Automated Theorem Proving for General Game Playing

Stephan Schiffel and Michael Thielscher
Department of Computer Science
Dresden University of Technology

{stephan.schiffel,mj@inf.tu-dresden.de

Abstract they generate random sample matches to test whether a prop-
) erty is violated at some point, and then rely on the correct-
A general game player is a system that understands ness of this informed guess. The first method of automagicall
the rules of an unknown game and learns to play proving properties for general games is presentdetdn der
this game well without human intervention. To suc- Hoeket al, 2007. But this requires to systematically search
ceed in this endeavor, systems need to be able to ex- the entire set of reachable positions in a game and therisfore
tract and prove game-specific knowledge from the ot suitable for practical play. Finding a practical mettodd
mere game rules. We present a practical approach rigorously proving game-specific knowledge from the mere
to this challenge with the help of Answer Set Pro- rules of a game is an open and challenging problem.
gramming. The key idea is to reduce the automated In this paper, we present a first solution to this problem in
theorem proving task to a simple proof of an induc- the form of a method which allows systems to automatically
tion step and its base case. We prove correctness of rqve properties that hold across all legal positions. For a
this method and report on experiments with an oft- - general game player this is arguably the most important type
the-shelf Answer Set Programming system in com- 5t game-specific knowledge. We show how the focus on these
bination with a successful general game player. properties allows us to reduce the automated theorem prov-
ing task to a simple proof of an induction step and its base
: case. Specifically, we will use the paradigm of Answer Set
1 Introduction Programming (ASP) (see, e.¢Gelfond, 200§) to validate
General Game Playing is concerned with the developmerproperties of games specified in the general Game Descrip-
of systems that understand the rules of previously unknowtion Language (GDLJGeneseretlet al, 2005. This opens
games and learn to play these games well without human in4p possibilities for deploying off-the-shelf ASP systems i
tervention. Identified as a Grand Challenge for Artificial In general game players to prove game-specific knowledge.
telligence, this endeavor requires to combine methods from The rest of the paper is organized as follows. In the next
a variety of a sub-disciplines, including reasoning, searc section, we will recapitulate the basic syntax and semsofic
game playing, and learniniPell, 1993; Geneserett al, GDL. In the section that follows, we will show how the con-
2003. Recent research in this area has led to two successfaept of answer sets can be applied in the context of GDL in
approaches to General Game Playing: simulation-based sysrder to systematically prove game-specific propertiese Th
tems which use Monte Carlo game tree sedFéhnsson and correctness of this method will be formally proved, and we
Bjornsson, 2008 and knowledge-based systefiaihimann will report on experiments with an off-the-shelf ASP system
et al, 2006; Clune, 2007; Schiffel and Thielscher, 2007 [Potassco, 20Q8in combination with a successful general
which rely on the ability to automatically extract game- game playefSchiffel and Thielscher, 2007Before we start,
specific knowledge from the rules of a game. This knowledgehowever, let us stress that in this paper we are only conderne
serves a variety of purposes that are crucial for good play: with automaticallyprovingproperties, not with automatically
e Games need to be classified in order to choose the rigHindingsuitable properties worth proving. We refe{@une,
search method_e_g_’ Minimax W|t‘h/ﬂ is 0n|y suitable 2007, SChIﬁE| and ThIE|SCher, ZODTbr .an extensive discus-
for two-player, zero-sum, and turn-taking games. sion on various types of game-specific knowledge that helps

" . . . I I fi heuristics.
e Recognition of structures like boards, pieces, and mgbilit a general game player find good heuristics

of pieces is needed to automatically construct good evalua- o
tion functions for the assessment of intermediate positon 2 Game Description Language

o Game-specific knowledge can be used to cut off the searchhe Game Description Language (GDL) has been developed
in positions that are provably lost for the player. to formalize the rules of any finite game with complete infor-

While existing systems likgClune, 2007 extract this kind mation in such a way that the description can be automaticall

of knowledge, they do not actually attempt to prove it; rathe processed by a general game player. Due to lack of space, we

rol e(xplayer). role(oplayer).

init(control (xplayer)). init(cell(1,1,b)). ... ‘init(cell(3,3,h)).
legal (P,mark(X,Y)) :- true(control(P)), true(cell (X Y,b)).

| egal (xpl ayer, noop) :- true(control (oplayer)).

| egal (opl ayer, noop) :- true(control (xplayer)).

next(cell (M N, x)) :- does(xplayer,mark(MN)).

next (cell (M N o)) :- does(oplayer,mrk(MN)).

next(cel | (MN W) :- true(cell (MN, W), does(P,mark(l,J)), distinct(MI).
next(cell (MN W) :- true(cell (MN W), does(P,mark(l,J)), distinct(N,J).
next (control (oplayer)) :- true(control (xplayer)).

next (control (xplayer)) :- true(control (oplayer)).

Figure 1: A GDL description of Tic-Tac-Toe (without the défion of termination and goalhood). A position in this game
is encoded using the featuresntrol(P), where P € {xplayer, oplayer}, and cell(X,Y, C), where X, Y < {1,2,3} and

C € {z,0,b} (the last symbol stands for “blank”di st i nct (X, Y) is an auxiliary standard predicate in GDL which means
syntactic inequality of the two arguments.

can give just a very brief introduction to GDL and have to implicitly determines a set of ground term}s. This set con-
refer to[Love et al,, 2004 for details. stitutes the symbol basg in the formal semantics fo6;.

GDL is based on the standard syntax of logic programs, The players and the initial position of a game can be di-
including negation. We assume familiarity with the basie no rectly determined from the clauses for, respectivelgpl e
tions of logic programming as can be found, e.g.[litoyd, andinit in G. In order to determine the legal moves, up-
1987. We adopt the Prolog convention according to whichdate, termination, and goalhood for any given positiors thi
variables are denoted by uppercase letters and predicdte aposition has to be encoded first, using the keywordie.

function symbols start with a lowercase letter. As a tailor-To this end, for anyinite subsetS = {f,..., f,} C X ofa
made specification language, GDL uses a few pre-definedet of ground terms, the following set of logic program facts
predicate symbols shown in the table below. encodesS as the current position:
rol e(R Ris a player true def
init(F) | Fholdsin the initial position ST = Atrue(fy)., oo truelfa). }
true(F) F holds in the current position Furthermore, for any functiom : ({ry,...,r,} — X) that
| egal (R M | playerRhas legal movéM assigns a move to each player, ..., r, € X, the following
does(R' M playerR does moveM set of facts encodesdl as a joint move:
next (F) F holds in the next position
ternmi nal | the current position is terminal Atees ' {does (11, A(r1)). , ..., does(r,, A(r,)). }
goal (R N) playerR gets goal valu®&\

Definition 1 Let G be a GDL specification whose signature
GDL imposes some restrictions on the use of these keywordsietermines the set of ground terms Let 2> be the set of

e rol e only appears in facts; finite subsets of-. Thesemantic®f G is the state transition

o system(R, S1,T,1,u,g) wheré
e init and next only appear as head of clauses, and)
i ni t is not connected to any dfr ue, | egal , does, ® f={reX:G[=role(r)} (the players);

next, term nal , or goal ; e Si={feX:GEIinit(f)} (theinitial position);
e true and does only appear in clause bodies with e 7= {S € 2* : GU S'"Y® =t erm nal } (the terminal
does not connected td egal , t er m nal , or goal . positions);

As an example, Figure 1 sho_ws an excerpt ofg GDL descrips | = {(r,a,S) : GUS'"Y® = | egal (r,a)}, wherer € R,
1ttlonhfor the S|mp|)le game of T|c—Tac—Toe% GIDL |mpo§is Eome a €Y, and S € 2% (the legality relation);

urther, general restrictions on a set of clauses with the in) true. | Adoes

tention to ensure finiteness of the set of derivable pregicat® “(4:) = {f € X : GUSTEE UAW® [= next (1)}, for
instances. Specifically, the program mustdbeatified [Apt all A: (R~ X) and 5 € 2 (the update function);

et al, 1987 andallowed [Lloyd and Topor, 1986 Strati- e g = {(r,n,S): GUS'""® |=goal (r,n)}, wherer € R,
fied logic programs are known to admit a spectftandard n € N,and S € 2% (the goal relation).

model[Apt et al, 1987. This definition provides a formal semantics by which a GDL
Based on the concept of the standard model, a GDL degescription is interpreted as an abstracplayer game: in

scription can be_ understooql as a state transitio_n system @%ery position, starting with S;, each player- chooses a
follows (see[Schiffel and Thielscher, 2009or details). To

begin with, any valid game descriptio¥ in GDL contains 'Below, entailment = is via the abovementioned standard
a finite set of function symbols, including constants, whichmodel for a set of clauses.

move a that satisfied(r, a,S). As a consequence the game In the following, we use two common additions that have
state changes ta(4, S), where A is the joint move. The been defined for ASENiemeket al., 1999: aweight atom
game ends if a position ifl" is reached, and theg de- o

termines the outcome. The restrictions in GDL ensure that m{p: d@)}n

entailment wrt. the standard model is decidable and that onlmeans that for atonp an answer set has at least and at
finitely many instances of each predicate are entailed. Thigost 5, different instances that satisty(). Both i and n
guarantees that the definition of the semantics is effective can be omitted, in which case there is no lower (respectively

))) upper) bound. Aconstraintis a rule : - by,..., by, which
3 Proving Properties of General Games Using excludes any answer set that satisfigs. . . , by,.
Answer Set Programming As an example, consider the program

We are now ready to define the challenge addressed in thiscdon(xpl ayer) .
paper: given a GDL description of an unknown game, how cdon(opl ayer).
can a general game player fully automatically prove game- i hi t (control (xpl ayer)).

specific knowledge in form of properties that hold across all i nit(cell(1,1,b)). ...init(cell(3,3,b)).
finitely reachable positions? t0 :- 1{init(control (X)) : cdon(X) }1.
As an example, recall the formal description of Tic-Tac- : - tO.

Toe given in Figure 1. These rules and their semantics aGynere cdom defines the domain of theontrol feature.
cording to Definition 1 imply that the argument of the fea- ;g program hasio answer set, because the facts imply
ture control(P) is unique in every legal position. The abil- tnat there is exactly one instance otion{X) such that

ity to derive this fact is essential for a general game p|aye'|'nit(controI(X)) holds, and hence “theorem?, must be

to be able to identify Tic-Tac-Toe as a turn-taking game. Agye which contradicts - t 0. This is aproof of the fact
similar but less obvious consequence of the given descrippat exactly one instance afontrol(X) holds in the initial

tion is the uniqueness of the third argumentaafli(X, Y, C) osition according to the rules of Tic-Tac-Toe. In a similar
in every legal position. This knowledge may help a generafashion, we can prove the induction step for this uniqueness

game p_Iayer to identify this feature as representing a tWOproperty by adding the following to the rules of Figure 1:
dimensional “board” with “markersC.

As long as a game is finite, properties of this kind can in 1: cdom(xpl ayer).
principle be determined by a complete search through the 2: c¢don(opl ayer).
state transition diagram for a ganhean der Hoeket al, 3: fdon(control (X)) :- cdon(X).
2007. However, for games that are simple enough to make 4: fdonm(cel I (X, Y, Q) :- ...
this practically feasible, a general game player does not ac > ndom{mar k(X Y))
tually need game-specific knowledge because it can solve the®: mdon(noop) .
game by exhaustive search anyway. For this reason, the chal-/: {true(F) : fdon(F) }.
lenge for the practice of General Game Playing (GGP) is to 8: h0 :- 1{true(control (X)) : cdon(X) }1.

develop a local proof method. In case of game-specific prop- 9: :- =ho.

erties that hold across all reachable states, the key idea is 10: 1{does(R M : mdom(M }1 :- role(R).

reduce the automated theorem proving task to a simple prooft1: : - does(R M, -legal (R M.

of an induction step and its base case. 12: t :- 1{next(control (X)) : cdon(X) }1.
In the specific setting of GGP, proving a propery by ~ 13° - t.

induction means to show that (1) holds in the initial posi- Here, lines 3-6 are assumed to provide appropriate defisitio
tion, and (2) if » holds in a position and all players choose of the domains for the features and the moves, respectively,
legal moves, therp holds in the next position, too. Because as determined by the rules in Figure 1. Line 7 allows for
game descriptions in GDL are logic programs with negationarbitrary instances of the given features to hold in a curren
this general proof principle can be put into practice wita th position, while lines 8-9 axiomatize the induction hypaike
help of Answer Set Programming (ASP). Answer sets prothat exactly one instance afontrol(X) is true in the current
vide models of logic programs with negation according to theposition. Line 10 requires every player to select exactlg on
following definition (for details, see e.f{Gelfond, 2008). move, and line 11 excludes any illegal move. Finally, lin2s 1
Definiton 2 Let T' be a logic program with negation over and 13 together encode the negation of the “theorem” that
a given signature, and legroundl") be the set of all ground ~ control(X) is unique in the next position, too. Again, the
(i.e., variable-free) instances of rules . For a set M of Program admits no answer set, which proves the claim.
ground atoms (i.e., predicates with variable-free argutagn ~ An interesting aspect of inductively proving properties of
thereduct of groun@l’) wrt. M is obtained by deleting general games can be observed when trying to verify unique-

. . ness of the third argument aell(X, Y, C) in the same way.
1. all rules with some-p in the body such thap € M, The straightforward attempt produces a counter-example to

and _ _ o the induction step, namely, an answer set containing
2. all nggated atoms in the b9d|es .of the remaining rules. true(cel I (1,1,b)),
Then M is ananswer sefor T" if M is the least Herbrand true(control (xpl ayer)),

model of the reduct ogroundT") wrt. M. true(control (opl ayer)),

does(xpl ayer, mark(1,1)),
does(opl ayer, mark(1,1)),
next(cell (1,1,x)), next(cell(1,1,0))

In this model, cell(1,1) has a unique contents in the cur-
rent position but then gets marked by both players simulta- ;-
neously, which is a perfectly legal joint move under the as-
sumption that each of the two players has the control! This
shows that a proof may require to incorporate previously de-
rived knowledge. The above answer set—and other, similar -

legal game positions. Show that there is no answer set for
G UD augmented by

{true(F): fdom(F) }.

h s - (btrue.

=h.

ho : - SDtrue_

.- =ho0.

1{does(R, M : ndom(M }1 :-
does(R M, -legal (R M.

2
rol e(R).

ones—disappear when one adds the assumption that in the t - next,

current position exactly one instance obntrol(X) holds.

In the following section, we describe this proof method in

R

general and show its correctness under the semantics of GDLhe correctness of this general proof method can be shown

as given in Definition 1.

4 The General Proof Method and its
Correctness

When employing Answer Set Programming to automatically
prove that all finitely reachable positions in a game satisfy

property ¢, a general game player proceeds as follows.

Let G be a given GDL specification. The proof method

requires additional, negation-free clausPsthat define the
domains of the features and moves accordingiousing
predicatesfdom and mdom respectively. Furthermore, for

pe{init,true,next} let o? be anatom that, together
with an associated set of clauses, encodes the fact¢hat Proof:

is satisfied in the state represented by keywprdin other
words, for every answer se¥/ for ¢' "'t for example, the
position {f : i nit (f) € M} satisfiesy according to the
following definition®

Definition 3 Let G be a valid GDL specification whose

signature determines the set of ground terRisA state prop-

ertyis a first-order formulay over a signature whose ground

atomsare from X. Let S € 2% be a state in the transition
system forG (cf. Definition 1), then the notion of satisfy-
ing ¢ (written: S |=) is defined on the basis of

S E fiff feS (wheref atomic and ground)

and with the usual definition for the logical connectives.

The automatic proof thatp holds in all reachable states in

the game described b§ is then obtained in two steps.
1. Show that there is no answer set 18t D augmented by

to :- Sﬁinit-

- t0. (1)

with the help of the following three theorems.

Theorem1 Let (R, S:,7T,l,u,g) be a state transition sys-
tem with symbol basé& as in Definition 1. Lety be a state
property. If there is a finitely reachable state 2% which
does not satisfyp, then

1. 5, or

2. there is a finitely reachable statec 2> and a mapping
A: (R~ X) suchthat

°* SE ¢

(r,A(r),S) €l forall r € R; and

o u(AS) [~ .

Reachability means that successively, starting in
state Sy, a joint move for the roles is chosen that is legal ac-
cording to [, and then the current state is updated according
to u. Given that a finitely reachable state exists that vio-
lates ¢, the sequence leading to this state must contain a first
one with this property. This state is eith8§ or has a prede-
cessor that satisfieg, which implies the claim. O

Theorem 2 Consider a valid GDL specificatio¥ whose
semantics is(R, S1,T,1l,u,g). Let D be a negation-free
program defining the domains for the features and moves ac-
cording to G. For any state property for which GUD U
{(1)} does not admit an answer set, we have thiat= ¢.

Proof: ~ We prove that if S; (= ¢ then GUD U {(1)}
admits an answer set. Sino& U D is stratified, it ad-
mits a unique answer se¥/ that coincides with its standard
model[Gelfond, 2008 Hence, assumptioy; = ¢ implies
that M [~ ¢'"t. This in turn implies that)/ is also an
answer setfolG UD U {(1)} (inwhich t 0 isfalse). O

Theorem 3 Consider a valid GDL specificatiotr whose
semantics is(R, S1,7T,1l,u,g). Let D be a negation-free
program defining the domains for the features and moves ac-

2. Suppose thab is a (possibly empty) conjunction of state cording to G. For any state propertie¢ and ¢ for which
properties that have been proved earlier to hold across aff UD U {(2)} does not admit an answer set, there does not

2A suitable D can be easily computed on the basis of the depen-

dency graph forG; see Section 5.

exist a stateS € 2* and a mappingd : (R — X) such that
1. SE® and S | ¢;

3Note that in games with finitely many features such an encoding 2- (7, A(r),S) € I forall r € R; and
always exists: anyp can in principle be represented by an exhaus- 3, u(A, S) - .
tive propositional formula, although in practice a compact encod-

ing is desirable (as in the example in the preceding section, wherEroof:

We prove thatG U D U {(2)} admits an answer set

1{init(control (X)) : cdomX) }1 is used to encode the Whenever there exists a state and a mappingA that sat-

fact that state property3! X') control(X)) holds in the initial state).

isfy the given conditions 1-3. Sinag U D U St"ue y Adoes

is stratified, it admits a unique answer set. According to nary function symbolmark occur in the second argument of
conditions 1 and 2/ is also an answer setfa# UD aug- | egal in several rules. Therefore, the moves of the game
mented by the first seven clauses in (2). Because condition &nsist of the constammoop and every possible instance of
implies that M [~ "t model M is also an answer set mark(X,Y’), whichin turn are determined by the domains for
for GUDU{(2)} (inwhich t is false). O the arguments ofnark

To summarize, if condition 1 in Theorem 1 is satisfied, then After computing the domains, a general game player can
GUDU{(1)} mustadmitan answer set, and if condition 2 use ASP to prove any game property it may find useful. For
in Theorem 1 is satisfied, the&¢ U D U {(2)} must admit example, the player can conduct a systematic search for the
an answer set under the assumption that all reachable statesiqueness of arguments of features in the following way.
satisfy ®. Hence, if neither is the case then the property inStarting with ® = (), for every combination of arguments of
guestion must hold across all finitely reachable statess Thieach feature the system checks if these arguments are unique

completes the correctness proof. Whenever some property is proved it is addeddo and
search is restarted with the properties that have not yet bee
5 An Automated Theorem Prover for GGP proved. This simple method can be improved significantly if

. . . a propertyp that may depend on some other propegyis
The above method was implemented using Clifgotassco, ot tested until after testing’. A property of the arguments
2009 as ASP solver in combination with the GGP systemgs 4 feature f may depend on a featurg if f’ occurs in
described in[Schiffel and Thielscher, 2007 The answer tFe body of a rule matchingiext (f) orinal egal rule

set programs are automatically generated from the rules qf; 5 move that occurs in a rule matchimgxt (f)
a game. The domains, or more precisely supersets thereof, '

of all predicates and functions of a given game descriptioré E . IR |

are computed by generating a dependency graph from th xperimental Results

clauses. The graph contains one node for every argument pgve conducted experiments with our system using a wide
sition of every function and predicate symbol, and one nodeange of games from previous GGP competitiBenesereth
for every function symbol itself (including each constartn et al, 2004, 12 of which are summarized in Figure 3. Five
edge is added between an argument node and a function symiifferent experiments were run on each game:

bol node if the latter appears in the respective argument of proving that the argument of theontrol(P) feature is

a function or predicate in a rule of the game. An edge be- njque in every state (provided the feature exists);
tween two argument position nodes is added if there is a rule

in the game in which the same variable appears in both argl. Proving thatthe contents of a board cell is unique (to which
ments. Argument positions in each connected component of €nd boards were identified manually);
the graph share a domain. The constants and function syne- proving that the contents of a board cell is unique given

proving that the game is zero-sum;

bols in the connected components are the domain elements. the information that the argument abntrol(P) is;
Specifically, we take as the domain of the moves that of the,
second argument of standard predicategal , and as the
domain of the features the union of the domainsi afi t e systematic search for unique arguments as described at the
and next . end of the preceding section.
As can be seen from the results, proving some properties
(e.g., control and zero-sum) is very fast and successful for
@ most of the games while proving other properties (e.g.,doar
is usually expensive and only possible in a few games. The
main influence on the time and space required is the number
and size of the rules of the answer set program. Since only
@ those game rules were included in the answer set program
which are potentially relevant for proving the respectivep
erty, the size of the answer set program depends on the con-
Figure 2: A dependency graph for calculating domains offectedness between the features and moves of a game. For
functions and predicates. (Ellipses denote argument posgxample, the relevant rules for featucentrol(P) typically
tions of functions or predicates, and rectangles denote-fun d0 not depend on other features and in most cases not even on
tion symbols themselves, including constants.) which moves are made. Therefore, the more complex rules
for next (F) with F # control(P) and | egal (R M
Figure 2 shows a small part of the dependency graph fofan be omitted when proving uniqueness of control. The rules
the game from Figure 1. The first argument méark and for the board feat_ure, on the other hand, are usually more
the first argument ofcell ére connected because they Sharecomplex, S0 that n complex games answer sets cannot be
.) 4 computed under suitable memory limitatighs.
variable M in the game rulenext (cel I (M N, x)) : -
does(xpl ayer, mark(M N)) . The constantd, 2,3 oc- “Abstracting from certain features of the game may help in these
curin the firstargument ofell in several of thei ni t rules. cases; e.g., for theiececount feature in Checkers the actual lo-
Thus the first arguments afmark and cell have the same cations of the moved pieces do not matter—it is only relevant how
domain {1,2,3} . Similarly, the constanhoop and the bi- many jumps were made.

control board board given control| zero-sum | all unique arguments
3pttc (yes,0.00)| (no,0.24) (no,0.28) (no,0.00) 1.99
amazons (yes,0.00)| (-,70.18) (-,70.08) (yes,0.38) 491.36
blocker n/a (yes,0.00) n/a (yes,0.00) 0.11
checkers (yes,0.02)| (-,25.96) (-,25.94) (yes,1.14) 256.07
connectfour | (yes,0.00)| (no,0.01) (yes,0.01) (yes,0.01) 0.14
endgame (yes,0.02)| (-,61.50) (-,61.37) (yes,0.12) 433.83
knightthrough | (yes,0.00)| (no,8.34) (yes,51.36) (yes,0.00) 56.02
othello (yes,0.12)| (-,60.01) (-,61.13) (-,57.03) 422.0
pacman3p (yes,0.01)| (no,0.33) (no,0.27) (no,0.09) 3.05
quarto n/a (no,2.36) n/a (yes,3.14) 16.52
tictactoe (yes,0.00)| (no,0.00) (yes,0.00) (yes,0.00) 0.13
tttcc4 (yes,0.01)| (-,64.00) (-,64.00) (no,0.01) 447.65

Figure 3: Results of proving properties and times in secdrtdsk for a selection of games. Experiments were run on &l In
Core 2 Duo cpu with 3.16GHz. “-” means the prover was aboriéte | the given time) because it used more than 1 GB RAM.
(We enforce this rather strict limit in our general game plaip view of practical play, because proving propertiesnly @ne

of many aspects of analyzing a game description.)

Another reason some properties were not proved by ourKuhimannet al, 2004 G. Kuhlmann, K. Dresner, and P.
system is that they can only be proved simultaneously with Stone. Automatic heuristic construction in a complete gen-
other properties. Changing the algorithm to accommodate fo eral game player. IRroc. of AAA] 1457-1462, 2006.
interdependent properties should be straightforward. 4—|ovx(/JP_ee and Meng, 2048J. Lee and Y. Meng. On loop formu-
ever, in the worst case all combinations of properties would |55 with variables. In G. Brewka, P. Doherty, and J. Lang,
have to be considered. editors, Proc. of the Int!I Conf. on Principles of Knowl-

edge Representation and Reasonddyi—453, 2008.

7 Conclusion [Lloyd and Topor, 198 J. Lloyd and R. Topor. A basis for
The ability to prove properties of hitherto unknown games deductive database systems Jl.of Logic Programming
is a core ability of a successful general game playing sys- 3(1):55-67, 1986.

tem. We have shown that Answer Set Programming provide ; ; ;

a theoretically grounded and practically feasible apgndac ﬁ.lcgy(jri,nlge?ﬂziaLelg)i/t?drljo rggg tions of Logic Programming
this challenge, which not only is more reliable but oftenreve pringer, ' o
faster than making informed guesses based on random sak-Oveetal, 2008 N. Love, T. Hinrichs, D. Haley, E.
ple matches. On the other hand, our experiments have also Schkufza, and M. Genesereth. General Game Playing:
shown that state-of-the-art ASP systems cannot always be G@me Description Language Specification. Technical Re-
applied to prove properties of complex games in time rea- port LG—2006-01, Stanford University, 2006. Available
sonable for practical play. A promising alternative apptoa at:ganmes. stanf ord. edu.

to tackle these games is given by the very recently devellNiemeket al, 1999 I. NiemeR, P. Simons, and T. Soini-
oped method of first-order Answer Set Programmihge nen. Stable model semantics of weight constraint rules. In
and Meng, 200B by which grounding is avoided. A ma- Proc. of the Int/l Conf. on Log. Prog. and Nonmonotonic
jor challenge for future work is to develop implementation Reasoningvol. 1730 ofLNCS 317-331, 1999. Springer.

techniques for first-order ASP systems and apply it to GGP. [peg||, 1993 B. Pell. Strategy Generation and Evaluation for
Meta-Game PlayingPhD thesis, Trinity College, Univer-

References sity of Cambridge, 1993.
[Aptetal, 1987 K. Apt, H. Blair, and A. Walker. Towards a [Potassco, 20d8Potsdam Answer Set Solving Collection,
theory of declarative knowledge. In J. Minker, gébund. 2008.ht t p: / / pot assco. sour cef orge. net/.

of Deductive Databases and Log. Prog9-148, 1987. [Schiffel and Thielscher, 2007S. Schiffel and M. Thiel-

[Clune, 200F J. Clune. Heuristic evaluation functions for scher. Fluxplayer: A successful general game player. In
general game playing. lroc. of AAA] 1134-1139, 2007. Proc. of AAA] 1191-1196, 2007.

[Finnsson and RBjrsson, 2008 H. Finnsson and Y. Bjrns- [Schiffel and Thielscher, 2009S. Schiffel and M. Thiel-
son. Simulation-based approach to general game playing. scher. A multiagent semantics for the game description

In Proc. of AAA] 259-264, 2008. language. IrProc. of the Int!| Conf. on Agents and Artifi-
[Gelfond, 2008 M. Gelfond. Answer sets. Ihiandbook of cial Intelligence Porto 2009. Springer LNCS.
Knowledge Representatipp85—-316. Elsevier, 2008. [van der Hoelet al, 2007 W. van der Hoek, J. Ruan, and

M. Wooldridge. Strategy logics and the game description
language. IrProc. of the Workshop on Logic, Rationality
and Interaction Bejing 2007.

[Geneseretit al, 2009 M. Genesereth, N. Love, and B.
Pell. General game playing: Overview of the AAAI com-
petition. Al Magazing 26(2):62—72, 2005.

