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Abstract: Diagnosis is, in general, more than a mere passive reasoning
task. It often requires to actively produce observations by performing a test
series on a faulty system. We present a theory of diagnosis which captures
this dynamic aspect by appealing to Action Theory. The reactions of a sys-
tem under healthy condition are modeled as indirect effects, so-called ramifi-
cations, of actions performed by the diagnostician. Under abnormal circum-
stances - i.e., if certain aspects or components of the system are faulty-one
or more of these ramifications fail to materialize. Ramifications admitting
exceptions is shown to giving rise to a hitherto unnoticed challenge - a chal-
lenge much like the one raised by the famous Yale Shooting counter-ezample
i the context of the Frame Problem. Meeting this challenge is inevitable
when searching for "good” diagnoses. As a solution, we adapt from a re-
cent causality-based solution to the Qualification Problem the key principle
of nitial minimization. In this way, when suggesting a diagnosis our the-
ory of dynamic diagnosis exploits causal information, in addition to possibly
available, qualitative knowledge of the a priori likelihood of components to

fail.

Remark: Some of the results in this paper have been preliminarily reported

in (Thielscher, 1997a).
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Summary

ETAI authors are recommended that each article be accompanied by a sum-
mary. Longer and more specific than a conventional abstract, it should
specify in concrete terms what are the new results in the article. If present,
the summary also plays a role in the refereeing process: referees are asked
to judge whether the resulls as specified in the summary are of importance to
the field, and whether the body of the article gives sufficient evidence for the
claims made in the summary. — The Editor.

Diagnosis in general requires more than just passively observing the behav-
ior of a faulty system. Often it is necessary to actively produce observations
by performing actions. Diagnosing then amounts to reasoning about more
than a single state of the system to be examined. We propose to capture
this dynamic aspect by appealing to Action Theory. A formal system de-
scription consists of a stetic and a dynamic part. The former introduces
the system components and their static relations in form of so-called state
constraints, like, for instance,

active(relayq) = closed(switchy)

stating that a particular relay is active if and only if a corresponding switch
is closed. The dynamic part of a system description specifies the actions
which can be used to manipulate the system’s state. These definitions are
accompanied by so-called action laws, which focus on the direct effects.
State constraints like the above then give rise to additional, indirect effects
of actions, which we accommodate according to the theory of causal rela-
tionships [Thielscher, 1997b]. E.g., this causal relationship is a consequence
of our example state constraint:

closed(switchy) causes active(relayq)

Informally speaking, it means that whenever closed(switchy) occurs as
direct or indirect effect of an action, then this has the additional, indirect
effect that active(relayq). Generally, causal relationships are successively
applied subsequent to the generation of the direct effects of an action until
a satisfactory successor state obtains.

In this way, the reactions of a system under healthy condition are mod-
eled as indirect effects, so-called ramifications, of actions. Under abnor-
mal circumstances—i.e., if certain aspects or components of the system are
faulty—one or more of these ramifications fail to materialize. We intro-
duce an abnormality fluent ab by which we account for such exceptions to
both state constraints and the ramifications they trigger. Thus our example
constraint from above, for instance, may read weaker—e.g., to the effect that

—ab(resistorq)A—ab(relayy) D [active(relayy) = closed(switchy)]

where ab(resistory) and ab(relayq) represent an abnormal failure of a
corresponding resistor and the relay itself, respectively. This weakening
transfers to our expectations regarding indirect effects: The aforementioned
causal relationship becomes

closed(switchy) causes active(relayq) if —ab(resistorq)A—ab(relayq)



76

An important contribution of this paper, now, is a proof that due to the
phenomenon of causality straightforward global minimization of abnormality—
which is suitable for static diagnosis—is problematic in case of dynamic di-
agnosis. This raises a challenge much like the one raised by the famous Yale
Shooting counter-example in the context of the Frame Problem. Meeting
this challenge is inevitable when searching for ‘good’ diagnoses.

As a solution, we adapt from a recent causality-based solution to the
Qualification Problem the key principle of initial minimization. All in-
stances of the abnormality fluent are assumed false initially but may be
indirectly affected by the execution of actions. In this way, our theory of
dynamic diagnosis suitably exploits causal information when generating di-
agnoses. Our theory moreover respects available knowledge of the a prior:
likelihood of component failures. Since it is often difficult if not impossi-
ble to provide precise numerical knowledge of probabilities, we deal with
qualitative rather than quantitative information, and we do not rely on
complete knowledge. Such possibly incomplete information as to different
degrees of abnormality 1s formally represented by a partial ordering among
the instances of the abnormality fluent.

For the entire theory there exists a provably correct axiomatization
based on the Fluent Calculus paradigm and which uses Default Logic to
accommodate the nonmonotonic aspect of the diagnostic problem.
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1 Introduction

Diagnosis in general requires more than just passively observing the
behavior of a faulty system. Often the only way to gain useful in-
formation is to perform a test series: Physicians do not only listen
to a description of symptoms but examine their patients; technicians
actively locate the faulty component of a malfunctioning device. The
observations made in the course of such experiments form the basis
for a successful diagnosis.

Active diagnosis therefore requires to reason about more than a
single state of the system to be examined. We propose to capture
this aspect by appealing to Action Theory. A system is specified
by its components and the way these entities change their states
when being manipulated by means of actions. Performing diagnosis
then amounts to appropriately interpreting observations concerning
a system’s state prior, during, and after the execution of a series of
actions. Additionally, using Action Theory as the formal basis for
dynamic diagnosis may help with finding further actions to be taken
towards fully determining the cause of an observed system failure.

As an example for dynamic diagnosis consider the electric circuit
depicted in Figure 1. It involves a number of components, some
of which—several switches—can be directly manipulated by actions.
Other components might be indirectly affected. It is assumed that
only some components are directly observable. Now, suppose we
close switch s; in the current state depicted and we observe that
afterwards light bulb 1i is still off. This calls for diagnosis: Under
normal circumstances, relay re; should have become activated and
attracted switch s, which in turn should have activated relay re,
and, hence, closed switch s3. Several explanations offer for the light
unexpectedly staying off: Relay re; might be out of order, resistor
ry or bulb 1i itself might be broken, etc. In order to clarify the
situation, a diagnostician may now close switch s5. Suppose this
activates light bulb 1is, which shows that switch sz must have
become closed beforehand and also that resistor rs is in order. Hence
the only remaining diagnosis for the encountered abnormal behavior
of the system is a malfunction of light bulb 1i.

Our example system involves components which are not directly
operated, such as the relays and light bulbs. Their state, however,
depends in a particular way on the states of other components. These
dependences can be expressed in a logical fashion: So-called state
constraints are logical formulas that constrain the set of potential
system states to those which respect the laws of physics. An example
constraint for our electric circuit is

active(re;) = closed(s;) (1)

stating that relay re; is activated if and only if switch s4 is closed.
Likewise, the constraint

active(re;) D closed(sy) (2)
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Figure 1: An electric circuit which consists of a number of binary
switches; two relays, each of which, in case of activation, attracts the
switch located above; three resistors, each needed to keep low the
current flow through the respective sub-circuit; and a couple of light
bulbs. It is assumed that only the components to the right of the
wavelike line are directly observable.

formalizes the attracting of switch s, by relay re; if the latter gets
activated. Generally, state constraints are first-order formulas com-
posed of atoms, such as active(re;) etc., which in turn are relations
over entities, such as req, sy, etc. Whether or not a particular such
atom holds may vary from time to time, as a result of performing
actions. Following standard terminology, these atoms are therefore
called fluents. The truth values of all fluents at a particular point of
time determine the current state of the system.

State constraints as means to describe a system is common also
in ‘static’ diagnosis (e.g., [Reiter, 1987]). Crucial for dynamic diag-
nosis is the observation that state constraints give rise to indirect
effects of actions. Closing switch sy, for instance, has the only im-
mediate effect of closed(s;) becoming true. This, however, causes
active(re;) according to (1), which in turn implies that closed(s,)
according to (2), etc. In Action Theory, the necessity to account for
additional effect of actions which derive from state constraints, is
called the Ramification Problem [Ginsberg and Smith, 1988a). Any
satisfactory solution requires the successful treatment of two major
issues. First, an appropriately weakened version of the commonsense
law of persistence needs to be developed which applies only to those
parts of the world description that are unaffected by the action’s di-
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rect and indirect effects.! Second, not all logical consequences of state
constraints may indeed occur as indirect effects [Lifschitz, 1990].2

In this paper, we accommodate indirect effects by employing so-
called causal relationships [Thielscher, 1997b]. These are successively
applied subsequent to the generation of the direct effects of an ac-
tion. For example, this causal relationship is a consequence of state
constraint (1) from above:

closed(sy) causes active(re;) (3)

Informally speaking, it means that whenever closed(s;) occurs as
direct or indirect effect of an action, then this has the additional,
indirect effect active(res). A formal introduction to the theory
of causal relationships is given in Section 3. The need for causal
relationships in addition to state constraints for system description
is due to the dynamic aspect of diagnosis.

Validity of state constraints like (1) and (2), however, relies on
the functioning of the involved components, and of course so does the
occurrence of the corresponding indirect effects. Our example circuit,
for instance, may exhibit a state where, say, switch s; is closed but
nonetheless relay re; remains deactivated. In this case either of the
involved components, resistor r; or relay re;, is malfunctioning. In
order to reflect this, constraint (1) should actually read weaker—to
the effect that

—ab(ry) A —ab(re;) D [active(re;) = closed(sy)]

where ab(r;) and ab(re;) represent an abnormal failure of resis-
tor r; and relay req, respectively. This weakening transfers to our
expectations regarding indirect effects: Causal relationship (3) should
now read

closed(sy) causes active(rey) if —ab(r;) A —ab(re;)

That is to say, closing switch s; is expected to causing active(re;)
only if both the adjacent resistor and the relay itself exhibit their
regular behavior.

Under normal circumstances, no system components should mal-
function. A diagnosis problem arises as soon as the actual observa-
tions contradict the basic assumption that A.c .omponenss 7ab(c) hold
all the time. Diagnosing then amounts to finding one or more affir-
mative instances of ab which entail the observed irregular behavior
of the system.

Generally, there will be more than a unique collection of affir-
mative ab-instances that offer as explanation. Telling ‘good’ from

! The commonsense law of persistence says that no system component changes
its state when an action is performed unless this change is explicitly mentioned
as an effect of that action.

2 See Section 3.2 for an example.
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‘bad’ diagnoses is a key issue, for the primary diagnosis goal is to
find the most likely explanation for the encountered failures. A fun-
damental principle to this end is minimality: Whenever it suffices to
assume that a particular collection of components are malfunction-
ing, then diagnoses are usually inadequate which assume simultane-
ous failure of these and other components.® Another important issue
in view of a good diagnosis is to take into account a priori knowl-
edge of differences in the likelihood of components to break. Both
these two aspects are standard in diagnosis. Dynamic diagnosis, how-
ever, raises an additional challenge when it comes to distinguishing
the most plausible diagnoses in case abnormalities are causally con-
nected. The phenomenon of causality naturally arises when dealing
with evolutions of systems in the course of time. The challenge is ac-
tually more general: It requires to account for a hitherto unnoticed,
fundamental problem in Action Theory when dealing with exceptions
to ramifications. This will be elucidated in the following section, and
a major achievement of this paper is that the resulting theory of
actions meets this challenge.

2 The Problem of Causality—and a Solution

In the course of the introduction we have added conditions of ‘nor-
mality’” to both state constraints and the corresponding causal rela-
tionships. The intention of doing so was twofold: First, it allows to
accommodate situations where the system does not exhibit its reg-
ular behavior due to the malfunctioning of components. Second, it
supports the search for reasonable diagnoses: Following the principle
of minimality, good (i.e., plausible) diagnoses are obtained through
suitable minimization of abnormality, which means to accept as few
instances of ab as possible while accounting for the actual observa-
tions. This principle shall be illustrated on the basis of the following
extract of a system description for our example circuit of the preced-
ing section:

—ab(ry) A —ab(re;) D [active(re;) = closed(sy)]
—ab(ry) A —ab(rey) D [active(re,) = closed(s,)]
active(re;) D closed(ss) (4)
active(re;) D closed(ss)

—ab(1li) D [active(li) = closed(ss)]

% Of course this applies only if component failures are a priori rather unlikely.
We consider this a fundamental property of the diagnostic problem.
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along with some of the corresponding causal relationships, viz.

closed(s;) causes active(re;) if —ab(ry)A —ab(re;)

closed(s,) causes active(re,) if —ab(ry) A —ab(re;)

(5)
active(re,

) (

) (
active(re;) causes closed(s,

) (

) causes active(li

2
)
causes closed(ss)
)

closed(ss; if -ab(1i)

Recall the situation discussed in the introduction, where switch sy
got closed in the state depicted in Figure 1. If light 1i stays off, then
at least one component is out of order. For assuming Vz.-ab(z) in
conjunction with the action’s effect, closed(s;), contradicts the ob-
servation —active(li), given the state constraints of equation (4).
(This can be seen by the following chain of deductions: Vz.-ab(z) A
closed(s;)A(4) = active(re;) = closed(s;) = active(re,)
= closed(s3) = active(li).) Now, there are five ways of mini-
mizing ab wrt. the formula closed(s;)A—active(1i)A(4), namely,

dy = {ab(ry), 7ab(re;), 7ab(r,), 7ab(re,), 7ab(1li)}
dy = {-ab(ry),ab(re;), 7ab(r,), 7ab(re,), 7ab(1li)}
ds = {—ab(ry), ~ab(res),ab(r,), mab(res), ~ab(1i)} (6)
dy = {-ab(ry), ab(re;), nab(r,), ab(re,), 7ab(1li)}
(r1), ~ab( (11)

If, for the sake of simplicity, we assume for the moment that failures
of resistors, relays, and light bulbs are equally likely, then dy,...,ds
together are the five diagnoses which are reasonably to be expected
here. Far less plausible would be, say, the diagnosis that simultane-
ously the two relays and also the bulb are malfunctioning. Minimizing
abnormality thus determines exactly the plausible diagnoses in this
example. This is a well-established result as far as static diagnosis is
concerned, where abnormalities are causally independent (see, e.g.,
[Reiter, 1987]).

Unfortunately, however, this standard way of minimizing abnor-
mality turns out problematic as soon as causal interactions among
abnormalities need to be taken into account. This shall be illustrated
by the following scenario. Let us add to our system description the
knowledge that in our example circuit a relay gets broken whenever it
forms an active sub-circuit with a broken resistor. This is represented
by these two additional state constraints:

ab(ry) A closed(s;) D ab(re;)
ab(ry) A closed(s;) D ab(re;)

(7)

They give rise to indirect effects as follows:

closed(s;) causes ab(re;) if ab(ry)

closed(s;) causes ab(rey) if ab(rs)



82

That is to say, as soon as the respective sub-circuit with the broken
resistor gets closed the relay breaks as well. Thus the abnormalities
ab(r;) and ab(re;) (for i = 1,2) become causally connected.

To see how the introduction of causal dependencies among abnor-
malities affects minimization, suppose we already know that in the
situation depicted in Figure 1 resistor r, is broken, i.e., that ab(r,)
holds. What effect is to be expected when closing switch s;7 Since
nothing hints at either resistor ry or relay re; malfunctioning, we
should expect that re; is activated and will thus attract switch s,.
This switch getting closed in turn will cause relay re, to break ac-
cording to (8), given that ab(r;). Hence, one intuitively expects that
the effect ab(re,) materialize.

But what happens if abnormality is globally minimized in this sce-
nario? It is clear that one additional abnormality aside from the given
ab(ry) isinevitable. Formally, this follows from ab(r;)Aclosed(s;)A
(4) A (7) being inconsistent with the assumption that —ab(c) holds
for each ¢ # r,. Therefore, one minimal model reflects the above
conclusion that ab(re;). This corresponds to the intended model.
Yet abnormality can be minimized in more ways. Namely, we can
try to assume an exception to the very first ramification, i.e., the one
which activates relay re;. This assumption requires to grant that
either ab(re;) or ab(ry) hold. But for compensation, now that re-
lay re; does not get activated we avoid the conclusion that switch sq
gets closed, hence that relay re, breaks. In other words, accepting
ab(ry) or ab(re;) allows to assume —ab(re,). We thus obtain a
second and third minimal model here, which in total gives us these
three suggested outcomes:

dy = {-ab(ry), ab(re;), ab(rs), ab(re,), 7ab(1li)}
dy = {ab(ry), 7ab(re;), ab(ry), ~ab(re,), 7ab(1li)}
ds = {—-ab(ry),ab(res),ab(ry), nab(re,), 7ab(1li)}

Each of dy,ds,ds minimizes abnormality, but only dy entails the
expected effect ab(rep). The two additional models are therefore
unintended.

To stress the point, both ds and ds should even be called coun-
ter-intuitive, and this is not because an abnormality of relay re,
is a priort more likely than an abnormality of resistor ry or of re-
lay rey. On the contrary: Model dy should be preferred even if, say,
ab(ry) had a higher prior likelihood than ab(re,). For what deci-
sively distinguishes d; from both dy and ds is that ab(re,) but
neither ab(r;) nor ab(re;) can easily be explained from the per-
spective of causality in this particular situation: Closing switch sy
along with all of its expected indirect effects causes the fact that
ab(res) finally holds, whereas ab(r;) and ab(re;) come out of the
blue in the unintended minimal models.

This disturbing observation resembles a key problem in the con-
text of the Qualification Problem in reasoning about actions [Mec-
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Carthy, 1977) if the latter is approached without supporting the
distinction between caused and unmotivated disqualifications of ac-
tions [Lifschitz, 1987].* The reader may also notice the similarities to
the famous Yale Shooting counter-example [Hanks and McDermott,
1987): A gun that becomes magically unloaded while waiting truly
deserves being called abnormal, whereas causality explains the death
of the turkey if being shot at with a loaded gun.

The key to a solution is to respect causality by conducting the
minimization step at the right time. Notice that the unintended mod-
els dy and ds have been obtained by minimizing ab in the resulting
state (as has dy). This did not allow for taking into account the cru-
cial causal dependence, for the phenomenon of causality manifests in
state transitions but not in a single, static state. The alternative is
to concentrate on the initial state when minimizing ab, i.e., on the
state prior to the closing of switch sy.

Suppose again given ab(ry), but now switch s; shall still be
open. Then it is consistent to assume that all other instances of ab
are false. More precisely, ab(ry) A ~closed(s;)A (4) A (7) admits a
unique ab-minimal model, viz.

do = {—ab(ry),ab(re;),ab(rs), 7ab(re,), 7ab(1li)}

Now, if switch s; is closed in the state which is depicted in Figure 1
and which satisfies dp, then the only possible resulting state satisfies
dy, as intended. In particular, causality ‘naturally’ brings about the
additional abnormality ab(re;) as indirect effect: According to the
topmost causal relationship in (5), closed(s;) causes active(re;)
given that —ab(r;) A —ab(re;). This in turn causes closed(sy) fol-
lowing the third causal relationship in (5). After that, finally, the sec-
ond causal relationship in (8) becomes applicable, yielding ab(re,).
The additional, caused abnormality is thus accounted for by means
of ramification—and not by means of minimization.

In case one has to deal with a whole sequence of actions, the
above argument needs to be iterated. If minimizing abnormality in
the finally resulting state risks to ignore causal information, then so
does minimization conducted in the final but one state, and so on.
Consequently, when the diagnostician reasons about the actions that
have been taken, then he or she should perform the minimization step

* An example is the Berkeley Rascal Trap [Thielscher, 1996a]: Suppose that the
action of inserting a potato into the tail pipe of a car is abnormally disqualified
if the potato is too heavy, and that the action of starting the engine of the car
is abnormally disqualified if the tail pipe houses a potato. Then we should
expect difficulties with starting the engine if a little rascal first tried to put
a potato into the tail pipe. But globally minimizing abnormalities in this
example produces a second model where the action of introducing a potato is
disqualified in the first place. While this disqualification is to be considered
abnormal, it avoids a disqualification of the following action of starting the
engine. Thus this second model minimizes abnormality as well, though it is
obviously counter-intuitive.
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as early as possible in order to exploit as much as possible causal in-
formation. This minimizing initially is justified by the commonsense
assumption that causality is effective only forward in time, by which
it is clear that no causal reason for an abnormality in the initial state
can possibly be known of. Of course this does not imply that such
a causal reason does not exist. But if it does, then it is not part
of the diagnostician’s knowledge, hence has no influence on the cor-
rect reasoning about this knowledge. The general paradigm of initial
minimization has previously been successfully employed for reason-
ing about space occupancy [Shanahan, 1995], for minimizing events
in narratives [Thielscher, 1998], and to account for causality in the
context of the Qualification Problem [Thielscher, 1996a).

In the following but one section, we present a formal theory of
dynamic diagnosis which reflects the insights gained in this section.
Prior to this, we recall from [Thielscher, 1997b] the formal notions
and notations related to the theory of causal relationships as means
to solve the plain Ramification Problem.

3 Causal Relationships
and the Ramification Problem

In formal systems for reasoning about actions, the Ramification Prob-
lem denotes the problem of handling indirect effects. As such, these
effects are not explicitly represented in action specifications but fol-
low from general domain knowledge, formalized as state constraints.
Recent research has revealed that incorporating the commonsense no-
tion of causality helps with solving this problem (e.g., [Elkan, 1992,
Lin, 1995, McCain and Turner, 1995, Thielscher, 1997b]). The theory
of causal relationships provides an approach along this line. In this
section we repeat the formal definitions underlying this theory. Our
goal is to provide a formalism which allows us to specify the behavior
of dynamic systems in terms of direct and indirect effects of actions.
We then take the resulting formalism as the basis for a theory of
dynamic diagnosis.

3.1 Fluents and States, Actions and Change

The concept of a state is fundamental for dealing with dynamic sys-
tems. A state is a snapshot of the system being modeled at a par-
ticular instant of time. States are composed of atomic propositions,
so-called fluents, which represent properties of entities. The truth-
value of any such proposition may change in the course of time as a
consequence of state transition, and each state is characterized by a
particular combination of truth values of all fluents.

Definition 1 Let & be a finite set of symbols called entities. Let
F denote a finite set of symbols called fluent names, each of which is
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associated with a natural number (the arity) and a scope, indicating
which entities may serve as arguments.

A fluent is an expression f(eq,...,e,) where f € F is of arity n
and where the n-tuple (e1,...,e,) € £ belongs to the scope of f.
A fluent literal is a fluent or its negation —f(eq,...,e,). A set of
fluent literals is inconsistent if it contains a fluent along with its
negation, otherwise it is consistent. A state is a maximal consistent
set of fluent literals. |

Example 1 Our electric circuit consists of the following 15 entities
(6 switches, 4 bulbs, 3 resistors, and 2 relays):

! I I . . . .
£ = {sl,sl,SQ,sQ,s3,s3,11,111,112,113,r1,r2,r3,re1,re2}

The various states our circuit may exhibit shall be described using
the three unary fluent names closed, active, and ab. The first
ranges over all switches, the scope of the second are both light bulbs
and relays, and the scope of the third are bulbs, relays, and resistors.
Examples for fluents are closed(s)), active(1i), and ab(ry), but
not, say, closed(rey) or ab(s)). In this way, the system state de-
picted in Figure 1 reads as follows if we assume that all components
are in order:

So = { —closed(sy), 7closed(s]),. ..,
—active(li),...,nactive(res), mactive(re,), (9)
—ab(1li),...,nab(ry), 7ab(rsy), 7ab(rey ), 7ab(resy) }

For convenience, we will use the following notational conventions:
If ¢ is a fluent literal, then by [|¢|] we denote its affirmative com-
ponent, that is, ||f(€)|| = |[|-f(€)|| = f(€) where f &€ F and € is a
sequence of n entities with n being the arity of f. This notation
extends to sets S of fluent literals as follows: ||S| = {||¢||: (€ S}.
E.g., whenever S is a state, then ||.S]| is the set of all fluents. If (
is a negative fluent literal, then —¢ should be interpreted as ||{||. In
other words, == f(€) = f(€). Finally, if S is a set of fluent literals,
then by -5 we denote the set {—(: (€ S}. E.g.,aset S of fluent
literals is inconsistent iff S N =5 # {}.

The elements of an underlying set of fluents can be considered
atoms for constructing formulas using the standard logical connec-
tives. Fluent formulas are needed to describe dependences among
the state components. Formally, each fluent literal (possibly contain-
ing variables®) is considered a fluent formulas; T (tautology) and
L (contradiction) are fluent formulas; and if /' and G are fluent
formulas, then so are =F, FAG, FVG, F D> G, F=G, dz. F, and

® Since the argument space of a fluent may be restricted according to a desig-
nated scope, we formally need to attach sorts to variables. In what follows,
it is assumed that fluent literals with variables are always well-formed in that
the scope of the fluent is respected by the sorts of these variables.
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—ab(r;) A —ab(re;) D [ active(re;) = closed(s;) ]
—ab(r;) A mab(rep;) D [ active(re;) = closed(sz) ]
—ab(rs;) A —ab(li) D [ active(li) = closed(ss) ]
—ab(r;) A mab(lig) D [ active(liy) = closed(s;) A closed(s)) ]
—ab(rs) A —ab(liz) D [ active(liz) = closed(ss) A closed(s)) ]
—ab(rs) A mab(lis) D [ active(liz) = closed(ss) A closed(s}) ]
active(re;) D closed(sz)
active(res) D closed(ss
Vo [ab(x) D —active(x) ]
ab(r;) A closed(s;) D ab(re;)
ab(r;) A closed(sz) D ab(res)

Figure 2: All state constraints for our example circuit.

Va.F' (where 2 is a variable). A closed formula is a fluent formula
without free variables. The notion of closed fluent formulas being
true in a state S is inductively defined as usual:

1. T is true and L is false in S

2. a fluent literal ¢ is truein S iff £ € 5,

3. FAG istruein § iff F' and G are truein 5

4. FV G istruein S iff /7 or G is truein § (or both);

5. FFO G is truein § iff F' is falsein S or G is truein S (or
both);

6. FF =G istruein 5 iff F and G are truein 5, or else F' and
G are false in 5

7. dxz. F is true in S iff there exists some e € & such that
F{z — e} is true in S;

8. Va. F' is true in S iff for each e € £, F{z — €} is truein 5.

Here, F{x — e} denotes the fluent formula resulting from replacing
in F all free occurrences of z by entity e (which should belong
to the sort of z; c.f. footnote 5). State constraints are closed fluent
formulas which all physically possible states of a system satisfy. These
states are also called acceptable.

Example 1 (continued) The 11 state constraints depicted in Fig-
ure 2 describe all the various physical relations among the components
in our example circuit. These constraints hold in Sy as defined in
equation (9), but they are violated, for instance, in a state where
closed(sy), Va.-ab(z), and —active(li) hold. ]

The second fundamental notion in Action Theory are the actions
themselves. Actions cause state transitions. The (direct) effect of an
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action is specified by saying which fluents change their truth-value
when the action is being performed. The formal notion of action
laws serves this purpose.

Definition 2 Let A be a finite set of action names, each of which
is associated with an arity and a scope. An action is a ground
term a(ey,...,e,) where a € A is of arity n and the n-tuple
(e1,...,€,) € E" belongs to the scope of a.

An action law is of the form

a(¥) transforms C into F

where ¥ is a sequence of pairwise distinct variables, a € A is of arity
equal to the length of Z, and where C' (the condition)and E (the ef-
fect) are sets of fluent literals (possibly with variables chosen from )
which satisfy the following. Both C{Z — €} and FE{Z+— €}, for
any sequence of entities € in the scope of a, are consistent; and
moreover, ||C{Z — ¢€}|| = ||F{Z ~ €}||, that is, condition and effect
always refer to the same fluents.® If S is a state, then a ground
instance a{Z — €} of an action law a = a(Z) transforms C' into ¥
is applicable to S iff C{Z — €} C 5. The application of a{Z — €}
to S yields (5\C{Z— €})U E{Z — €}. ]

Notably, due to ||C|| = || £]| the resulting set (S\C)U E is a state
if sois 5, but it may violate the underlying state constraints. As an
example, consider the action of toggling a switch. We use the unary
action name toggle in conjunction with these two action laws:

toggle(a) transforms {-closed(z)} into {closed(z)} (10)

toggle(a) transforms {closed(z)} into {-closed(z)}

If we perform the action toggle(s;) in state Sy from above (c.f.
equation (9)), then the first of the two laws is applicable on account
of {-closed(sy)} C Sp. The resulting state is

S1 = { closed(s;), ~closed(s)),...,
—active(li),...,active(re;), 7active(re,), (11)
—ab(1li),...,nab(ry), 7ab(rsy), mab(rey ), mab(rey) }

This state violates the state constraints of Figure 2 since only the
immediate effect of toggling switch sy has been computed.

Our Definition 2 does not exclude the existence of two or more
simultaneously applicable laws for one and the same action. This
supports the specification of actions with indeterminate effects, so-
called non-deterministic actions. Suppose, for example, it is totally

SIf & = T1,....Tn and € =e1,...,en, then {Z — €} means the simultaneous
replacing {z1 +— e1},...,{zn — en}. The requirement that condition and
effect concern the very same fluents simplifies the definition of how action
laws are applied. It does not impose a restriction of expressiveness since we
allow several laws for the same action.
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dark so that it is impossible to tell apart the three switches s}, s,
and sj. Nonetheless we want to close one of them (knowing they
all are currently open). Putting this plan into execution, there are
three possible outcomes: We either hit the first, the second, or else
the third switch. This may be formalized by the three action laws

close-a-switch transforms {-closed(s})} into {closed(s})}

close-a-switch transforms {-closed(s})} into {closed(s))}
!/ !/
3 3

close-a-switch transforms {-closed(s})} into {closed(s})}

Each one of these laws is applicable to a state where all three switches
are open, and they yield different resulting states when being applied.

3.2 Indirect effects

In all but very simple environments actions usually have greater im-
pact than what is specified in action laws. These laws describe the
direct effects of actions. Toggling a switch, for instance, has the only
direct effect of that very switch changing its position. The theory of
causal relationships takes the stance that the state is merely interme-
diate which results from accounting just for the direct effect. That
state may require further computation to accommodate additional,
indirect effects. In our running example, possible indirect effects are
activations of light bulbs and relays, or the attraction of a switch by
some relay.

To be more specific, each single indirect effect is obtained accord-
ing to so-called causal relationships, whose formal definition is as
follows.

Definition 3 TLet & and F be sets of entities and fluent names,
respectively. A causal relationship is of the form

¢ causes p if @

where @ (the context) is a fluent formula and both ¢ (the triggering
effect) and o (the ramification) are fluent literals (possibly contain-
ing variables). ]

The intended reading is the following: Under condition @, the (pre-
viously obtained, direct or indirect) effect ¢ triggers the indirect ef-
fect p. For notational convenience, we use ¢ causes p as a shorthand
form of the causal relationship ¢ causes p if T.

We have somewhat loosely said that indirect effects are conse-
quences of state constraints. Having the formal definition of causal
relationships, this correspondence can be stated more precisely. A
causal relationship ¢ causes p if ® is consequence of some state con-
straint if the latter implies ® A ¢ D p. However, not all such purely
logical consequences of state constraints correspond to indirect ef-
fects, as has first been observed in [Lifschitz, 1990]. To see why,
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recall our state constraint active(li;) = closed(s;) A closed(s]).
Among its logical consequences are the two implications

closed(s]) A closed(s;) D active(liy)
—active(lis) A closed(s;) D —closed(s))

Yet only the first one gives rise to a valid causal relationship, viz.
closed(s;) causes active(liy) if closed(s})

The second of the two implications, if taken as causal relationship,
would read

closed(s;) causes —closed(s}) if —active(liy)

In other words, closing switch s; would cause switch s] to open
rather than light bulb 1i; to becoming activated. This is obviously
an undesired conclusion. The observation that a state constraint may
not contain sufficient information to tell apart its causal consequences
was the striving force for developing the theory of causal relation-
ships. Causal relationships thus contain more information than the
mere state constraints. It is, however, not necessary to draw them up
all by hand. Causal relationships can rather be generated automat-
ically given additional domain-specific knowledge—called influence

information—of how fluents may generally affect each other. For
details see [Thielscher, 1997b].

Example 1 (continued) The 23 causal relationships shown in
Figure 3 represent all indirect effect that can possibly occur in our
example circuit. They derive from the various state constraints listed
in Figure 2.7 ]

The application of a causal relationship yields a single indirect
effect. To reiterate this process, causal relationships repeatedly ma-
nipulate state-effect pairs (9, £'): State S is an intermediate result
where some but not yet all indirect effects have been accounted for,
and F contains all direct and indirect effects computed so far.

Definition 4 Let (S5,F) be a pair consisting of a state S and
a set of fluent literals F. Furthermore, let r = ¢ causes ¢ if ® be
a causal relationship, and let = denote a sequence of all free vari-
ables occurring in ¢, p, or ®. Then a ground instance r{Z — €} is
applicable to (S, F) iff {7 — €} € £ and ®{7 — €} A ~p{Z — €}
is true in 5. The application of r{Z — €} to (S5, F) yields the
pair (57, ') where 5" = (5 \ {-0{Z— €}}) U {o{7— €}} and
B = (E\ {~0{7 — &}}) U {of7 — 7). .

T As indicated, these causal relationships can be automatically obtained from
our state constraints by providing the additional domain knowledge that
changing the position of a switch does have the potential to affect certain
light bulbs and relays, and that each relay has the potential to affect the
opposite switch’s position.
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closed(s;) causes active(re;) if —ab(ri)A —|ab(re1)
—iclosed(s;) causes —active(rei) if - b(rl) —ab(rey)
closed(s;) causes active(rep) if —ab(rz) A —ab(re,)
—closed(s;) causes —active(rep) if —ab(r:) A —ab(re;)
closed(s;) causes active(li) if -ab(rs) A —ab(1li)
—iclosed(s;) causes —active(li) if —ab(rs) A —ab(li)
closed(s;) causes active(li;) if closed(s]) A —ab(ri) A —ab(li;)
closed(s;) causes active(li;) if closed(si) A —ab(ry) A —ab(liy)
—closed(s;) causes —active(liy) if —ab(ri) A —ab(li;)
—closed(s;) causes —active(liy) if —ab(ri) A —ab(li;)
closed(s;) causes active(li,) if closed(sj) A —ab(rs) A —ab(li,)
closed(sy) causes active(li,) if closed(s;) A —ab(rs) A —ab(li,)
—iclosed(s;) causes —active(lip) if —ab(rz) A —ab(lis)
—closed(s)) causes —active(li,) if —ab(rs) A —ab(li,)
closed(ss) causes active(lis) if closed(s;) A —ab(rs) A —ab(lis)
closed(s;) causes active(lis) if closed(ss) A —ab(rs) A —ab(lis)
—closed(s;) causes —active(lis) if —ab(rs) A —ab(lis)
—closed(s}) causes —active(lis) if —ab(rs) A —ab(lis)
active(re;) causes closed(s;)
active(re;) causes closed(ss)
ab(z) causes —active(z)
closed(sl) causes ab(rey) if ab(ry)
closed(s;) causes ab(res) if ab(rs)

Figure 3: The causal relationships that hold in our example circuit.

In words, a causal relationship is applicable if the associated con-
dition @ holds in S5, the particular indirect effect p is currently
false, and the cause ¢ is among the current effects, F. As the
result of the application the indirect effect p becomes true in 5
and is added to F. If R is a set of causal relationships, then by
(S,F) ~gr (5, F") we denote the existence of an element in R
whose application to (9, F) yields (5, E’). Notice that if S is a
state and £ is consistent, then (5,F) ~x (5, E’) implies that 5’
is a state and F’ is consistent, too. We adopt a standard notation in
writing (9, F) 5r (957, E') to indicate that there are causal relation-
ships in R whose successive application to (9, F) yields (57, E’).

Now, suppose given a preliminary state 5 as the result of having
computed the direct effect F of an action via Definition 2. Ad-
ditional, indirect effects are then accounted for by (non-determin-
istically) selecting and (serially) applying causal relationships until a
state satisfying the state constraints obtains.

Definition 5 Let &, F, A, and L be sets of entities,
names, action names, and action laws, respectively. Furthermore, let
C be a set of state constraints and R a set of causal relationships.
If S is an acceptable state and a an action, then a state S’ is a
successor state of S and «a iff the following holds: Set L contains
an applicable instance a transforms €' into F of an action law such
that

1. ((S\C)UE,E) ~g (5, E

fluent

) for some E’, and
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2. 5" is acceptable (wrt. C).
(]

It is worth mentioning that neither existence nor uniqueness of a
successor state is guaranteed in general. Regarding uniqueness, the
application of a fixed set of causal relationships is known to be order
independent.® Yet a different ordering may allow the application of
a different set of relationships, in which case the resulting successor
states need not coincide. This characterizes actions that are non-
deterministic as regards their indirect effects. If no successor state at
all exists although one or more action laws are applicable, then this
indicates that the action in question has additional, implicit precon-
ditions [Ginsberg and Smith, 1988b, Lin and Reiter, 1994] which are
not met.

Example 1 (continued) Performing toggle(s;) in state S (c.f.
equation (9)) results in the intermediate state-effect pair

(51,{closed(s;)})

(where S is as in equation (11)) according to the action laws for
toggle(z) (c.f. equation (10)). The only applicable chain of causal
relationships which results in a state that satisfies all underlying con-
straints, is the following:

closed(s;) causes active(re;) if —ab(r;)A —ab(re;)

active(re;) causes closed(sy)

active(re,

) (
) (
closed(s,) causes active(re;) if -—ab(ry)A —ab(re;)
) causes closed(ss
) (

)
closed(s;) causes active(li) if -ab(li)

The successor state thus obtained is

5" = { closed(s;), 7closed(s]), closed(s,),. ..,
active(li), mactive(liy),...,
active(re;),active(res),

—ab(1li),...,nab(ry), 7ab(rsy), 7ab(rey ), 7ab(resy) }

(12)

Causal relationships help addressing the two key issues of the
Ramification Problem. The commonsense law of persistence is weak-
ened by further manipulating the state resulting from the application
of this law and, by virtue of being directed relations, causal relation-
ships allow to tell apart causal from mere logical consequences of
state constraints. For a more detailed discussion on these and other
aspects of the theory of causal relationships, including a thorough
comparison with related approaches to the Ramification Problem,
we refer the reader to [Thielscher, 1997b].

8 Proposition 7 in [Thielscher, 1997b]
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4 Dynamic Diagnosis

The framework introduced in the previous section provides means to
give formal specifications of dynamic systems. The static part of such
a specification fixes the entities and fluent names, and it also describes
the static relations among the fluents in form of state constraints. The
dynamic part specifies the actions which can be used to manipulate
the system’s state. These definitions are accompanied by action laws,
focusing on the direct effects, and by causal relationships, concerning
the indirect effects. Qur theory of dynamic diagnosis to be developed
next builds on this framework.

To begin with, descriptions of dynamic systems which are subject
to diagnosis are assumed to include and employ the special fluent
name ab to represent any aspect of abnormality in the system. The
intuition is that usually all instances of ab are false. If, however,
the system does not exhibit its regular behavior, then this can be
accounted for by one or more affirmative instances of ab.

Our theory of dynamic diagnosis respects available knowledge of
the a priori likelihood of component failures. Since it is often dif-
ficult if not impossible to provide precise numerical knowledge of
probabilities, the theory accepts qualitative rather than quantita-
tive information. Moreover, it does not rely on complete knowl-
edge. Possibly incomplete information as to different degrees of ab-
normality is formally represented by a partial ordering, denoted <,
among the instances of fluent ab.? If, for instance, we specify that
ab(1i) < ab(ry), then this indicates that a broken light bulb 1i is
a priori more likely than resistor r; being out of order. Being a
partial ordering, the comparison relation < may be indifferent re-
garding certain instances of ab. The extreme is the empty relation,
in which case diagnosing must be performed from very first principles.
Thus our theory assumes that all abnormalities have equal a priori
likelihood unless explicitly stated otherwise.!”

Definition 6 A system description is a tuple (£,F, A, L,C,R,<)
consisting of entities, fluent and action names, action laws, state con-
straints, causal relationships, and a partial ordering on the set of
ground instances of ab € F. |

Example 1 (continued) Our example system can be described by
the 7-tuple SD; consisting of

o the 15 entities and 3 fluent names as introduced in the preceding
section;

? Partial orderings are binary relations which are irreflexive, antisymmetric,
and transitive. These orderings are strict if they relate any pair of disjoint
elements either way. Later in this paper we refer to the notion of strict
orderings (written <« ) extending a partial one (say, < ), which means that
a€b whenever a < b.

1% In particular, we do not try to deduce qualitative knowledge of a priori like-
lihood from state constraints, just because these are known to provide insuf-
ficient causal information [Pearl, 1988].
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¢ the unary action name toggle accompanied by the two action
laws of equation (10);

o the state constraints and causal relationships of Figure 2 and 3,
respectively;

e the knowledge that both light bulbs and relays are more likely
to break than resistors, i.e., the following partial ordering:

ab(cy) < ab(ez)
for each (c1,¢3) € {11,114,1i5,1i5,res,rer} X {ry,rs, 3}

System descriptions are used to specify the general static and dy-
namic properties of systems. These description form the basis for
diagnosis problems, which are particular scenarios in which certain
observations suggest that the system does not exhibit its regular be-
havior. Observations in classical diagnosis concern a unique state
of the system. Usually they describe the state of the system only
partially, in particular as far as abnormalities are concerned. Diag-
nosis then amounts to completing these partial descriptions, if pos-
sible. In dynamic diagnosis, observations may refer to system states
at different stages, that is, prior, during, or after the performance of
sequences of actions. The diagnosis task then is to draw the right
conclusions from these situation-dependent observations, and in par-
ticular to propose diagnoses in case the observations suggest some
abnormal behavior. Formally, observations are fluent formulas at-
tached to a particular action sequence after whose performance the
formula has been observed true.

Definition 7 Let SD be a system description. An observation is
an expression
Fafter [ay,...,a,]

where F' is a closed fluent formula and each of aq,...,a, is an
action (n > 0). A diagnosis problem is a pair (SD, Q) consisting of
a system description SD and a set of observations O. ]

Example 1 (continued) The observation

—closed(sy) A 7closed(s)) A nclosed(s)) A nclosed(s)) (13)
after []

constitutes a partial description of the initial state of our circuit as
depicted in Figure 1. Suppose it has further been observed that light
bulb 1i stays off after toggling switch s;. This we can formally
express as

—active(li) after [toggle(si)] (14)
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It has been said that diagnosing amounts to drawing the right
conclusions from the given observations and on the basis of the for-
mal system description. We are now prepared for a precise definition
of this task. In general, the observations that constitute a diagnosis
problem provide only incomplete information as to the entire state
of affairs. This is especially true if non-deterministic actions are in-
volved, because then complete information means to know the actual
result of any possible sequence of non-deterministic actions. One
therefore has to expect that there be more than just one unique state
of affairs that fits the observations. Following standard terminology
in logic, we call any possible state of affairs an interpretation, and
if the latter accounts for all given observations, then it is called a
model.

Interpretations are constructed on the basis of a branching time
structure, where each branch represents the performance of a particu-
lar action sequence and is rooted in the initial state of the system. An
interpretation therefore must not just tell us exactly what happens
during the execution of one particular sequence of actions. Rather it
needs to provide this information as to any possible course of events.
This supports so-called hypothetical reasoning about actions, which
in turn helps with finding further actions to be taken towards fully
determining the cause of an observed system failure. Of course we
assume the system always evolves according to the underlying action
laws and causal relationships. That is to say, whenever some state §
results from performing some action sequence, and some further ac-
tion a is executed, then the result should be a successor of 5 and a.

Definition 8 Let (5D,0) be a diagnosis problem. The transi-
tion model % of SD is a mapping from state-action pairs to (pos-
sibly empty) sets of states such that X(9,a) is defined iff § is
acceptable,!t and S’ € ¥(9,a) iff S is a successor of S and a.

An interpretation for (SD,Q) is a pair (Res,Y) where ¥ is the
transition model of SD and Res is a partial mapping from finite
action sequences (including the empty one) to acceptable states such
that

1. Res([]) is defined;
2. for any sequence a* = [ay,...,ag_1,a;] of actions (k > 0),

(a) Res(a*) is defined iff sois Res([aq,...,ar_1]) and the set
Y(Res([a1,...,ak-1]),ar) is not empty, and

(b) Res(a™) € ¥(Res([a1,...,ar-1]),ar).

Example 1 (continued) Let SD; be as above, and let ¥; be
its transition model as determined by the underlying action laws and

11 Recall that acceptable states are those which satisfy all state constraints.
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causal relationships. Our electric circuit is deterministic, that is, for
each acceptable state S and each action a the set X1(5,a) of suc-
cessor states is either empty or singleton. In deterministic systems in-
terpretations are uniquely characterized by the initial state, Res([]).
In this way, setting Res([]) = So (c.f. equation (9)) determines one
out of many possible interpretations for a diagnosis problem in our
example system. |

Interpretations always tell us the exact result of performing any
executable action sequence.!? It is therefore straightforward to de-
termine whether an observation is true with regard to a particular
interpretation. First of all, it can be true only if the state is defined
which results from performing the sequence of actions in question. If,
moreover, the fluent formula in question is true in that state, then
the observation itself is true. This naturally leads to the definition of
models, which are interpretations in which all observations made in
a diagnosis problem are true.

Definition 9  Let (Res,X) be an interpretation for a diagnosis
problem (SD, Q). An observation F after[aq,...,a,] (n > 0)is true

in this interpretation iff Res([a1,...,a,]) is defined and F' is true
in Res(lai,...,a,]). An interpretation [ is a model for a diagnosis
problem (SD,O)iff all observations in O are true in [. ]

Example 1 (continued) Let SD; and ¥; be as above, and let
the interpretation I = (Res,X;) be determined by Res([]) = So.
Observation (13)is true in I since all observable switches are indeed
open in the initial state Sy. Observation (14), on the other hand, is
false in I. For the only successor of Sy and toggle(s;) is S’ of
equation (12), in which —active(1li) is false. There exist a number
of other interpretations in which both observations are true, hence
which are models of the corresponding diagnosis problem. Among

them are models which correspond to the five diagnoses dy,...,ds
(c.f. equation (6)), but there are also models whose initial states
include many more abnormalities. |

So far our theory does not treat the instances of fluent name ab
any special. Any interpretation that fits the observations constitutes
a model, regardless of the amount of abnormality it presupposes.
What still needs to be done is to suitably reflect the intention of
using abnormality fluents, namely, to assume normal circumstances
to the largest possible extent. Put in other words, among all models
for a diagnosis problem we are especially interested in those which
are somehow minimally abnormal.

We have argued in Section 2 that minimization should be con-
ducted initially and only once in order to overcome the specific dif-

12 An action sequence «* is called executable wrt. interpretation (Res, ) iff

Res(a™) is defined.
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ficulties which the phenomenon of causality raises in dynamic diag-
nosis. Minimization is formally achieved by a model preference cri-
terion. Basically, models are preferable which declare false initially
more instances of ab than other models. This strategy needs to be
refined if the underlying system description includes qualitative prior
knowledge of the likelihood of abnormalities. In this case instances
of ab which are more unlikely are to be preferably minimized.

Definition 10  Let (SD,0) be a diagnosis problem with par-
tial ordering <. If M = (Res,X) is a model for (SD,Q), then
M is preferred iff we can find a strict ordering < extending <
such that the following holds: For each model M’ = (Res’,X) for
(SD,0) and each fluent ab(c) € Res([])\ Res'([]), there is some
ab(c’) € Res'([])\ Res([]) such that ab(c)<ab(c) ]

In words, a preferred model is obtained by first choosing a minimiza-
tion strategy, that is, a strict ordering which respects the given partial
one. With the ordering fixed all models are preferred whose evolu-
tion function Res satisfies the following: Suppose some abnormality
ab(c) is initially true in Res but false in the evolution function Res’
of some other model. Then there must be another abnormality ab(¢’)
which is of higher priority than ab(¢) according to the chosen strict
ordering and which is initially false in Res but true in Res’. Notice
that the minimization strategy, i.e., the strict ordering, need not be
unique, namely, in case the underlying partial ordering is truly par-
tial. Different minimization strategies may lead to different preferred
models, which all have to be considered equal thanks to the lack of
more precise knowledge.

Example 1 (continued) Let SD; and ¥; be as above, and let
Oy consist of the two observations (13) and (14). Each preferred
model (Res,¥q) of (SDq,0) satisfies exactly one of the following
conditions:

1. ab(rey) € Res([]), and —ab(c) € Res([]) for all ¢ # req;
2. ab(re;) € Res([]), and —ab(c) € Res([]) for all ¢ # rey;
3. ab(1i) € Res([]), and —ab(c) € Res([]) for all ¢ # 11

Models that do not obey either of these conditions do not admit a
strict ordering < satisfying the requirements of Definition 10. To
see why, let, for instance, M; = (Resy, Y1) denote a model where
ab(ry) € Resi([]). In order for M; to be preferred, each model
that declares initially false ab(r;) should admit another abnormal-
ity instead. Moreover, this ‘compensating’ abnormality needs to be
less preferred according to some self-chosen strict ordering—which,
of course, must respect the given partial one. Now, there are models
which declare initially false ab(r;). These models indeed each admit
another abnormality, e.g., the ones whose initial states have ab(re;)
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as the only affirmative instance of ab. But any strict ordering with
ab(ry)<ab(re;) violates the given ab(re;) < ab(ry), which is why
M; cannot be preferred.!? |

Preferred models for a diagnosis problem provide what we are
looking for, namely, the diagnoses. More specifically speaking, we
can take as diagnosis any distribution of initial affirmative instances
of fluent ab if this distribution occurs in at least one preferred model.
Following standard terminology, the notion of preferred model also
allows a more general definition of what conclusions can be drawn
from a formal diagnosis problem.

Definition 11 Let (SD,0) be a diagnosis problem. An observa-
tion is entailed by (SD,Q) iff it is true in all preferred models for
(5D, 0). n

This entailment relation is obviously truly nonmonotonic in that
adding observation to a diagnosis problem may disable previously
valid entailments. It thus does not enjoy the property of restricted
monotonicity of [Lifschitz, 1993]. This property is indeed unde-
sired once state descriptions include fluents representing abnormali-
ties [Thielscher, 1996a).

The following result shows that our theory of entailment solves
the problem elaborated in Sectioon 2.

Theorem 12  Let SDy be the system description of the circuit of
Figure 1 as used throughout this section, and let O consist of the
observation

—closed(sy) A —closed(s]) A ~closed(s)) A ~closed(ss) A ab(ry)
after []

Then (SD1,0) entails ab(re,) after [toggle(sy)].

Proof: It is consistent with the observation to assume that the
given ab(ry) is the only initial abnormality. All preferred models
(X, Res) therefore coincide as far as abnormality in Res([]) is con-
cerned. In particular, we know that —ab(r;) A —ab(re;) is true
in each such Res([]). Therefore, according to the transition model
of 5Dy, after closing switch s; the topmost causal relationship
in Figure 3 applies and activates relay re;, which in turn causes
closed(s,y) and, hence, ab(re,) following the fifth causal relation-
ship from the bottom and the bottommost, respectively, of Figure 3.
Thus we know that ab(re;) € Res([toggle(sy)]) holds in all pre-
ferred models. Hence, ab(re,) after [toggle(sy)] is entailed. ]

12 The reader should notice that we have obtained the above three diagnoses
in the light of resistors being a priort more unlikely to break than relays
or light bulbs. Had we had to diagnose from first principles, three more
preferred models would have been obtained, each of which assesses one of
ab(r;) (1=1,2,3).
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Entailed observations need not be restricted to the sequence of ac-
tions that has actually been performed. In particular, they may refer
to actions possibly taken in the future. In diagnosis problems, this
kind of hypothetical reasoning may help with suggesting actions to be
taken towards fully determining the cause for an abnormal behavior
in case the given observations do not entail a unique conjunction of
affirmative instances of ab. The diagnosis problem may additionally
entail observations that indicate under what circumstances a more
definite conclusion would be possible. We conclude this section with
a formalization of the diagnosis process described in the introduction,
where the active production of observations helped the diagnostician
come to a suitable unique diagnosis.

Example 2 Let SD; be as above, and let Oy consist solely of ob-
servation (13). Then it is consistent to assume away all abnormalities.
Consequently, the observation

active(li) after [toggle(s;)]

is true in all preferred models, hence is entailed. This conclusion
is invalidated if the observation —active(1li) after [toggle(si)] is
added. The modified diagnosis problem entails

ab(re;) V ab(rey) V ab(li) after []

which indicates the three possible diagnoses for this problem. (In fact,
a stronger conclusion is entailed, namely, that these three diagnoses
are pairwise exclusive.)

According to the underlying transition model, the diagnosis prob-
lem (SDq,0;) also entails the observation

active(liz) D ab(li) A —ab(res) A —ab(re;)
after (15)
[toggle(si), toggle(ss)]

That is to say, if toggling switch s} activated light 1is, then the di-
agnosis problem would admit a unique solution, namely, the diagnosis
that bulb 1i is broken. (To see why observation (15) is entailed, no-
tice first that light bulb 1iz can only be on if switch s3 is closed.
But then light 1i has been observed off after toggling s;, which is
possible just in case ab(1i) held initially. The three original diag-
noses being exclusive, it follows that the two relays re; and re,,
respectively, are—by default—in order.) |

5 A Calculus

In this section, we briefly describe a suitable action calculus which
is capable of handling exceptions to ramification in precisely the way
our theory of dynamic diagnosis suggests how it should be done.



99

Our encoding of diagnosis problems builds on results described in
preceding papers on both the Ramification and Qualification Prob-
lem [Thielscher, 1997b, Thielscher, 1996a, Thielscher, 1996b]. These
axiomatizations all employ the representation technique underlying
the Fluent Calculus [Holldobler and Schneeberger, 1990, Thielscher,
1997b]. As opposed to the Situation Calculus [McCarthy and Hayes,
1969], the former employs structured state terms which each con-
sists in a collection of all fluent literals that are true in the state
being represented. To this end, fluent literals are reified, i.e., for-
mally represented as terms. An example state term is —closed(sy)o
active(li) o —ab(re;)o... where the negation sign denotes a spe-
cial unary function and o a special binary function which obeys the
laws of associativity and commutativity. It has first been argued
in [Holldobler and Schneeberger, 1990] that this representation tech-
nique, which appeals exclusively to classical, i.e., monotonic logic,
avoids extra axioms to encode the general commonsense law of per-
sistence: The effects of actions are modeled by manipulating state
terms through removal and addition of sub-terms. Then all sub-terms
which are not affected by these operations remain in the state term,
hence continue to be true. In this way the Fluent Calculus provides
a uniform solution to both the representational and the inferential
aspect of the Frame Problem.

In [Thielscher, 1997b], we have presented a Fluent Calculus-based
axiomatization of the theory of causal relationships. This axiomati-
zation has been proved correct, as has the axiomatization described
in [Thielscher, 1996a, Thielscher, 1996b], which embeds the former
in Default Logic [Reiter, 1980] to address the Qualification Problem.
The use of Default Logic can be straightforwardly adapted to the the-
ory proposed in the present paper.'* To this end, this open default
rule (which represents all of its ground instances) is introduced:

: Vs [ Initial(s) D —holds(ab(z),s)]
Vs [ Initial(s) D —holds(ab(z), s) ]

It should be read as follows: Provided it is consistent, conclude that if
s encodes the initial state then an instance ab(c) is false in s. Addi-
tionally, to minimize certain abnormalities with higher priority if nec-
essary, we employ the concept of Prioritized Default Logic [Brewka,
1994]. The resulting axiomatization is provably correct wrt. the for-
mal theory developed in the preceding section. That is to say, in
the corresponding default theory the encoding of an observation is
skeptically entailed (see [Reiter, 1980]) if and only if the abstract di-
agnosis problem entails the observation according to Definition 11.
This correctness result follows directly from the results and proofs
in [Thielscher, 1996b], to which we refer the reader for full details.

14 Tt should be stressed that the Fluent Calculus provides monotonic solutions
to both the Frame Problem as well as the Ramification Problem. Yet both
the Qualification Problem and, as we have seen, the problem of ramifications
having exceptions necessitate some kind of nonmonotonicity.
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6 Discussion

We have proposed a formal theory of dynamic diagnosis, where the
system under examination is subject to actions, e.g. performed by
the diagnostician. This dynamic aspect we have captured by ap-
pealing to Action Theory. The behavior of a system under healthy
condition is specified by means of state constraints. These formu-
las, static by nature, give rise to indirect effects once the dynamic
aspect enters. Diagnosis is required in case the system does not ex-
hibit its regular behavior. In terms of Action Theory, this amounts
to accounting for exceptions to both state constraints and the ram-
ifications they trigger. We have illustrated that the dynamic aspect
raises a new challenge for formal theories of diagnosis, which is due
to the phenomenon of causality. We have shown how this challenge
can be met on the basis of the theory of causal relationships. To this
end, we have taken abnormalities as fluents which are assumed false
initially but may be indirectly affected by the execution of actions.
Besides exploiting causal information when generating the most plau-
sible diagnoses, our theory also takes into account possibly available,
qualitative knowledge of the a priori likelihood of components to fail.
For the entire theory there exists a provably correct axiomatization
based on the Fluent Calculus paradigm and which uses Default Logic
to accommodate the nonmonotonic aspect of the diagnostic problem.

We have chosen the term “dynamic” solely to reflect the fact that
the systems under investigation may exhibit different states in the
course of time, as a consequence of actions. While in the diagnosis
community the notion of “dynamic diagnosis” usually refers to the
analysis of self-evolving systems, recent work in Action Theory (e.g.,
[Thielscher, 1995, Reiter, 1996, Shanahan, 1997)], just to mention a
few) showed that the gap is less deep than one might expect between
dynamic systems which idle unless actions are performed, and those
that are self-evolving. In particular, the theory of causal relation-
ships, along with its axiomatization on the basis of the Fluent Calcu-
lus, has recently been extended to allow for natural events aside from
exogenous, volitional actions [Thielscher, 1998]. By nature causal
relationships apply whenever some effect occurs, no matter whether
the latter is a consequence of an exogenous action or of an internal
event.

The main concern of [Thielscher, 1998] is the problem of mini-
mizing ecent occurrences wrt. formal scenario descriptions. Coupling
this work with the result of the present paper would yield a gener-
alized theory of so-called event-based dynamic diagnosis, where part
of a diagnosis is a sequence of events according to which the system
supposedly has evolved. This would bring our work closer to that
of [Cordier and Thiébaux, 1994]. The main conceptual difference
is that the latter work is mostly defined on explicit state transition
models while we started off from compact and concise specifications
of dynamic systems in terms of effect descriptions, state constraints,
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and causal relationships. The authors of [Cordier and Thiébaux,
1994] themselves stress the importance of dealing with such com-
pact specifications and in particular of a satisfactory solution to the
Ramification Problem, which the theory of causal relationships pro-
vides [Thielscher, 1997b].

Action Theory as the basis for dynamic diagnosis has been inde-
pendently proposed in [Mcllraith, 1997a, Mcllraith, 1997b]. There a
Situation Calculus-based axiomatization of actions and their direct
and indirect effects is used directly to formalize and solve dynamic
diagnosis problems. In comparison to our theory, a restriction is
imposed on the diagnosis problems which can be expressed due to
the restricted form of state constraints the theory supports, namely,
which need to form a so-called stratified theory. A second restriction
stems from the fact that diagnosis is performed from first principles;
knowledge as to the a priori likelihood of particular abnormalities
is not supported. Minimization in this approach is used for two dif-
ferent purposes; first, to assume away abnormal exceptions to state
constraints and ramifications and, second, to solve the Ramification
Problem itself. Care has therefore to be taken that these two min-
imization steps do not interfere. As a solution, the minimization
accounting for indirect effects is performed in a pre-processing step.
Thus the computation of indirect effects is ‘compiled’ into the action
laws. In this way the Ramification Problem is circumvented for the
price of a potentially redundant axiomatization. Arguments in favor
of the theory of causal relationships as a solution to the Ramifica-
tion Problem and a thorough comparison to other approaches can be
found in [Thielscher, 1997b].

Generally, the problem of ramifications having exceptions has re-
ceived little attention in literature up to now, probably because satis-
factory solutions to the Ramification Problem itself have not emerged
until very recently. To the best of the author’s knowledge, the only
existing papers dealing with qualifications of ramifications are [Baral
and Lobo, 1997, Zhang, 1996]. In both of them expressions resem-
bling causal relationships are allowed to be defeasible. The first of
the approaches suffers from a rather formal, hence less intuitive de-
finition of successor states, which essentially relies on the theory of
answer sets in extended logic programs [Gelfond and Lifschitz, 1991].
This makes it difficult to verify the author’s claim that their approach
does respect causal information when minimizing abnormality. On
the other hand, the authors admit that their approach, as it stands,
is restricted to deterministic system descriptions, as opposed to our’s.
The second of the aforementioned approaches, [Zhang, 1996], does not
go beyond defining a notion of successor state based on minimizing
abnormality. If this approach shall be applied to dynamic diagnosis,
then measures need to be taken in order not to getting caught in the
causality trap illustrated with our key example of Section 2.
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