
GDL-III: A Proposal to Extend the Game Description
Language to General Epistemic Games

Michael Thielscher1

Abstract. We propose an extension of the standard game descrip-
tion language for general game playing to include epistemic games,
which are characterised by rules that depend on the knowledge of
players. A single additional keyword suffices to define GDL-III, a
general description language for games with imperfect information
and introspection. We present an Answer Set Program for automati-
cally reasoning about GDL-III games. Our extended language along
with a suitable basic reasoning system can also be used to formalise
and solve general epistemic puzzles.

Introduction. A general game player is a system that can under-
stand the rules of new strategy games at runtime and learn to play
these games effectively without human intervention [4]. The game
description language GDL has become the standard for describing
the rules of games to general game-playing systems [3].

The extension GDL-II has been developed with the aim to include
general imperfect information games [5]. While these games require
general game players to reason about their knowledge of the state
of a game, GDL-II does not support the specification of games with
epistemic goals or, more generally, with rules that depend on the epis-
temic state of players. As an example, consider the game NUMBER-
GUESSING from the GDL-II track at the AI’12 general game playing
competition,2 in which the goal for a single player is to repeatedly ask
yes/no questions to determine an initially unknown number. How-
ever, the player can win merely by guessing correctly; the game de-
scription language does not provide means to specify, as a necessary
winning condition, that the player must actually know the number.
Another example of games beyond the expressiveness of GDL-II are
so-called Russian Card problems [2], where the goal of two cooperat-
ing players is to inform each other about their hands through public
announcements without a third player being able to learn anything
from their communication.

The purpose of this paper is to propose a formal language suit-
able for general game playing that supports the encoding of game
rules which depend on the epistemic states of the players. We will
show that a single additional keyword suffices to define GDL-III, a
general description language for games with Imperfect Information
and Introspection. The new keyword can be used to express individ-
ual knowledge, which can also be nested (e.g. player A knows that
her cards are known to player B) as well as common knowledge (e.g.
player C does not know of any card held by another player and every-
one knows this—and also everyone knows that everyone knows etc).
While the main purpose of our language extension is to allow for

1 UNSW Australia, email: mit@unsw.edu.au. This research was supported by
the Australian Research Council under grant no. DP150101351. The author
is also affiliated with the University of Western Sydney.

2 see ai2012.web.cse.unsw.edu.au/ggp.html

the description of epistemic games for the purpose of general game
playing, we will furthermore demonstrate how GDL-III can be used
to encode, and automatically solve, epistemic puzzles like Cheryl’s
Birthday, which recently acquired public fame [1].

Game Descriptions. The declarative Game Description Language
(GDL) uses a prefix-variant of the syntax of normal logic programs
along with the following special keywords, the last two of which have
been added in GDL-II for imperfect-information games.

(role R) R is a player
(init F) feature F holds in the initial position
(true F) feature F holds in the current position
(legal R M) R has move M in the current position
(does R M) player R does move M
(next F) feature F holds in the next position
terminal the current position is terminal
(goal R V) player R gets payoff V

(sees R P) player R is told P in the next position
random the random player (aka. Nature)

GDL-III = GDL-II + Introspection. We define GDL-III as an
extension of GDL-II by a new keyword for introspection,

(knows R P) player R knows P in the current position
(knows P) P is common knowledge

along with the following additional restrictions on syntactically valid
game descriptions G:

1. knows only occurs in the body of clauses, and neither role nor
init depend on knows.

2. There is a total ordering > on all predicate symbols P that occur
as argument of knows in G such that P > Q whenever P itself
depends on (knows R Q) or (knows Q) in G.

3. If P occurs as argument of knows in G then P does not depend
on does in G.

Note the use of reification, whereby a defined predicate, P, oc-
curs as an argument of another predicate. Nested knowledge can
be expressed with the help of auxiliary predicates, for example,
(knows a kbp) along with (<= kbp (knows b p)). The
syntactical restrictions then ensure that nested knowledge is hierar-
chical (condition 2) and confined to state-dependent properties (con-
dition 3). The former simply disallows circular definitions, as in
(<= p (knows q)), (<= q (knows p)), while the latter
restriction ensures that knowledge only refers to the current state and
not to future actions.



1 (role player) (role random)
2
3 (number 1) ... (number 32)
4 (succ 0 1) ... (succ 31 32)
5 (<= (less ?m ?n) (or (succ ?m ?n)
6 ((succ ?m ?l) (less ?l ?n))))
7 (init (step 0))
8
9 (<= (legal random (choose ?n))

10 (number ?n) (true (step 0)))
11 (<= (legal random noop) (not (true (step 0))))
12
13 (<= (legal player noop) (true (step 0)))
14 (<= (legal player (ask_if_less ?n))
15 (number ?n) (not (true (step 0))))

16 (<= (sees player yes)
17 (does player (ask_if_less ?n))
18 (true (secret ?m)) (less ?m ?n))
19
20 (<= (next (secret ?n)) (does random (choose ?n)))
21 (<= (next (secret ?n)) (true (secret ?n)))
22 (<= (next (step ?n)) (true (step ?m)) (succ ?m ?n))
23
24 (<= (num ?n) (true (secret ?n)))
25 (<= (kows_the_number ?r) (role ?r) (knows ?r (num ?n)))
26

27 (<= (terminal) (or (knows_the_number player)
28 (true (step 12))))
29 (<= (goal player 100) (knows_the_number player))
30 (<= (goal player 0) (not (knows_the_number player)))

Example 1 The rules on the top of this page formalise a GDL-III
variant of NUMBERGUESSING. Line 1 introduces the roles.
Lines 3–5 define some auxiliary predicates. Line 7 provides the ini-
tial game state. The moves are specified by the rules for legal:
In the first round, a number between 1 and 32 is randomly cho-
sen (lines 9–10). The player can then repeatedly ask yes/no ques-
tions (lines 14–15). The player’s percepts are truthful replies to these
questions (lines 16–18). The rules for next specify the state update
(lines 20–22). The objective of the game is formulated as a knowl-
edge goal (lines 24–30): the game ends (terminal) and the player
wins (goal value 100) upon knowing the secret number.

Automated Reasoning for GDL-III. In order to be able to play
games specified in the extended game description language, any gen-
eral game-playing system needs an automated reasoning component
for evaluating the rules to determine legal moves and compute state
updates. In this section, we build on previous uses of Answer Set Pro-
gramming (ASP) to develop the foundations for automated reasoners
for GDL-III. The game description language and ASP have essen-
tially the same basic semantics given by the unique stable model
(aka. answer set) of a stratified set of logic program rules. Since
the evaluation of knowledge conditions depends on previous moves
and percepts, all state-dependent predicates in a game description are
augmented by two additional arguments so that a single ASP can be
used to reason about different legal play sequences, seq(S), and
different time points, time(T). For example, the ASP-encoding of
rule 25 in NUMBERGUESSING is

knows_the_number(R,S,T) :-
seq(S), time(T),
role(R), knows(R,num(N),S,T).

We follow the convention of using natural numbers for time, so
that (init F) is replaced by true(F,S,0) and (next F) by
true(F,S,T+1). Knowledge conditions are evaluated on the ba-
sis of the (in-)distinguishability of legal play sequences, according
to which players can distinguish any two sequences in which at least
one of their preceding moves or percepts differ. Otherwise, the two
sequences are indistinguishable (predicate ind):

distinguishable(R,S1,S2,N) :- time(N), T<N,
does(R,M1,S1,T), does(R,M2,S2,T), M1!=M2.

distinguishable(R,S1,S2,N) :- time(T), T<=N,
sees(R,P,S1,T), not sees(R,P,S2,T).

ind(R,S1,S2,N) :- role(R), seq(S1), seq(S2),
time(N), not distinguishable(R,S1,S2,N).

indtrans(S1,S1,N) :- seq(S1), time(N).
indtrans(S1,S3,N) :- ind(R,S1,S2,N),

indtrans(S2,S3,N).

The last two clauses above encode the transitive closure of the in-
distinguishability relation over all roles. On this basis, conditions
(knows R p(~x)) can be evaluated according to the schema

knows(R,p(~x),S,T):- p(~x,S,T),not np(R,~x,S,T).

np(R,~x,S,T):- ind(R,S,S1,T),not p(~x,S1,T).

Put in words, if S is the actual play sequence at time T, then player R
knows that p(~x) just in case p(~x) actually holds and it is not the case
that (predicate np) there is a sequence S1 that R cannot distinguish
from S and in which p(~x) does not hold. A property p(~x) is common
knowledge if p(~x) holds in all sequences that are in the transitive
closure of the indistinguishability relation across all players:

knows(p(~x),S,T):- p(~x,S,T),not np(~x,S,T).

np(~x,S,T):- indtrans(S,S1,T),not p(~x,S1,T).

Solving Epistemic Puzzles with GDL-III. Epistemic puzzles are
characterised by multiple agents starting off with imperfect, and in
many cases asymmetric, knowledge. They draw further conclusions
by logical reasoning about each other’s (lack of) knowledge in the
course of a short sequence of actions, which often merely consists
in repeated public announcements of an agent’s ignorance until ev-
eryone has perfect knowledge. An example is the following puzzle,
which recently acquired public fame [1].

Example 2 Albert and Bernard want to know Cheryl’s birthday. She
draws a list with possible dates and then tells them separately the
correct month and day, respectively. A dialogue follows in which Al-
bert first says that he doesn’t know the birthday and that he knows
that Bernard doesn’t know either, then Bernard says that he now
knows the date, and after that Albert announces that he does so too.

Puzzles like this that centre around knowledge of the knowledge of
other agents can be formalised using GDL-III in such a way that
every legal playout corresponds to a solution and vice versa. These
puzzles can then be automatically solved by a mere GDL-III legal
reasoner like the ASP-based reasoning system from above.

REFERENCES
[1] K. Chang, ‘A math problem from Singapore goes viral: When is Cheryl’s

birthday?’, The New York Times, (14 Apr 2015).
[2] A. Cordón-Franco, H. van Ditmarsch, D. Duque, and F. Soler-Toscano,

‘A colouring protocol for the generalized Russian cards problem’, Jour-
nal of Theoretical Computer Science, 495, 81–95, (2013).

[3] M. Genesereth, N. Love, and B. Pell, ‘General game playing: Overview
of the AAAI competition’, AI Magazine, 26(2), 62–72, (2005).

[4] M. Genesereth and M. Thielscher, General Game Playing, Synthesis
Lectures on Artificial Intelligence and Machine Learning, Morgan &
Claypool, 2014.

[5] S. Schiffel and M. Thielscher, ‘Representing and reasoning about the
rules of general games with imperfect information’, Journal of Artificial
Intelligence Research, 49, 171–206, (2014).


