
Logic-Based Agents and the Frame Problem:

A Case for Progression

Michael Thielscher
mit@inf.tu-dresden.de

Department of Computer Science, Dresden University of Technology

Intelligent agents that reason logically about their actions have to cope with
the classical Frame Problem. We argue that a progression-based solution
is necessary for agent programs to run efficiently over extended periods of
time. We support this claim by comparing the computational behavior of two
popular logic programming systems for reasoning agents: Regression-based
GOLOG and progression-based FLUX.

1 Introduction

An intriguing application of logic as a formal model of rational thought is
to endow artificial systems with the ability to reason. Software agents and
autonomous robots exhibit rational behavior as a result of reasoning about
the effects of their actions based on an abstract, symbolic model of their
environment. This approach to Artificial Intelligence is inherently connected
with the famous Frame Problem of how to axiomatize the effects of actions
in a concise way so as to enable an automated agent to infer what has and
what has not changed after a sequence of actions [6, 7].

Throughout its history, the Frame Problem has initiated many important
developments—a prominent example is nonmonotonic logic [2]—but satisfac-
tory solutions did not emerge until the past decade. These solutions have
recently evolved into declarative, high-level programming languages and sys-
tems which can be used to create reasoning agents and robots. The core of

Hendricks et al. (eds.):
First-Order Logic Revisited
Logos Verlag Berlin (2004), 323–336

323

324 LOGIC-BASED AGENTS AND THE FRAME PROBLEM

each such system is its underlying inference schema for solving the Frame
Problem. These inference schemata come in two different flavors.

In a regression-based solution to the Frame Problem, the question whether
a property ϕ holds after the agent has performed a sequence of actions,
is reduced to the question whether another property R[ϕ] (the regression
of ϕ) holds after the last but one action. This reduction is applied recursively
through the whole sequence, so that in the end the fully regressed formula
can be checked against what was initially true.

In a progression-based solution to the Frame Problem, a (possibly incom-
plete) initial world model is updated upon the performance of an action. In
this way, the model is progressed through an action sequence executed by the
agent, and the current model is used directly to decide whether a property ϕ
holds in the current situation. We argue that this principle is mandatory
for the efficient control of agents over extended periods of time. To sup-
port this claim, we analyze and compare the computational behavior of the
regression-based logic programming system GOLOG [4] with progression-
based FLUX [13]. Our analysis shows that when the former is used, the
computational effort continually increases as a program proceeds, whereas
the latter system scales up effortlessly to long-term control.

The remainder of this paper is organized as follows. In the next section,
we compare the two principles of regression and progression in the context
of logic-based agents. In Section 3 we present and analyze experimental
results with GOLOG and FLUX applied to a mail delivery problem which
requires to reason about action sequences of non-trivial length. We conclude
in Section 4. We assume that the reader is familiar with basic notations of
logic programming and Prolog (as can be found, e.g., in [1]). Lack of space
does also not permit to give a full explanation of syntax and semantics of
GOLOG and FLUX; we refer to [4, 9] and [13], respectively.

2 Progression vs. Regression

Consider a robot whose task is to pick up and deliver mail packages exchanged
among a number of offices. The robot is equipped with several slots, a kind
of mail bag, each of which can be filled with one such package. Figure 1
depicts a sample scenario in an environment consisting of six offices and a
robot with three mail bags. A simple, general strategy for the robot is to
deliver packages whenever it finds itself at some office for which it carries

MICHAEL THIELSCHER 325

1 2 3 4 5 6

2 3

5

1 3

4 5

1 2

4 5

2 5 1 2

3 4

6

1 3

4

Figure 1: The initial state of a sample mail delivery problem, with a total of
21 delivery requests.

mail, then pick up packages whenever it happens to be at some place where
items are still waiting to be collected, and finally move either up or down
the hallway toward an office where a package can be picked up or delivered.
This strategy is implemented by the following semi-formal algorithm:

loop
if possible to deliver a package

then do it
else if possible to pick up a package

then do it
else if can pick up or deliver a package up (resp. down) the hallway

then go up (resp. down)
else stop

end loop

This algorithm obviously requires the robot to evaluate conditions which
depend on the current state of the environment. For in order to decide on
its next action, the robot always needs to know the current contents of its
mail bags, the requests that are still open, and its current location. Since
these properties constantly change as the program proceeds, the robot has
to keep track of what it does as it moves along. For this purpose, it needs an
internal representation of the environment, which throughout the execution
of the program conveys the necessary information about the current location
of all packages that have not yet been delivered. Logical reasoning on the
basis of this model allows the robot to decide which actions are possible and
how the model needs to be updated after each action in accordance with the
effects of the action. With regard to the scenario in Figure 1, for instance,

326 LOGIC-BASED AGENTS AND THE FRAME PROBLEM

S0 S1 S2 S3
A1 A2 A3

Holds(ϕ, S0)?

Holds(ϕ, S2)?

Holds(ϕ, S3)?Holds(ϕ, S1)?

Figure 2: In regression-based solutions to the Frame Problem, the question
whether a property ϕ holds in a situation Si is decided by regressing ϕ
through the actions that lead from the initial situation S0 to Si.

the robot needs to be able to conclude that it can start with putting one
of the three available packages into one of its mail bags. Furthermore, the
robot needs to infer that after this action, the package is in one of the mail
bags while the other two bags are still empty. Hence, the robot has to cope
with the Frame Problem [6].

In a regression-based inference schema for solving the Frame Problem [8],
the question whether a property ϕ holds after a particular action, is reduced
to the question whether another property R[ϕ] (the regression of ϕ) holds
before the action. This reduction is applied recursively through all actions the
agent has performed thus far, so that in the end the fully regressed formula
can be checked against the initial world model. Figure 2 gives a schematic
illustration of this principle. The graph shows that in general the effort of
examining the validity of a property depends on the length of the history.
As a consequence, the computational behavior of a regression-based agent
program can be expected to worsen the longer the program runs.

The family of GOLOG dialects rooted in [4] is an example of regression-
based implementations. The effects of actions are encoded by successor state
axioms [8], which are of the form

Holds(f,Do(a, s)) ↔ Φf (a, s) (1)

Here, f is an atomic property, a so-called fluent , and Do(a, s) denotes the
situation, i.e., sequence of actions, reached by performing action a in situ-
ation s. Formula Φf describes the conditions on action a and situation s
under which f can be concluded to hold in the successor situation Do(a, s).

MICHAEL THIELSCHER 327

As an example, consider the following successor state axiom, given in Prolog
notation, for the fluent Empty(b), that is, the property of mail bag b to be
empty:

holds(empty(B),do(A,S)) :- A=deliver(B)

;

holds(empty(B),S),

not A=pickup(B,R).

This axiom says that mail bag b is empty after performing an action a in
a situation s just in case the action was to deliver the contents of bag b, or
mail bag b happened to be empty in situation s and the action was not to
pick up into b a package for some room r. The atom Holds(Empty(b), s)
in the right hand side is solved recursively until the situation argument s
is reduced to the initial situation S0. In this way, the computational effort
for deciding whether Empty(b) holds depends on the number of actions
performed thus far. As a consequence, the time it takes for a GOLOG agent
to make a decision can be expected to increase with every action the agent
takes.

In a progression-based inference schema for solving the Frame Problem [5,
12], a (possibly incomplete) initial world model is updated upon the perfor-
mance of an action. In this way, the model is progressed through the action
sequence performed by the agent, and the updated model is used directly to
decide whether a property holds in the current situation. Figure 3 gives a
schematic illustration of this principle. The graph shows that the effort of ex-
amining the validity of a property is independent of the length of the history.
As a consequence, the computational behavior of a progression-based agent
program should be expected to remain the same throughout the execution
so that this principle has the potential to scale up to long-term control.

FLUX [13] is an example of a progression-based implementation. World
models, so-called states , are encoded as lists of fluent terms, possibly ac-
companied by constraints for negative and disjunctive state knowledge. The
effects of actions are encoded by state update axioms [12], which are of the
form

StateUpdate(z1, a, z2) ← Φa(z1, z2)

Here, formula Φa describes the conditions under which z2 is the state
reached by performing action a in state z1. As an example, consider the

328 LOGIC-BASED AGENTS AND THE FRAME PROBLEM

Z0 Z1 Z2 Z3
A1 A2 A3

Holds(ϕ,Z0)? Holds(ϕ,Z1)? Holds(ϕ,Z2)? Holds(ϕ,Z3)?

Figure 3: In progression-based solutions to the Frame Problem, the world
model Zi is progressed through the next action in every situation. A prop-
erty ϕ can then be decided directly wrt. the current world model.

following state update axiom1 for the action Deliver(b) of delivering the
contents of mail bag b:

state_update(Z1,deliver(B),Z2) :-

holds(at(R),Z1), update(Z1,[empty(B)],[carries(B,R)],Z2).

This axiom says that state z2 is the result of performing a Deliver(b) action
in state z1 if the robot is at room r in z1, and z2 is the result of updating
z1 by the positive effect that bag b becomes empty and the negative effect
that the robot no longer carries in bag b a package for room r. When
executing a FLUX program, conditions of the form Holds(ϕ, z) are always
evaluated against the current world model. Since the computational effort
for this evaluation is independent of the actions that have been performed
thus far, the time it takes for a FLUX agent to make a decision is expected
to remain the same as the program proceeds.

3 Progressive FLUX vs. Regressive GOLOG

In order to see how the theoretical differences between regression-based and
progression-based implementations manifest in practice, we have applied
both GOLOG and FLUX to mail delivery problems which require to rea-
son about action sequences of non-trivial length. We use four fluents to
describe a state in the mail delivery world: At(r) to represent that the
robot is at room r; Empty(b) to represent that the robot’s mail bag b is

1The standard FLUX predicate update(Z1,P,N,Z2) used below represents the update
of state z1 to state z2 by positive effects p and negative effects n .

MICHAEL THIELSCHER 329

empty; Carries(b, r) to represent that the robot carries in bag b a package
for room r; and Request(r, r′) to indicate a delivery request from room r to
room r′. The following logic programming clauses, for example, constitute
a GOLOG specification of the initial situation depicted in Figure 1:

holds(at(1),s0).

holds(empty(bag1),s0).

holds(empty(bag2),s0).

holds(empty(bag3),s0).

holds(request(1,2),s0).

...

holds(request(6,4),s0).

The three elementary actions of the mail agent are: Pickup(b, r) to pick
up into bag b a package for room r; Deliver(b) to deliver the contents of
bag b at the current location; and Go(d) to move d = Up or d = Down the
hallway to the next room. Using GOLOG syntax, where Poss(a, s) means
that action a is possible in situation s, the following is a suitable definition
of the action preconditions in the mail delivery world:

poss(pickup(B,R),S) :- holds(empty(B),S), holds(at(R1),S),

holds(request(R1,R),S).

poss(deliver(B),S) :- holds(at(R),S), holds(carries(B,R),S).

poss(go(D),S) :- holds(at(R),S),

(D=up, R<6 ; D=down, R>1).

Verifying the executability of an action is a vital aspect of executing the
agent program for the mail delivery robot. The effects of the actions are
encoded by the successor state axioms given in Appendix A.

With the help of this background theory, our strategy for the mail de-
livery robot given at the beginning of Section 2 translates into the following
recursive GOLOG procedure:2

proc(main_loop, [deliver(B),main_loop] #

[pickup(B,R),main_loop] #

[continue,main_loop] # []).

2For details regarding syntax and semantics of GOLOG, we refer to [4, 9].

330 LOGIC-BASED AGENTS AND THE FRAME PROBLEM

proc(continue,

[[?(empty(B)),?(request(R1,R2))] # ?(carries(B,R1)),

?(at(R)), [?(less(R,R1)),go(up)] # go(down)]).

holds(less(R1,R2),S) :- R1<R2.

The auxiliary procedure Continue succeeds if there is the possibility for the
robot to pick up or deliver mail somewhere up or down the hallway. If neither
a Deliver(b) nor a Pickup(b, r) action is possible, and if the robot needs
not continue to another office, then the program terminates.

In FLUX, the initial state of Figure 1 is encoded by this clause:

init(Z0) :- Z0 = [at(1),empty(bag1),empty(bag2),empty(bag3),

request(1,2),...,request(6,4)].

The specification of the precondition axioms is the same as in GOLOG while
the effects of the three actions are encoded by the state update axioms given
in Appendix B.

The following FLUX program implements the same algorithm as the
GOLOG procedure for the mail robot:

main :- init(Z), main_loop(Z).

main_loop(Z) :- poss(deliver(B),Z)

-> execute(deliver(B),Z,Z1), main_loop(Z1)

; poss(pickup(B,R),Z)

-> execute(pickup(B,R),Z,Z1), main_loop(Z1)

; continue(Z,Z1)

-> main_loop(Z1)

; true.

continue(Z,Z1) :- (holds(empty(B),Z), holds(request(R1,R2),Z)

; holds(carries(B,R1),Z)),

holds(at(R),Z),

(R<R1 -> execute(go(up),Z,Z1)

; execute(go(down),Z,Z1)).

Both the GOLOG and the FLUX program are available for download
from our web page www.fluxagent.org . We ran a series of experiments

MICHAEL THIELSCHER 331

FLUX

GOLOG

-
actions1000 2000 3000 4000 5000

6

seconds

20

40

60

80

Figure 4: Overall runtime of the mail delivery program in GOLOG and
FLUX (vertical axis) depending on the solution length (horizontal axis).

with maximal delivery problems, that is, with initial requests from every
office to every other. The following table shows the resulting lengths of the
action sequences for all problem sizes from n = 10 offices up to n = 30 and
with a robot with three mail bags:3

n # act n # act n # act
10 492 17 2144 24 5658
11 640 18 2516 25 6352
12 814 19 2928 26 7100
13 1016 20 3382 27 7904
14 1248 21 3880 28 8766
15 1512 22 4424 29 9688
16 1810 23 5016 30 10672

Figure 4 shows the runtime of the two programs in relation to the length
of the solution. The experiments were carried out on a standard PC with

3We have kept the value for k constant because while it influences the overall number
of actions needed to carry out all requests, this parameter turned out to have negligible
influence on the computational effort needed for action selection and effect computation.

332 LOGIC-BASED AGENTS AND THE FRAME PROBLEM

n = 12

n = 13

n = 14

0% 100%

6
sec / 100 act

10

20

30

40

Figure 5: The computational behavior of the GOLOG program for the mail
delivery problem in the course of its execution. The horizontal axis depicts
the degree to which the run is completed while the vertical scale is in seconds
per 100 actions.

a 500 MHz processor. A detailed analysis of the computational behavior as
the two programs proceed shows that the superiority of FLUX is mainly due
to its progressive solution to the Frame Problem: Figure 5 depicts, for three
selected problem sizes, the average action selection time in the course of the
execution of the GOLOG program. The curves show that the computational
effort increases polynomially as the program runs, which is a consequence
of the regression-based solution to the Frame Problem. Figure 6 depicts the
average time for action selection and state update computation in the course
of the execution of the FLUX program, again for three selected problem sizes.
The curves show that the computational effort remains essentially constant
throughout, thanks to the progression-based solution to the Frame Problem.
The slight general descent can be explained by the decreasing state size due
to fewer remaining requests.

4 Discussion

We have argued that progression-based solutions to the Frame Problem are
necessary for logic-based agents that need to reason about action sequences of
non-trivial length: By continually updating their internal model of the envi-
ronment, agents can evaluate properties directly at every stage. In contrast,
regression-based solutions to the Frame Problem give rise to a computational

MICHAEL THIELSCHER 333

n = 15

n = 20

n = 30

0% 100%

6
sec / 100 act

0.2

0.4

0.6

0.8

Figure 6: The computational behavior of the FLUX program for the mail
delivery problem in the course of its execution. The horizontal axis depicts
the degree to which the run is completed while the vertical scale is in seconds
per 100 actions.

effort for evaluating properties which increases with every action taken by the
agent. In the long run, the polynomial effort for regression worsens the com-
plexity of any polynomial algorithm for agent control. We have shown how
this difference manifests in practice by comparing regression-based GOLOG
with progression-based FLUX on a problem which requires to reason about
several hundreds or thousands of actions.

A prominent alternative to GOLOG, the implementation [11] of the event
calculus [10] is essentially regression-based just as well: In order to verify that
a property holds at some time t, it must be proved that this property was
initiated by some previous event and that no event in between terminated
this property. This, too, requires to take into account the history of events
(i.e., actions) when examining the validity of a property, so that again the
computational behavior of a control program can be expected to worsen with
every action taken by the agent.

In FLUX, the notion of a history of actions serves different purposes: It
is used to give semantics to program execution and to endow agents with
the ability of planning. As argued in [3], since planning is a computationally
demanding problem, it should be restrictively employed in agent programs
and interleaved with action execution. By combining progression with much
of GOLOG’s powerful concept for plan search control, FLUX combines the
best of both worlds.

334 LOGIC-BASED AGENTS AND THE FRAME PROBLEM

5 Bibliography

[1] Krzysztof Apt. From Logic Programming to Prolog. Prentice-Hall, 1997.

[2] Daniel G. Bobrow, editor. Artificial Intelligence 13 : Special Issue on
Non-Monotonic Reasoning. Elsevier, 1980.

[3] Giuseppe De Giacomo and Hector J. Levesque. An incremental inter-
preter for high-level programs with sensing. In H. Levesque and F.
Pirri, editors, Logical Foundations for Cognitive Agents, pages 86–102.
Springer, 1999.

[4] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin,
and Richard B. Scherl. GOLOG: A logic programming language for
dynamic domains. Journal of Logic Programming, 31(1–3):59–83, 1997.

[5] Fangzhen Lin and Ray Reiter. How to progress a database. Artificial
Intelligence, 92:131–167, 1997.

[6] John McCarthy and Patrick J. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. Machine Intelligence, 4:463–502,
1969.

[7] Zenon W. Pylyshyn, editor. The Robot’s Dilemma: The Frame Problem
in Artificial Intelligence. Ablex, Norwood, New Jersey, 1987.

[8] Ray Reiter. The frame problem in the situation calculus: A simple
solution (sometimes) and a completeness result for goal regression. In
V. Lifschitz, editor, Artificial Intelligence and Mathematical Theory of
Computation, pages 359–380. Academic Press, 1991.

[9] Raymond Reiter. Logic in Action. MIT Press, 2001.

[10] Murray Shanahan. Solving the Frame Problem: A Mathematical Inves-
tigation of the Common Sense Law of Inertia. MIT Press, 1997.

[11] Murray Shanahan and Mark Witkowski. High-level robot control
through logic. In C. Castelfranchi and Y. Lespérance, editors, Pro-
ceedings of the International Workshop on Agent Theories Architectures
and Languages (ATAL), volume 1986 of LNCS, pages 104–121, Boston,
MA, July 2000. Springer.

MICHAEL THIELSCHER 335

[12] Michael Thielscher. From situation calculus to fluent calculus: State
update axioms as a solution to the inferential frame problem. Artificial
Intelligence, 111(1–2):277–299, 1999.

[13] Michael Thielscher. FLUX: A logic programming method for reasoning
agents. Theory and Practice of Logic Programming, 2004.

A Successor State Axioms in GOLOG

holds(at(R),do(A,S)) :- A=go(up), holds(at(R1),S),

R is R1+1

; A=go(down), holds(at(R1),S),

R is R1-1

; not A=go(D), holds(at(R),S).

holds(empty(B),do(A,S)) :- A=deliver(B)

;

holds(empty(B),S),

not A=pickup(B,R).

holds(carries(B,R),do(A,S)) :- A=pickup(B,R)

;

holds(carries(B,R),S),

not A=deliver(B).

holds(request(R,R1),do(A,S)) :- holds(request(R,R1),S),

(A=pickup(B,R1)

-> holds(at(R2),S),

R2\=R

; true).

B State Update Axioms in FLUX

For the sake of simplicity and because our example domain does not involve
any sensing actions, we have omitted the argument for sensory input, which
is required for general update axioms [13].

336 LOGIC-BASED AGENTS AND THE FRAME PROBLEM

state_update(Z1,pickup(B,R),Z2) :-

holds(at(R1),Z1),

update(Z1,[carries(B,R)],[empty(B),request(R1,R)],Z2).

state_update(Z1,deliver(B),Z2) :-

holds(at(R),Z1), update(Z1,[empty(B)],[carries(B,R)],Z2).

state_update(Z1,go(D),Z2) :-

holds(at(R),Z1), (D=up -> R1 is R+1 ; R1 is R-1),

update(Z1,[at(R1)],[at(R)],Z2).

