In: P. Van Hentenryck, ed., Proc. of the Int. Conf. on Log. Prog., 207-224, Santa Margherita Ligure, Italy, 1994.

Representing Actions in Equational
Logic Programming

Michael Thielscher

Intellektik, Informatik, TH Darmstadt
Alexanderstrafie 10, D-64283 Darmstadt, Germany
E-mail: miteintellektik.informatik.th-darmstadt.de

Abstract

A sound and complete approach for encoding the action description language
A developed by M. Gelfond and V. Lifschitz in an equational logic program
is given. Our results allow the comparison of the resource-oriented equational
logic based approach and various other methods designed for reasoning about
actions, most of them based on variants of the situation calculus, which were
also related to the action description language recently.

A non-trivial extension of A is proposed which allows to handle uncer-
tainty in form of non-deterministic action descriptions, i.e. where actions
may have alternative randomized effects. It is described how the equational
logic programming approach forms a sound and complete encoding of this
extended action description language Ayp as well.

1 Introduction

Understanding and modelling the ability of humans to reason about actions,
change, and causality is one of the key issues in Artificial Intelligence and
Cognitive Science. Since logic appears to play a fundamental réle for intel-
ligent behavior, many deductive methods for reasoning about change were
developed and thoroughly investigated. It became apparent that a straight-
forward use of classical logic lacks the essential property that facts describing
a world state may change in the course of time. To overcome this problem,
the truth value of a particular fact has to be associated with a particular
state. This solution brings along the famous technical frame problem which
captures the difficulty of expressing that the truth values of facts not affected
by some action are not changed by the execution of this action.

Many deductive methods for reasoning about change are based on the
ideas underlying the situation calculus. These approaches require one or
more axioms accounting for the frame problem, e.g. a set of frame axioms
as in [26, 11, 20], successor state axioms as in [27], a nonmonotonic law of
inertia as in [25] and [10], or persistence assumptions as in [21]. Recently,
three resource-oriented deductive methods were proposed which do not re-
quire additional frame axioms, namely the linear connection method [3], the
use of a certain fragment of linear logic [24], and an approach based on
equational logic programs [15]. The three approaches treat logic formulas
as resources which can be produced and consumed through the execution

of actions [14]. It has been proved that they are equivalent for conjunctive
planning problems, i.e. problems where situations as well as conditions and
effects of actions are conjunctions of atomic facts [12, 29].

In spite of the equivalence result for the resource-oriented approaches,
the expressiveness of the equational logic approach, say, appears not to be
satisfactorily clarified as there is a much deeper rift between this approach
and methods based on the situation calculus. Recently, M. Gelfond and
V. Lifschitz initiated a comparison of a variety of deductive frameworks
for reasoning about change wrt a semantical approach based on the action
description language A [10]. This language overcomes some restrictions of
former work in so far as it supports reasoning about the past as well as
handling partial information about situations. Furthermore, [10] presents a
sound encoding of A in terms of extended logic programs with two kinds of
negation. In [8], a logic program including a single law of inertia is used to
encode A. It is shown that, by using a partial completion semantics, the
program is sound and complete wrt the semantics of A. Independently, a
similar sound and complete abductive logic program is constructed in [7].
[19] showed soundness and completeness as regards A for, among others, a
circumscription based method [2] and R. Reiter’s formalism [27].

Recently, the expressiveness of the resource-oriented equational logic ap-
proach was substantially enhanced by introducing the concept of specificity
which allows to handle several descriptions of one and the same action, de-
pending on the particular situation in which this action is performed [16, 17].
In this paper, we show how this extended approach can be used as a sound
and complete method for encoding A . This result bridges the gap between
the resource-oriented approaches and all the methods enumerated in the pre-
vious paragraph as it rigorously shows the equivalence with regard to the
problem class determined by A .

A broad spectrum of characteristic examples for reasoning about change
is presented in [28]. Many of them are covered by A. However, some more
complicated domains require indeterminism in form of randomized effects of
actions. As a second major contribution of this paper, we extend the action
description language A such that this kind of reasoning can be performed.
We illustrate how the equational logic approach can be used to encode it as
well. The extended action description language Ayp can be considered as
a basis for investigating if and how the various methods which were already
related to A can cope with problems of indeterminism and uncertainty.

A recapitulation of the equational logic programming based approach
augmented by the notion of specificity is given in the following Section 2.
The action description language A is briefly described in Section 3, and
a formalization in terms of equational logic programming is presented in
Section 4. The proofs of the various results are omitted due to lack of
space. They can be found in a detailed technical report [31]. In Section 5
we extend the action description language to express uncertainty regarding
the effects of actions, and in Section 6 we briefly illustrate how this extended

version Ayp can be modelled using the particular equational logic program
developed in Section 2. Finally, in Section 7 we shall discuss some merits of
our approach and outline conceivable future extensions as regards A .

2 The Equational Logic Programming Approach

Throughout this paper we illustrate the various basic notions and results
with the help of the Yale Shooting scenario [13] and some of its variants
such as the Stanford Murder Mystery [1] or the Russian Turkey domain
[28].

The most significant feature of the equational logic based approach is that
a complete situation is represented by a single term using a binary function
symbol o which connects the various atomic facts, called resources, which
hold in this situation. For example, the term !

loaded o dead . (1)

describes a situation where the gun is loaded and the turkey is already shot
dead. Intuitively, the order of the various subterms describing a situation
should be irrelevant. To this end, the function o is required to be associative,
ie. Xo(YoZ)=(XoY)oZ, commutative,i.e. XoY =Y oX | and to have
a unit element () which denotes the situation where nothing is known, i.e.
X o) = X . These three axioms (AC1) essentially define the data structure
multiset, i.e. the so-called AC1-term (1) can be adequately interpreted as the
multiset S = {/loaded, dead|} .? Based on this concept, actions are defined
by a multiset of conditions along with a multiset of effects. For instance, the
shoot action can be specified by the triple

({lloadedl} , shoot , {Junloaded|}) (2)

where {|loaded[} denotes the multiset of conditions, shoot is the name of
the action, and {|unloaded|} denotes the multiset of effects. Such a descrip-
tion o = (C,a,&) of an action a is applicable in a situation S iff C cS.
If an action description is applicable then it is executed by removing the
conditions from the actual situation and adding the effects afterwards, i.e.
applying the action description « to a situation S yields the new situa-
tion (S§—C)UE .3 In our example, (2) is applicable in the situation rep-
resented by (1) since {|/loaded|} C {/loaded, dead]} . The resulting situation
is ({|loaded, dead|} — {|loaded|}) U {lunloaded|} = {unloaded, dead} . No
additional axioms for solving the technical frame problem are needed since
each resource which is not affected by an action — here the resource dead
— is available after having applied the two multiset operations.

In [16] it is argued that there is often more than simply a single specifica-
tion such as (2) of one action because the effects of a particular action may
vary from situation to situation. For example, (2) is formally applicable also
in case of {|loaded, alivel} . Tts application yields {|unloaded, alive[} which is
undesired since shooting with a previously loaded gun should cause alive to

be replaced by dead . (It possibly could be that turkeys do not fully agree
with this view.) The notion of specificity accounts for this problem. First,
another action description for shoot is introduced, viz.

({lloaded, alivel} , shoot , {funloaded, deadl}). (3)

Now, (3) is applicable whenever the original action description (2) is ap-
plicable but not vice versa. Hence, (3) is said to contain a more specific
information and, thus, should be preferred whenever it can be used in a par-
ticular situation. To this end, we formally define a partial ordering on a set
of action descriptions with regard to specificity as follows. An action descrip-
tion ay = (Cy,ay,&;) is said to be more specific than an action description
ay = (Cy,a,&) iff a3 = ay and C; DCy. Taking into consideration this
definition, an action description should be applied only if there is no more
specific description which is also applicable. If an action description can be
applied to a situation S on this condition then we say that it is most specific
wrt §. Note that this requirement does not rule out the existence of more
than one most specific action description. In Section 6 we illustrate how
multiple most specific descriptions capture the problem of indeterminism.

A second useful application of specificity is to avoid inconsistencies via
the so-called completion mechanism. For instance, one of the action descrip-
tions of load should be

({1}, load , {|loaded]}). (4)

This works fine in situations like {lalivel} or {dead|}, i.e. if nothing is
known about the state of the gun. However, the application of (4) to
{lunloadedl} , say, yields the unintended situation {junloaded, loaded|} . This
can be avoided by completing (4) to obtain the additional action descrip-
tion ({Junloadedl}, load, {|loaded[}) which is more specific than (4). The Yale
Shooting scenario is discussed more thoroughly in Section 4.

The reasoning process described so far can be encoded using the equa-
tional logic program depicted in Figure 1 (see [16, 17]): The various action
descriptions of a domain are encoded using a ternary predicate action . The
ternary predicate causes (i, |ay,...,a,],g) expresses the fact that the appli-
cation of the sequence [ay,...,a,] of actions to the initial situation i yields
the goal situation g. If n > 1 then an action description a of a; with con-
ditions c is selected such that c is contained in ¢ —i.e. IV.coV =11 —,
« is most specific wrt ¢, and the recursive call uses the resulting situation
after applying a to i, along with the sequence p = [as,...,a,]. Finally,
the notion of specificity is encoded using the predicate non_specific(a,c,1)
which expresses the fact that there is a description of action @ which is
more specific wrt the situation ¢ than the particular description with con-
ditions c¢. Following the definition of specificity, such a more specific action
description must have conditions ¢’ such that ¢’ is applicable in i and the
multiset corresponding to ¢’ is a strict superset of the multiset correspond-
ing to ¢. In terms of ACl-representation this is true iff AV. ¢/ oV =7c11
and HW# ACl(D- coW = AC1 CI hold.

action (c1,a1,eq).
action (cy;“ Ay €m)-

causes (I,[],1).
causes (I,[A|P],G) < action(C,A,E), CoV =pc1 1,
—non_specific(A,C,I), causes(V o E,P,G).

non_specific(A,C,I) «— action(C' A, E"), C' oV =pc1 1,
CoW =xc1 C', W #ac1 0.

Figure 1: The equational logic program P, used to reason about change,
where A = {(C;,a;,&)|1 < i < m} is a finite set of action descriptions
and ¢; (resp. e;) are ACl-terms representing C; (resp. &). The binary
predicate =ac; denotes equality modulo our equational theory (AC1).

Our equational program includes negative literals. Therefore, the ad-
equate computation mechanism is SLDENF-resolution, i.e. SLD-resolution
augmented by negation-as-failure along with an extended unification proce-
dure which unifies wrt a concrete equational theory [30, 17, 32]. Moreover, we
sometimes employ constructive negation [5] to avoid the problem of flounder-
ing. Semantics is defined by K. Clark’s completion [6] along with a so-called
unification complete theory AC1* which allows to derive inequality of two
terms whenever they are not unifiable [18, 30, 17]. Let (P}, AC1*) denote
the completion of our program depicted in Figure 1.

In [17] it is argued that we can restrict ourselves to models of (P}, AC1*)
where terms which are built up from the AC1-function o are interpreted as
multisets. Let Z denote such an interpretation. In [17] it is shown that
(P}, AC1*) models actions, change, and specificity as intended:

Theorem 2.1 Let A be a finite set of action descriptions and P4 be as
in Figure 1. Then, (P3,AC1") = causes(i,[ai,...,a,],9) iff there are
multisets So,...,S, such that Sp=i*, S, =g*, and S;=(S;_1 —C;)UE;,
where (C;,a;,E;) € A is most specific wrt S;—1 (1<j<n).

3 The Action Description Language A

In this section we give a brief introduction to the ideas underlying the se-
mantical approach described in [10] which is based on an action description
language called A. We use the Stanford Murder Mystery domain [1] to
illustrate the expressiveness of A regarding reasoning about the past and
handling incomplete information about the initial situation. This example
describes the reasoning process which has to be performed to conclude that

the gun must have been loaded if the turkey was alive at the beginning and
is observed to be dead after shooting and waiting.

The basic elements of A are action names, e.g. load , wait, and shoot ,
and fluent names, e.g. loaded and alive , along with expressions like

load causes loaded
shoot causes —alive if loaded (5)
shoot causes —loaded

These expressions describe the effect of a particular action, e.g. shoot, on
a single fluent, e.g. alive, provided a number of conditions, e.g. loaded ,
hold. In general, these so-called e-propositions (i.e. effect propositions) are
of the form a causes e if ¢;,...,c,, where a is an action name, e is
a fluent name occurring either affirmatively or negatively, and cy,...,c,
are affirmative or negated fluent names (n > 0). The set of e-propositions
describing a domain is used to define a transition function which maps states
into states given a particular action name. A state o is a set of fluent names,
and a positive fluent f (resp. a negative fluent —f) is said to hold in o iff
f€o (resp. f ¢& o). For instance, {alive} describes the state where alive
and —loaded hold, and the transition function ® determined by (5) is

®(load,0) = o U {loaded}
®(shoot,0) = { o — {loaded, alive}, if loaded € o

o, otherwise.
&(wait,o0) = o

(6)

In general, ® is designed such that (a) if there is an e-proposition describing
the effects of a on a positive fluent f (resp. a negative fluent —f) whose
conditions hold in ¢ then f € ®(a,0) (resp. f & ®(a,0)) and (b) if there
is no such e-proposition then f € ®(a,0) iff f € o. It is noteworthy that
given a set of e-propositions either the corresponding transition function is
definitely determined or there is no transition function satisfying (a) and
(b). The reader is invited to verify that the transition function (6) satisfies
these conditions as regards the e-propositions (5).

Apart from defining the effects of actions there is a possibility to describe
the value of a single fluent in a particular state using so-called v-propositions
(i.e. value propositions). For example,

initially alive
—alive after [shoot,wait]

(7)

describe the facts that the turkey is alive in the initial state and is dead
after executing the sequence of actions [shoot,wait], respectively, which
precisely corresponds to the Stanford Murder Mystery scenario. In general, a
v-proposition is of the form f after [ay,...,a,] where a4,...,a, are action
names, and if n =0 then the expression initially f is used instead.

A set of e-propositions and v-propositions is called a domain. A struc-
ture consists of an initial state oy and a transition function ® . A structure

(00, ®) is a model of a domain D iff ® is determined by the e-propositions
in D, and ® together with o, satisfy the v-propositions occurring in
D: A v-proposition initially f is satisfied in (oo, ®) iff f holds in
0o, and a v-proposition f after [a;,...,a,]| is satisfied iff f holds in
®([ay,...,a,],00), which abbreviates ®(a,,®(a,_1,...,P(a1,00)...)). A
domain is called consistent if it admits at least one model.

In our example, ® is defined as in (6) and — due to (7) — (oo, @)
is a model of the Stanford Murder Mystery iff alive € o, and alive &
®([shoot, wait],oq) . It is easy to verify that loaded € oy holds in each
such model due to (6), i.e. we are allowed to conclude that the gun was
necessarily loaded in the initial state. In other words, the v-proposition
initially loaded is said to be entailed by the domain description D given
by (5) and (7); this is written D |= initially loaded .

4 Encoding A

The first step towards the formalization of a particular domain via the equa-
tional logic approach consists in the definition of an underlying set of re-
sources. As the equational logic approach does not support explicit negation,
we need two different resources for each fluent name of a domain description
in A. Thus, in case of the Yale Shooting scenario we deal with the set
{loaded, loaded, alive, alive} , where the independent resource f should be
interpreted as the negation of resource f, i.e. loaded and alive take the
role of unloaded and dead , respectively, used in Section 2. A situation S
built up from these resources is said to correspond to a state o (and vice
versa) iff for each fluent name f we find that if f € o then f &€ S and if
f&o then f€S. Forinstance, {alive, loaded|} corresponds to {alive} .
The second step in formalizing a domain consists in fixing consistency
criteria. In view of the fact that states in A are sets, no resource should
occur more than once in a situation. Moreover, no resource together with its
negation may occur, and each fluent name occurs either affirmatively or nega-
tively in a situation. * This is formalized by the clauses depicted in Figure 2.
The third and final step consists in creating a set of action descriptions.
Given a set of action names along with a set of e-propositions the following
Algorithm 1 automatically generates such a set. For notational simplicity,
it is assumed that the e-propositions are given in terms of our method,
i.e. whenever a negated fluent name —f occurs then it is replaced by the

term f.

Algorithm 1 For each action name a let
a causes e; if I}
a causes :em if F,,

be the set of all e-propositions wrt action name a, where each F; is a
sequence of resources fi,..., fin, (1 <i < m). Note that this set may be

inconsistent (f

(o o).
inconsistent (f; V).
inconsistent (f; o fio V).
(

inconsistent (S) « —holds(fi,S), —holds(fi,S).

holds (F,F o V).

Figure 2: The clauses defining inconsistency, where F'={f;|1 <i<m} is
a finite set of fluent names and the first four clauses are generated separately
for each member of F'.

empty, e.g. in case of a being wait. In what follows, a multiset is called
consistent iff it contains no multiple occurrences of an element and no f

along with its negation f.

1. For all (possibly empty) consistent combinations

where {i,...,j} is a subset of {1,...,m}, let £ contain the effects de-
termined by the conditions C, along with those conditions which are not
affected by the action, i.e.”®

{les|Feccly u {reciFe el Foceh]

where f should be interpreted as f. Then, create the action description
(C,a,€&). All action descriptions generated in this step are called pure.

For instance, as regards the shoot action there are two possible combi-
nations of conditions, viz. C; = {/[} and Cy = {|loaded|} determining the
effects & = {loaded[} and &, = {lalive, loaded|} , respectively (c.f. (5)).

2. Apply the following completion procedure (c.f. the paragraph below equa-
tion (4) in Section 2) to each pure action description « = (C,a,&) of a:
Let F be the set of “free” effects, i.e. those elements of £ which neither
occur affirmatively nor negatively in C, along with their negations, i.e.

F={elecéENedCnegClU{e|lecENegCNEZC]

Then, for each consistent non-empty subset F' C F create the completion
(CUF,a,&) of a=(C,a,E) — provided there is no pure action description
generated in Step 1 of the same action and with conditions C such that
CUF DC > C (this will be clarified below).

For example, for the pure description ({/loaded|}, shoot, { alive, loaded|})
we have F = {lalive, alive]} which has two consistent non-empty subsets.
Hence, we obtain the completions ({|loaded, alive|}, shoot, {|alive, loaded|})
and ({loaded, alivel}, shoot, { alive, loaded[}) , respectively. [

Given a domain description D we refer to the set of action descriptions
generated via Algorithm 1 by Ap . For instance, applying this algorithm to
the Yale Shooting domain which consists of the action names load , shoot ,
and wait along with the e-propositions (5) yields four pure action descrip-
tions, viz.

{ s wait, { [}) { [}, shoot, {|loaded]})

- 9
{ I}, load , {|loaded|}) ({|loaded|}, shoot , { alive, loaded|}) ®)

Step 2 then yields the following completions:

({|loaded|},load , {|loadedl}) ({|loaded|}, shoot , {|loaded]})
{{lloaded]},load , {|loaded|}) ({|loaded, alivel}, shoot , {alive, loaded[}) (10)
({|loaded, alivel}, shoot , { alive, loaded]})

The restriction at the end of Step 2 prevents us from using the pure action
description ({ [}, shoot, {|loaded[}) to create ({|loaded|}, shoot, {loaded]}) be-
cause a pure description of shoot with conditions C = {loaded[} is already
included in (9). This is in fact desired since after shooting we definitely know
that the turkey is dead whenever the gun was loaded before.

Some observations concerning the output of Algorithm 1 are necessary
to obtain our first main result: The set Ap does not contain two action
descriptions for one and the same action with the same multiset of conditions
and different effects. The most important consequence of this observation
is that given a situation and an action name there is always a single most
specific description of this action wrt this particular situation. (Note that
there is always at least one applicable action description since C in (8)
can be empty.) Furthermore, the application of this most specific action
description to a consistent situation again yields a consistent situation with
regard to the consistency criterion defined in Figure 2, provided the original
domain D is not inconsistent itself. Now, the following equivalence result
for the transition function of a domain description and our approach can be
proved. For a more thorough discussion we must refer the reader to [31].

Proposition 4.1 Let D be a consistent domain description with transi-
tion function ®, o be a state, a an action name, and S, the situation
corresponding to o . Then, (S, —C) U E corresponds to ®(a,o), where
a={(C,a,€) € Ap is the most specific action description of a wrt S, .

Beside translating the e-propositions into a set of action descriptions we
have to consider the v-propositions which describe a particular scenario. To
this end, we use a unary predicate observations with the intended mean-
ing that observations(i) is true if i represents a consistent situation such
that each v-proposition is satisfied wrt . Furthermore, the binary predi-
cate satisfiable(f,[ai,...,a,]) is used to express the fact that the additional
v-proposition f after [aq,...,a,| holds in some model of the domain. The
clauses defining these two predicates are depicted in Figure 3.

observations(I) «— —inconsistent (I),

causes (I, [a11, ..., a1pn,], f1 o V1),

causes (I, [ami, -, mn,,]s fm © Vin).

satisfiable(F, P) «— observations(I),
causes (I, P,F o V).

Figure 3: The given v-propositions {f; after a;i,...,a,, |1 <i < m} are
collected in a single clause defining the unary predicate observations which
is used in the definition of the predicate satisfiable .

For example, the two value propositions (7) are encoded via

observations(I) «— —inconsistent(I), causes(I,[], alive o Vy),
causes (I, [shoot, wait], alive o V3).

If D is a domain description then let Pp consist of the clauses depicted
in Figure 1, Figure 2, and Figure 3. Then, (Pp, AC1) can be shown to form
a sound and complete encoding of A wrt the completion semantics:

Theorem 4.2 (Soundness & Completeness) If D is a consistent do-
main description then D |= f after [ay,...,a,] iff

(Ps,ACY"Y) | —satisfiable(f,[ay,. .. a,]) . (11)

Proof (sketch): Let @ be the transition function determined by D.
If 7 is a term representing a situation Z then, according to Theorem 2.1,
Proposition 4.1, and Figure 3, (P, AC1*) = observations(i) if and only
if there is a state oy corresponding to Z such that (oy,®) is a model of
D. Hence, (11) is true iff there is no model of D such that f holds in
®([ay,...,a,],00),1.e iff D = f after [ay,...,a,]. [

For the complete proof the reader is referred to [31].

The part of the consistency criterion in Figure 2 where a situation is
required to be complete in the sense that it must contain either the positive
or the negative version of each fluent seems not particularly satisfactory.
Fortunately, this condition can be omitted in many applications, e.g. in all
of the various examples in [10]. However, the requirement is necessary to
obtain completeness in examples like

a causes f; if h b causes g¢g if f;
a causes fy 1if —h b causes g if f5

These e-propositions entail g after [a,b] which cannot be obtained in our
approach until each initial situation is forced to either contain h or h.

It is noteworthy that when using schema (11) to decide the entailment
of a v-proposition, this proposition is encoded within the query. Thus, one
might object that v-propositions have to be guessed before proving their en-
tailment. However, this is not necessary in general since the various answers
to the query 31. observations(I) provide the set of possible initial situations.

5 A 4+ Non-Determinism = Apnp

A basic assumption underlying A is that the effects of an action are al-
ways completely known and deterministic. Surely, one cannot adhere to
this idealistic view of the real world in general since it is impractical, and
even impossible due to a theoretical result of physics, to refine descriptions
of the world until the effects of an arbitrary action can always be explic-
itly computed. The ability of humans to handle uncertainty, indeterminism,
surprising effects etc. very flexibly contrasts sharply with the necessity of
completely determining the effects of actions.

In this section we extend the action description language A such that
effect propositions can express indeterminism. This approach is, of course,
again idealistic as it is assumed that all possible alternatives are known and
can be enumerated, and that stating priorities in form of, say, probabilistic
values for the individual alternatives is not supported. Rather the extended
action description language Apyp should be regarded as a first step in the
large and open area of uncertainty, indeterminism, and disjunctive planning.

As the running example of this section we use the Russian Turkey sce-
nario as formalized in [28]. The set of actions is augmented by the action
spin with the intended meaning that spinning causes the gun to become
randomly loaded or unloaded regardless of its state before. This action can
be formalized in Ayp using the two expressions

spin alternatively causes loaded

‘ 12
spin alternatively causes —loaded (12)

In general, a alternatively causes ej,...,€, if ¢1,...,c, is called an
extended effect proposition in Ayxp . The intended meaning is as follows: Let

a alternatively causes F; if () 13
a alternatively causes FE, if C, (13)
be the set of all extended e-propositions such that C1,...,C} simultaneously
hold in a particular state o . If a is executed in ¢ then exactly one of the
various sets of effects Fi, ..., E, will become true in the resulting state.
Recall that a set of e-propositions in the language A determines a tran-
sition function ®. Now, the possibility of alternative effects forces a rede-
finition of the notion of transition. At first glance one might suggest for
allowing the existence of several different transition functions, each of them
modelling one of the various alternative effects of an action. Consider the
e-propositions (5) of Section 3 and (12) for the Russian Turkey scenario. &

could be designed as in (6) augmented by either ®(spin,o) = o U {loaded}
or ®(spin,o) = o0 —{loaded} for each o separately. However, this idea does
not correctly capture the intuition: If & is such a transition function in a
particular model then the result of spinning the gun, say, will be fixed forever
regarding a particular state, e.g. it would be impossible to find a model where
initially —loaded , —loaded after [spin|, and loaded after [spin, spin]
are simultaneously true. This is of course unintended.

For this reason, we propose to drop the idea of ® being a function and
use the notion of ® as a relation between a pair of states and an action
name instead, such that two states 0,0’ and action name a are related
whenever the application of a to ¢ might yield ¢’. For instance, for the
Russian Turkey scenario we obtain the following transition relation @ :

(o, spin,o’) € ® iff o' =oU{loaded} or o = o — {loaded}

(0,load,0’) € ® iff o' =oU{loaded}

(0.shoot. o) € & iff o' — o — {loaded, alive}, if loaded € o (14)
o, otherwise.

(o,wait,c’) € ® iff o' =0

In general, @ is designed such that a triple (o, a,0’) is element of @ if and
only if the following conditions are satisfied:

(a) If a causes f if ¢1,...,¢, (resp. a causes —f if ¢i,...,¢,) is an
effect proposition such that ¢;,...,¢, hold in o then f (resp. —f)
holds in o’.

(b) Let (13) be the set of all extended e-propositions such that each element
occurring in Cy,...,C} holds in o. If k > 0 then it is possible to
select a A € {1,...,k} such that the members of E, hold in o.

(c) Let f be a fluent name such that neither f nor —f is forced to hold
in ¢’ by (a) or (b) then feo’ iff feo.

The reader is invited to verify that the transition relation (14) satisfies these
conditions wrt the e-propositions (5) and (12).

Having defined the notion of transition, we now concentrate on defining
models in Apxp . The issue of models is, in general, to provide a view of the
real world. Usually, there exist several models which all satisfy some fun-
damental properties, observations, and maybe subjective impressions, but
which differ in unknown or uninteresting things. All these models describe
possible worlds although reality is captured by only one of them. In A,
where no indeterministic and randomized effects are allowed, the only task
left to nature is to design the initial state. Now, however, the role of nature is
much more appreciable because it has to decide which effects occur whenever
alternatives are allowed. To this end, we employ an additional component
for each model, namely a function ¢ which states the behavior of nature in
this model in case of alternative effects. For instance, if the initial state is

{alive, loaded} — {}
{alive} —— {alive, loaded}
{alive} ——— {alive}

load spin shoot

Figure 4: The possible developments in the Russian Turkey scenario.

known to be {alive} and we are interested in the consequences of execut-
ing the sequence of actions [load, spin, shoot] then the set of models of this
domain can be divided into two classes: either the gun remains loaded after
spinning, or it becomes unloaded. Hence, if we additionally observe that the
turkey is as lively as before after loading, spinning, and shooting then no
model of the former class can explain this. Thus it is reasonable to conclude
that the gun was necessarily unloaded after [load, spin]. This is illustrated
in Figure 4.

In the sequel we extend the formal definitions concerning A to Ayp. A
structure is a triple (og, ®,) where oy denotes the initial state as before, ®
is a transition relation, and ¢ is a mapping from pairs consisting of a finite
sequence of actions and a state into the set of states. A structure (g, ®, @)
is a model of a domain Dyp iff ® is determined by the e-propositions in
Dnp, satisfies the two conditions

1. ¢([],00) = 0o and
2. (¢([ary ... an-1],00),an, p([a1,...,a,],00)) € @,

and ¢ together with oy satisfy the v-propositions of Dyp: A v-proposition
initially f issatisfied in (09, ®,¢) iff f holdsin oy, and a v-proposition
f after [a1,...,a,] is satisfied iff f holds in ¢([ai,...,a,],00). A do-
main description in App is consistent if it admits at least one model
(00,0, ®) such that for any o and any a there is at least one o’ such
that (o,a,0’) € ®. For instance, a structure (o, ®,p) is a model of (5)
and (12) along with the two v-propositions

initially alive

alive after [load, spin, shoot] (15)

iff ® is asin (14), ¢ is appropriately defined, and alive € oy as well as
alive € ¢([load, spin, shoot],0q) . Obviously, —loaded € ¢([load, spin],oq)
holds in each such model, i.e. Dyp | —loaded after [load, spin| (see again
Figure 4).

At the very end of [7], the authors suggest a similar way of handling inde-
terminism using propositions of the form « possibly causes f if ¢q,...,¢,
but without giving a formal description of transition and entailment. A
detailed examination and a comparison to our approach remains to be done.

6 Encoding Anp

In this section, we briefly illustrate how the equational logic program de-
scribed in Section 2 can just as well be used to encode domain descriptions
in the extended language Apnp. Recall that the set of action descriptions
generated by Algorithm 1 is designed such that for each action and each
situation there is exactly one most specific description. Now, the existence
of several most specific action descriptions addresses the existence of alter-
natives. In our example, we generate the pure descriptions

(A, spin, {lloaded]}) and ({[}, spin, {[loaded]}) (16)

according to (12). In general, Algorithm 1 can be straightforwardly modified
such that each possible alternative for a fixed set of conditions determines
a unique pure action description. The completion step simply remains as it
stands.

Nonetheless, the kind of reasoning illustrated with the Russian Turkey
domain cannot be modelled yet. If the query —satisfiable(loaded, [load, spin])
is used to prove entailment of —loaded after [load, spin| in the spirit of The-
orem 4.2 then a negative answer is obtained. The reason for this undesired
result is that we are free to choose the effect of spinning independently such
that both alive after [load, spin, shoot] as well as loaded after [load, spin]
can be satisfied by applying different most specific action description of spin .

The crucial point is that we have to take into account the reaction of
nature, which is implicitly determined by the observations (15). Our solution
to this problem is as follows: Instead of using simply the action name such
as spin, we add an argument to denote a particular effect of this action
such as in spin(1). The additional argument is intended to take the role of
the index A\ used in the definition of transition in Ayp (see the paragraph
below equation (14)). All actions are extended in this way.

In our running example, the following list includes all such action descrip-
tions of spin , i.e. the two descriptions (16) — augmented by the additional
argument — along with their completions:

{1l spin(1) , {{loaded]}) {1 spin(2) , {loaded]})
({{loaded|}, spin(1) ,{loaded|}) {{lloaded|}, spin(2) ,{loaded[}) (17)

({{loaded]}, spin(1) ,{loaded|}) ({{loaded]}, spin(2) ,{loaded|})

The other action descriptions (9) and (10) are extended in a similar way.
The two predicates observations and satisfiable make use of these ad-
ditional arguments. In our example (15) they are defined as follows:

observations(I, X1, Xo, X3) <« —inconsistent (I), causes(I,[], alive o V1),
causes (I, [load (X), spin(Xs), shoot(X3)], alive o V5).

satisfiable(F, P, X1, Xo, X3) < observations(I, X1, Xo, X3),
causes (I, P,FoV).

Now, let Pp,, consist of the clauses depicted in Figure 1 — where the
set of action descriptions is given as described above — and Figure 2 along
with the clauses above. Then it is easy to prove that

-3X,, Xo, X3. satisfiable(loaded, [load(X), spin(Xs)], X1, X2, X3)

is a logical consequence of (PBND,ACP‘) . A more detailed analysis and a

formal proof of a result similar to Theorem 4.2 can be found in [31].

7 Discussion

The soundness and completeness of the equational logic approach with re-
spect to the action description language developed by M. Gelfond and V. Lif-
schitz constitutes the main result of this paper. This achievement illustrates
that our approach is not only suitable for temporal projection but can also
be used to reason about former situations, to find explanations for observa-
tions, and to deal with incomplete knowledge about situations. In particular
the way incompletely specified situations are modelled appears to be very
elegant: We merely have to add a variable to an ACl-term describing a
situation. Nonetheless, an important aspect of incomplete information has
not been discussed yet. Suppose nothing is known about the state of the
gun then our program answers no when asked whether the v-proposition
—alive after [shoot] is entailed. This appears to be too optimistic but can
be easily improved. Recall that our program entails a v-proposition only if
the contrary cannot be consistently assumed. Instead of answering no if this
is not the case the answer could be maybe whenever both the v-proposition
itself and the contrary are satisfiable wrt the domain description.

Probably the most important application of approaches to reasoning
about actions is the field of planning. Our equational logic program can
be directly used to search for plans: Omne simply employs an appropriate
instance of the predicate causes with the middle argument left uninstanti-
ated, i.e. an answer to the query 3P.causes (i, P,g) provides a plan whose
application to i yields g (see [15]). In addition, as our approach can han-
dle partial information about the initial situation, say, it is able to deal with
questions such as what do I need to achieve a certain goal? Furthermore,
values can be assigned to the various available resources so that the system
is required to find an initial situation which is as cheap as possible (wrt the
cost of the chosen resources). All these features are available in a quite com-
pact logic program where no additional frame axioms increase the search
space or make derivations more difficult in general.

The way planning is performed in our approach suggests an extension
of A which provides a new kind of reasoning about the past. Hitherto,
A supports reasoning about facts in former situations. But suppose we
observe a lively turkey which suddenly drops dead, then it seems to be
reasonable to conclude, from all of our knowledge, that a shoot action
must have been performed. This can be easily obtained by using the query

JA, I, V. (—inconsistent (I o alive) A causes (I o alive, [A], alive o V')) yielding
a single solution, namely {A +— shoot, I — loaded, V + loaded} .

Planning with uncertainty and incomplete information about the effects
of actions is somewhat more difficult. The ideas presented in Section 6 cannot
be directly adopted because if the additional argument of each action name is
left variable then the system is always free to choose the desired effect. This
is, of course, too optimistic. Rather, a cautious agent should be defined
who is content only if solutions to the planning problem in each possible
alternative can be found. This may require the creation of different subplans,
each of them solving the problem in only some of the several alternatives,
which is not feasible in our equational logic program of Section 2. In [4] it is
shown how a cautious agent can be modelled in our method. The basic idea
is to introduce a second function symbol, again embedded in a particular
equational theory, which denotes a disjunctive connection of ACIl-terms,
each of them describing a possible situation. This can be regarded as the
first step in view of weakening our restriction that situations are represented
by conjunctions of atomic facts.

There are a variety of other aspects concerning upgrades of existing
approaches such as concurrent actions, multiple agents, complex and non-
inertial actions, probabilistic values for alternative effects etc. We have hopes
that the equational logic based approach enables us to carry out experiments
with respect to these and other ontological aspects as well.

Acknowledgements

The author would like to thank Wolfgang Bibel, Stefan Briining, Steffen
Holldobler, Vladimir Lifschitz, and Aaron Rothschild for valuable comments
on an earlier version of this paper. The author was partially supported
by ESPRIT within basic research action MEDLAR-IT under grant no. 6471
and by the German Research Community (DFG) within project KONNEK-
TIONSBEWEISER under grant no. Bi 228/6-2.

Notes

1. Throughout this paper, we use a PROLOG-like syntax, i.e. constants and
predicates are in lower cases whereas variables are denoted by upper case
letters. Moreover, free variables are assumed to be universally quantified
and, as usual, the term [h|¢] denotes a list with head h and tail ¢ .

2. Multisets are depicted using the brackets {|[} ,and U, —, C, = etc.
denote the multiset extensions of the usual set operations and relations.

3. Thus, planning in this approach is closely related to planning in STRIPS
[9, 22] except that multisets are used instead of sets and that planning is
performed in a purely deductive context. As argued in [12] multisets are more
adequate solutions to the frame problem. We therefore do not require the
function symbol o to be idempotent. The fundamental difference, however,

is that STRIPS was designed for planning only and cannot be used to perform
the kind of general reasoning which is necessary for modelling A, say.

4. The latter is a rather strict assumption which is required by A and there-
fore necessary to obtain completeness. We will take up this problem later.

5. Observe that C as well as £ are multisets although set operations such
as U and C are used to define them, which is to ensure that neither C nor
£ contain elements more than once.

References

[1]

A. B. Baker. A simple solution to the Yale shooting problem. In Proceedings
of the Int.’l Conf. on Knowledge Representation and Reasoning, 11-20, 1989.

A. B. Baker. Nonmonotonic reasoning in the framework of situation calculus.
Artificial Intelligence, 49:5-23, 1991.

W. Bibel. A Deductive Solution for Plan Generation. New Generation Com-
puting, 4:115-132, 1986.

S. Briining, S. Holldobler, J. Schneeberger, U. Sigmund, and M. Thielscher.
Disjunction in Resource-Oriented Deductive Planning. In D. Miller, ed., Proc.
of the ILPS, page 670, Vancouver, 1993. MIT Press. (Poster presentation.)

D. Chan. Constructive Negation Based on the Completed Database. Proc. of
the IJCSLP, 111-125, 1988.

K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, ed.’s, Workshop
Logic and Data Bases, 293-322. Plenum Press, 1978.

M. Denecker and D. de Schreye. Representing Incomplete Knowledge in Ab-
ductive Logic Programming. In D. Miller, ed., Proc. of the ILPS, 147-163,
Vancouver, 1993. MIT Press.

P. M. Dung. Representing Actions in Logic Programming and its Applications
in Database Updates. In D. S. Warren, ed., Proc. of the ICLP, 222-238,
Budapest, 1993. MIT Press.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 5(2):189-208, 1971.

M. Gelfond and V. Lifschitz. Representing Action and Change by Logic Pro-
grams. Journal of Logic Programming, 17:301-321, 1993.

C. Green. Application of theorem proving to problem solving. In Proc. of the
IJCAI 219-239, Los Altos, CA, 1969. Morgan Kaufmann Publishers.

G. Grofle, S. Holldobler, J. Schneeberger, U. Sigmund, and M. Thielscher.
Equational Logic Programming, Actions, and Change. In K. Apt, ed., Proc.
of the IJCSLP, 177-191, Washington, 1992. MIT Press.

S. Hanks and D. McDermott. Nonmonotonic logic and temporal projection.
Artificial Intelligence, 33(3):379-412, 1987.

S. Holldobler. On Deductive Planning and the Frame Problem. In A. Voronkov,
ed., Proc. of the Int.’l Conf. on Log. Prog. and Autom. Reasoning (LPAR), 13—
29. Springer, volume 624 of LNAI, 1992.

[15]
[16]

[17]

S. Holldobler and J. Schneeberger. A New Deductive Approach to Planning.
New Generation Computing, 8:225-244, 1990.

S. Holldobler and M. Thielscher. Actions and Specificity. In D. Miller, ed.,
Proc. of the ILPS, 164-180, Vancouver, 1993. MIT Press.

S. Holldobler and M. Thielscher. Computing Change and Specificity with
Equational Logic Programs. Annals of Mathematics and Artificial Intelligence,
special issue on Processing of Declarative Knowledge, 1994. (To appear.)

J. Jaffar, J.-L. Lassez, and M. J. Maher. A theory of complete logic programs
with equality. Journal of Logic Programming, 1(3):211-223, 1984.

G. N. Kartha. Soundness and Completeness Theorems for Three Formaliza-
tions of Actions. In R. Bajcsy, ed., Proc. of the IJCAI 724-729, Chambéry,
France, 1993. Morgan Kaufmann.

R. Kowalski. Logic for Problem Solving, volume 7 of Artificial Intelligence
Series. Elsevier, 1979.

R. Kowalski and M. Sergot. A logic based calculus of events. New Generation
Computing, 4:67-95, 1986.

V. Lifschitz. On the Semantics of STRIPS. In M. P. Georgeff and A. L.
Lansky, ed.’s, Proc. of the Workshop on Reasoning about Actions & Plans.
Morgan Kaufmann, 1986.

J. W. Lloyd. Foundations of Logic Programming. Series Symbolic Computa-
tion. Springer, second, extended edition, 1987.

M. Masseron, C. Tollu, and J. Vauzielles. Generating Plans in Linear Logic. In
Foundations of Software Technology and Theoretical Computer Science, 63-75.
Springer, volume 472 of LNCS, 1990.

J. McCarthy. Applications of circumscription to formalizing common-sense
knowledge. Artificial Intelligence, 28:89-116, 1986.

J. McCarthy and P. J. Hayes. Some Philosophical Problems from the Stand-
point of Artificial Intelligence. Machine Intelligence, 4:463-502, 1969.

R. Reiter. The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In V. Lifschitz,
ed., Artificial Intelligence and Mathematical Theory of Computation, 359-380.
Academic Press, 1991.

E. Sandewall. Features and Fluents. Technical Report LiTH-IDA-R-92-30,
University of Link6ping, Sweden, 1992.

J. Schneeberger. Plan Generation by Linear Deduction. PhD thesis, FG In-
tellektik, TH Darmstadt, 1992.

J. C. Shepherdson. SLDNF-Resolution with Equality. Journal of Automated
Reasoning, 8:297-306, 1992.

M. Thielscher. Modelling theories of actions by Equational Logic Programs.
Technical Report AIDA-93-18, FG Intellektik, TH Darmstadt, 1993. Available
via anonymous ftp from 130.83.26.1 in /pub/AIDA/Tech-Reports/1993.

M. Thielscher. SLDENF-Resolution. 1994 (submitted). Available via anony-
mous ftp from 130.83.26.1 in /pub/AIDA/Tech-Reports/0THER.

