
Automated Theorem Proving for General Game Playing

Stephan Schiffel and Michael Thielscher
Department of Computer Science
Dresden University of Technology

{stephan.schiffel,mit}@inf.tu-dresden.de

Abstract

A general game player is a system that understands
the rules of an unknown game and learns to play
this game well without human intervention. To suc-
ceed in this endeavor, systems need to be able to ex-
tract and prove game-specific knowledge from the
mere game rules. We present a practical approach
to this challenge with the help of Answer Set Pro-
gramming. The key idea is to reduce the automated
theorem proving task to a simple proof of an induc-
tion step and its base case. We prove correctness of
this method and report on experiments with an off-
the-shelf Answer Set Programming system in com-
bination with a successful general game player.

1 Introduction
General Game Playing is concerned with the development
of systems that understand the rules of previously unknown
games and learn to play these games well without human in-
tervention. Identified as a Grand Challenge for Artificial In-
telligence, this endeavor requires to combine methods from
a variety of a sub-disciplines, including reasoning, search,
game playing, and learning[Pell, 1993; Geneserethet al.,
2005]. Recent research in this area has led to two successful
approaches to General Game Playing: simulation-based sys-
tems which use Monte Carlo game tree search[Finnsson and
Björnsson, 2008]; and knowledge-based systems[Kuhlmann
et al., 2006; Clune, 2007; Schiffel and Thielscher, 2007],
which rely on the ability to automatically extract game-
specific knowledge from the rules of a game. This knowledge
serves a variety of purposes that are crucial for good play:
• Games need to be classified in order to choose the right

search method—e.g., Minimax withα/β is only suitable
for two-player, zero-sum, and turn-taking games.

• Recognition of structures like boards, pieces, and mobility
of pieces is needed to automatically construct good evalua-
tion functions for the assessment of intermediate positions.

• Game-specific knowledge can be used to cut off the search
in positions that are provably lost for the player.

While existing systems like[Clune, 2007] extract this kind
of knowledge, they do not actually attempt to prove it; rather

they generate random sample matches to test whether a prop-
erty is violated at some point, and then rely on the correct-
ness of this informed guess. The first method of automatically
proving properties for general games is presented in[van der
Hoeket al., 2007]. But this requires to systematically search
the entire set of reachable positions in a game and thereforeis
not suitable for practical play. Finding a practical methodof
rigorously proving game-specific knowledge from the mere
rules of a game is an open and challenging problem.

In this paper, we present a first solution to this problem in
the form of a method which allows systems to automatically
prove properties that hold across all legal positions. For a
general game player this is arguably the most important type
of game-specific knowledge. We show how the focus on these
properties allows us to reduce the automated theorem prov-
ing task to a simple proof of an induction step and its base
case. Specifically, we will use the paradigm of Answer Set
Programming (ASP) (see, e.g.,[Gelfond, 2008]) to validate
properties of games specified in the general Game Descrip-
tion Language (GDL)[Geneserethet al., 2005]. This opens
up possibilities for deploying off-the-shelf ASP systems in
general game players to prove game-specific knowledge.

The rest of the paper is organized as follows. In the next
section, we will recapitulate the basic syntax and semantics of
GDL. In the section that follows, we will show how the con-
cept of answer sets can be applied in the context of GDL in
order to systematically prove game-specific properties. The
correctness of this method will be formally proved, and we
will report on experiments with an off-the-shelf ASP system
[Potassco, 2008] in combination with a successful general
game player[Schiffel and Thielscher, 2007]. Before we start,
however, let us stress that in this paper we are only concerned
with automaticallyprovingproperties, not with automatically
findingsuitable properties worth proving. We refer to[Clune,
2007; Schiffel and Thielscher, 2007] for an extensive discus-
sion on various types of game-specific knowledge that helps
a general game player find good heuristics.

2 Game Description Language

The Game Description Language (GDL) has been developed
to formalize the rules of any finite game with complete infor-
mation in such a way that the description can be automatically
processed by a general game player. Due to lack of space, we

role(xplayer). role(oplayer).
init(control(xplayer)). init(cell(1,1,b)). ... init(cell(3,3,b)).

legal(P,mark(X,Y)) :- true(control(P)), true(cell(X,Y,b)).
legal(xplayer,noop) :- true(control(oplayer)).
legal(oplayer,noop) :- true(control(xplayer)).

next(cell(M,N,x)) :- does(xplayer,mark(M,N)).
next(cell(M,N,o)) :- does(oplayer,mark(M,N)).
next(cell(M,N,W)) :- true(cell(M,N,W)), does(P,mark(I,J)), distinct(M,I).
next(cell(M,N,W)) :- true(cell(M,N,W)), does(P,mark(I,J)), distinct(N,J).
next(control(oplayer)) :- true(control(xplayer)).
next(control(xplayer)) :- true(control(oplayer)).

Figure 1: A GDL description of Tic-Tac-Toe (without the definition of termination and goalhood). A position in this game
is encoded using the featurescontrol(P), where P ∈ {xplayer, oplayer}, and cell(X,Y,C), where X,Y ∈ {1, 2, 3} and
C ∈ {x, o, b} (the last symbol stands for “blank”).distinct(X,Y) is an auxiliary standard predicate in GDL which means
syntactic inequality of the two arguments.

can give just a very brief introduction to GDL and have to
refer to[Loveet al., 2006] for details.

GDL is based on the standard syntax of logic programs,
including negation. We assume familiarity with the basic no-
tions of logic programming as can be found, e.g., in[Lloyd,
1987]. We adopt the Prolog convention according to which
variables are denoted by uppercase letters and predicate and
function symbols start with a lowercase letter. As a tailor-
made specification language, GDL uses a few pre-defined
predicate symbols shown in the table below.

role(R) R is a player
init(F) F holds in the initial position
true(F) F holds in the current position

legal(R,M) playerR has legal moveM
does(R,M) playerR does moveM
next(F) F holds in the next position
terminal the current position is terminal
goal(R,N) playerR gets goal valueN

GDL imposes some restrictions on the use of these keywords:
• role only appears in facts;

• init and next only appear as head of clauses, and
init is not connected to any oftrue, legal, does,
next, terminal, or goal;

• true and does only appear in clause bodies with
does not connected tolegal, terminal, or goal.

As an example, Figure 1 shows an excerpt of a GDL descrip-
tion for the simple game of Tic-Tac-Toe. GDL imposes some
further, general restrictions on a set of clauses with the in-
tention to ensure finiteness of the set of derivable predicate
instances. Specifically, the program must bestratified [Apt
et al., 1987] and allowed [Lloyd and Topor, 1986]. Strati-
fied logic programs are known to admit a specificstandard
model[Apt et al., 1987].

Based on the concept of the standard model, a GDL de-
scription can be understood as a state transition system as
follows (see[Schiffel and Thielscher, 2009] for details). To
begin with, any valid game descriptionG in GDL contains
a finite set of function symbols, including constants, which

implicitly determines a set of ground termsΣ. This set con-
stitutes the symbol baseΣ in the formal semantics forG.

The players and the initial position of a game can be di-
rectly determined from the clauses for, respectively,role
and init in G. In order to determine the legal moves, up-
date, termination, and goalhood for any given position, this
position has to be encoded first, using the keywordtrue.
To this end, for anyfinitesubsetS = {f1, . . . , fn} ⊆ Σ of a
set of ground terms, the following set of logic program facts
encodesS as the current position:

Strue def
= {true(f1)., . . . , true(fn).}

Furthermore, for any functionA : ({r1, . . . , rn} 7→ Σ) that
assigns a move to each playerr1, . . . , rn ∈ Σ, the following
set of facts encodesA as a joint move:

Adoes def
= {does(r1, A(r1))., . . . , does(rn, A(rn)).}

Definition 1 Let G be a GDL specification whose signature
determines the set of ground termsΣ. Let 2Σ be the set of
finite subsets ofΣ. Thesemanticsof G is the state transition
system(R,S1, T, l, u, g) where1

• R = {r ∈ Σ : G |= role(r)} (the players);

• S1 = {f ∈ Σ : G |= init(f)} (the initial position);

• T = {S ∈ 2Σ : G ∪ Strue |= terminal} (the terminal
positions);

• l = {(r, a, S) : G∪Strue |= legal(r, a)}, wherer ∈ R,
a ∈ Σ, and S ∈ 2Σ (the legality relation);

• u(A,S) = {f ∈ Σ : G∪Strue ∪Adoes |= next(f)}, for
all A : (R 7→ Σ) and S ∈ 2Σ (the update function);

• g = {(r, n, S) : G∪Strue |= goal(r, n)}, wherer ∈ R,
n ∈ N, and S ∈ 2Σ (the goal relation).

This definition provides a formal semantics by which a GDL
description is interpreted as an abstractn-player game: in
every positionS , starting with S1, each playerr chooses a

1Below, entailment |= is via the abovementioned standard
model for a set of clauses.

move a that satisfiesl(r, a, S). As a consequence the game
state changes tou(A,S), where A is the joint move. The
game ends if a position inT is reached, and theng de-
termines the outcome. The restrictions in GDL ensure that
entailment wrt. the standard model is decidable and that only
finitely many instances of each predicate are entailed. This
guarantees that the definition of the semantics is effective.

3 Proving Properties of General Games Using
Answer Set Programming

We are now ready to define the challenge addressed in this
paper: given a GDL description of an unknown game, how
can a general game player fully automatically prove game-
specific knowledge in form of properties that hold across all
finitely reachable positions?

As an example, recall the formal description of Tic-Tac-
Toe given in Figure 1. These rules and their semantics ac-
cording to Definition 1 imply that the argument of the fea-
ture control(P) is unique in every legal position. The abil-
ity to derive this fact is essential for a general game player
to be able to identify Tic-Tac-Toe as a turn-taking game. A
similar but less obvious consequence of the given descrip-
tion is the uniqueness of the third argument ofcell(X,Y,C)
in every legal position. This knowledge may help a general
game player to identify this feature as representing a two-
dimensional “board” with “markers”C .

As long as a game is finite, properties of this kind can in
principle be determined by a complete search through the
state transition diagram for a game[van der Hoeket al.,
2007]. However, for games that are simple enough to make
this practically feasible, a general game player does not ac-
tually need game-specific knowledge because it can solve the
game by exhaustive search anyway. For this reason, the chal-
lenge for the practice of General Game Playing (GGP) is to
develop a local proof method. In case of game-specific prop-
erties that hold across all reachable states, the key idea isto
reduce the automated theorem proving task to a simple proof
of an induction step and its base case.

In the specific setting of GGP, proving a propertyϕ by
induction means to show that (1)ϕ holds in the initial posi-
tion, and (2) if ϕ holds in a position and all players choose
legal moves, thenϕ holds in the next position, too. Because
game descriptions in GDL are logic programs with negation,
this general proof principle can be put into practice with the
help of Answer Set Programming (ASP). Answer sets pro-
vide models of logic programs with negation according to the
following definition (for details, see e.g.[Gelfond, 2008]).

Definition 2 Let Γ be a logic program with negation over
a given signature, and letground(Γ) be the set of all ground
(i.e., variable-free) instances of rules inΓ. For a set M of
ground atoms (i.e., predicates with variable-free arguments),
thereduct of ground(Γ) wrt. M is obtained by deleting

1. all rules with some¬p in the body such thatp ∈ M ,
and

2. all negated atoms in the bodies of the remaining rules.

Then M is ananswer setfor Γ if M is the least Herbrand
model of the reduct ofground(Γ) wrt. M .

In the following, we use two common additions that have
been defined for ASP[Niemel̈aet al., 1999]: aweight atom

m { p: d(~x) } n

means that for atomp an answer set has at leastm and at
most n different instances that satisfyd(~x). Both m and n
can be omitted, in which case there is no lower (respectively,
upper) bound. Aconstraint is a rule :- b1, . . . , bk , which
excludes any answer set that satisfiesb1, . . . , bk .

As an example, consider the program

cdom(xplayer).
cdom(oplayer).
init(control(xplayer)).
init(cell(1,1,b)). . . . init(cell(3,3,b)).
t0 :- 1 {init(control(X)):cdom(X) }1.
:- t0.

where cdom defines the domain of thecontrol feature.
This program hasno answer set, because the facts imply
that there is exactly one instance ofcdom(X) such that
init(control(X)) holds, and hence “theorem”t0 must be
true, which contradicts:-t0. This is aproof of the fact
that exactly one instance ofcontrol(X) holds in the initial
position according to the rules of Tic-Tac-Toe. In a similar
fashion, we can prove the induction step for this uniqueness
property by adding the following to the rules of Figure 1:

1: cdom(xplayer).
2: cdom(oplayer).
3: fdom(control(X)) :- cdom(X).
4: fdom(cell(X,Y,C)) :- ...
5: mdom(mark(X,Y)) :- ...
6: mdom(noop).
7: {true(F):fdom(F)}.
8: h0 :- 1 {true(control(X)):cdom(X)}1.
9: :- ¬h0.

10: 1 {does(R,M):mdom(M) }1 :- role(R).
11: :- does(R,M), ¬legal(R,M).
12: t :- 1 {next(control(X)):cdom(X) }1.
13: :- t.

Here, lines 3–6 are assumed to provide appropriate definitions
of the domains for the features and the moves, respectively,
as determined by the rules in Figure 1. Line 7 allows for
arbitrary instances of the given features to hold in a current
position, while lines 8–9 axiomatize the induction hypothesis
that exactly one instance ofcontrol(X) is true in the current
position. Line 10 requires every player to select exactly one
move, and line 11 excludes any illegal move. Finally, lines 12
and 13 together encode the negation of the “theorem” that
control(X) is unique in the next position, too. Again, the
program admits no answer set, which proves the claim.

An interesting aspect of inductively proving properties of
general games can be observed when trying to verify unique-
ness of the third argument ofcell(X,Y,C) in the same way.
The straightforward attempt produces a counter-example to
the induction step, namely, an answer set containing

true(cell(1,1,b)),
true(control(xplayer)),
true(control(oplayer)),

does(xplayer,mark(1,1)),
does(oplayer,mark(1,1)),
next(cell(1,1,x)), next(cell(1,1,o))

In this model, cell(1, 1) has a unique contents in the cur-
rent position but then gets marked by both players simulta-
neously, which is a perfectly legal joint move under the as-
sumption that each of the two players has the control! This
shows that a proof may require to incorporate previously de-
rived knowledge. The above answer set—and other, similar
ones—disappear when one adds the assumption that in the
current position exactly one instance ofcontrol(X) holds.
In the following section, we describe this proof method in
general and show its correctness under the semantics of GDL
as given in Definition 1.

4 The General Proof Method and its
Correctness

When employing Answer Set Programming to automatically
prove that all finitely reachable positions in a game satisfya
property ϕ, a general game player proceeds as follows.

Let G be a given GDL specification. The proof method
requires additional, negation-free clausesD that define the
domains of the features and moves according toG using
predicatesfdom and mdom, respectively.2 Furthermore, for
p ∈ {init,true,next} let ϕ p be an atom that, together
with an associated set of clauses, encodes the fact thatϕ
is satisfied in the state represented by keywordp. In other
words, for every answer setM for ϕinit, for example, the
position {f : init(f) ∈ M} satisfiesϕ according to the
following definition.3

Definition 3 Let G be a valid GDL specification whose
signature determines the set of ground termsΣ. Astate prop-
erty is a first-order formulaϕ over a signature whose ground
atomsare from Σ. Let S ∈ 2Σ be a state in the transition
system forG (cf. Definition 1), then the notion ofS satisfy-
ing ϕ (written: S |= ϕ) is defined on the basis of

S |= f iff f ∈ S (where f atomic and ground)

and with the usual definition for the logical connectives.

The automatic proof thatϕ holds in all reachable states in
the game described byG is then obtained in two steps.
1. Show that there is no answer set forG∪D augmented by

t0 :- ϕinit.
:- t0.

(1)

2. Suppose thatΦ is a (possibly empty) conjunction of state
properties that have been proved earlier to hold across all

2A suitableD can be easily computed on the basis of the depen-
dency graph forG; see Section 5.

3Note that in games with finitely many features such an encoding
always exists: anyϕ can in principle be represented by an exhaus-
tive propositional formula, although in practice a compact encod-
ing is desirable (as in the example in the preceding section, where
1 {init(control(X)):cdom(X) }1 is used to encode the
fact that state property(∃!X) control(X) holds in the initial state).

legal game positions. Show that there is no answer set for
G ∪ D augmented by

{true(F):fdom(F)}.
h :- Φtrue.
:- ¬h.
h0 :- ϕtrue.
:- ¬h0.
1 {does(R,M):mdom(M) }1 :- role(R).
:- does(R,M), ¬legal(R,M).
t :- ϕnext.
:- t.

(2)

The correctness of this general proof method can be shown
with the help of the following three theorems.

Theorem 1 Let (R,S1, T, l, u, g) be a state transition sys-
tem with symbol baseΣ as in Definition 1. Letϕ be a state
property. If there is a finitely reachable state in2Σ which
does not satisfyϕ, then

1. S1 6|= ϕ, or

2. there is a finitely reachable stateS ∈ 2Σ and a mapping
A : (R 7→ Σ) such that

• S |= ϕ;
• (r,A(r), S) ∈ l for all r ∈ R; and
• u(A,S) 6|= ϕ.

Proof: Reachability means that successively, starting in
stateS1 , a joint move for the roles is chosen that is legal ac-
cording to l, and then the current state is updated according
to u. Given that a finitely reachable state exists that vio-
lates ϕ, the sequence leading to this state must contain a first
one with this property. This state is eitherS1 or has a prede-
cessor that satisfiesϕ, which implies the claim. �

Theorem 2 Consider a valid GDL specificationG whose
semantics is(R,S1, T, l, u, g). Let D be a negation-free
program defining the domains for the features and moves ac-
cording to G. For any state propertyϕ for which G ∪ D ∪
{(1)} does not admit an answer set, we have thatS1 |= ϕ.

Proof: We prove that if S1 6|= ϕ then G ∪ D ∪ {(1)}
admits an answer set. SinceG ∪ D is stratified, it ad-
mits a unique answer setM that coincides with its standard
model[Gelfond, 2008]. Hence, assumptionS1 6|= ϕ implies
that M 6|= ϕinit. This in turn implies thatM is also an
answer set forG ∪ D ∪ {(1)} (in which t0 is false). �

Theorem 3 Consider a valid GDL specificationG whose
semantics is(R,S1, T, l, u, g). Let D be a negation-free
program defining the domains for the features and moves ac-
cording to G. For any state propertiesΦ and ϕ for which
G ∪ D ∪ {(2)} does not admit an answer set, there does not
exist a stateS ∈ 2Σ and a mappingA : (R 7→ Σ) such that

1. S |= Φ and S |= ϕ;

2. (r,A(r), S) ∈ l for all r ∈ R; and

3. u(A,S) 6|= ϕ.

Proof: We prove thatG ∪D ∪ {(2)} admits an answer set
whenever there exists a stateS and a mappingA that sat-
isfy the given conditions 1–3. SinceG∪D ∪ Strue ∪Adoes

is stratified, it admits a unique answer setM . According to
conditions 1 and 2,M is also an answer set forG∪D aug-
mented by the first seven clauses in (2). Because condition 3
implies that M 6|= ϕnext, model M is also an answer set
for G ∪ D ∪ {(2)} (in which t is false). �

To summarize, if condition 1 in Theorem 1 is satisfied, then
G ∪ D ∪ {(1)} must admit an answer set, and if condition 2
in Theorem 1 is satisfied, thenG ∪ D ∪ {(2)} must admit
an answer set under the assumption that all reachable states
satisfy Φ. Hence, if neither is the case then the property in
question must hold across all finitely reachable states. This
completes the correctness proof.

5 An Automated Theorem Prover for GGP
The above method was implemented using Clingo[Potassco,
2008] as ASP solver in combination with the GGP system
described in[Schiffel and Thielscher, 2007]. The answer
set programs are automatically generated from the rules of
a game. The domains, or more precisely supersets thereof,
of all predicates and functions of a given game description
are computed by generating a dependency graph from the
clauses. The graph contains one node for every argument po-
sition of every function and predicate symbol, and one node
for every function symbol itself (including each constant). An
edge is added between an argument node and a function sym-
bol node if the latter appears in the respective argument of
a function or predicate in a rule of the game. An edge be-
tween two argument position nodes is added if there is a rule
in the game in which the same variable appears in both argu-
ments. Argument positions in each connected component of
the graph share a domain. The constants and function sym-
bols in the connected components are the domain elements.
Specifically, we take as the domain of the moves that of the
second argument of standard predicatelegal, and as the
domain of the features the union of the domains ofinit
and next.

mark,1 cell,1

1

2

3

legal,2

noop

mark/2

Figure 2: A dependency graph for calculating domains of
functions and predicates. (Ellipses denote argument posi-
tions of functions or predicates, and rectangles denote func-
tion symbols themselves, including constants.)

Figure 2 shows a small part of the dependency graph for
the game from Figure 1. The first argument ofmark and
the first argument ofcell are connected because they share
variable M in the game rulenext(cell(M,N,x)) :-
does(xplayer,mark(M,N)). The constants1, 2, 3 oc-
cur in the first argument ofcell in several of theinit rules.
Thus the first arguments ofmark and cell have the same
domain {1, 2, 3} . Similarly, the constantnoop and the bi-

nary function symbolmark occur in the second argument of
legal in several rules. Therefore, the moves of the game
consist of the constantnoop and every possible instance of
mark(X,Y), which in turn are determined by the domains for
the arguments ofmark.

After computing the domains, a general game player can
use ASP to prove any game property it may find useful. For
example, the player can conduct a systematic search for the
uniqueness of arguments of features in the following way.
Starting with Φ = ∅, for every combination of arguments of
each feature the system checks if these arguments are unique.
Whenever some property is proved it is added toΦ and
search is restarted with the properties that have not yet been
proved. This simple method can be improved significantly if
a propertyϕ that may depend on some other propertyϕ′ is
not tested until after testingϕ′. A property of the arguments
of a featuref may depend on a featuref ′ if f ′ occurs in
the body of a rule matchingnext(f) or in a legal rule
for a move that occurs in a rule matchingnext(f).

6 Experimental Results
We conducted experiments with our system using a wide
range of games from previous GGP competitions[Genesereth
et al., 2005], 12 of which are summarized in Figure 3. Five
different experiments were run on each game:
• proving that the argument of thecontrol(P) feature is

unique in every state (provided the feature exists);

• proving that the contents of a board cell is unique (to which
end boards were identified manually);

• proving that the contents of a board cell is unique given
the information that the argument ofcontrol(P) is;

• proving that the game is zero-sum;

• systematic search for unique arguments as described at the
end of the preceding section.

As can be seen from the results, proving some properties
(e.g., control and zero-sum) is very fast and successful for
most of the games while proving other properties (e.g., board)
is usually expensive and only possible in a few games. The
main influence on the time and space required is the number
and size of the rules of the answer set program. Since only
those game rules were included in the answer set program
which are potentially relevant for proving the respective prop-
erty, the size of the answer set program depends on the con-
nectedness between the features and moves of a game. For
example, the relevant rules for featurecontrol(P) typically
do not depend on other features and in most cases not even on
which moves are made. Therefore, the more complex rules
for next(F) with F 6= control(P) and legal(R,M)
can be omitted when proving uniqueness of control. The rules
for the board feature, on the other hand, are usually more
complex, so that in complex games answer sets cannot be
computed under suitable memory limitations.4

4Abstracting from certain features of the game may help in these
cases; e.g., for thepiececount feature in Checkers the actual lo-
cations of the moved pieces do not matter—it is only relevant how
many jumps were made.

control board board given control zero-sum all unique arguments
3pttc (yes,0.00) (no,0.24) (no,0.28) (no,0.00) 1.99
amazons (yes,0.00) (-,70.18) (-,70.08) (yes,0.38) 491.36
blocker n/a (yes,0.00) n/a (yes,0.00) 0.11
checkers (yes,0.02) (-,25.96) (-,25.94) (yes,1.14) 256.07
connectfour (yes,0.00) (no,0.01) (yes,0.01) (yes,0.01) 0.14
endgame (yes,0.02) (-,61.50) (-,61.37) (yes,0.12) 433.83
knightthrough (yes,0.00) (no,8.34) (yes,51.36) (yes,0.00) 56.02
othello (yes,0.12) (-,60.01) (-,61.13) (-,57.03) 422.0
pacman3p (yes,0.01) (no,0.33) (no,0.27) (no,0.09) 3.05
quarto n/a (no,2.36) n/a (yes,3.14) 16.52
tictactoe (yes,0.00) (no,0.00) (yes,0.00) (yes,0.00) 0.13
tttcc4 (yes,0.01) (-,64.00) (-,64.00) (no,0.01) 447.65

Figure 3: Results of proving properties and times in secondsit took for a selection of games. Experiments were run on an Intel
Core 2 Duo cpu with 3.16GHz. “-” means the prover was aborted (after the given time) because it used more than 1 GB RAM.
(We enforce this rather strict limit in our general game player in view of practical play, because proving properties is only one
of many aspects of analyzing a game description.)

Another reason some properties were not proved by our
system is that they can only be proved simultaneously with
other properties. Changing the algorithm to accommodate for
interdependent properties should be straightforward. How-
ever, in the worst case all combinations of properties would
have to be considered.

7 Conclusion
The ability to prove properties of hitherto unknown games
is a core ability of a successful general game playing sys-
tem. We have shown that Answer Set Programming provides
a theoretically grounded and practically feasible approach to
this challenge, which not only is more reliable but often even
faster than making informed guesses based on random sam-
ple matches. On the other hand, our experiments have also
shown that state-of-the-art ASP systems cannot always be
applied to prove properties of complex games in time rea-
sonable for practical play. A promising alternative approach
to tackle these games is given by the very recently devel-
oped method of first-order Answer Set Programming[Lee
and Meng, 2008], by which grounding is avoided. A ma-
jor challenge for future work is to develop implementation
techniques for first-order ASP systems and apply it to GGP.

References
[Apt et al., 1987] K. Apt, H. Blair, and A. Walker. Towards a

theory of declarative knowledge. In J. Minker, ed.,Found.
of Deductive Databases and Log. Prog., 89–148, 1987.

[Clune, 2007] J. Clune. Heuristic evaluation functions for
general game playing. InProc. of AAAI, 1134–1139, 2007.

[Finnsson and Björnsson, 2008] H. Finnsson and Y. Björns-
son. Simulation-based approach to general game playing.
In Proc. of AAAI, 259–264, 2008.

[Gelfond, 2008] M. Gelfond. Answer sets. InHandbook of
Knowledge Representation, 285–316. Elsevier, 2008.

[Geneserethet al., 2005] M. Genesereth, N. Love, and B.
Pell. General game playing: Overview of the AAAI com-
petition. AI Magazine, 26(2):62–72, 2005.

[Kuhlmannet al., 2006] G. Kuhlmann, K. Dresner, and P.
Stone. Automatic heuristic construction in a complete gen-
eral game player. InProc. of AAAI, 1457–1462, 2006.

[Lee and Meng, 2008] J. Lee and Y. Meng. On loop formu-
las with variables. In G. Brewka, P. Doherty, and J. Lang,
editors,Proc. of the Int.’l Conf. on Principles of Knowl-
edge Representation and Reasoning, 444–453, 2008.

[Lloyd and Topor, 1986] J. Lloyd and R. Topor. A basis for
deductive database systems II.J. of Logic Programming,
3(1):55–67, 1986.

[Lloyd, 1987] J. Lloyd. Foundations of Logic Programming.
Springer, 2nd edition, 1987.

[Loveet al., 2006] N. Love, T. Hinrichs, D. Haley, E.
Schkufza, and M. Genesereth. General Game Playing:
Game Description Language Specification. Technical Re-
port LG–2006–01, Stanford University, 2006. Available
at: games.stanford.edu.

[Niemel̈aet al., 1999] I. Niemel̈a, P. Simons, and T. Soini-
nen. Stable model semantics of weight constraint rules. In
Proc. of the Int.’l Conf. on Log. Prog. and Nonmonotonic
Reasoning, vol. 1730 ofLNCS, 317–331, 1999. Springer.

[Pell, 1993] B. Pell. Strategy Generation and Evaluation for
Meta-Game Playing. PhD thesis, Trinity College, Univer-
sity of Cambridge, 1993.

[Potassco, 2008] Potsdam Answer Set Solving Collection,
2008.http://potassco.sourceforge.net/.

[Schiffel and Thielscher, 2007] S. Schiffel and M. Thiel-
scher. Fluxplayer: A successful general game player. In
Proc. of AAAI, 1191–1196, 2007.

[Schiffel and Thielscher, 2009] S. Schiffel and M. Thiel-
scher. A multiagent semantics for the game description
language. InProc. of the Int.’l Conf. on Agents and Artifi-
cial Intelligence, Porto 2009. Springer LNCS.

[van der Hoeket al., 2007] W. van der Hoek, J. Ruan, and
M. Wooldridge. Strategy logics and the game description
language. InProc. of the Workshop on Logic, Rationality
and Interaction, Bejing 2007.

