A Systematic Solution to the
(De-)Composition Problem in General Game Playing

Timothy Cerexhe and David Rajaratnam and Abdallah Saffidine and Michael Thielscher

Abstract. General game players can drastically reduce the cost of search if they are able to solve smaller subproblems individually and synthesise the resulting solutions. To provide a systematic solution to this (de-)composition problem, we start off with generalising the standard decomposition problem in planning by allowing the composition of individual solutions to be further constrained by domain-dependent requirements of the global planning problem. We solve this generalised problem based on a systematic analysis of composition operators for transition systems, and we demonstrate how this solution can be further generalised to general game playing.

1 INTRODUCTION

General Game Playing (GGP) aims at creating AI systems that can understand the rules of new games and then learn to play them without human intervention. Fostered by the annual AAAI GGP competition since 2005, the field has emerged in direct response to specialised systems that use highly specific algorithms to play only a single type of game. In contrast, a GGP system must autonomously adapt to new and possibly radically different problems. Research into GGP can thus be viewed as part of a broader research agenda to build systems that exhibit forms of general intelligence [8].

A general game-playing system cannot be endowed with game-specific algorithms in advance. A key objective of research into GGP, therefore, is to develop methods for automatically analysing the rules of a game in order to find structures that help players to construct an efficient search strategy at runtime [8]. To emphasise this, the AAAI competition has recently focused on games with an internal structure that, if recognised, can be utilised to decompose, and hence drastically reduce, the search space [11].

Despite the recognition of the importance of decomposition in GGP, competition systems have so far had very limited success in dealing with such games [11]. Unfortunately, this is also reflected in the extremely sparse nature of the research coverage of this topic. Firstly, based on the encoding of games as propositional automata, Cox et al. [5] provide theoretical conditions under which a global game can be decomposed into a conjunction of multiple sub-games. Secondly, Günther et al. [12] provide an approach that is based on the construction of a dependency graph of action and fluent predicates for single-player games, such that disconnected sub-graphs identify independent sub-games. Finally, Zhao et al. [18] extend the dependency graph approach to the multi-player case.

The apparent lack of effective application to GGP systems despite these advances is the result of one key failure, namely, the lack of a strong account of how local sub-game solutions can be combined into global game solutions. We refer to this as the composition problem. While previously identified [12, 18], nevertheless, current approaches have only been able to deal with it in an ad-hoc algorithmic manner without providing any theoretical foundations on which to understand the properties and behaviour of these algorithms.

The composition problem is particularly challenging in GGP due to the separation of goal and termination conditions, making the satisfaction of global goal conditions highly sensitive to the execution order of sub-game actions. For example, satisfying the goal of one sub-game before another may cause the premature termination of the global game. In fact, it is worth noting that the separation of goal and terminal conditions is one of the key features that distinguishes GGP from AI planning and makes GGP a more general and difficult problem. We shall return to this relationship in the concluding Section 5, where we discuss the potential application of our decomposition approach to the problem of factored planning [11].

In this paper we address the composition problem in GGP by developing a systematic approach based on model checking products of Transition Systems (TSs). Our main contributions are:

- The reduction of the model checking problem of global TSs to the model checking of their composed parts.
- The worst-case complexity analysis of standard model checking algorithms when applied to decomposed problems, establishing the theoretical advantages of our approach.
- An experimental evaluation with games from past GGP competitions highlighting potential (orders of magnitude) performance gains of the approach.

It is worth emphasising that the task of identifying and decomposing games is not within the scope of this paper. Rather we are concerned with the theoretical foundations of sub-game composition. Fortunately, existing techniques for sub-game identification [12, 17, 18] can be applied without jeopardising results about the soundness of the transition systems themselves, and these form the basis for our experimental results.

The remainder of this paper proceeds as follows. Section 2 provides the main theoretical contribution, whereby a set of TS composition operators are defined and the notion of a stability condition is developed. Section 3 presents the complexity analysis for solving decomposition problems using common algorithms, highlighting the advantage of the theory to common special cases. Section 4 provides an Answer Set Programming based implementation of the theory showing its application to GGP for solving single-player games and proving desirable game properties. Finally, in Section 5 we summarise and discuss our results in the broader context of related fields and outline possible directions for future research.

1 School of Computer Science and Engineering, The University of New South Wales, Australia, email: {timothye,daver,abdallahs,mit}@cse.unsw.edu.au
2 COMPOSITION OF TRANSITION SYSTEMS

Partial order reduction, a major breakthrough in the software verification community, allows efficient model checking of "next-free LTL" formulas on asynchronous products of Transition Systems [2]. We draw inspiration from the verification community and share the TS formalism, but our target application has different assumptions: in verification, systems typically do not terminate or consider timesteps, whereas in GGP, local games terminate and interactions between server and agents constitute timesteps. We thus focus on another class of specifications, called stability conditions. Our approach handles specific time steps as well as sequential and synchronous products, while partial order reduction allows for nested "until" operators.

First we recall the definition of TSs and the composition operators on them. Next we define stability conditions to formally express queries on TSs. Finally, we show how these conditions can be decomposed, by translating model checking problems on products of TSs to sets of model checking problems on the factors.

By way of motivation, and to more clearly illustrate the theory, we consider the game of Incredible. This game has been used as the key example in discussions of decomposition in GGP [12].

Example Incredible is a single-player game that combines three underlying sub-games: the well-known blocks world (or blocks) construction game, a maze game requiring the player to carry a piece of gold from an initial position to a home position, and a wait game consisting of a set of superfluous transitions. The player earns points for solving the blocks world and maze sub-games and has to perform these tasks within 20 steps. Importantly, the game is terminated immediately on the completion of the maze sub-game.

Composition Operators

We now formalise the precise style of Transition Systems (TSs) on which our theory operates and introduce the composition operators that can be used to combine these TSs. For further details on the precise notion used to describe TSs we refer to Baier and Katoen [2].

Definition 1 A Transition System (TS) is a tuple $T = (S, \rightarrow, P, \lambda)$ where: S is a set of states; $\rightarrow \subseteq S \times S$ is a transition relation; P is a set of atomic propositions; and $\lambda : S \rightarrow 2^P$ is a labelling function.

We are now ready to introduce our three composition operators—synchronous, asynchronous, and sequential. The first, synchronous case represents two systems proceeding in lockstep, for example an array of coordinated traffic lights.

Definition 2 The synchronous composition of two TSs T_1 and T_2 is a new TS $T_1 \parallel T_2 = (S_1 \times S_2, \rightarrow, P_1 \cup P_2, \lambda)$ with:

- $\langle s_1, s_2 \rangle \rightarrow \langle s'_1, s'_2 \rangle \iff s_1 \rightarrow s'_1$ and $s_2 \rightarrow s'_2$

2 We use \cup to denote the disjoint union.

With asynchronous composition the lockstep restriction is removed and the two systems progress completely independently. This interleaving can model multi-threaded programs on a uniprocessor.

Definition 3 The asynchronous composition of two TSs T_1 and T_2 is a new TS $T_1 \circ T_2 = (S_1 \times S_2, \rightarrow, P_1 \Pi P_2, \lambda)$ with:

- $\langle s_1, s_2 \rangle \rightarrow \langle s'_1, s'_2 \rangle \iff s_1 \rightarrow s'_1$ and $s_2 \rightarrow s'_2$

- $\lambda((s_1, s_2)) = \lambda_1(s_1) \Pi \lambda_2(s_2)$

The third form of synchronisation is sequential. Transitions in the second system can only occur after the first system has reached a terminal state. This case is useful for modelling phase changes.

Definition 4 The sequential composition of two TSs T_1 and T_2 is a new TS $T_1; T_2 = (S_1 \times S_2, \rightarrow, P_1 \Pi P_2, \lambda)$ with:

- $\langle s_1, s_2 \rangle \rightarrow \langle s'_1, s'_2 \rangle \iff s_1 \rightarrow s'_1$ and $\neg \exists s'. s_1 \rightarrow s' \land s_2 \rightarrow s'_2$

- $\lambda((s_1, s_2)) = \lambda_1(s_1) \Pi \lambda_2(s_2)$

It is easy to prove that these operators are all associative, so they naturally generalise beyond the binary composition case. The synchronous and asynchronous operators are also commutative modulo isomorphism so the ordering of multiple similar compositions is unimportant. The sequential composition, however, is not commutative since the construction order introduces an implicit dependence.

Example Using the defined composition operators we can now formally express the Incredible TS in terms of atomic TSs (Figure 1):

- incredible = (wait 0 blocks) \circ maze

The wait TS corresponds to the sub-game containing the superfluous transitions, blocks encodes the blocks world puzzle, and maze encodes the gold delivery task. Additionally a count TS encodes the requirements of the game’s step counter. This TS is combined synchronously to ensure that all sub-games adhere to the same counter.

Stability Conditions

While TSs are a natural modelling analogue for many domains, the application of these systems can vary wildly. Planning systems typically want to find a path to a labeled goal state. Verification tasks are often the dual—the non-existence of a path with undesired effects. Game players seek a path to a labeled goal state that cannot be blocked by an opposing agent.

A natural mechanism for generalising these different use cases is to consult a domain-specific "stability condition". This condition is a (possibly infinite) sequence of formulas that constrains acceptable trajectories through the corresponding TS. We now provide a precise formalisation of these intuitive concepts.

Definition 5 A stability condition Φ is a sequence of propositional formulas: $\Phi = (\phi_n)_{0 \leq n < N}$ with $N \in \mathbb{N} \cup \{\infty\}$. It is conjunctive if every formula is conjunctive. The length of Φ, N, is also written $|\Phi|$.

Figure 1. Composed Transition System for Incredible

- $\lambda((s_1, s_2)) = \lambda_1(s_1) \Pi \lambda_2(s_2)$
Before considering stability conditions in a TS \((\Sigma, \to, P, \lambda)\), we recall that a state \(s \in \Sigma\) satisfies a propositional formula \(\phi\) ranging over \(P\), written \(s \models \phi\), if \(\lambda(s) \models \phi\) where the satisfaction of \(\phi\) by a set of atomic propositions is defined as usual.

Definition 6 A state \(s_0\) in a system \(T\) satisfies a stability condition \(\Phi = (\phi_n)_{0 \leq n < N}\), written \(T, s_0 \models \Phi\), if there is a sequence of \(N\) states \(s_0 \to s_1 \to s_2 \to \ldots\), with \(s_0 \models \phi_0\) and \(s_n \models \phi_n\) holds for all \(n < N\). \(T, s_n \models \Phi\) iff \((s_n)_{i=1}^{N} \models \phi_{i}\) s.t. \(0 \leq i < N\), \(s_0 \models \phi_0\) and \(s_N \models \phi_N\).

We may omit the TS or the initial state when it is obvious from the context and simply write \(s \models \Phi\) or \(T \models \Phi\).

The GGP context helps to clarify the concept of stability conditions. In particular, a stability condition to solve a game constrains the trajectories through that game’s TS such that all intermediate states in the trajectory are non-terminal while the final state is both terminal and goal satisfying.

Example The termination condition of Incredible is satisfied when the gold is dropped at the home destination or after a timeout of twenty steps. The goal condition is to have constructed two specific towers and retrieved the gold. Hence, the stability condition \(\Gamma\) is a finite sequence \((\phi_1, \ldots, \phi_n)\) where \(\phi = \neg (\text{gold} \lor \text{timeout})\) and \(\psi = (\text{gold} \lor \text{timeout}) \land (\neg \text{gold} \land \text{towers})\)

We now establish properties of how the stability conditions of a composed \(\mathcal{TS}\) relate to the stability conditions of its components. This is the crucial element if sub-game solutions are to be combined to provide global game solutions.

Theorem 1 Let \(\Phi\) be a stability condition. There exists a set \(D(\Phi)\) of conjunctive stability conditions, such that for any \(\mathcal{TS}\) and state \(s\), \(s \models \Phi\) if and only if \(\exists \Psi \in D(\Phi)\) such that \(s \models \Psi\).

Proof: Assume that \(\Phi = (\phi_n)_{0 \leq n < N}\). For every \(n\), construct the Disjunctive Normal Form (DNF) of \(\phi_n\): \(\phi_n = \bigvee_{0 \leq j_0 < K_0} \bigwedge_{j_0} \phi_{n,j}\), where \(\phi_{n,j}\) is a conjunctive formula, for all \(n\). Let \(K = \mathbb{Z}_{K_0} \times \mathbb{Z}_{K_1} \times \ldots \mathbb{Z}_{K_n} \times \ldots\) where \(K_d\) is the set \(\{0, 1, \ldots, 2^n - 1\}\). For any \(i \in \{0, 1, \ldots, n\} \subseteq K\), we define \(\Phi(i) = \bigwedge_{j \in K_i} \phi_{n,j}\) if \(i \subseteq K\) and \(\Phi(\emptyset)\) is the maximum size of a disjunctive normal form in \(\Phi\), and for any \(\Psi \in D(\Phi)\), \(\|\Psi\| \leq K|\\Phi|\).

Example Putting the formulas in our running example into DNF, we obtain that \(\Phi = (\phi_1, \phi_2)\) is equivalent to \(\neg (\phi_1, \phi_2)\) similar to \((\phi_1, \phi_2, \phi_3)\) where \(\phi, \psi\) are as above and \(\phi = \neg (\text{gold} \land \text{timeout})\), \(\psi = \text{gold} \land \text{towers}\), and \(\phi = \text{timeout} \land \neg \text{gold} \land \text{towers}\). Note that we did not simplify \(\psi\) or prune \(\phi\) for the sake of exposition.

We can now focus on solving the model checking problem for conjunctive stability conditions. Unless mentioned otherwise, the stability conditions in the rest of this section will always be assumed to be conjunctive.

Theorem 2 Let \(\Phi\) be a stability condition over \(P_1 \parallel P_2\). There exists a pair of stability conditions, \((\Phi_1, \Phi_2)\), such that for any synchronous composition \(T_1 \parallel T_2 = T\), and for any state \((s_1, s_2)\) of \(T\), we have that \((s_1, s_2) \models \Phi\) iff \((s_1, s_2) \models \Phi_1\) and \((s_1, s_2) \models \Phi_2\).

Proof: For all \(n\), let \(\phi_{1,n}\) be the projection of \(\phi_n\) over the atoms in \(P_1\): \(\phi_{1,n} = \phi_{1,n} \land \phi_{2,n}\). Let \(\Phi_1 = (\phi_{1,n})_{0 \leq n < N}\), \(\Phi_2 = (\phi_{2,n})_{0 \leq n < N}\), \(\Phi_1 \models \Phi\) for all \(n \leq N\) if \(\exists \Phi_1, \Phi_2 \in A(\Phi)\) such that \(\Phi_1 \models \Phi_2\)...

Theorem 3 Let \(\Phi\) be a stability condition over \(P_1 \parallel P_2\). Then there exists a set \(A(\Phi)\) of pairs of stability conditions, such that for any asynchronous composition \(T_1 \circ T_2 = T\), and for any state \((s_1, s_2)\) of \(T\), \((s_1, s_2) \models \Phi\) iff \(\exists \Phi_1, \Phi_2 \in \mathcal{A}(\Phi)\) such that \(T_1, s_1 \models \Phi_1\) and \(T_2, s_2 \models \Phi_2\).

Example Applying Theorem 2 to the \((\phi_1, \ldots, \phi_1, \phi_2)\) condition in Incredible gives that \(\text{incredible} \models (\phi_1, \ldots, \phi_1, \phi_2)\) iff a blocks@maze \(\models (\neg\text{gold}, \ldots, \neg\text{gold}, \text{gold} \land \text{towers})\) and \(\text{count} \models \neg (\text{timeout}, \ldots, \neg\text{timeout}, \text{timeout})\).

Theorem 4 Let \(\Phi\) be a stability condition over \(P_1 \parallel P_2\). Then there exists a set \(\mathcal{S}(\Phi)\) of pairs of stability conditions, such that for any sequential composition \(T_1; T_2 = T\), and for any state \((s_1, s_2)\) of \(T\), \((s_1, s_2) \models \Phi\) iff \(\exists \Phi_1, \Phi_2 \in \mathcal{S}(\Phi)\) such that \(T_1, s_1 \models \Phi_1\) and \(T_2, s_2 \models \Phi_2\).

Proof: For all \(n\), let \(\phi_{1,n}\) be the projection of \(\phi_n\) over \(P_1\). Let \(\phi_{1,n}(i)\) be defined for \(0 \leq n \leq i \leq N\) as \(\phi_{1,n}(i) = \phi_{1,n} \land \phi_{2,n}\) and \(0 \leq i < N\) as \(\phi_{1,n}(i) = \lambda_{i<n} \phi_{2,n}\).

3 SOLVING FINITE COMPOSED MODEL CHECKING PROBLEMS

In this section we consider the application of two simple model checking algorithms to checking composed finite TSS, and show how decomposition changes the worst-case complexity of these algorithms. Both algorithms are based on the simple observation that a state \(s\) satisfies a stability condition \((\phi_n)_{0 \leq n < N}\), with \(0 < N\), if and only if \(s\) satisfies \(\phi_0\) and a successor of \(s\) satisfies \((\phi_n)_{0 \leq n < N}\).

3 We assume \(-\infty \rightarrow 0 = 0\) and \(\infty \rightarrow 1 = 1\) for notational convenience.
Dynamic Programming The most popular CTL model checking algorithm is a form of Dynamic Programming (DP) which can be naturally adapted to our setting when the condition to be checked is finite [2]. Algorithm 1 shows pseudo-code for the DP approach to model checking stability conditions. Given a stability condition $\phi(n)_{0 \leq n < N}$, DP computes for each depth k and each state s whether $s \models \phi(n)_{k \leq n < N}$. This allows us in particular to answer whether a particular query state s_0 satisfies the full condition. If b is the branching factor of the system, that is the maximum number of outgoing transitions in any given state, then the worst-case complexity of this algorithm is $O(Nb[|S|])$.

<table>
<thead>
<tr>
<th>Algorithm 1: Dynamic Programming model checking.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dp (s_0, $\phi(n)_{0 \leq n < N}$)</td>
</tr>
<tr>
<td>Let M and M' be two maps from states to booleans</td>
</tr>
<tr>
<td>foreach $s \in \Sigma$ do $M(s) \leftarrow$ true</td>
</tr>
<tr>
<td>for $k = N - 1$ down to $k = 0$ do</td>
</tr>
<tr>
<td>foreach $s \in \Sigma$ do $M'(s) \leftarrow M(s)$; $M(s) \leftarrow$ false</td>
</tr>
<tr>
<td>foreach $s \in \Sigma$ do</td>
</tr>
<tr>
<td>if $s \models \phi_0$ then</td>
</tr>
<tr>
<td>foreach $s \rightarrow s'$ do</td>
</tr>
<tr>
<td>if $M'(s')$ then $M(s) \leftarrow$ true</td>
</tr>
</tbody>
</table>

Depth-First Search A Depth-First Search (DFS) traversal of the state space looking for a path that satisfies the stability condition is a simple alternative to DP. The basic idea here is to check at each level of a DFS that the corresponding formula is satisfied as described in Algorithm 2. For a DFS, if the formula has length N and the system has branching factor b, then we need b^{N-1} time in the worst case.

<table>
<thead>
<tr>
<th>Algorithm 2: Depth-First Search model checking.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dfs (s, $\phi(n)_{k \leq n < N}$)</td>
</tr>
<tr>
<td>if $k = N$ then return true</td>
</tr>
<tr>
<td>else if $s \models \phi_0$ then</td>
</tr>
<tr>
<td>foreach $s \rightarrow s'$ do</td>
</tr>
<tr>
<td>if $dfs(s', \phi(n)_{k+1 \leq n < N})$ then return true</td>
</tr>
<tr>
<td>return false</td>
</tr>
</tbody>
</table>

Worst-case Analysis Given a TS and a stability condition, we can use DP or DFS to directly solve the associated model checking problem. Alternatively, we can try to decompose the system into local ones and use the theorems of the previous section to obtain an equivalent (perhaps less complex) model checking problems. Assuming a conjunctive stability condition, Table 1 compares the worst-case complexity of both approaches for the three types of composition, in terms of the branching factor and the number of states of the system, and the size of the decomposition of the condition, $|A|$ and $|S|$.

Table 1. Worst-case complexity of the checking of a stability condition of length $N + 1$ for composed TSs. We assume that for $j \in \{1,2\}$, T_j has $\sigma_j =	S_j	$ states and a branching factor of b_j.						
Dynamic programming	Depth-First Search							
Original		Composed						
\parallel $N\sigma_1 \sigma_2$ $N\sigma_1 \sigma_2$	$(b_1 b_2)^N$	$b_1^N + b_2^N$						
\parallel $	A	N\sigma_1 \sigma_2$ $	A	N\sigma_1 \sigma_2$	$(b_1 + b_2)^N$	$	A	(b_1^N + b_2^N)$
$	S	N\sigma_1 \sigma_2$ $	S	N\sigma_1 \sigma_2$	$\max(b_1, b_2)^N$	$	S	(b_1^N + b_2^N)$

The worst-case benefits of decomposition are clear for synchronous systems for both algorithms. For asynchronous and sequential systems using the DP algorithm, the 2^N and $N + 1$ bounds on $|A|$ and $|S|$ from Theorem 3 and 4, already provides better complexity when the state space is large and the condition is relatively short. This analysis, however, does not show any improvement for DFS in those types of systems.

In the asynchronous case, the computation of the bound on the size of A made no restrictions on the number of distinct formulas that could appear in Φ. A more refined approach looks at the blocks of consecutive formulas that constitute Φ. If $\Phi = \langle \psi_0, \ldots, \psi_0, \ldots, \psi_m-1, \ldots, \psi_m-1 \rangle$, where formula ψ_i appears N_i times, then we obtain the tighter bound $|A| \leq N_{m-1} \prod_{0 \leq i < m-1} (N_i + 1)$. In particular, in planning as well as in GGP we have $m = 2$, $N_0 = N - 1$, and $N_1 = 1$, leading to $|A| \leq N$.

In the sequential composition case, the reason for the unfavourable worst-case complexity is that we may have to search for very asymmetric subplan lengths. In practice, though, the problem may have the following favourable property: “if there exists a solution, then there exists a solution making at least N_0 moves in both subproblems”. In that case the resulting complexity is $2(b_1^N - N_0) + b_2^N$.

4 ANSWER SET PROGRAMMING

We now consider a practical implementation of our theory as a general Answer Set Program (ASP). ASPs are compact logical descriptions used for efficiently generating models. They have a logic programming-like syntax, but can have more exotic elements in the head of their horn clauses. An empty head indicates a constraint: the body of the rule should not hold. If the head has one or more atoms inside curly braces then it is a “generator”—it indicates that the solver can make arbitrarily many of the atoms true, provided the body holds. If numbers appear to the left or right of the curly braces, then these are additional cardinality constraints that require a minimum and maximum of these head atoms to hold, respectively. For further details we refer to Gebser et al. [10].

The principle TSs from planning and GGP are routinely represented in ASP [15, 17]. The target domain must be temporalised to allow for a state space exploration. This essentially just adds a time parameter to time-dependent operators, particularly for state-update.

For the following we assume that Φ is a stability condition on a composed Transition System T with a given initial state s. We provide a generic ASP module based on the theory described in Section 2 to decide whether $T, s \models \Phi$. We further assume an ASP representation of Φ wherever formula is in DNF (predicate phi1), and an ASP representation of the atomic systems composing T.

Our module searches for a global plan satisfying Φ by solving local model checking problems as per Theorems 1–4. It does so by non-deterministically generating instances of predicates require and pickT. They respectively represent conditions on and transitions to be taken in the local systems at given timepoints. If the ASP solver finds a model, it outputs a sequence of global transitions (predicate plan) satisfying Φ. If the program is unsatisfiable then $T, s \not\models \Phi$.

Finally, note that our encoding is compatible with infinite stability conditions which may be checked with an incremental ASP solver [9].

The module The generic module is given in Fig. 2. It should be noted that the module described here is not GGP specific and references to “games” are purely a notational convenience. This module
The decomposition framework expressed as ASP code.

The predicates `root`, `child`, and `leaf` describe the structure of the composed game, represented as a binary tree. Each internal node is labelled `sync`, `asyn`, or `seq`. The `legals` predicate indicates legal transitions in a given leaf subgame at a given local time. The `act` predicate indicates the set of timepoints for which the subgame is active, that is, the timepoints at which a transition may be applied.

Line 1 to 5 are non-deterministic choice points. `pickD` corresponds to the existential quantifier in Theorem 1 where, for every timepoint, at least one `minterm` has to be satisfied (note: a `minterm` is a conjunction of literals). An upper bound is not needed since multiple individual minterms may be satisfied simultaneously. If `pickA` corresponds to Theorem 3, such that for every active timepoint `T` in an asynchronous product, we may act in the first subgame `pickA(G,T)` or in the second subgame `not pickA(G,T)`. Pick corresponds to Theorem 4, for every sequential product, we choose a local timepoint to switch from the first to the second subgame. `pickT` corresponds to Definition 6, we select exactly one transition for every leaf game and every non-final (active) timepoint.

The map predicate records the time correspondence between an internal node and its children (Line 7 to 16). `map(G,T,U,V)` means that the timepoint `T` in game `G` maps to the timepoint `U` in the first subgame of `G` and to `V` in its second subgame.

For each game, the `gmap` predicate maps between global and local times (Line 18 to 20). `gmap(G,T,U)` means that the global time `T` corresponds to the local time `U` in game `G`. This predicate can be based on `map` and the tree structure of the composition. For the root game, the global and local time are identical. If a game is not root, then the `require` predicate can be derived via the correspondence of its parent. `require(I,G,U)` means that the projection of `minterm` `I` needs to happen at local time `U` in game `G` (Line 23).

Finally, `plan(A,T)` outputs the global solution found by the ASP solver, if any. Action `A` needs to happen at global time `T` (Line 24).

Example The domain-specific model checking code for Incredible is presented in Fig. 3. The factorization of the global game in terms of local ones is given by the composition tree (Line 1 to 4). Recall that the stability condition for Incredible is of the form $\Phi = \langle \phi_1, \ldots, \phi_1, \phi_2 \lor \phi_3 \rangle$. Lines 6–11 specify Φ where `ends(T)` is such that $\Phi \models I$. Lines 12–18 ensure that the local conditions set by the Fig. 2 module are met.

Experimental results To test the practicality of our ASP encoding we considered a number of past GGP competition games that have been designed to be decomposed by suitably sophisticated players. Existing techniques [12, 17] were used to detect and decompose each game and we therefore do not present this code here. The experiments were run on a laptop with an Intel Core i5 2.6GHz processor with 8GB RAM using version 4.2.1 of an off-the-shelf ASP solver [10]. No specific solver configuration options were enabled.

Firstly, we considered the problem of finding winning solutions for single-player decomposable games: Incredible (the example throughout this paper) and Multiplehunter (from the 2013 AAAI GGP competition). Multiplehunter is a pawn capturing board game played over nine boards where only one board matters. Due to its own time constraints the original game is in fact unsatisfiable. Consequently, we created two satisfiable variants: one that captures 13 pawns within the required time limit and the other that increases the time limit to capture all 14 pawns.

Secondly, we considered the multi-player context where model checking techniques have traditionally been used to prove game properties such as `playability` [16]. A playable game is one where every player can make at least one legal move in every non-terminal game state. This can be encoded using an alternative stability condition. In particular, assuming a state is `playable` iff each player has a legal move in that state, then construct a stability condition $\langle \varphi, \ldots, \varphi, \psi \rangle$, such that φ encodes that the state is not terminal and `playable`, and ψ encodes that the state is not terminal and not `playable`. This stability condition guarantees unsatisfiability of a playable game and any solution will represent a counter-example.

Here we considered the game of Dualrainbow, a two-player graph colouring game where each player races to colour their own graph. The results of our experiments are presented in Table 2. They show timing results for the games solved with and without decomposition. To serve as a benchmark we also considered hand optimised versions: for Incredible the superfluous `contemplate` moves were removed and the blocks world and maze were serialised, for Multiplehunter the eight superfluous boards were removed, and for Dualrainbow one of the players was similarly removed.

The results are dramatic—queries on decomposed systems can be orders of magnitude faster than their original versions, even applied equally to planning and other TS encoded problems. The variables `T`, `U`, and `V` stand for timepoints, `G` and `C` denote games. Variable `A` represents a transition label and `I` represents a formula label.

![Figure 3. ASP code for model checking Incredible.](http://gamemaster.stanford.edu)
proaching benchmark performance. Note that ASP solvers ground do-

mains first, then solve the propositional translation. Our composed
times indicate that this grounding process is the new bottleneck. The
benchmarks have an advantage here since they have irrelevant in-
formation physically removed from their descriptions. However, it is
worth observing that as problems become harder the grounding
time typically becomes insignificant in comparison to solving. Con-
sequently, the comparison of solving times can be viewed as a more
accurate indicator of performance, further highlighting the benefits
of our decomposition technique.

Finally, it should be noted that as we are concerned only with solv-
ing composed subgames, Table 2 does not present the decomposition
times. However, for completeness we can report that the decomposi-
tion of Incredible and Dualrainbow took 1.9 and 3.2 seconds re-
tively, while the Multiplehunter variants took 38 seconds. Despite
these times being based on a naive and unoptimised implementation,
the combined times show that there is still a distinct advantage to
decomposing games so that they can be solved more efficiently.

Table 2. Results of ASP experiments, expressed in seconds. The number in parentheses is the solving component.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Original</th>
<th>Composed</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incredible</td>
<td>6.11 (5.87)</td>
<td>1.94 (1.60)</td>
<td>0.63 (0.46)</td>
</tr>
<tr>
<td>M.hunter 13</td>
<td>49.17 (43.66)</td>
<td>1.32 (0.38)</td>
<td>0.05 (0.01)</td>
</tr>
<tr>
<td>M.hunter 14</td>
<td>>1 hr</td>
<td>1.96 (1.03)</td>
<td>0.33 (0.28)</td>
</tr>
<tr>
<td>M.hunter (unsat)</td>
<td>2201 (2196)</td>
<td>1.31 (0.37)</td>
<td>0.19 (0.14)</td>
</tr>
<tr>
<td>Dualrainbow</td>
<td>19.04 (18.46)</td>
<td>3.52 (2.78)</td>
<td>10.50 (10.19)</td>
</tr>
</tbody>
</table>

5 CONCLUSION

In this paper we have provided a theoretically sound and compre-

hensive basis to reduce the model checking of products of TSs to the
model checking of the factors. As well as providing a strong foun-
dational theory and complexity results, we further showed how this
type can be applied in a practical GGP setting. In particular we pro-
vided concrete experimental results showing that an ASP encoding of
decomposable games using our approach can provide for dramatic
performance gains for solving and proving properties of games.

Our theoretical results provide avenues for future research both
within the GGP domain and further afield. Within the GGP domain,
while we have shown how to solve decomposable single-player games,
the path is less clear for multi-player games. Indeed, how to

generalize the stability conditions and their decomposition to express
common multi-player solution concepts remains an open problem.

Beyond the GGP domain, an important direction for future research
would be to consider the applications of our approach to the field of
AI planning, and in particular, factored planning [1]. Factored plan-
ing involves the decomposition of a domain into multiple factors
(sub-domains) as a means of reducing the global search space of
plans. However, there are key differences between factored planning
and our composed TSs based approach.

Most obviously the general setting of AI planning has no corre-
spondence to multi-player games where each player is competing to
maximise its own goal. Furthermore, planning does not consider the
separation of goals from termination conditions, which has been a
key challenge for GGP decomposition to ensure that games are not
prematurely terminated due to sub-optimal interleaving of sub-game
actions. Consequently, when considered with respect to these two
differences GGP problems represent a more general class with plan-
ing being one particular specialisation.

On the other hand there is also a sense in which factored planning
is the more general approach. In particular, we require that fluent
and actions be associated with only one sub-game, while factored
planning typically allows for overlapping sub-domains where both
fluent and actions can be shared [1, 3, 14].

These differences raise a number of avenues for future research.
Firstly, it would be useful to consider the extent to which our ap-
proach can be directly applied to factored planning problems with
non-overlapping sub-domains. Secondly, further work is required to
determine whether factored problems, or a sub-class such as
stratified decompositions [4], with overlapping sub-domains can be
mapped into equivalent problems with non-overlapping sub-
domains. It would then be necessary to establish the theoretical and
practical consequences of such a transformation.

Finally, there is further scope to explore the broader relationship
between the theory of composed transition systems developed here
to other areas of AI research that similarly employ some form of
decomposition. For example, the decomposition of a Markov Deci-
son Process (MDP) into hierarchies of smaller MDPs is an important
attribute of hierarchical reinforcement learning [6, 13].

ACKNOWLEDGEMENTS

This research was supported by the Australian Research Council
(project numbers DP 120102144 and DP 120102023). The fourth
author is also affiliated with the University of Western Sydney.

REFERENCES

[18] D. Zhao, S. Schiffler, and M. Thielscher, ‘Decomposition of multi-