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Abstract
General Game Playing aims to create AI systems
that can understand the rules of new games and
learn to play them effectively without human in-
tervention. The recent proposal for general game-
playing robots extends this to AI systems that play
games in the real world. Execution monitoring be-
comes a necessity when moving from a virtual to
a physical environment, because in reality actions
may not be executed properly and (human) oppo-
nents may make illegal game moves. We develop
a formal framework for execution monitoring by
which an action theory that provides an axiomatic
description of a game is automatically embedded in
a meta-game for a robotic player — called the ar-
biter — whose role is to monitor and correct failed
actions. This allows for the seamless encoding of
recovery behaviours within a meta-game, enabling
a robot to recover from these unexpected events.

1 Introduction
General game playing is the attempt to create a new genera-
tion of AI systems that can understand the rules of new games
and then learn to play these games without human interven-
tion [Genesereth et al., 2005]. Unlike specialised systems
such as the chess program Deep Blue, a general game player
cannot rely on algorithms that have been designed in advance
for specific games. Rather, it requires a form of general in-
telligence that enables the player to autonomously adapt to
new and possibly radically different problems. General game-
playing robots extend this capability to AI systems that play
games in the real world [Rajaratnam and Thielscher, 2013].

Execution monitoring [Hähnel et al., 1998; De Giacomo
et al., 1998; Fichtner et al., 2003] becomes a necessity when
moving from a purely virtual to a physical environment, be-
cause in reality actions may not be executed properly and
(human) opponents may make moves that are not sanctioned
by the game rules. In a typical scenario a robot follows a
plan generated by a traditional planning algorithm. As it ex-
ecutes each action specified by the plan the robot monitors
the environment to ensure that the action has been success-
fully executed. If an action is not successfully executed then
some recovery or re-planning behaviour is triggered. While

the sophistication of execution monitors may vary [Petters-
son, 2005] a common theme is that the execution monitor is
independent of any action planning components. This allows
for a simplified model where it is unnecessary to incorporate
complex monitoring and recovery behaviour into the planner.

In this paper, we develop a framework for execution mon-
itoring for general game-playing robots that follows a simi-
lar model. From an existing game axiomatised in the general
Game Description Language GDL [Genesereth et al., 2005;
Love et al., 2006] a meta-game is generated that adds an ex-
ecution monitor in the form of an arbiter player. The “game”
being played by the arbiter is to monitor the progress of the
original game to ensure that the moves played by each player
are valid. If the arbiter detects an illegal or failed move then
it has the task of restoring the game to a valid state. Impor-
tantly, the non-arbiter players, whether human or robotic, can
ignore and reason without regard to the arbiter player while
the latter becomes active only when an error state is reached.

Our specific contributions are: (1) A fully axiomatic ap-
proach to embedding an arbitrary GDL game into a meta-
game that implements a basic execution monitoring strategy
relative to a given physical game environment. This meta-
game is fully axiomatised in GDL so that any GGP player
can take on the role of the arbiter and thus be used for execu-
tion monitoring. (2) Proofs that the resulting meta-game satis-
fies important properties including being a well-formed GDL
game. (3) Generalisations of the basic recovery behaviour to
consider actions that are not reversible but instead may in-
volve multiple actions in order to recover the original game
state and that need to be planned by the arbiter.

The remainder of the paper is as follows. Section 2 briefly
introduces the GDL language for axiomatising games. Sec-
tion 3 presents a method for embedding an arbitrary GDL
game into a GDL meta-game for execution monitoring. Sec-
tion 4 investigates and proves important properties of the re-
sulting game description, and Sections 5 and 6 describe and
formalise two extensions of the basic recovery strategy.

2 Background: General Game Playing, GDL
The annual AAAI GGP Competition [Genesereth et al.,
2005] defines a general game player as a system that can un-
derstand the rules of an n-player game given in the general
Game Description Language (GDL) and is able to play those
games effectively. Operationally a game consists of a central



1 (role white) (role black)
2
3 (init (cell a 1 white)) ... (init (cell h 8 black))
4 (init (control white))
5
6 (<= (legal white (move ?u ?x ?u ?y))
7 (true (control white)) (++ ?x ?y)
8 (true (cell ?u ?x white)) (cellempty ?u ?y))
9 (<= (next (cell ?x ?y ?p)) (does ?p (move ?u ?v ?x ?y)))

10
11 (<= terminal (true (cell ?x 8 white)))
12 (<= (goal white 100) (true (cell ?x 8 white)))
13 (<= (goal black 0) (true (cell ?x 8 white)))
14
15 (<= (cellempty ?x ?y) (not (true (cell ?x ?y white)))
16 (not (true (cell ?x ?y black))))
17 (++ 1 2) ... (++ 7 8)

Figure 1: An excerpt from a game description with the GDL
keywords highlighted.

controller that progresses the game state and communicates
with players that receive and respond to game messages.

The declarative language GDL supports the description of
a finite n-player game (n ≥ 1). As an example, Fig. 1 shows
some of the rules for BREAKTHROUGH, a variant of chess
where the players start with two rows of pawns on their side
of the board and take turns trying to “break through” their
opponent’s ranks to reach the other side first. The two roles
are named in line 1. The initial state is given in lines 3–4.
Lines 6–8 partially specify the legal moves: White, when it
is his turn, can move a pawn forward to the next rank, pro-
vided the cell in front is empty. Line 9 is an example of a
position update rule: A pawn when being moved ends up
in the new cell. A termination condition is given in line 11,
and lines 12–13 define the goal values for each player under
this condition. Additional rules (lines 15–17) define auxiliary
predicates, including an axiomatisation of simple arithmetics.

GDL is based on standard logic programming principles,
albeit with a different syntax. Consequently, we adopt logic
programming conventions in our formalisation, while main-
taining GDL syntax for code extracts. Apart from GDL key-
word restrictions [Love et al., 2006], a GDL description must
satisfy certain logic programming properties, specifically it
must be stratified [Apt et al., 1987] and safe (or allowed)
[Lloyd and Topor, 1986]. As a result a GDL description
corresponds to a state transition system (cf. [Schiffel and
Thielscher, 2010]). We adopt the following conventions for
describing some game state transition system properties:

• Strue def
= {true(f1), . . . , true(fn)} consists of the

fluents that are true in state S .

• Adoes def
= {does(r1, a1), . . . , does(rn, an)} , consists

of the role-action statements making up a joint move A .
• l(S) = {(r, a) |G∪Strue |= legal(r, a)} , where each
a is an action that is legal for a role r in a state S for
the game G .
• g(S) = {(r, n) |G∪Strue |= goal(r, n)} , where each
n is a value indicating the goal score for a role r in a
state S for the game G .

Finally, while the syntactic correctness of a game descrip-
tion specifies a game’s state transition system, there are addi-
tional requirements for a game to be considered well-formed

ΣG Σmeta

Figure 2: Embedding a game ΣG into a meta-game Σmeta .

[Love et al., 2006] and therefore usable for the GGP compe-
titions. In particular a well-formed game must terminate after
a finite number of steps, every role must have at least one
legal action in every non-terminal state (playability), every
role must have exactly one goal value in every state and these
values must increase monotonically, for every role there is a
sequence of joint moves that leads to a terminal state where
the role’s goal value is maximal (weakly-winnable).

3 Meta-Games for Execution Monitoring
3.1 Systems Architecture
The following diagram illustrates the intended overall sys-
tems architecture for execution monitoring of general games
played with a robot in a real environment.
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It comprises the following components.
Game Controller. Accepts an arbitrary GDL description

of a game (from a human operator) and (a) automatically
generates a meta-GDL game for the arbiter to monitor its ex-
ecution; (b) interacts with one or more general game-playing
systems that take different roles in the (meta-)game; and (c)
interacts with the robot controller.

Robot Controller. Serves as the low-level executor of the
robot by (a) processing sensor data in order to recognise ac-
tions; (b) commanding the object manipulator to execute any
instance of a move action defined for the environment.

GGP Robot Player. Plays the desired game in the desired
role for the robot.

GGP Arbiter Player. Monitors the execution of the game
by playing the automatically constructed meta-game.

In the following we describe in detail an axiomatic method
of embedding a given game and a specific execution monitor-
ing strategy into a meta-game. Our aim is to fully axiomatise
this meta-game in GDL, so that any GGP player can play the
role of the arbiter and thus be used for execution monitoring.

3.2 Automatic Construction of Meta-Games
The general approach of embedding a given “source” game
into a meta-game is graphically illustrated in Figure 2. Games
can be viewed as state transition systems. Execution errors
correspond to changes in the environment that are physically
possible but do not correspond to legal moves in a game. To
account for—and recover from—such errors, we embed the
state machine for the original game into one that describes
all possible ways in which the game environment can evolve.
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Figure 3: Game environment with robot, and breakthrough
chess projected onto this environment.

Some of these transitions lead outside of the original game,
e.g. when a human opponent makes an illegal move or the ex-
ecution of a robot move fails. The role of the arbiter player,
who monitors the execution, is to detect these abnormalities
and when they occur to perform actions that bring the sys-
tem back into a normal state. Hence, a meta-game combines
the original game with a model of the environment and a spe-
cific execution monitoring strategy. Its GDL axiomatisation
can therefore be constructed as follows:

Σmeta = τ(ΣG) ∪ Σenv ∪ Σem , where

• ΣG is the original GDL game and τ(ΣG) a rewritten
GDL allowing for it to be embedded into the meta-game;

• Σenv is a GDL axiomatisation describing all possible ac-
tions and changes in the physical game environment; and

• Σem is a GDL axiomatisation implementing a specific
execution monitoring strategy.

Redefining the source game τ (ΣG)

In order to embed a given game G into a meta-game for
execution monitoring, simple rewriting of some of the GDL
keywords occurring in the rules describing G are necessary.
Specifically, the meta-game extends the fluents and actions of
the original game and redefines preconditions and effects of
actions, as detailed below. Hence:

Definition 1 Let ΣG be a GDL axiomatisation of an arbi-
trary game. The set of rules τ(ΣG) are obtained from ΣG

by replacing every occurrence of

• base(f) by source base(f);

• input(r, a) by source input(r, a);

• legal(r, a) by source legal(r, a); and

• next(f) by source next(f).

All other keywords, notably true and does, remain un-
changed.

Environment models Σenv

The purpose of the game environment axiomatisation is to
capture all actions and changes that may happen, intentionally
or unintentionally, in the physical environment and that we

1 (env_coord a 1) (env_coord b 1) ... (env_coord x 4)
2 (env_coord a-b 1) (env_coord b-c 1) ...
3 (<= (env_base (env_can ?x ?y))
4 (env_coord ?x ?y))
5 (<= (env_base (env_fallen ?x ?y))
6 (env_coord ?x ?y))
7 (<= (env_input ?r noop)
8 (role ?r))
9 (<= (env_input ?r (move ?u ?v ?x ?y))

10 (role ?r) (env_coord ?u ?v) (env_coord ?x ?y))
11 (<= (env_input ?r (move_and_topple ?u ?v ?x ?y))
12 (role ?r) (env_coord ?u ?v) (env_coord ?x ?y))
13
14 (init (env_can a 1)) ... (init (env_can d 4))
15 (env_legal noop)
16 (<= (env_legal (move ?u ?v ?x ?y))
17 (true (env_can ?u ?v))
18 (not (true (env_can ?x ?y))) (env_coord ?x ?y))
19 (<= (env_legal (move_and_topple ?u ?v ?x ?y))
20 (true (env_can ?u ?v))
21 (not (true (env_can ?x ?y))) (env_coord ?x ?y))
22
23 (<= (env_next (env_can ?x ?y))
24 (or (does ?p (move ?u ?v ?x ?y))
25 (does ?p (move_and_topple ?u ?v ?x ?y)))
26 ((true (env_can ?u ?v))
27 (not (env_can_moved ?u ?v))))
28 (<= (env_next (env_fallen ?x ?y))
29 (or (does ?p (move_and_topple ?u ?v ?x ?y))
30 ((true (env_fallen ?u ?v))
31 (not (env_can_moved ?u ?v)))))
32 (<= (env_can_moved ?u ?v)
33 (or (does ?p (move ?u ?v ?x ?y))
34 (does ?p (move_and_topple ?u ?v ?x ?y))))
35
36 (env_reverse noop noop)
37 (<= (env_reverse (move ?u ?v ?x ?y) (move ?x ?y ?u ?v))
38 (env_coord ?u ?v) (env_coord ?x ?y))
39 (<= (env_reverse (move ?u ?v ?x ?y)
40 (move_and_topple ?x ?y ?u ?v))
41 (env_coord ?u ?v) (env_coord ?x ?y))

Figure 4: An example GDL axiomatisation Σenv of the game
environment of Figure 3, including an axiomatisations of fail-
ure actions (move and topple) and how to reverse the ef-
fects of actions (axioms 36–41).

expect to be observed and corrected through execution mon-
itoring. Consider, for example, the game environment shown
in Fig. 3(a). It features a 4× 4 chess-like board with an addi-
tional row of 4 marked positions on the right. Tin cans are the
only type of objects and can be moved between the marked
positions. They can also (accidentally or illegally) be moved
to undesired locations such as the border between adjacent
cells or to the left of the board etc. Moreover, some cans may
also have (accidentally) toppled over. A basic action theory
for this environment that allows to detect and correct both il-
legal as well as failed moves comprises the following.

Actions: noop; moving a can, move(u, v, x, y); and top-
pling a can while moving it, move and topple(u, v, x, y);
where u, x ∈ {a, b, c, d, x}∪{a-, a-b, . . . , x-} and v, y ∈
{1, 2, 3, 4} ∪ {1-, 1-2, . . . , 4-}. The additional coordinates
a-, a-b, . . . , 1-, . . . are qualitative representations of “ille-
gal” locations to the left of the board, between files a and b,
etc.

Fluents: Any location (x, y) can either be empty or house
a can, possibly one that has fallen over. Figure 3(b) illustrates
one possible state, in which all cans happen to be positioned
upright and at legal locations.

Action noop is always possible and has no effect. Actions



move(u, v, x, y) and move and topple(u, v, x, y) are pos-
sible in any state with a can at (u, v) but not at (x, y). The
effect is to transition into a state with a can at (x, y), fallen
over in case of the second action, and none at (u, v).

A corresponding set of GDL axioms is given in Figure 4. It
uses env base, env input, env legal and env next to
describe the fluents, actions, preconditions, and effects.

Note that this is just one possible model of the physical en-
vironment for the purpose of identifying—and correcting—
illegal and failed moves by both (human) opponents and a
robotic player. An even more comprehensive model may ac-
count for other possible execution errors such as cans com-
pletely disappearing, e.g. because they fell off the table.1

We tacitly assume that any environment model Σenv in-
cludes the legal actions of the source game description ΣG

as a subset of all possible actions in the environment.2

Execution monitoring strategies Σem

The third and final component of the meta-game serves to ax-
iomatise a specific execution monitoring strategy. It is based
on the rules of the source game and the axiomatisation of
the environment. The meta-game extends the legal moves of
the source game by allowing anything to happen in the meta-
game that is physically possible in the environment (cf. Fig-
ure 2). As long as gameplay stays within the boundaries of
the source game, the arbiter does not interfere. When an ab-
normality occurs, the arbiter takes control and attempts to
correct the problem. For ease of exposition, in the follow-
ing we describe a basic recovery strategy that assumes each
erroneous move n to be correctible by a single reversing
move m as provided in the environment model through the
predicate env reverse(m,n). However, a more general ex-
ecution monitoring strategy will be described in Section 5.

Fluents, roles, and actions. The meta-game includes the
additional arbiter role, the actions are that of the environment
model,3 and the following meta-game state predicates.

(role arbiter)
(<= (input ?r ?m) (env_input ?r ?m))
(<= (base ?f) (source_base ?f))
(<= (base ?f) (env_base ?f))
(<= (base (meta_correcting ?m))

(env_input ?r ?m))

(1)

The new fluent meta correcting(m) will be used to indi-
cate an abnormal state caused by the (physically possible but
illegal) move m. Any state in which a fluent of this form is
true is an abnormal state, otherwise it is a normal state.

Legal moves. In a normal state—when no error needs to
be corrected—the meta-game goes beyond the original game
in considering any move that is possible in the environment

1We also note that, for the sake of simplicity, the example ax-
iomatisation assumes at most one can at every (qualitatively repre-
sented) location, including e.g. the region below and to the left of
the board. A more comprehensive axiomatisation would either use a
more fine-grained coordinate system or allow for several objects to
be placed in one region.

2This corresponds to the requirement that games be playable in
a physical environment [Rajaratnam and Thielscher, 2013].

3Recall the assumption that these include all legal actions in the
source game.

for players. The execution monitoring strategy requires the
arbiter not to interfere (i.e., to noop) while in this state.

(<= (legal ?p ?m)
(not meta_correcting_mode)
(role ?p) (distinct ?p arbiter)
(env_legal ?m))

(<= (legal arbiter noop)
(not meta_correcting_mode))

(<= meta_correcting_mode
(true (meta_correcting ?m)))

(2)

In recovery mode, the arbiter executes recovery moves while
normal players can only noop.

(<= (legal arbiter ?n)
(true (meta_correcting ?m))
(env_reverse ?n ?m))

(<= (legal ?p noop)
meta_correcting_mode
(role ?p) (distinct ?p arbiter))

(3)

State transitions. The meta-game enters a correcting
mode whenever a bad move is made. If multiple players si-
multaneously make bad moves, the arbiter needs to correct
them in successive states, until no bad moves remain.

(<= (next (meta_correcting ?m))
(meta_player_bad_move ?p ?m))

(<= (next (meta_correcting ?m))
(true (meta_correcting ?m))
(not (meta_currently_correcting ?m)))

(<= (meta_currently_correcting ?m)
(does arbiter ?n)
(env_reverse ?n ?m))

(<= (meta_player_bad_move ?p ?m)
(not meta_correcting_mode)
(does ?p ?m) (distinct ?p arbiter)
(not (source_legal ?p ?m)))

(4)

The environment fluents are always updated properly. Mean-
while, in normal operation the fluents of the embedded game
are updated according to the rules of the source game.

(<= (next ?f) (env_next ?f))
(<= (next ?f)

(not meta_bad_move) (source_next ?f)
(not meta_correcting_mode))

(<= meta_bad_move
(meta_player_bad_move ?p ?m))

(5)

When a bad move has just been made, the fluents of the em-
bedded game are fully preserved from one state to the next
throughout the entire recovery process.

(<= (next ?f) (source_base ?f) (true ?f)
meta_bad_move)

(<= (next ?f) (source_base ?f) (true ?f)
meta_correcting_mode)

(6)

This completes the formalisation of a basic execution mon-
itoring strategy by meta-game rules. It is game-independent
and hence can be combined with any game described in GDL.



4 Properties
The previous section detailed the construction of a meta-game
Σmeta from an existing game ΣG and a corresponding phys-
ical environment model Σenv . In this section we show that
the resulting meta-game does indeed encapsulate the original
game and provides for an execution monitor able to recover
the game from erroneous actions.

Proposition 1 For any syntactically correct GDL game ΣG

and corresponding environment model Σenv , the meta-game
Σmeta is also a syntactically correct GDL game.

Proof: ΣG and Σenv are required to satisfy GDL keyword
restrictions, be safe, and internally stratified. τ(ΣG) does not
change these properties and it can be verified that Σem also
satisfies them. For example, legal would depend on does
only if source legal depended on does , which is only
possible if ΣG violated these restrictions.

Now, verifying that Σmeta = τ(ΣG) ∪ Σenv ∪ Σem is strat-
ified. The properties of Σenv (resp. Σem ) ensures that Σmeta
will be unstratified only if τ(ΣG)∪Σem (resp. τ(ΣG)∪Σenv )
is unstratified. Hence Σmeta could be unstratified only if
τ(ΣG) was unstratified. 2

The syntactic validity of the meta-game guarantees its cor-
respondence to a state transition system. Now, we consider
terminating paths through a game’s state transition systems.

Definition 2 For a game G with transition function δ , let
〈s0,m0, s1,m1, . . . , sn〉 be a sequence of alternating states
and joint moves, starting at the initial state s0 and assigning
si+1 = δ(mi, si) , 0 < i ≤ n , such that sn is a terminal
state. Such a sequence is called a run of the game.

To show that the meta-game encapsulates the original we
first establish that a run through the original game maps di-
rectly to a run in the meta-game.

Proposition 2 For any run 〈s0,m0, s1,m1, . . . , sn〉 of the
game ΣG there exists a run 〈s′0,m′

0, s
′
1,m

′
1, . . . , s

′
n〉 of the

game Σmeta such that:

• m′
i
does

=mi
does∪{does(arbiter,noop)},0≤ i≤n−1,

• sitrue ⊆ s′i
true , 0 ≤ i ≤ n,

• g(sn) ⊆ g(s′n).

Proof: 〈s′0,m′
0, s

′
1,m

′
1, . . . , s

′
n〉 is constructed inductively.

Base case: observe that τ(ΣG) does not change the fluents
that are true in the initial state so s0

true ⊆ s′0
true . Further-

more no meta correcting fluent is specified for the initial
state of Σmeta so s′0 is a normal state.

Inductive step: select m′
i such that m′

i
does

= mi
does ∪

{does(arbiter, noop)} . Now, ΣG is required to be phys-
ically playable in the environment model Σenv so from Ax-
ioms (2) and s′i being a normal state it follows that l(si) ⊆
l(s′i) and {legal(arbiter, noop)} ⊆ l(s′i) . Hence m′

i
consists of legal moves and its execution leads to a game
state s′i+1 . Furthermore since the moves in mi

does are
source legal then s′i+1 will be a normal state (Axioms 4)
and furthermore si+1

true ⊆ s′i+1
true . Finally, τ(ΣG) does

not modify any goal values or the terminal predicate so
s′i+1 will be a terminal state iff si+1 is a terminal state and
any goal values will be the same. 2

Proposition 2 captures the soundness of the meta-game
with respect to the original game. A similar completeness re-
sult can also be established where any (terminating) run of
the meta-game corresponds to a run of the original, when the
corrections of the execution monitor are discounted.
Proposition 3 For any run 〈s0,m0, s1,m1, . . . , sn〉 of the
game Σmeta there exists a run 〈s′0,m′

0, s
′
1,m

′
1, . . . , s

′
o〉 ,

where o ≤ n , of the game ΣG such that:
• for each pair (si,mi) , 0 ≤ i ≤ n :

– if si is a normal state then there is a pair (s′j ,m
′
j) ,

0 ≤ j ≤ i , s.t. s′j
true ⊆ si

true and mi
does =

m′
j
does ∪ {does(arbiter, noop)} ,

– else, si is an abnormal state, then for each non-
arbiter role r , does(r, noop) ∈ mi

does and
does(r, a) 6∈ mi

does for any a 6= noop .
• g(s′o) ⊆ g(sn) .

Proof: Similar to Proposition 2 but need to consider the case
where a joint action in Σmeta is not legal in ΣG . Note, the
axioms for Σem and Σenv do not provide for termination so
the terminal state sn must be a normal state.

Base case: note s′0
true ⊆ s0true and s0 is a normal state.

Inductive step: assume si is a normal state and there is an
s′j , j ≤ i , s.t. s′j

true ⊆ sitrue . There are two cases:
1) If all non-arbiter actions in mi are source legal then
construct m′

j from mi (minus the arbiter action). It then fol-
lows that s′j+1

true ⊆ si+1
true (Axioms 5) and si+1 will be

a normal state (Axioms 4). Furthermore, s′j+1 will be termi-
nal iff si+1 is terminal, in which case g(s′j+1) ⊆ g(si+1) .
2) If some non-arbiter action in mi is not source legal
then a bad move has occurred (Axioms 4). Hence the
source base fluents will persist to the next state (Ax-
ioms (6)) which will be an abnormal state (Axioms (4)). Be-
cause a run must terminate in a normal state, there must be
some minimal i+1 < l < n s.t. sl is a normal state. The
source base fluents will persist through to this state (Ax-
ioms (6)). Here all erroneous moves will have been reversed
so si

true = sl
true (i.e., si = sl ). This process can repeat,

but in order to reach termination at some point there must be
source legal -only actions taken from a normal state. At
that point the first case would apply. 2

Propositions 2 and 3 establish that, except for the arbiter
correcting moves, the meta-game is a faithful encoding of
the original game. However, it should be emphasised that
even when the original game is well-formed the meta-game
is not. Firstly, there is no termination guarantee for the meta-
game. The simplest example of this is the case of a player
that simply repeats the same incorrect move while the ar-
biter patiently and endlessly corrects this mistake. Secondly,
the meta-game is not weakly-winnable or monotonic since no
goal values have been specified for the arbiter role.

This lack of well-formedness is not in itself problematic,
as the intention is for the meta-game to be used in the spe-
cialised context of a robot execution monitor rather than to be
played in the GGP competition. Nevertheless, satisfy these
properties, and in particular the guarantee of termination, can
have practical uses. Consequently, extensions to construct a
well-formed meta-game are described in Section 6.



5 Planning
The current requirements of the environment model Σenv en-
sure that the arbiter only has a single action that it can take
to correct an invalid move: it simply reverses the move. This
allows even the simplest GGP player, for example one that
chooses any legal move, to play the arbiter role effectively.
However, this simplification is only possible under the as-
sumption that all unexpected changes are indeed reversible
and that Σenv explicitly provides the move. This cannot al-
ways be satisfied when modelling a physical environment.

Instead, an existing environment model, such as the board
environment of Figure 3, can be extended to a richer model
that might require multiple moves to recover a normal game
state. For example, correcting a toppled piece could conceiv-
ably require two separate actions; firstly, to place the piece
upright and subsequently to move it to the desired position.

Secondly, some environments simply cannot be modelled
with only reversible moves. For example, reversing an invalid
move in CONNECTFOUR, a game where coloured discs are
slotted into a vertical grid, would involve a complex sequence
of moves, starting with clearing a column, or even the entire
grid, and then recreating the desired disc configuration.

Our approach can be easily extended to allow for these
more complex environment models. Most importantly, in
an abnormal state the arbiter needs to be allowed to exe-
cute all physically possible moves. Formally, we remove the
env reverse predicate and replace the first axiom of (3) by

(<= (legal arbiter ?m)
(env_legal ?m) meta_correcting_mode) (7)

We also substitute the second and third axioms of (4) by
(<= (next (meta_prev ?f))

(true ?f) (env_base ?f)
(meta_player_bad_move ?p ?m))

This replaces meta currently correcting(m) by the
new fluent meta prev(f), whose purpose is to preserve the
environment state just prior to a bad move. The goal is to re-
cover this state. Hence, the game remains in correcting mode
as long as there is a discrepancy between this and the current
environment state:4

(<= (next (meta_prev ?f))
(true (meta_prev ?f))
meta_correcting_mode)

(<= (next (meta_correcting ?m))
(true (meta_correcting ?m))
(true (meta_prev ?f))
(not (env_next ?f)))

(<= (next (meta_correcting ?m)
(true (meta_correcting ?m))
(env_next ?f)
(not (true (meta_prev ?f))))

Consider an environment model Σenv for CONNECTFOUR
that includes the actions of clearing an entire column and of
dropping a single disk in a column. The arbiter can always
perform a sequence of actions that brings the physical game

4Since bad moves are no longer taken back individually, if they
happen simultaneously then for the sake of simplicity all instances of
meta correcting(m) remain true until the preceding valid state
has been recovered.

back into a valid state after a wrong disk has been slotted
into the grid. This flexibility requires the execution monitor
to plan and reason about the consequences of actions in order
to return to the appropriate normal state. As part of the meta-
game, this behaviour can be achieved by defining a goal value
for the arbiter that is inversely proportional to the number of
occurrences of bad states in a game. A skilled general game-
playing system taking the role of the arbiter would then plan
for the shortest sequence of moves to a normal state.

Worthy of note is that the generalised axiom (7) also ac-
counts for the case of failed actions of the execution monitor
itself. Whenever this happens, the game remains in a bad state
and the arbiter would plan for correcting these too.

6 Termination and Well-Formed Meta-Games
As highlighted in Section 4, currently the constructed meta-
games are not well-formed. This can be undersirable for a
number of reasons. For example, a lack of guaranteed game
termination can be problematic for simulation based players
that require terminating simulation runs (e.g., Monte Carlo
tree search [Björnsson and Finnsson, 2009]).

A simple mechanism to ensure game termination is to ex-
tend Σem with a limit on the number of invalid moves that
can be made by the non-arbiter roles. Firstly, a strikeout
counter is maintained for each non-arbiter player.

(<= (init (strikeout_count ?r 0))
(role ?r) (distinct ?r arbiter))

(<= (next (strikeout_count ?r ?n))
(not (meta_bad_move ?r))
(true (strikeout_count ?r ?n)))

(<= (next (strikeout_count ?r ?n))
(true (strikeout_count ?r ?m))
(meta_bad_move ?r) (++ ?m ?n))

(++ 0 1) ... (++ 2 3)

Next, a player strikes out if it exceeds some number (here
three) of invalid moves, triggering early game termination.

(<= (strikeout ?r)
(true (strikeout_count ?r 3)))

(<= strikeout (strikeout ?r))
(<= terminal strikeout)

Beyond this termination guarantee, we can also ensure that
games are weakly winnable and goal scores are monotonic,
by defining goal values for the arbiter in all reachable states.

(<= (goal arbiter 100) terminal)
(<= (goal arbiter 0) (not terminal))

However, early game termination can be problematic if we
treat the meta-game as the final arbiter of who has won and
lost the embedded game. A player with a higher score could
intentionally strikeout in order to prevent some opponent
from improving their own score. To prevent this we, firstly,
extend Definition 1 to replace every occurrence of goal(r, v)
by source goal(r, v) . Next, axioms are introduced to re-
map goal scores for the original players, ensuring that a
strikeout player receives the lowest score.

(<= (goal ?r 0) (role ?r) (not terminal))
(<= (goal ?r ?n)

(source_goal ?r ?n) terminal
(not strikeout))



(<= (goal ?r 0) (strikeout ?r))
(<= (goal ?r 100)

(role ?r) (distinct arbiter ?r)
(not (strikeout ?r)) strikeout)

Proposition 4 For any syntactically correct and well-formed
game ΣG and corresponding environment model Σenv , the
extended meta-game Σmeta is also syntactically correct and
well-formed.
Proof: It can be verified that the extra rules don’t change the
syntactic properties of Σmeta . Similarly, it is straightforward
to observe that Σem now guarantees termination, is weakly-
winnable, and has monotonic goal scores. 2

Note that the modification to allow for early termination
does have consequences for Proposition 3. Namely, it will
only hold if the run of a meta-game terminates in a normal
state. Trivially, if a meta-game terminates early then the em-
bedded game will never complete and there will be no termi-
nal state in the corresponding run of the original game.

7 Conclusion and Future Work
We have presented an approach for embedding axiomatisa-
tions of games for general game-playing robots into meta-
games for execution monitoring. This allows for the seam-
less encoding of recovery behaviours within a meta-game,
enabling a robot to recover from unexpected events such as
failed action executions or (human) players making unsanc-
tioned game moves. The approach is general enough to en-
compass a full range of behaviours. From simple, prescribed
strategies for correcting illegal moves through to complex be-
haviours that require an arbiter player to find complex plans
to recover from unexpected events. Alternatively, even for
specifying early-termination conditions, for example, when
a game piece falls off the table or a frustrated human oppo-
nent throws it away. Our method can moreover be applied
to games axiomatised in GDL-II [Thielscher, 2010], which
allows for modelling uncertain and partially observable do-
mains for an arbiter and hence to account for, and recover
from, execution errors that a monitor does not observe un-
til well after they have occurred. An interesting avenue for
future work is to consider the use of an Answer Set Program-
ming (ASP) solver (see for example [Gebser et al., 2012])
to help in this failure detection and recovery. Based on an
observation of a failure state the ASP solver could gener-
ate candidate move sequences as explanations of how the
game entered this state from the last observed valid game
state. Finally, the general concept of automatically embed-
ding a game into a meta-game has applications beyond ex-
ecution monitoring, for example, as an automatic game con-
troller that runs competitions and implements rules specific to
them such as the three-strikes-out rule commonly employed
at the annual AAAI contest for general game-playing pro-
grams [Genesereth and Björnsson, 2013].
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