sensing ob-
servations for all connected nodes that are lower in the hierar-
chy and updating the node’s belief state through its observa-
tion update function. By updating each node the belief state
of the system as a whole is updated.

Definition 6. Let X = (H,Q) be an active cognitive hier-
archy with H = (N , N0, F ) and Φ be the sensing graph
induced by the sensing functions in F . The sensing process
update of X , written SensingUpdate(X ), is an active cogni-
tive hierarchy:

X ′ = SensingUpdate′(. . . SensingUpdate′(X , Q0), . . . Qn)

where the sequence [Q0, . . . , Qn] consists of all active cog-
nitive nodes of the set Q such that the sequence satisfies the
partial ordering induced by the sensing graph Φ.

Sensing update (Definition 6) successively updates the hi-
erarchy ensuring that a node is only updated once the nodes
on which its sensing depends are first updated. The order is
intuitive but also guarantees a well-defined update process.

Lemma 1. For any cognitive model X the sensing process
update of X is well-defined.

Proof Sketch: Can be proved by induction on the update se-
quence. Every valid sensing update sequence satisfies the
sensing graph’s partial ordering, so a node’s belief state is up-
dated only after lower level nodes are updated. Hence, each
node’s update is fully determined.

Defining action update follows the same pattern as sensing
update by first characterising update for a single node.

Definition 7. Let X = (H,Q) be an active cognitive hi-
erarchy with H = (N , N0, F ). The action process up-
date of X with respect to an active cognitive node Qi =
(N i, si, πi, ai) ∈ Q, written as ActionUpdate′(M,Qi) is
an active cognitive hierarchy X ′ = (H,Q′) where Q′ =
Q\{Qi} ∪ {Q′

i} and Q′
i = (N i, γi(a

′
i, si), π

′
i, a

′
i) s.t:

• if there does not exist node Nx such that 〈φx,i, ψi,x〉 ∈
F then: π′

i = πi and a′i = πi(si),

• else:
π′
i = λi (T ) and a′i = π′

i(si),
T =

⋃
{ψx,i(ax) | 〈φi,x, ψx,i〉 ∈ F where
Qx = (Nx, sx, πx, ax) ∈ Q}

Definition 7 is slightly more involved than Definition 5.
Firstly, the actions of the nodes higher in the hierarchy are
used to generate the task parameters of the current node.
From this set a new active policy is selected, which in turn
is used to generate the current actions. Finally, these actions
are used to update the node’s belief state. From here, the def-
inition of action update proceeds in the expected manner.

Definition 8. Let X = (H,Q) be an active cognitive hierar-
chy withH = (N , N0, F ) and Ψ be the action graph induced
by the task parameter functions in F . The action process up-
date of X , written ActionUpdate(X ), is an active cognitive
model:

X ′ = ActionUpdate′(. . .ActionUpdate′(X , Qn), . . . Q0)

where the sequence [Qn, . . . , Q0] consists of all active cog-
nitive nodes of the set Q such that the sequence satisfies the
partial ordering induced by the action graph Ψ.

It is worth noting that action update (Definition 8) is almost
identical to sensing update except that the update takes place
in the opposite order. Naturally, it is also well-defined.

Lemma 2. For any active cognitive hierarchy X the action
process update of X is well-defined.

Proof. Identical pattern to proof for Lemma 1.

Finally, we can combine the sensing and action process up-
dates for a model into a general process update for the model.



Definition 9. Let X = (H,Q) be an active cognitive hierar-
chy with H = (N , N0, F ). The process update of X , written
Update(X ), is an active cognitive hierarchy:

X ′ = ActionUpdate(SensingUpdate(X ))

Theorem 3. The cognitive process model Update is well-
defined.

Proof. Follows directly from Lemmas 1 and 2.

The cognitive process model performs what one would in-
tuitively require of an operational cognitive system; updating
nodes up the hierarchy and propagating actions back down
the hierarchy, resulting in changes to the physical actuators
of a robot. Furthermore the fact that it is well-defined guar-
antees that there is a single unique update to the hierarchy.

4 Baxter and Blocks-World
We instantiate our architectural framework with an off-the-
shelf Baxter robot tasked to build towers of uniquely labelled
blocks. Baxter’s two arms can be operated concurrently and
have an overlapping work-space. Each arm end-effector is
equipped with a two-pronged gripper and a camera that point
down at the table as shown in Figure 1. There are three ta-
bles. Each arm is able to reach its own table (designated
left or right) and a shared table. Baxter’s sensor information
includes the arm position and arm effort measurements, 2D
camera images, and gripper states. Effector actions move the
arms to various positions and open or close the gripper.

The framework is instantiated in ROS using five nodes: a
Controller node for each arm to sense the world and con-
trol arm movement, a Spatial node to model the blocks-world
scene and quantitatively specify arm pickup and putdown
goals, and a symbolic TR node to build multiple block towers.
Baxter is taken to be the external world node.

Arm Controller Nodes
The world model belief state for each arm includes
the position, visual persistence and identity of blocks
currently in view, the position of the arm, arm effort,
and whether the arm is gripping a block. Specifi-
cally the language for each arm node, LController =
{(blockId , (x, y, z, p)), arm(x, y, z), gripper , effort},
where: blockId ∈ {A,B,C, L, T,O}; (x, y, z, p) represents
the position in metres of the centroid of the block in metres
in Baxter’s torso coordinate frame; and p ∈ {0, 1, 2, 3, 4}
is the visual persistence that is incremented when a block
is identified in an image frame and decremented when
not; arm(x, y, z) is the position of the arm end-effector in
metres, also in the torso frame; gripper ∈ {True,False}
indicating whether the grippers are holding a block; and
effort measures the push-force of the arm.

The camera is used to locate and identify each block in
the visual field. We employ OpenCV to find squares repre-
senting blocks and to identify block symbols. The size and
location of a square in the image yields its 3D position rela-
tive to the camera. Given fixed camera offsets from each arm
position we can determine the block position in Baxter’s ref-
erence frame. Arm position is determined by an action update

based on the last commanded pose of the arm. The observa-
tion update from the external environment updates the visual
persistence to ensures that any block in view is not sensitive to
momentary occlusions, mis-identification, passing shadows,
etc. Only blocks with a visual persistence of 4 are passed to
the Spatial node in a ROS message.
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Figure 3: Cognitive graph for Baxter in blocks-world.

The node behaviour-generation consists of picking up and
putting down blocks at specific positions determined by the
Spatial node. We rely on Baxter’s inverse kinematic function
to move arms to commanded poses. Baxter’s sensors and ef-
fectors are not accurate enough to pick up or put down blocks
by dead-reckoning. Instead, arm controller nodes use a visual
feedback control loop through the environment, adjusting the
arm pose effector to target a block in the camera image. In
this way grippers visually servo into the correct position for
grabbing a block. When putting blocks down, arm effort is
used in a feedback control loop to determine when the block
has made contact with the table or another block.

Spatial Node
The spatial node employs the Gazebo physics simulator to
represent the blocks and tables as 3D objects in Baxter’s torso
coordinate frame. The simulator is used to predict the next
belief state based on its implicit knowledge of physics. For
example, gravity will ensure that blocks are stacked correctly,
even if the gripper releases the block slightly before it makes
contact with the block or table below.

The belief state of the spatial node is essentially the scene-
graph and includes the identity and quantitative position of
each block, the quantitative position of the arm cameras, and
the state of the grippers. Each camera position belief state
is updated from the belief state of arm positions communi-
cated from the arm controller nodes. The sensing update of
the identity and position of blocks is predicated on whether
the blocks are expected to be seen by each camera. For ex-
ample, if a block is placed on a table (or removed) in view of
the camera, the block will be created (or deleted) in the sim-
ulator, subject to a high visual persistence. Blocks not in the
camera field-of-view will not be removed from the simulator,
but assumed to have object permanence. A block that is in the



field-of-view of a camera, but occluded by another block in
the tower will not be removed. In this way the spatial simu-
lator sensing update operator maintains the belief state of the
blocks scene by integrating and reasoning about the sensory
information from each of the two arms.

Policies move each arm to pickup or putdown blocks at po-
sitions specified quantitatively as (x, y, z) locations in Bax-
ter’s coordinate frame. After each such action the policy
moves the arm to its respective home position over its ta-
ble to help refresh the model. The task parameter function
maps higher level symbolic TR move commands to quantita-
tive values that select appropriate quantitative move policies.
For example, putdown(right, shared table) selects the policy
actioning the right arm to place the held block to a clear po-
sition on the share table in the simulator, while pickup(left,
A) selects a policy that results in an action for the left arm to
pickup block A from its position in the simulator.

The 3D quantitative representation of the physics simulator
can perceptually anchor, relate and remember sensed objects,
and provide a basis for abstracting symbolic representations.

Symbolic TR Node
The TR node receives sensed observations of the spatial
node’s belief state in terms of an abstracted set of logical facts
such as on(A, left table) and holding(left, B). These are then
used as part of the TR node’s symbolic belief state.

A multi-tasking teleo-reactive programming language
[Clark and Robinson, 2015] is used as the node’s only pol-
icy to concurrently build user-specified towers of blocks.
The language comprise sequences of Guard→Action rules
grouped into parameterised procedures. The Guards are de-
ductive queries to a rapidly changing belief state that is up-
dated through sensing. For multi-tasking, the granularity of
interleaving robotic resources is specified by declaring certain
procedures as task atomic. A queuing convention for resource
acquisition prevents starvation, while tasks co-ordinate their
use of resources using the agent’s belief state.

The multi-tasking features in our example use a single task
atomic procedure – to build a tower of blocks. It can be used
by each task of an agent building any number of block tow-
ers using two robot arms in parallel. Both arms may need to
be used by each task at different times since the blocks are
distributed over three tables and each arm can only reach two
tables. Clashing of arms over the shared table is primarily
avoided by making the tables extra resources.

The node sends symbolic commands such as
pickup(left, A) and putdown(right, shared table) to
the Spatial node, which are interpreted quantitatively in the
Spatial node’s language.

Results
We conducted several experiments tasking Baxter to build
towers of blocks starting from different initial configurations.
Our aim was to test the robustness and limits of the instanti-
ated architecture at each level of the abstraction hierarchy.

Persistence of vision keeps the world from going pitch
black every time we blink our eyes. In the Controller nodes,
the persistence parameter in the belief state plays a similar
role. Blocks do not disappear in the belief state when a hand
is moved rapidly between the camera and a block, or when a

human manually places one block on top of another, momen-
tarily blurring the robot’s view. Letting the camera dwell on a
position for a longer duration than (an approximate) blink of
an eye, results in the creation or destruction of blocks in the
belief-state of the Controller node.

Object permanence is the understanding that objects con-
tinue to exist even when they cannot be observed. The
Gazebo simulator in the Spatial node shows object perma-
nence even when objects are outside the visual field of either
camera, or occluded by other objects. Figure 1 shows block
“B” on the right table in the simulator, even though it is oc-
cluded by block “A”. Block “C” on the shared table is not
seen by either camera, yet retained in the simulator.

We found that blocks may not be recognised in poor light-
ing conditions and that grasping may fail if blocks are not
oriented orthogonally to the reference frame as assumed. The
physics model will incorrectly model block behaviour if sup-
porting blocks have not been previously seen, or are mistak-
enly seen elsewhere. The TR program fails if unknown block
symbols are introduced.

The TR node is demonstrated to handle unforeseen contin-
gencies. A video2 of Baxter building the tower “LAB” on the
right table and “COT” on the left table, shows the TR program
coping with both help and hindrance from a human.

5 Conclusion
In this paper we developed a formal framework for the inte-
gration of symbolic and sub-symbolic components in a cog-
nitive hierarchy. Formalised at an abstract level the frame-
work provides both a model for the construction of cognitive
robotic systems, as well as a tool for the analysis of existing
architectures (e.g., SOAR), for example, in how they inte-
grate different reasoning components. Consequently, the for-
malism complements, rather than competes with, these exist-
ing architectures and systems. Finally, due to its well-defined
properties, the framework is an important step towards the de-
velopment of provable safety guarantees in robotic systems.
This is especially important for implementing robots that op-
erate in unstructured real-world environments.

A real-world instantiation of the framework was outlined,
consisting of a multi-node Baxter robot capable of building
towers of blocks. This implementation was evaluated em-
pirically to determine the robustness and limitations of the
implementation at each level of the hierarchy.

Our framework lays the foundation for spatially modelling
other physical agents, including humans, to investigate multi-
agent systems in adversarial and collaborative settings. Our
interests include general game playing, machine learning
and autonomous adaptation at both the symbolic and sub-
symbolic levels, and trust studies between humans and ma-
chines in mixed-task initiatives. The inclusion of a physics
simulator provides opportunities for the agent to predict out-
comes and explore courses of action without committing to
them in the real world. Human modelling also opens the way
to study communication via gesturing, and theory-of-mind.

2http://robocup.web.cse.unsw.edu.au/baxter/20160127-LABCOT-HIx4.mp4
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